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1 Introduction

In the beginning of the seventies HENKIN, GRAUERT, LIEB and others investigated the
Cauchy-Riemann equation in smooth strictly pseudoconvex domains. They considered
uniformly bounded 8-closed (O,q)-forms fand defined an integral operator R such that
u = Rf is a solution of CJu = f in D and the 1/2-Hölder norm of Rf cau be estimated
by the supremum norm of f. After some simple modifications of such an operator
R one can consider also 8-closed (O,q)-forms f which are not uniformly hounded hut
satisfy an inequality like

If(z)1 ~ C[dist(z,bD)]-ß for 0::; ß < 1.

It is not difficult to show that u = Rf is still a solution of 8u = f in D and that u is
(1/2-ß)-Hölder continuous for °::; ß < 1/2 and admits an estimate like

lu(z)1 ~ C[dist(z, bD)]l/2-ß for 1/2 < ß < 1.

A result similar to this can be found for instance in the paper of LIEB and RANGE

[LR]. In 1973 RANGE and SIU gave an integral operator, denote it again by R, to solve
the Cauchy-Riemann equation on domains which are only piecewise smooth strictly
pseudoconvex. For uniformly bounded 8-closed (O,q)-forms f they proved that the
solution u = Rf admits (1/2-e)-Hölder estimates for any smaH € (see [RSJ).

In tbis paper we also assume the domain to be piecewise smootb strictly pseudocon
vex. But we consider 8-closed (O,q)-forms f which have singularities at tbe boundary
or on some submanifold of the boundary. That is we assume

lf(z)1 ~ C[dist(z, N)]-ß

where N is a submanifold of bD that is in general position and has codimension d in
bD and ß is areal number with 0 ~ ß < 1 + d.

First let us give a motivation for this investigation. Let M be areal hyperplane in
Cn and let D be a domain (for example piecewise smooth strictly pseudoconvex). Let
M intersect D and denote the parts of D by D+ and D_. Now let f be a bounded
(O,q)-form Oll Mn lJ with äM f = O. We are looking for a solution u of the equation
8M u = f on Mn D. To get such a solution it is possible to go the following way. First
there are two operators 5 and 5' defined with the help of the Martinelli-Bochner kernel
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such that 8Sf = s'f on D+ U D_. Since S'f is 8-closed one can solve the equation
äg = S'! on D and set 1+ = SI - gon D+ and f- = SI - gon D_. Obviously f+ and
f- are 8-closed in D+ resp. D_. So we can salve the equations äu+ = f+ in D+ and
äu_ = f- in D_. If u+ and u_ are continuous up to the boundary of D+ and D_ we
can set u = u+1 - - u-I - on Mn D. It is easy to show that 8M u = f on

MnD+ MnD_
M n D. (For a more detailed description of these facts see [LL] or [AH].) But at least
it is necessary that we have u+ and u_ continuous up to the boundary. And therefore
we need some good estimates for 1+ and f-. But this requires a solution of 8g = s'f
with uniform estimates. It is known that S'f has a singularity on Mn bD and that is
the reason why we consider forms with singularities on submanifolds of the boundary.

But it is not so easy to salve the Cauchy-Riemann equation for forms with such
singularities. The solution operator defined in [RS] can not be used because it contains
some integrals over parts oI the boundary. And these integrals need not be defined in
our case. So we first have to modify at least these parts of the solution operator. The
idea is to use Stokes theorem to transform boundary integrals into integrals over some
submanifolds in the interior oI the domain. But before we can use Stokes theorem we
have to modify the kerneis too. At last we get a solution operator T that can be used
also for unbounded forms if there is an estimate like

If(z)1 ~ C[dist(z, N)J-ß for 0 ~ ß < 1 + d. (1)

The next step is to give some estimates for the solutions obtained by using the above
mentioned operator. We prove that u is (1/2-ß')-Hölcler continuous for 0 ~ ß < ß' <
1/2 and that

lu(z)1 ::; C[dist(z, bD)jl/2-ß1
for 1/2 ~ ß < ß' < 1 +d

if f satisfies the inequality (1). The proof requires a detailed investigation of the kernel
of the solution operator and a lot oI computations.

In Section 2 we recall some facts about piecewise smooth strictly pseudoconvex
domains, define some special submanifolds in D and introduce some weighted norms
and Banach spaces. The construction oI the solution operator will be done in Section 3.
Before we are able to do it we recall some well-known properties oI some oI the functions
we use, without any proof. At the end oI Section 3 we state the main theorem oI this
paper, namely the estimates mentioned above. Section 4 contains only the proof oI the
main theorem.

2 Preliminaries

According to RANGE and SIU a piecewise smooth strictly pseudoconvex domain D is
given by a frame {U;, l?;}J:;;:l with the following properties:

(i) {U; }J:;;:l is a finite open covering of an open neighborhood of bD,

(ii) the functions ej : Uj --+ IR are of class 0 2
, strictly plurisubharmonic and with

dej # 0,
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(iii) D, n U = {x EU: for all j either x f/. Uj or ej(x) < O} where U is the union of
all Uj ,

(iv) for 1 ~ i 1 < ... < i , ::.:; k the I-forms dein ... , dei, are lineary independent over IR
at every point of n~=l Uil/.

The last condition means that the parts of the boundary have to intersect transversally.
Sometimes we only write (IR) for it. In addition to this condition we will also consider
a stronger condition. This condition means that the intersection of the parts of the
boundary must be transversal in a complex sense.

(C) For 1 ::.:; i 1 < ... < i , ::.:; k the (l,O)-forms 8ei n ... , 8eil are lineary independent
over C at every point of n~1 Uil/.

Now let us give some definitions. For every ordered subset I = {it, ... , iz} of {I, ... , k}
we define

SI:={xEbDn(nUi): ei(x)=OViEI}
iEl

and choose the orientation on S l such that the orientation is skew symmetrie in the
components of land the following two equations hold wben D is given tbe natural
orientation:

Further let

k

bD = ESj,
j=l

k

bSI = ESIj.
i=l

k

ß = {A = (Ao, ... ,Ak) E Rk+1 Ai ~ 0, L: Ai = I}
i=O

be the standard simplex in Rk+1 with the canonical orientation. For every ordered
subset J = {jt, ... , jm} of {O, ... , k} wi th strictly increasing components we set

ßJ = {A E ß : L: Ai = I}
jeJ

with the orientation of ßJ chosen so that

m

b.6. J = ~(_1)1.+1.6.. ....
L.J Jl··Jv·.Jm
&1=1

NOW we can choose an e so small, that {Uj , ej + 8}J=l is a frame for DO for all
o~ 8 ::.:; e where DO is defined by

DO n U = {x EU: for all j either x f/. Uj Of ej ( x) + 0 < O}.

