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1 Introduction

In the beginning of the seventies HENKIN, GRAUERT, LIEB and others investigated the
Cauchy-Riemann equation in smooth strictly pseudoconvex domains. They considered
uniformly bounded d-closed (0,q)-forms f and defined an integral operator R such that
u = Rf is a solution of du = f in D and the 1/2-Hélder norm of Rf can be estimated
by the supremum norm of f. After some simple modifications of such an operator
R one can consider also d-closed (0,q)-forms f which are not uniformly bounded but
satisfy an inequality like

|f(2)] < C[dist(z,6D)]™® for 0< B < 1.

It is not difficult to show that u = Rf is still a solution of Ou = f in D and that u is
(1/2-B)-Hélder continuous for 0 < # < 1/2 and admits an estimate like

lu(z)| < C[dist(z, bD)]'*# for 1/2 < f < 1.

A result similar to this can be found for instance in the paper of LIEB and RANGE
[LR]. In 1973 RANGE and SIU gave an integral operator, denote it again by R, to solve
the Cauchy-Riemann equation on domains which are only piecewise smooth strictly
pseudoconvex. For uniformly bounded d-closed (0,q)-forms f they proved that the
solution u = Rf admits (1/2-¢)-Holder estimates for any small ¢ (see [RS]).

In this paper we also assume the domain to be piecewise smooth strictly pseudocon-
vex. But we consider -closed (0,q)-forms f which have singularities at the boundary
or on some submanifold of the boundary. That is we assume

|f(2)] < Cldist(z, N)]~*

where N is a submanifold of 6D that is in general position and has codimension d in
bD and f is a real number with 0 < f <1 +d.

First let us give a motivation for this investigation. Let M be a real hyperplane in
C" and let D be a domain (for example piecewise smooth strictly pseudoconvex). Let
M intersect D and denote the parts of D by D, and D_. Now let f be a bounded
(0,q)-form on M N D with dy f = 0. We are looking for a solution u of the equation
Opu = fon MND. To get such a solution it is possible to go the following way. First
there are two operators S and S’ defined with the help of the Martinelli-Bochner kernel
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such that 8Sf = §'f on Dy U D_. Since S'f is O-closed one can solve the equation
0g=S5"fon Dandset f, =Sf—gon D, and f_ = Sf—gon D_. Obviously fy and
f_ are O-closed in D, resp. D_. So we can solve the equations du, = f, in Dy and

- = f_in D_. If uy and u_ are continuous up to the boundary of D, and D_ we

cansetu=u+|MnD —u_MnD on M N D. It is easy to show that Jpu = f on

M N D. (For a more detailed description of these facts see [LL] or [AH].) But at least
it is necessary that we have u, and u_ continuous up to the boundary. And therefore
we need some good estimates for f, and f_. But this requires a solution of dg = §'f
with uniform estimates. It is known that §'f has a singularity on M NbD and that is
the reason why we consider forms with singularities on submanifolds of the boundary.

But it is not so easy to solve the Cauchy-Riemann equation for forms with such
singularities. The solution operator defined in [RS] can not be used because it contains
some integrals over parts of the boundary. And these integrals need not be defined in
our case. So we first have to modify at least these parts of the solution operator. The
idea is to use Stokes theorem to transform boundary integrals into integrals over some
submanifolds in the interior of the domain. But before we can use Stokes theorem we
have to modify the kernels too. At last we get a solution operator 7' that can be used
also for unbounded forms if there is an estimate like

|£(2)] < Cldist(2,N)]™® for 0<B<1+d. (1) -

The next step is to give some estimates for the solutions obtained by using the above
mentioned operator. We prove that u is (1/2-4')-Holder continuous for 0 < § < ' <
1/2 and that

[u(z)| < C[dist(z,bD)V?*#" for 1/2<B<f <1+d

if f satisfies the inequality (1). The proof requires a detailed investigation of the kernel
of the solution operator and a lot of computations.