For 0:::; 8::; e and 1= {it, ... ,id c {I, ... , k} we define

sI := {x E nUj : eil (X) = ... = eil(X) =-0
JEI

and Vj f/. I either x f/. Uj or ej(x) + 8 < O}
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and

RI .- {x E nUj : -c; < eil (x) = ... = eil (x) < 0
JEI

and Vj rt 1 either x f/. Uj or ej(x) < ei,(X)}.

Obviously we have RI = UO<6<o!: s1. We choose the orientation of the R1 such that the
orientation is skew symmetrie in the components of 1 and the following equations hold:

k

D\DO!: - '" R·- L-J "
j=l

k

bRI = SI- Sj - 'ERIj
j=1

where Sj has the same orientation like all S1 including sy = SI. Observe that the
dimension of R I is 2n - 11[ +1. Therefore we have

Combining all the relations between the different sets we get the following result:

Lemma 2.1

b(E'(_1)IIIR1 x ßOI) = -E'R1 x ßI+ (D\Do!:) x ßo+E' (_l)III(SI X ßOI - s~ X ßOI)
I I I

(2)
where 111 is the length 0/ 1 and E' means the summation over all ordered subsets I 0/
{I, ... , k} with strictly increasing components.

Proof. Let 1= {i1, ... ,id and let Jv = {i1, .. i: .. ,iz}. Then

k

(-l)IIlb(RI x L\ol) = (-1)111(SI - Sj) X ßOI - (_1)111'E R1j x 1J.01
j=1

I

-R1 X L\I - :L(_l)VR1 x L\OJu '

v=l

(3)

We will show that, when we sum over all ordered subsets 1 of {I, ... , k} with strictly
increasing components, the surn of the second term on the right hand side almost
cancels the SUffi of the fourth term and the net result of the cancellation is (D\Do!:) x 6.0 .

Obviously it ia

It follows that

I

L' L -( _l)VRI x 1J.0Ju
I v=1

I

= L' L -(_1)1RJuiu X 1J.0Ju
I v=l

k k

- E Rj x 6.0 +E' E(-l)IJIRJj x L\OJ.
j=l J j=1

4
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Using the fact that (D\D~) = L7=] Rj the proposition follows from (3) and (4). •
Now we discuss the relation between N and the SI. Assurne that N is given as

{( E bD : T] «() = ... = Td( () = O}. For a later use we need some lower estimates for
dist«(, N) in terms which can be more easily computed on R I and SI. Fix I and let ( be
a point on RI . Since dist«(, bD) ~ Cdist(C SI) we also get dist«(, N) ~ Cdist«(, SI)
for all ( E RI . But in general this is not the best possible estimate. So let MI

be a submanifold of Sr such that dist«(,N) ~ Cdist«(,Mr ) for all (E Rr and the
codimension of Mr in Sr (dr := codimsJMI ) is maximal. Since it is not so clear how
to find such a submanifold M r we discuss sorne special cases. Assume that for sorne
o::; m ::; d the submanifold N satisfies the condition

(Pm) There exist m indices I ::; j] < ... < jm ::; d such that the I-forrns dei 1 , ••• , dein
dTjl' .•• , dTjm are lineary independent over IR at every point in a neighbourhood of
SrnN.

Then we can set Mr = {( E Sr : T](() = ... = Tm «() = O} and dr = m. Of course there
are still some cases where this estirnate is not the best one. But notice that we have
in the generic case

(G) For every I either dist(N, SI) ~ C > 0 or the condition (Pd) holds.

That means we can set MI = SI n N and dI = d for all I. In this paper we will only
consider submanifolds N of the boundary of the domain which are in general positionj
that is we always assurne the generic condition (G).

It remains to define some special Banach spaces. If cp is a nonnegative continuous
function on D then by B:(D) we denote the Banach space of differential forms f E

C2(D) with
Ilfll<p := sup Ilf(z)llcp(z) < 00.

zED

For z E D and 0 ::; ß < 00 we set

cp(ß, N)(z) .- [dist(z, N)]ß,
cp(ß, bD)(z) .- [dist(z, bD)]ß,

Further, for f E C2(D) we set

IIfllco := sup Ilf(z)11
zED

and

Ilflleo := Ilfllco + ~~lv Ilf(l~~~~z)11 if 0 < a < 1.
·fI(

Notice that
B'f-ß.N)(D) ~ C~(D) n L~(D) if 0::; ß < d + 1

where d was the codimension of N in bD. Since we assurne that the submanifold N
satisfies the generic condition (G) we have also

B:'ß.N)(D) ~ C2(D) nnL;(R[) if 0::; ß < d + 1.
I
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3 Construction of the solution operator

As mentioned in the introduction we want to study the Cauchy-Riemann equation for
such (0, q)-forms f which have singularities at the boundary of the domain D or at
some submanifold N of the boundary bD. To do this we can not direct1y use the
operators defined by RANGE and SIU because parts of these operators are integrals
over submanifolds SI of the boundary and are possibly not defined in our case. So
we have to modify at least these parts of the operators. Especially we will change
the boundary integrals into integrals over some special submanifolds RI of the interior
of D by using Stokes theorem. For this we first define some modified versions of the
support functions called «I>j which have no singularities inside D. With the help of
these functions we later define the kerneis k and K ' . After using Stokes theorem with
some integrals defined by these kerneis we get a formula containing seven different
integrals. A doser investigation of some of these integrals enables us to combine this
formula with a formula stated by RANGE and SIU. At last we get a homotopy formula
in terms of operators Tq which contain only integrals over submanifolds lying in the
interior of D.

First we recall sorne well-known facts on some functions which are related with a
piecewise smooth strictly pseudoconvex domain that is given by a frame {Uj, ej }7=1'

Proposition 3.1 There are positiv constants CI, C2, Ca, C4 > 0 and functions F j , Hj,
<I> j, <I> j ((, z) : Uj X D -+ C and functions pj ((, z) : Uj X D -+ Cn

, with the Jollowing
properties:

(i) Fj ((, z) is the Levi polynomial of ej mith a small perturbation 0/ the quadratic
terms, Fj ((, z) is Cl in ( and holomorphie in z,

(ii) <I> j ((, z) and <I>j ((, z) are Cl in ( and holomorphic in z,

(iii) <I>j((, () = 0 and <1>j((, z) # 0 for !( - zl ~ Cl,

(iv) «I>j((, z) # 0 for I( - z[ 2: Cl,

(v) «I>j((, z) = Hj ((, z)(Fj ((, z) - 2ej(()) for I( - zl < ClJ

(vi) Ca < IHj ((, z)1 < C4}

(vii) Re «I>j((, z) 2: c2(lej(()1 + lej(z)[ + I( - Z12) tor (, z E Uj , I( - zl < Cl and

l«I>j((,z)l2: c2(lgj(()I+lej(z)I+IIm«I>j((,z)I+I(-zI2) for (, z E Uj, l(-zl < Cl,

(5)

(viii) «I>j((, z) # 0 and d>j((, z) 2: c:;zl( - Zl2 for (, z E D,

(ix) d>j((, z) = 4>j((, z) for ( E Sj, z E D,

(x) pj((, z) is Cl in ( and holomorphic in z,
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(xi) <1>j((, z) = L~;;1 p~((, z)((y - Zy),

(xii) p!((, z) = Hj ((, z)~(()+O(I( - zl).

The construction of the <I>j is done by using Fj and solving same 8-equation. The
~ j are constructed in the same way but with F; replaced by (F; - 2e; ). For a more
detailed description of the construction and a praof of the facts of the proposition see
(RS] or [HL].

We further define PO((, z) := (- z, <I>o := I( - Z12, 17; := pi /<I>j and ij; := pi /~j.
Moreover we choose a COO-function X with X(() =1 for ( in a neighbourhood of bD
and X(() =0 for ( in D~/2. We set '

k

7] ( ( , z, ..\) .- L:..\ j 7]) ( ( , Z ) ,

j;;O

k

7j (( , z, ..\) .- ..\07]
0

( ( , z) + X(() L: Aj ijj ((, z)
;=1

and

In the sequel we want to make use of some determinants whose entries are differential
forms. For this purpose we define the determinant of a n X n-matrix (aoß) of differential
forms as follows

det(aoß) = L: sgn(a)aa(1),1 /\ ... /\ aa(n),n,

where the summation is over all permutations a of {I, ... ,n} and sgn (a) is the signature
of a. We will also use the notation

where the aj shall be column vectors of differential forms and the surn of the mj fiust
be equal to n.

Now we are able to give the definitions of some kerneIs.

1«((, z,..\) .- det 1,n-1(77(C z, ..\), (8, + az + d),)7]((, z, ..\)) /\ w(()
1«((, z,..\) .- det 1,n-1(ij((,Z, ..\), (a, + 8z + d),)i]((, z, ..\)) /\ w(()

1('((, z,..\) .- detn ((8, +8z + d),)ij((, z, ..\» /\ w(()

Observe that the first kernel is the kernel used by RANGE and SIU to define the basic
solution operator for piecewise smooth strictly pseudoconvex domains. The KerneIs 1<
and 1(' which are defined by means of ij will be used to define a new solution operator.
But first we give some properties of the kerneIs. We denote by J(q resp. !(q the surn
of all monomials of !( resp. k which are of degree (0, q) in z.
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Lemma 3.2 (i) 77((, z, A) = 11((, z, A) for (E bD or A E ßo

(ii) ([j, + [Jz + d:..)f( = 0

(iii) ([J, + [Jz + d~)j( = f('

(iv) 1(q = (n;l) det1,q,n-q-l(77, [Jz7Jl ([J, +d~)71) 1\ w(()

(v) l(q = (n;l) deh,q,n-q-l (fj, [Jzil, ([J, + d~)il) 1\ w( ()

Proof. Using Proposition 3.1 (ix) and the fact that x(() =1 for ( E bD part (i) of
the lemma follows from the definitions of'1] and ij. The propositions (iv) and (v) follow
by using the linerarity of the determinant in each column and the fact that two columns
of I-forms can be interchanged without changing the sign. Ta prove (iii) we anly have
to use the fact that the differential of a determinant is a sum of determinants where
the differential is applied to the different columns. When the differential is applied to
the first column the sign is plus. And if the differential is applied to one of the other
columns this column is zero and therefore the whole determinant vanishes. Proving
(ii) we can go the same way and get a determinant similar to 1(' hut il replaced by 'Tl.
Because of Proposition 3.1 (xi) we now have

n

L: '1]y((, z, A)((v - zv) =1.
v=l

Applying (a, + oz + dA) we get

n

l:(a, + [Jz + d~)'1]v((, z, A)((v - zv) = O.
v=l

It follows that the row vectors

are lineary dependent aver C and therefare the determinant vanishes. •
As a corollary of the lemma we get for (0, q)-forms f the following formula

(d, + d~)(f 1\ K) = 0,/ 1\ k + (-1)q / 1\ ([J, + d~)k

= [j,! 1\ j'( + (-1)q(f 1\ 1(' - f 1\ [JzI()
= (-1)q f 1\ [(' + [J,t 1\ k - [Jz(f 1\ j(). (6)

Before we come to the construction of our Qwn operator we state one more result
from RANGE and SIU [RS].

Theorem 3.3 (RANGE and SIU) Let / be a (O)q)-form such that /, äf E C2(D) und
let Cn = 1/(27ri)n. Then we have
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(-l)qenf(z) - ßz( J f 1\ /(q-l + J f 1\ /(q-d
L:/(-l)llIS/xao/ Dxao

-( J äf 1\ /(q+ J äf 1\ K q)
L:/(-1)1/IS1xaOl Dxao

+ J f 1\ /(q. (7)
L:/s/xa/

Moreover the last integral vanishes except for q = o.
For simplicity we introduce the notations R := L:/( -1)IIIR1 X~OI, S := L:/( -l)IIISI X

~OI and se := L:/(-1)11ISj X ~Ol. Now we want to apply Stokes theorem. Keep in
mind (2), (6) and the fact that IR ßz(f 1\ i() = -ßz IR f 1\ j( because the dimension of
R is odd. We get

J(-l)qf 1\ /(' +Jäf 1\ j( + äz Jf 1\ k
R R R

J f 1\ k q-l + J f 1\ k q-l +Jf 1\ /(q-1 - Jf 1\ k q-1 . (8)
L:/R/xa/ (D\D~)xao S s~

Let us consider the integrals on the right hand side. Since ij is holomorphic in z for
A E /:i.[ it follows from Lemma 3.2 (v) that j(q = 0 on R1 X /:i. I for q f. O. So we get

J f 1\ j(q-1 = 0 for q f. 1,

L:/R/xa/

äz J f 1\ j(q-1 = 0 for q = l.

L:/R/xa/

(9)

From Lemma 3.2 (i) we obtain

J f 1\ k q-1 = J f 1\ /(q-1
(D\D~)xao (D\D~)xao

(10)

(11 )
and Jf 1\ Kq- 1 = Jf 1\ /(q-l.

S S

It remains to investigate the last integral at the right hand side of (8). Since x(() == 0
in De/2 we have it = A07]° for ( E S~, so the first column in the determinant of f<
is Ao'1]°. Further dirn /:i. oI = I/I ~ 1 and consequently at least one dAj is needed for
the integration. After expanding the determinant into a sum of determinants let UB

assume that each term has a dAj in the second column. This dAj must be either '1]°dAo
or 0 . dAj for some j > O. In both cases the determinant vanishes. The result is

Jf 1\ j(q-1 = O.
s~

(12)
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and

Keeping in mind (10), (11) and (12) we can combine (8) with (7).