In Section 2 we recall some facts about piecewise smooth strictly pseudoconvex
domains, define some special submanifolds in D and introduce some weighted norms
and Banach spaces. The construction of the solution operator will be done in Section 3.
Before we are able to do it we recall some well-known properties of some of the functions
we use, without any proof. At the end of Section 3 we state the main theorem of this
paper, namely the estimates mentioned above. Section 4 contains only the proof of the
main theorem.

2 Preliminaries

According to RANGE and SIU a piecewise smooth strictly pseudoconvex domain D is
given by a frame {U;, p;}5., with the following properties:

(i) {U;}5, is a finite open covering of an open neighborhood of 6D,

(ii) the functions p; : U; — R are of class C?, strictly plurisubharmonic and with
de; # 0,



(iii) DNU ={z € U : for all j either z & U; or g;(x) < 0} where U is the union of
all Uj,

(iv) for 1 <4y < ... <4 < k the 1-forms dg;,, ...,dp;, are lineary independent over R
at every point of N\ _, Ui, .

The last condition means that the parts of the boundary have to intersect transversally.
Sometimes we only write (R) for it. In addition to this condition we will also consider
a stronger condition. This condition means that the intersection of the parts of the
boundary must be transversal in a complex sense.

(C) For 1 €£4; < ... < 4 £ k the (1,0)-forms Jg;,,...,dp; are lineary independent
over C at every point of N._, U,, .

Now let us give some definitions. For every ordered subset I = {iy,...,%4;} of {1,..., k}
we define
Sp={zebDN (Vi) : ai(z) =0Vie I}
i€l
and choose the orientation on S; such that the orientation is skew symmetric in the
components of I and the following two equations hold when D is given the natural
orientation:

k k
bD=3.5;, bS1=Y3. 51
=1

=1
Further let .
A={d= Aoy le) ERM* 1 ;20,30 =1}

=0

be the standard simplex in R¥*' with the canonical orientation. For every ordered
subset J = {Jj1,.-,Jm} of {0,..., k} with strictly increasing components we set

Ar={reA: Y \=1}

jeJ
with the orientation of A; chosen so that
m
_ _1y+1 .
bA; = Zl( 1) Ail--.’iv--im'
=

Now we can choose an ¢ so small, that {U;, ¢; + 6}}, is a frame for D® for all
0 < § < & where D¢ is defined by

D'NU ={z €U : for all j either z ¢ U; or p;(z) + 6 < 0}.
For 0 <6 <¢and I = {iy,....,a} C{1,...,k} we define
Si == {ze(U;: 0i(z)=..=0i(z) = =

jel
and Vj & I either z & U; or p;(z) + 6 < 0}
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and

Ry = {z€(U;: —e<pi(z)=...= pi(z) <0
J€l
and Vj & I either z & U; or p;(z) < g;,(z)}.
Obviously we have Ry = Upcsc. S¢. We choose the orientation of the R; such that the
orientation is skew symmetric in the components of I and the following equations hold:

5 k
D\D* =) _R;, bRr=5—Sj—3 Ry

i=1 =1

where 5§ has the same orientation like all S{ including S = S;. Observe that the
dimension of Ry is 2n — |I| 4+ 1. Therefore we have

b(R;y x Ay) = bRy x Ay — (=1)VIR; x bA,.
Combining all the relations between the different sets we get the following result:

Lemma 2.1
b3 (=DM Rr x Aor) = =37 Ry x Ar+(D\D?) x Ao+ 3 (=1)"I(S1 x Aor = 7 x Aor)
1 7 -
(2)

where |I| is the length of I and 3. means the summation over all ordered subsets I of
{1, ..., k} with strictly increasing components.

Proof. Let I = {iy,...,4;} and let J, = {41, ..4,..,4;}. Then

(=D)Me(R; x Do) = (—=D)MI(S; = %) x Agr — (-1 zij,,- X Aor

i=1

!
—R[ X AI — Z(""l)le X AOJ.,- (3)

v=1

We will show that, when we sum over all ordered subsets I of {1,...,k} with strictly
increasing components, the sum of the second term on the right hand side almost
cancels the sum of the fourth term and the net result of the cancellation is (D\D?) x Ay.
Obviously it is

Rr=(=1)""'Ry,;,.