(-1)9 en j(z) = ßz( J J /\ Kq- 1 - J J /\ J(q-1 + J j /\ J(q-1
Er'R/x.6./ (D\Dc)x.6.o Dx.6.o

- J(-l)qj/\K'- JäJ/\1<-äz J J/\K)
R R R

I

-( J BJ /\ J<q - J BJ /\ 1(q + J BI /\ J(q
Er'R/x.6./ (D\DC)x.6.o Dx.6.o

- J (-l)q+läj /\ J(' - J [}äf /\ J< - äz J [}I /\ K)
R R R

Obviously the 6th and the 11th integral on the right hand side vanish. And the surn
of the 5th and the 12th integral vanish too. From (9) and the remark in Theorem
3.3 it follows that the first integral vanishes and that the 7th and the last integral are
nonzero only for q = O. Let us define the operators

Tal := .J I /\ J(o - J BI /\ }<o

E/s/x.6./ E/R/x.6. 1

Tql := - Jf /\ J(' - (_1)9-1 J j /\ K q- 1 for 1 ~ q ~ n.
R D cx.6.o

Consider the integral In f /\ J(' = IE/(-1)11IR1X.6.01 f /\ !('. Observe that if I is a
(0, q)-forrn each summand of / /\ K' is a form of degree at least n + q in (. Thus

J I /\ J(' = 0 if dirn R1 < n + q.
R 1 x.6.01

It follows that we only need to sum over the 1 with 111 ~ n - q + 1.

Theorem 3.4 Let / be a (O,q)-form on D such that I E C(0,q)(D)nnIII:5n-q+1 L(o,q)(R1)

and 8f E C(O,q+l)(D) n nlll:5n-q L(O,q+l)(R1) and let en = 1/(21ri)n. Then we have

enf = Ta! +T1[}/ JOT q = 0

and
enf = 8Tq f + Tq+18f for 1::; q ::; n.

Proof. It is shown above that the theorem is true for /, 8/ E C2(D). A 8hort
investigation of the kerneis shows that the operators can be used also if fand [}f are
only continuous in the interior of the domain and integrable on all of the R1 to be
considered. According to the above remar~ it is sufficient to have f E C(o,q)(D) n
njll:5n-q+1 L(o,q)(R1) and 8f E C(O,q+l)(D) n nIII:5n-q L(O,Q+1)(R1). The fact that the
equation still holds, follows by same simple approximation arguments. •
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Remark. In the smooth case when we have only e1 we get R 1 = D and D~ = 0. For
q ~ 1 we have Tqf = - I-DX[O,1] f 1\ K'. This i8 exactly the operator which is given for
instance in Section 3 in [HL]. For some weighted estimates of this operator see [F].

At the end of this section we state the main result of this paper. The proof of this
theorem will be the subject of the next section.

Theorem 3.5 Let 0 ~ ß < 1 + d, 1 ~ q ~ n. And assume that the submanifold N
satisfies the generic condition (G). That is for every I wilh 1/1 ~ n - q + 1 we have
either dist( N, SI) ~ C > 0 or the condition (Pd). Further assume the condition (C)
in a neighbourhood of the submanifold N. Then there is a positiv constant C such that
'or each f E Brp(ß.N) (D) we have;l (O,q) .

(i) IlTq/llc1n-ßI ~ Cllfllrp(ß,N) for 0 ~ ß< ß' < 1/2,

(ii) IITq/lIrp(ß'-1/2,bD) ~ Cll/lIrp(ß,N) for 1/2 ~ ß < ß' < 1 + d.

4 Estimates for the operator Tq

This sectian cantains the praof of the main theorem of this paper. Ta da this proaf we
first give some lemmas.

Lemma 4.1 Let / = {i}, ... , i ,} be a jixed ordered subset 0 f {I, ... , k} with strietly
increasing components. Then the integral IR/Xßo/ f 1\ 1(' can be written as a linear
combination 0/ integrals 0/ the type IR/ / 1\ A where A is one 0/ the kernels

d t (pO pi1 pi, d1 d- a- pil a- pin-I-,) 1\e 1,1,... ,1,6-1,1, ... ,1 , , ... , , ~ - z" , ... , ,
Xn-6w«() 1\ (a, + äz)l( - zl1\ _ _ __

.rF... • .rF.. Ir _ ZI2(6)+1;r.,... . .rF. .
'l"1 ••• 'l'" ~ 'l'J1 ••• 'l'J~n_I_1

for 1 :::; s ::; n - land jt, ... ,jn-I-6 E /,

det (pO pi1 pi, d1 d- a- pi1 a- pin-I-,-1) 1\1,1,... ,1,6,1, ... ,1 , , •.• , ,~- z" , ... , ,
- 8 i

Xn
-

6 w(() 1\ (a,X - XT)
1\_ _ _ h_

"'-.. . "'-. I( - z!2(6+1)m.. . ift..
'l' '1 ••• 'l' 'I '.i'J1 ••• 'l'J~n-'-1-1

for 0 ::; s ::; n - I - 1 and jll ... ,jn-I-6-t, h E /,

det1,..• ,1 ,_,1 ,... ,1 (pi1, ... , pi" d( - dz, ä,pi1 , ... , [J,pin-E-I) 1\

Xn- 6w«()
1\ - - - -

Ai... • if... le _ ZI2(6)"'-.. . "'-.
'i' '1 '" 'i' 'I 'l'J1 ••• 'l'J2n-l- I

for 0 ::; s ~ n - land j], ... ,jn-I-6 E 1,

det (PO pi1 pi, d1 dz- a pi! a- pin-E-') 1\1,1, ... ,1,6,1, ... ,1 l , "h'" ,~- , u, ,..., ,
Xn - 6 - 1W(() ,

1\- - __
"'-.. - . "'-.I( - ZI2(.s+I)"'-.. . "'-.
':1:"1 •• h" 'l"l 'l'J) ••• 'l'1~n-I-1

fOT 0 ~ S ::; n - 1 and j], ... ,in-I-6' hEl and ~il • "h" . ~il means that ~h has to be
omitted.
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Remark. Note that all the kerneis contain at least one X except for 1 = 1 and
s = n -1 where the last kernel becomes the Martinelli-Bochner kerne!. But this kernel
is well known. So in the sequel we only have to consider the other kerneis and A shall
denote any of the kerneis of the lemma but not the Martinelli-Bochner kerne!.

Remark. 5ince f = LK fK!-(K we have IR! f A A = LK IR! fK( d(K A A). By A' we
denote any of the kerneis (d(K A A). Instead of the integrals IR! f A A we can now
investigate integrals of the form IR1(!)A' where (/) denotes any of the coefficients of
f. The advantage of this representation is that f gives only something of function type
to the integral and A' has the right degree to be integrated over R f •

Proof. We have to investigate the kernel /('. Because of the integration over 6.01 we
only have to consider monomials of degree 1 in dAj. That means instead of 1(' we have
to compute

(13)

Observe that on 6..01 we have ij = Ao1]° + X LjEf Aj",j and AO = 1 - LjEf Aj. From
Proposition 3.1 (ii) and (x) we have that all iJj are holomorphic in z. Thus (13) is
equal to

det/,n-I(L)X~j- 1]°)dAj, Ao(a, + 8z )7]° +E Aj 8,(xijj)) A w(()
JEI JEI

which is a linear combination of

detl,,,,n-I-,,(E(xiJj -1]°)dAj, Ao(8, +81;)1]°, E Aj 8,(xijj)) A w(() for 0:::; s :::; n - 1.
JEI JEI

In the s columns in the middle we have AO(a, +8z )1]0 = AO( rl-=-zl~ - 1]0 2(8'~~ll' -z)) and
-. ~ pi - ~ ~. .

the last n -1- s columns are LjEI Aj 8,(xiJJ ) = LjEI XAjT +LiEI Aj(8,x - XT )iJ1.
J J

Now we expand the sums in all columns. Keeping in mind that the determinant
vanishes if there are forms bi , bj and functions Ck such that for two different columns
aki = ckbi and aki = Ckbj, we compute that (13) is a linear combination of some terms

d ( ° -il ,..i d( - di '" \ 8,pj)
etl,l,... ,l,,,-l,n-l-,, 1] ,1] , ... ,1] I, 11" _ 12 ' L..iXAj~ A

~ Z JEI 'l!)

A (I") A dA A (a, + 8z )l( - ZIX1A" for 1 <_ s <_ n -1,
w ~ I 1( _ zi °

(
0 -il -il d( - di '" 8,pi

detl,l, ... ,l,,,,n-l-"-l 1] ,1] , ... , Tl , J( _ Z12' feI XAj <1-
i

) A

- a,<I>h I 1
Aw(() A dAI A (8,x - X ~h )x - A~Ah for 0:::; s :::; n -1- 1, hEl,

. . d( - dz 8,pi
det",..",.,n-I-.(ij", "', ij", !( _ Z12' ~ XAj <I>j ) /\

12



I\w( () 1\ dA[ X' A~ for 0::; s ::; n - I,

d ( 0 -i -i d( - di "" ,ß(pi )
eh.l, ...,I,,,,n-l-,, 77 ,1] 1'··h o .,1]', I( _ zj2' fE/XAi <I>i 1\

I\w(() 1\ dA[ X'-
l A~ for 0::; s ::; n - I, hEl,

where iji1 , •• ho., ijil means that the ijh rnust be ornitted and dA[ denotes d).,i1 1\ ... 1\ dAil.

Now we still have to expand the surn in the last colurnns and to collect all Aj, <I>i and
le - Zl2 outside the determinant. We get

for 1 ::; s ::; n - land jI, ... , jn-I-" EI,

d t (pO pil pil d1 d- a- pit a- pin-I-'-l) 1\e 1,1,... ,1,".1, ... ,1 , , ... , , ~ - z, ( , ... , (
- ~ 4>

Xn-"PolY(A)W(() 1\ dA[ 1\ (a(X - XT)1\_ _ _ _ h

,if,... • ,if,.. Ir _ zI2{,,+I),if,... • ,if,. .
'l"tl ... 'l"t, ~ 'l")l ... 'l"J1n_I_._l

for 0 ::; oS ::; n - 1- 1 and jI, ... ,jn-l-.-I, hEl,

det l ,... ,1 ,",1, ...•1(pil , ... , pil , d( - di, 8(pit , ... , {j(pin-,-,) 1\

Xn-"Poly( A)w(() 1\ dA[
1\- - - -,if,... • ,if,.. Ir _ z12(,,),if,... . ,if,..

'i' tl ... 'i' 'I I:, 'I:'Jl ... 'i'J2n-I-.

for 0 ::; s ::; n -I and jl' ... ,jn-I-" E I,

d t (pO pil pil d1 dz- a- pit a- pin-I-') 1\e 1,1,....1,••1,... ,1 , , ..i .. , ,I:, - ,( , ... , (

xn-"-1 PolY(A)w(() 1\ dA[
1\- ... __

,if,.. • • o,if,.. Ir _ zI2("+I)if.... . ,if,..
'i'll ..h" 'l"tl ~ ':i'Jl ... ':i'J2n-I-.

for 0 ::; oS ::; n -I and jI, ... ,jn-I-", hEl and Poly(,X) means a polynomial in the ).,i for
j E I. Now we can integrate with respect to )., E t.:..O[ and the proposition folIows. •

Let I = {i}, ... , i ,} be a fixed ordered subset of {I, ... , k}, let (0 be a fixed point on
SI and let U( (0) be a sufficiently small open neighbourhood of (0 in Cn

. In the sequel
it might be necessary to shrink U((0) even if we do not explicitly rnention it. We also
assurne z E U((o) and U((o) so smalI that for all z, ( E U((o) we have I( - zl < Cl

where Cl is the constant frorn Proposition 3.1. For a fixed z we choose real coordinates
on U((o).

x = (Xl, ... , X2n) = (Xl, ... , X2n-Id?I(() - el(Z), e2(() - el((), ... , UI(() - [11(())

We use the notations x' = (Xl, ... , X2n-l), t = [11 (() and X" = (X2n-l+2,'''' X2n). Then
RInU((o) lies in the set defined by x" = 0 and t ::; O. Moreover we mayassurne x'(z) =
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X2n-l+l(Z) = O. Set Uj(() = Uj((, Z) = ImFj(C z) and take the Taylor expansion of
Uj((, z) as a function in ( at the fixed point z.

2n 2n
Uj(() = L Cjll(z)(x lI - xv(z» + L Cjlljl(z)(xv - xv(z»(xjl - xjl(z» + O(I( - z13)

v=l ~p=l

We define

2n 2n
Pj((, z):= L: Cjv(z)(xv - xlI(z) + L: Cjllj1(z)(x lI - xv(z))(xp - xp(z))

and

Notice that
(14)

In the following we want to use the notation O(I( - zl) also for forms. A form f((, z)
is said to be O(I( - zl) if the function 1/((, z)l is O(I( - zl). Here I . I is any of the
Darms of a form at a point. On RI we have dt = dei! = ... = dei,. Using this fact we
can derive from Proposition 3.1 (i)

d,Fj ((, z) = 28ej(() + O(I( - zl),

d,Fj ((, z) = 2äej (() + O(I( - zl) = 2dt - 28ej(() + O(l( - zl)

and consequently
d'Uj((, z) = -i(28ej(() - dt) + O(I( - zl)

or

8ej(() = i/2d,uj(() + 1/2dt + O(l( - zl)
= i/2d,pj((, z) + (1/2 + Cj,2n-l+1(Z»dt + O(I( - zl). (15)

Using again that dt = deh on RI we derive

Now we can state the following lemma.