It follows that
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Using the fact that (D\D®) = ©%_, R; the proposition follows from (3) and (4). W

Now we discuss the relation between N and the S;. Assume that N is given as
{¢ €bD:1(¢) = ... = 74(¢) = 0}. For a later use we need some lower estimates for
dist(¢, V) in terms which can be more easily computed on R; and S;. Fix I and let { be
a point on R;. Since dist(¢,bD) > Cdist((, Sy) we also get dist(¢, N) > Cdist((, Si)
for all ( € R;. But in general this is not the best possible estimate. So let M;
be a submanifold of S; such that dist(¢, N) > Cdist({, M;) for all ( € R; and the
codimension of Mj in Sy (d; := codimg, M) is maximal. Since it is not so clear how
to find such a submanifold M; we discuss some special cases. Assume that for some
0 < m < d the submanifold N satisfies the condition

(Pm) There exist m indices 1 € 7; < ... < j £ d such that the 1-forms dg;,, ..., dgs,
dr;,,...,dr;,, are lineary independent over R at every point in a neighbourhood of
SN N.

Then we can set My = {¢( € S;: 7 ({) = ... = T (() = 0} and d; = m. Of course there
are still some cases where this estimate is not the best one. But notice that we have
in the generic case

(G) For every I either dist(N,S;) > C > 0 or the condition (F;) holds.

That means we can set My = Sy N N and d; = d for all 1. In this paper we will only
consider submanifolds N of the boundary of the domain which are in general position;
that is we always assume the generic condition (G).

It remains to define some special Banach spaces. If ¢ is a nonnegative continuous
function on D then by B?(D) we denote the Banach space of differential forms f €
Co(D) with

[1£)ly := sup || f(2)ll(2) < oo.
zeD

For z € D and 0 € f < oo we set

0(B,N)(z) := [dist(z, N)]P,
©(B,bD)(z) := [dist(z,bD)]".
Further, for f € C?(D) we set

|1 fllco = sup [|£(2)]|
zeD

and

£ = FI
¢ — 2l

if 0<a<l.

[1fllce := | fllco + sup
(€D
¢
Notice that
B&ENY DY C COD)NLYD) if 0<B<d+1

where d was the codimension of N in 6D. Since we assume that the submanifold N
satisfies the generic condition (G) we have also

BEN(D)y C CUDYN LRy if 0<B<d+1.
I



3 Construction of the solution operator

As mentioned in the introduction we want to study the Cauchy-Riemann equation for
such (0, ¢)-forms f which have singularities at the boundary of the domain D or at
some submanifold N of the boundary 8D. To do this we can not directly use the
operators defined by RANGE and SIU because parts of these operators are integrals
over submanifolds S; of the boundary and are possibly not defined in our case. So
we have to modify at least these parts of the operators. Especially we will change
the boundary integrals into integrals over some special submanifolds Ry of the interior
of D by using Stokes theorem. For this we first define some modified versions of the
support functions called ®; which have no singularities inside D. With the help of
these functions we later define the kernels K and K. After using Stokes theorem with
some integrals defined by these kernels we get a formula containing seven different
integrals. A closer investigation of some of these integrals enables us to combine this
formula with a formula stated by RANGE and S1U. At last we get a homotopy formula
in terms of operators T, which contain only integrals over submanifolds lying in the
interior of D.

First we recall some well-known facts on some functions which are related with a
piecewise smooth strictly pseudoconvex domain that is given by a frame {U;, gj}§=1.

Proposition 3.1 There are positiv constants ¢;,¢z,¢a3,¢q > 0 and functions Fj, Hj,
®;,9;(¢,2) : U; x D = C and functions P?({,2) : U; x D — C", with the following

properties:

(1) F;(¢,z) is the Levi polynomial of p; with a small perturbation of the quadratic
terms, F;((,z) is C! in ¢ and holomorphic in z,

(i1) ®;(¢,z) and ®;(C,z) are C* in ¢ and holomorphic in z,
(#1) ®;(¢,¢) =0 and ®;((,2) # 0 for | — 2| 2 e,
(iv) ®;(¢,2) #0 for |( — 2| 2 e,
(v) $5(¢,2) = Hy((,2)(F3((, 2) — 205(0)) for [¢ — 2| < e,
(vi) s < [H;((,2)| < 4,
(vii) Re®;((,2) > ex(los(O)] + lei(2) + (¢ — 2I?) for ¢, 2 € Uj, I¢ — 2| < 1 and