Lemma 4.2 Let I be a fixed ordered subset 0/ {I, ... , k} and let (0 be a fixed point on
SI, let U((o) be a sufficiently small neighbourhood 0/ (0 and let z E U((o) be Jixed.
Th en the kerneIs A' given in Lernma -1.1 can be estimated on R 1 n U((0) by kernels 0J
the Jollowing type:

Jor 0 ~ s ~ I,

The W2n-I-6 denote some uniformly bounded forms 0/ degree 2n - 1- s in (.

14



Remark. Note that the qi are quadratic polynoITIials in (. So they define a finitely
sheeted branched covering and we may use them as independent coordinates.

Proof. First we apply the inequality !ci>j((,z)l2: GI( - Zl2 to the products ci>jl ... ,.
<I>j2n_l_,' Then we cau assume X == 1, ä,x =0 since ( is in a small neighbourhood of bD.
Now we consider the columns of the determinants which contain the pj, j E I. From
Proposition 3.1 (xii) we get pj((, z) = Hj ((, z)Vej(() + ·...0((, z) with c ~ IHj ((, z) I ~
C, (j((, z) = O(I(-zl) and V'ej(() denotes the column (Bej/a(ll"" 8ej/8(n)t. Further
let (jI, ... ,jL) be any permutation of I respectivly I\{t} if we consider the fourth of
the kerneIs. Now the determinants can be estimated by a surn of determinants of the
following type:

det(Vejl' ... , \7eir, 'Ijr+l' ... , Th, ... )

with 0 ::; r ::; I resp. 0::; r ::; I - 1 in the fourth case and the last columns contain
some po, d( - di and same ä,pj, j E I. Since the forms d( - di and ä,pj, j E I are
uniformly bounded and since po and Tj cau be estimated by CI( - zl it remains to
consider the first r columns of the determinants. Using the equation

we conclude, that the kerneIs A' can be estimated by a sum of terms like

for 0::; r ::; L,

a,iPh 1\ agil 1\ 1\ agir 1\ W2n-l-r I( - Z I'-r+l
l<I>il I l~ill . le - z[2(n-l)

agil /\ ... /\ 8ejr /\ W2n-l-r+lle - Zl'-r

I~ill' .... lci>ill·I( - ZI2(n-l)

for 0::; r ::; L,

j1, ·.. ,ir E I,

(17)

(18)

agjl /\ ... /\ af!jr /\ W2n-l-r+ll( - zl'-r
'" '" for 0 =:; r ::; I - 1, hEl, j I, ... , j r E 1\ { h}

I~i) I. "h" • I~ill . I( - zI2(n-l+1)

(19)
where W2n-l-r+1 denotes some uniformly bounded form of degree 2n - I - r + 1 in (.

Because of Proposition 3.1 (v) and the uniform estimates for Hh we can replace
a'~h by ä,(Fh- 2f!h). Now we consider the forms Beil /\ ... /\ 8f!jr /\ W2n-l-r+l and
a,(Fh - 2f!h) 1\ agil 1\ ... 1\ 8f!jr 1\ W2n-l-r' Using (15) and (16) we get

r

- L L dPT(l) /\ ... /\ dp'(ß) /\ W2n-l-ß+ll( - zlr-"
,,=0 T

r-1

+L: L: dPT(1) /\ ... /\ dPT(ß) /\ dt /\ W2n-l-,,!( - zlr-,,-l
,,=0 T

and
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r

- dPh 1\ CE 2: dpr(l) 1\ ... 1\ dpr(,) 1\ W2n-l-, l( - zlr-,
,=0 r

r-l
+L 2: dpr(l) /\ ... /\ dpr(.) /\ dt /\ W2n-l-,-lle - zlr-,-I)

,=0 r

r

+E E dPr(l) /\ ... /\ dPT(') /\ dt /\ W2n-l-lt le - z!r-"
,,=0 T

r

+(2: 2: dPr(l) /\ ... /\ dpT(") /\ W2n-l-lt+lle - zlr-"+1
,,=0 r

r-l
+E L dpr(l) /\ ... /\ dpr(,) /\ dt /\ W2n-l-"le - zlr-,,)

lt=O T

h,jI, .. ,j~ E I,for 0 ~ s ~ I,

where T is apermutation of {jl' ... , jr} and L T means the summation over all such
permutations and W m denotes any uniformly bounded form of degree m in ( (wm may
denote different forms only of the same degree even in the same surn). Now let us look
at the terms which do not contain a dt. Since the dpj have by definition no component
in the direction dt there must be a dt contained in the corresponding wm . Because
otherwise the whole form would vanish on R[ due to degree reasoils considering the
other coordinates. So we have a dt in all of the terms and we can replace all the dpj
by the corresponding dqj. Some of the terms obviously can be estimated by other
Olles. We get two inequalities which we can combine with (17)-(19). After some simple
changes of the indices we conclude that the kerneIs A' can be estimated by a sum of
the following terms

dqjl /\ ... /\ dqj, /\ dt /\ W2n-l-, le - zl,-,+1

I~h I. l~ill ..... l4>i, I. !( - zI2(n-l)

dqjl /\ ... /\ dqj, /\ dt /\ W2n-l-,I( - zl,-,-1
~ - for 0 ~ s ~ 1- 1, jl, .. ,j~ E I,

l~ill ..... l~i,l . I( - zI2(n-l)

dqit /\ ... /\ dqj, /\ dt /\ W2n-l-,I( - zl
,
-,-1 r 0 I 2 h 1· . I\{h}

- - lor ~ s ~ -, E, )1, .. , )"' E .
l~ill . "h" . l<Pi,l . I( - ZI2(n-l+l)

The three kerneis still have a lot of ~j in the denominators. We want to keep there
only the <I>it' ... , ~j, an.? one more that will be denoted by 4>h' To the rest of the <I>ji we
apply the inequality I~j((, z)1 ~ GI( - zI 2 and the proposition of the lemma follows .

•
In addition to the estimates given in Lemma 4.2 we also need some estimates for

the derivatives of Tqf with respect to z. we need these estimates because we will prove
some Hölder estimates with the help of the Hardy-Littlewood lenuna.1 Let 8 denote
any of the 8/8z j or 8j8zj . We can compute STqf by differentiating under the integral
sign. And by Lemma 4.1 it remains to investigate the terms DA'. We get the following
result.

IThis lemma shows that a function is et-Hölder continuous if the gradient of the funetion can be
estimated by dist(z, bDy~-l.
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for 0 ~ 8 ~ I,

Lemma 4.3 Let I be a fixed ordered subset 0/ {I, ... , k} and let (0 be a fixed point on
SI, let U((o) be a sufficiently small neighbourhood 0/ (0 and let z E U((o) be fixed.
Then the terms 8A' can be estimated on R I n U((o) by terms 0/ the /ollowing types:

dqjl 1\ ... 1\ dqj, 1\ dt 1\ WZn-I-.

dqjl 1\ ... 1\ dqj, 1\ dt 1\ W'Jn-l-a
for 0:::; s :::; I, h, h',jt, ... ,ja E I,

h,jt, ... ,ja E I.for 0:::; s :::; I,
dqil 1\ .•. 1\ dqj,_l 1\ dt 1\ WZn-l- a+1

l<I- j1 1' .... l~j'-ll' l~j,l'l~hl' t( - zlzn-l-a-1

The WZn-l- a denote some uniformly bounded forms of degree 2n - I - s in ,.

Proof. First we use the product rule to get sums of terms where the 8 is applied to
only one of the columns of the cleterminants ore one of the other factors of the kerneis.
Since the pj ancl 4> j are holomorphic in z the arising factors (8Pj and so on) are again
uniformly bounclecl. Now we ca.u trace all the estimates given in the proof of Lemma
4.2 to conclucle the proposition of this lemma. •

Besides the Ma.rtinelli-Bochner operator there are now four types of integrals we
have to investigate. From Lemma 4.2 arises the integral

[dist((, N)]-ßdqjl 1\ ... 1\ dqj, 1\ dt 1\ WZn-l- a

l~jl1' .... l~j,l' I<I-hl· le - zI2n-I-.-1

for 0 :::; s ::; I ancl h,jt, ... ,ja E I. And the estimates of the derivatives of the kernel
given in Lemma 4.3 lead to the integrals

[dist((, N)] - ßdqiI 1\ ... 1\ dqj, 1\ dt 1\ W2n-l-a

r<I>jl I ..... I~j, I. l<I>hl . J( - zI2n-l-a

and
J

3
:= J [di~t((, N)]-~dqjl 1\ ::. 1\ dq!,_l 1\ dt 1\ W2n-l-a+1

l«I>jll· ... ·1«I>j,_ll·l«I>j,I·I«I>hl·l( - zI2n-I-.-1
RlnU((O)

for 0 ::; s ::; land h, h',jt, ... ,ja E I.
Remember that we suppose that the submanifold N satisfies the condition (G).

Indeed we need this only if ß is greater or equal to 1. We prove the following lemma.

Lemma 4.4 There are constants C depending only on ß such thai

(i) Jo ~ C for 0::; ß < 1/2,

(ii) J1, J2l J3 ::; C[dist(z, bD)]-1/2-ßI for 0:::; ß < ß' < 1/2,
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(iii) Ja ~ C[dist(z, bD)]1/2-ß' for 1/2 ~ ß < ß' < l.

Let the submanifold N satisfy the condition (Pd) and suppose that (C) holds in a
neighbourhood of MI = N n SI then we have

(iv) Jo ::; C[dist(z, bD)]l/2-ßI for 1::; ß < ß' < 1 + d

where d was the codimension 0/ N in bD and is the codimension of MI = N n SI in
SI because of (Pd).

Proof. Remember that we have Itl ~ Cdist((, bD) ~ Cdist((, N) and that lej(z)l ~
Cdist(z, bD) for all j. For simplicity let us assurne that we have on RI coordinates
XI, ••• , X2n-I+1 with x" = (X6+b ... , X2n-l+d such that W2n-1-6 = dX6+1 1\ ... 1\ dX2n-l+1'

We consider the case 0 ~ ß < ß' < 1/2. Using (5) and (14) we get

Ja ~
C J It l-ßdqjl 1\ ... 1\ dqj, 1\ dt 1\ dU2n-I-6

R/nu (!eil(()1 + Iqjll)' .... (Iei,(()! + Iqj,I)(leh(z)1 + ltl + I( - ZI2)1( - z[2n-I-,,-1'

Integrating with respect to the qji we obtain

.l <C J Itl-ßDi::1(1+1nleji(()I)dtl\ dCT2n-l-"
o - (leh(Z)! + Itl + jx"(( - z)1 2 )lx"(( _ z)1 2n-I-6-1

O<I~I<C

O<lr"I<C

and because lt[-ß TI;::l (1 + In [tl) ~ C[tl-ß' this gives

Jo =S C J
O<I~I<C

O<lr"l<C

(Ieh(z)[ + Itl + Ix"(( - z)J2)lx"(( - z)12n-I-6-1

=S C J dU2n-1-6
(leh(Z)! + Ix"(( - z)12)ß/lx"(( - z)12n-I-6-1'

o<lx"l<c

Omitting leh(z)1 we find further

J
c 2n-I-6-1d

Ja < C r r
r2n-I-6-1+2ßI

o
< C.

By the same arguments as in the case 0 =S ß < 1/2 we obtain for 1/2 ~ ß < ß' < 1

Ja ::; C J
O<ltl<C

O<lr"I<C

(leh(Z) + Jtl +Ix"(( - z)12)lx"(( - z)12n-I-6-1
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JO <

And therefore we get

J
e 2n-I-.s-ldC r r

(I eh(z) I+ r 2)ß'r 2n- I-.-1
o

< C[dist(z, bD)P/2-ß'.

Now (i) and (iii) are proved.
To prove (iv) we introduce some special coordinates related with N. We fix (0 E

MI = N n SI. First we consider the coordinates qh' ... , qj., t = X.s+ll X.s+2, ... , X2n-l+l
from above. These are coordinates only if dqjl /\ ... /\ dqj. does not vanish. But this
holds since we assurne (C) in a neighbourhood of the (0. After a simple translation
we mayassume qjj((o) = X.s+l((O) = x"((o) = O. In U((o) there exists, maybe after
shrinking U, also an other coordinate system Yll"" Y[ß]+ll ... , Y2n-l+l such that with
y' = (Yll ... , Y(ß]+l)

and

Cdist((, N) ~ dist( (, MI) ~ ly'l

t E span {Yl' ... , Y(ß]+l}'

(20)

(21)

Now we can take the yl, ... , Y(ß]+l and choose some qji and some Xi so that they all
together form coordinates on RI . Without loss of generality let us assurne that the
coordinates are Yll ... , Y(ß]+b qj(II+1) , ... , qj., X"+Il+ll ... , X2n-l+l with v + J.L = [ß] + 1 and
J.L 2:: 1 because of (21). We introduce the abbreviations q' = (qj(II+1)' ... , qj.) and XIII =
(X.s+J.l+l, ... , X2n-l+l) and e = 1/2 dist(z, bD). Further we set