195(¢, )1 2 colo; (O +los(2) [+ 1m &;(¢, 2) |+ —2I7) for (, z € Uj, [(—2] < ‘(:13
)

(viii) ®;(C,2) # 0 and &;((,2) > cal¢ — z|* for {,2 € D,
(EZ) é:(c,z) = QJ(C:Z) fO‘I‘C € gj) zE D)
(z) P((,z) is C! in ( and holomorphic in z,



(xi) Q.‘i((: Z) =20=1 PJ(Cy Z)(Cy - zv);
(ei$) Pi(C,2) = Hy(C,2)GE(C) + O(IC ).

The construction of the ®; is done by using F; and solving some §-equation. The
&)j are constructed in the same way but with F; replaced by (F; — 2p;). For a more
detailed description of the construction and a proof of the facts of the proposition see
[RS] or [HL].

We further define P°(¢,2) := ¢ — z, ® := |[¢ — 2[?, 77 := P//®; and # := Pi/d;.
Moreover we choose a C'*®-function x with x(¢) = 1 for ¢ in a neighbourhood of bD
and x(¢) = 0 for ¢ in D*/2, We set '

) . |
n(¢,z,A) = E A (C, 2),

i=0

k .
(¢, 2,4) = Aon’((,2) + x(€) 20 M7 (¢, 2)

=1

and

w(C) :=dl A ... A dC.

In the sequel we want to make use of some determinants whose entries are differential
forms. For this purpose we define the determinant of a n x n-matrix (a,g) of differential
forms as follows

det(aaﬁ) = ngn(a)aa(l).l A A Qg (n)yny

o

where the summation is over all permutations o of {1,...,n} and sgn(o) is the signature
of 0. We will also use the notation

detm,...m,;(a1,...,a;) ;= det(ay, ..., a1, ..., aj, ..., a;)

miy mi

where the a; shall be column vectors of differential forms and the sum of the m; must
be equal to n.
Now we are able to give the definitions of some kernels.

{{(CszaA) = det‘l.n—l(n(gz”\)a(?C + ?ﬂ + dA)'I(C,z,A)) Aw(()
I{(Caz?'\) = detlm-}(ﬁ(c_» Z’A)T(a( +9; + dA)ﬁ(C,Z,/\)) Aw(C)
I(’(C, 2,/\) = detn((a( +az + dA)ﬁ(C)zz’\)) Aw(()

Observe that the first kernel is the kernel used by RANGE and S1U to define the basic
solution operator for piecewise smooth strictly pseudoconvex domains. The Kernels K
and K’ which are defined by means of 7 will be used to define a new solution operator.
But first we give some properties of the kernels. We denote by K, resp. f(q the sum
of all monomials of K resp. K which are of degree (0,q) in z.



Lemma 3.2 (i) p(¢,2,A) = i(C,2,)) for (€bD or M€ A
(1) (O + 0. +d\)K =0
(ii) (B¢ + 0, + d\)K = K’
(i) K, = ("7") dets gn-qur(n, 8sm, (8¢ + o)) Aw(()

(v) Ky = ("7") debygng1(ii, 8:i, (B¢ + dr)if) A w(C)

Proof. Using Proposition 3.1 (ix) and the fact that x({) =1 for ¢ € bD part (i) of
the lemma follows from the definitions of  and 7. The propositions (iv) and (v) follow
by using the linerarity of the determinant in each column and the fact that two columns
of 1-forms can be interchanged without changing the sign. To prove (iii) we only have
to use the fact that the differential of a determinant is a sum of determinants where
the differential is applied to the different columns. When the differential is applied to
the first column the sign is plus. And if the differential is applied to one of the other
columns this column is zero and therefore the whole determinant vanishes. Proving
(ii) we can go the same way and get a determinant similar to K’ but 7 replaced by 7.
Because of Proposition 3.1 (xi) we now have

i (¢, z,A\)((, —2,) =1

v=1

Applying (9; + 0, + dy) we get

n

S2(8c + 8, + A, 2, A) (6 — 2,) = 0.

v=1

It follows that the row vectors

((5C + 5: + dA)TIu, seny (5( -+ 52 + d,\)nu)

are lineary dependent over C and therefore the determinant vanishes. |
As a corollary of the lemma we get for (0, ¢)-forms f the following formula

(de+dD)fAK) = Of ANK +(=1)f A (O +dr)K
= G fAK+ (-1 (fAK' - fAEK)
= (-1YfAK +0fANK ~d.(f AK). (6)

Before we come to the construction of our own operator we state one more result

from RANGE and Stu [RS].

Theorem 3.3 (RANGE and S1U) Let f be a (0,q)-form such that f, df € CO(D) and
let ¢, = 1/(272)". Then we have



(=1)ef(z) = B ] FAKyy+ / FAK,)

T =)HIS XA Dxao
- [ drak+ [ BrnK,)

Y (=0)Sx Ay, Dxao
+ [ ink, (7)
E;S;Xﬁ;

Moreover the last integral vanishes except for ¢ = 0.

For simplicity we introduce the notations R := 3"/ (=1)¥IR; x Aoy, § := &/ (—=1)111S1 x
Aor and S¢ := 3,/ (=1)M18% x Ag;. Now we want to apply Stokes theorem. Keep in
mind (2), (6) and the fact that [ 3,(f A K) = —8, [z f A K because the dimension of
R is odd. We get

f(—l)"fAK’+jc‘")fAf(+5,ff/\f(
R R

R

= - / FAR L+ f f/\f(q_1+/f/\ffq—1—ff/\ffq~x- (8)
) 3¢

Z:I'RJXA; (D\D*)x 4o

Let us consider the integrals on the right hand side. Since # is holomorphic in z for
A € Ay it follows from Lemma 3.2 (v) that K, = 0 on Ry x A for ¢ # 0. So we get
FAK, .y = 0 for g#1,
> RrxAr
0, ] fAK,y = 0 for ¢g=1. (9)
>, Rixa;

From Lemma 3.2 (i) we obtain

FAK, 1= / FAK, (10)
(D\D*)xAq (D\D*)x Ao
and i
/f/\](-,:/f/\f{,,_l. (11)
S S

It remains to investigate the last integral at the right hand side of (8). Since x({) =0
in D*/? we have i = Ao° for ( € S%, so the first column in the determinant of K
is Aon®. Further dimAg; = |I| > 1 and consequently at least one d); is needed for
the integration. After expanding the determinant into a sum of determinants let us
assume that each term has a d}; in the second column. This d); must be either n°dX,
or 0-dA; for some 57 > 0. In both cases the determinant vanishes. The result is

ff AR,y =0. (12)
St
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Keeping in mind (10), (11) and (12) we can combine (8) with (7).

(~1eaf(z) = 8 [ SARem— [ fAKeat [ FAKe

E:'RIXAI (D\D*)x &g DxAq

f ) fAK — /afA1< a]f/\f(

—( / Bf/\Kq— / 3f/\Kq+/(§f/\Kq

S RixA; (D\D*)xAq DxAg

- [nmdsar - (885 nK -8, [0F AR
R R R

+ / FAK,
Z:IIS;XA[
Obviously the 6th and the 11th integral on the right hand side vanish. And the sum
of the 5th and the 12th integral vanish too. From (9) and the remark in Theorem

3.3 it follows that the first integral vanishes and that the 7th and the last integral are
nonzero only for ¢ = 0. Let us define the operators

Tof = / FA Ky — / Bf A Ko
ZI'SIXAI EI’RIXAI

and

ff/\K' —1)? j fAK;y for 1<g<n.
DexAg

Consider the integral [ f A K' = lel(—l)”'R!on; f A K'. Observe that if f is a
(0, ¢)-form each summand of f A K’ is a form of degree at least n + ¢ in {. Thus

/ FAK' =0 if dimB; <n+aq.
RixApr

It follows that we only need to sum over the I with |[I| <n—¢+ 1.