J~ =

Jg = J
<eRrnu«o)
di'l( <,N)<r

[dist((, N)]-ßdqh /\ ... /\ dqj. /\ dt /\ dCT2n-I-.s

l<1- j1 1· ... 'l<1-j.I'I~hl'l( - zI2n-I-6-1

[dist((, N)] -ßdqil /\ ... /\ dqj. /\ dt /\ dCT2n-l-.s

l~jll' .... I~j, 1 . I~hl . I( - zI2n-l-.s-l

From (5) and (14) we get for some ..\ with 1/2 < ..\ < ..\' < 1

J~ ~ Ce>'-ß

J Itl->'dqjl /\ ... J\ dqj, /\ dt /\ da2n-I-.s

(Ieil (()! + Iqjll) ..... (Iej.(()l + Iqj, IHleh(Z)1 + Itl + le - ZI2)1( - zI2n-I-.s-l .
RrnU

Using the same arguments as in the case 1/2 ~ ß < 1 we obtain that

J~ < Ce>'-ßel/2->.' ~ Ce1/ 2- ß'

< C[dist(z, bD)P/2-ß1
(22)

with 1 ~ ß < ß' < 1 + d.
To estimate Jf{ we use the coordinates yl, ... , Y(ß)+h qj(II+1) , ... , qj" X.s+J.l+l, ... , X2n-l+l

introduced above. Note that I( - zl > c if dist((, N) < e and therefore le - zl >
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1/2(1( - zl + e). Together with (20) and l<I>j((,z)! 2:: C(lej(z)1 + Iqjl + I( - ZJ2) 2::
C(e + Iqj I+ l( - Z12) trus implies

J~' ~ C J
11I'1<~, Iq'I<C

1<lzlIIl<C

< C J ly'I-ßda[ß]+l

Iy'l<~

. J dqjV±I .. ·dqj.

Iq'I<C (e + IqjV+ll) ... (e + !qj,l)

J da2n-I-6-~+1

. (c + lx"'(( - z) 12 )v+llx"'(( - z) j2n-l-s-l .
~<lx"'I<C

For the first integral we get

t:

J ly'I-ßdu[ß]+l ~ C Jr-ßr[ß]dr

Iy'l<t: 0

< Ce1+[ß]-ß.

Further it is

(23)

(24)

Jv ..dq : C(l + In c)'-v. (25)
(e +IqjV+ll)···(e + Iqj,1)

Iq'I<C

So the product of the first two integrals is less than Ce1+[ß]-ß' . During the investigation
of the third integral we have to consider different values of Jl. Remember that we have
I-l 2:: 1. Thus we obtain

Combining (24), (25) and (26) it follows that

" {Ce 1
-

ß1
für JL 2:: 2

Jo ::; Ce1/ 2-
ß1 für f-t = 1.

Tügether with (22) this prüves part (iv) of the lemma.
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(26)

(27)



Now we consider the integrals Jl, J'J and J3 • Like in the proof of (i) we can integrate
with respect to the qj. With e := 1/2dist(z, bD) and 0 ~ ß < ß' < 1/2 we find that all
the integrals J 1 , J'J and J3 can be estimated by

J .- J Itl-ß' dt 1\ da2n-I-6
4 • - for 0 ~ 8 ~ 1, a = 1, 2.

(e + Itl + Ix fl
(( - z)I'J)alxfl

(( - z)12n-I-6+1-a
O<t<C

O<I~"I<C

J' '-4 .-

Again we use the fact that I( - z I > e if ItI < e and set

J Itl-ß'dt 1\ da2n-1-6

(e + Itl + Ix fl
(( - z)12)al x fl(( - z)12n-I-6+1-a

Itl>1
O<I~III<C

for a = 1,2,

J fI
4 .- J

Itl<1
I<I~"I<C

far a = 1,2.

We integrate with respect to t only if a = 2 and get

J' < Ce-ß J da2n-I-6+2-a
4 - (e + Ix fl (( - z)12)lx fl (( _ z)j2n-I-6+1-a

O<lx"I<G

J
c 2n-I-6+1-a d< C -ß r r

e (e + r2)r2n-l-ß+l-a
o
c

< Ce-ßJ dr
e + r 2

o

< Ce-ß- 1/ 2 • (28)

And für J~' we obtain

JfI < C
4 - J da2n-I-6

(e + [x fl (( - z)12)a-l+ß'lxfl (( - z)12n-I-6+1-a'
e-<lx"I<C

Considering the twü different values of a we find

JfI < C JG r2n-I-6-1 dr
4 (e + r2)a-l+ß'r2n-I-6+1-a

e-

J
G ra-2dr

< C (e + r2)O-1+ßI
e-

{
el-a-ß/ln e for a = 1

< C e1-a-ß'+(a-l)/2 for a = 2

< Ce-ß- 1/ 2 • (29)

Together with (28) and the fact that Jl, J2 and J3 can he estimated by J4 this proves
(ii) and the proof of the lemma is complete. •

Now we are ahle to proof the estimates given in the main theorem of this paper.
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Proof of Theorem 3.5. By definition we have

Tqf = - Jf A J(' - (-1 )q-1 J f A 1(q-1
R D~xßo

and it is also quite dear that

Jf A K' ::; IIfll.p(ß,N) J[dist((, N)]-ß E deI A K'.
R R II1=q

On.6.o ](q-1 is exactly the Martinelli-Bochner kernel. Using Lemma 4.1 thefirst integral
can be written as a sum of integrals over RI . For I = 1 there arises one Martinelli
Bochner kernel. Denoting the Martinelli-Bochner operator by B the estimates

11BfllcQ ::; Cllfll.p(ß,N) for 0::; ß < 1, 0 < a < 1 - ß,

IIBfll.p(ßI-1,N} ::; Cllfll(Jl(ß,N} for 1::; ß < ß' < 1 +d

follow by well-known arguments which we omit (see, e.g., [HL] for the case ß = 0). It
remains to consider the other integrals which all contain some X. SO we only have to
integrate over a small neighbourhood of bD. It is even enough to fix a (0 E N n SI
and to consider a small neighbourhood U((0).2 Because ](' and 8](' are bounded for
I( - zl > C and [dist((, N)]-ß is integrable aver R I we may further assurne z to be
in U((o). Using Lemma 4.2 and Lemma 4.4 we get part (ii) of Theorem 3.5. And the
Hölder estimates in part (i) of the Theorem 3.5 follow from Lemma 4.3, Lemma 4.4
and the Hardy-Littlewood lemma. •
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