Theorem 3.4 Let f be a (0,q)-form on D such that f € C(o o D)MNrjgn—gs1 L(o o(8r1)
and 3f € Cf 141)(D) N Mizjgn—g Liogs1)(R1) and let ¢, = 1/(2mi)". Then we have

enf =Tof + TWOf for qg=0

and B B
enf =0T, f +Ty10f for 1< g<n.

Proof. It is shown above that the theorem is true for f, 8f € C°(D). A short
investigation of the kernels shows that the operators can be used also if f and Of are
only continuous in the interior of the domain and integrable on all of the R; to be
considered. According to the above remark it is sufficient to have f € Cf, ,(D) N
Nifj<n-g+1 L(Oq)(RI) and 0f € C(o q+1)( )N M1i<n—q L(o q+1)(RI) The fact that the
equation still holds, follows by some simple approximation arguments. |
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Remark. In the smooth case when we have only g we get By = D and D = §. For
g =1 wehave Ty f = — [_p,p01 f A K'. This is exactly the operator which is given for
instance in Section 3 in [HL]. For some weighted estimates of this operator see [F].

At the end of this section we state the main result of this paper. The proof of this
theorem will be the subject of the next section.

Theorem 3.5 Let 0 < B <1+4d,1 < g <n. And assume that the submanifold N
satisfies the generic condition (G). That is for every I with |I| < n — ¢+ 1 we have
either dist(N, S;) > C > 0 or the condition (Py). Further assume the condition (C)

ina nczghbourhood of the submanifold N. Then there is a posttiv constant C such that
for each f € BEEV(D) we have

() W fllcin-o0 < Cllfllpeny for 0< B < B <1/2,
(1) | 1o fllos-1/260) < Clifllesny for 1/2<B<p' <1+4d.

4 Estimates for the operator 7

This section contains the proof of the main theorem of this paper. To do this proof we
first give some lemmas.

Lemma 4.1 Let I = {iy,...,44} be a fized ordered subset of {1,...,k} with strictly
increasing components. Then the integral fp yp, f A K' can be written as a linear
combination of integrals of the type [g, f A A where A is one of the kernels

detl,l,..., 1,8-1,1,.. ,I(Po Pi] ]')"l dc_ dz’ chjl,"_’échn—l-.) A

A X" ’w(C)A(3c+5)IC—zI
I MTGEPTTOLT TN 3

forl1<s<n-1land j1,....Jn1-s € I,
dety,.1,01,..1(P% PP,y P dC — 7,8, PP, ..., 0 Pin—t=+-1) A
~*w(() A (Bex — x %)
SO W TSI S
for0<s<n—1-1and ji,...,Ju-t1-s-1, R € I,
dety, 101,.1(P™, ..y PU,dC — dZ,0, P, ..., 0, PP=1=+) A
N .Y
B¢ — 2200, - - By

2nl—s

Jan—t—s

j?n-l-a-l

for0<s<n-—land jy,....,Jn_1_, €1,
detl‘l,"_,1’,,1'"”1(130 Pil, e ,.Pil dz - df, 5<le,...,6cpj"~l-') A

A ) n—a—l (C) ' )
{[)'.l S (I)..‘K' —_ zl2(a+l)(I)” ot (I).

Jan—l—s

for0<s<n-—1land j3;1,...;9n-1-s, b € I and &’i: et (i’,-, means that &, has to be
omitted.
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Remark. Note that all the kernels contain at least one x except for I = 1 and
8 = n — 1 where the last kernel becomes the Martinelli-Bochner kernel. But this kernel
is well known. So in the sequel we only have to consider the other kernels and A shall
denote any of the kernels of the lemma but not the Martinelli-Bochner kernel.

Remark. Since f = T% fxd(X we have Jr, fNA=3k [p, fr (dC¥ A A). By A’ we
denote any of the kernels (d(¥X A A). Tnstead of the integrals [p f A A we can now
investigate integrals of the form fg (f)A’ where (f) denotes any of the coeflicients of
f. The advantage of this representation is that f gives only something of function type
to the integral and A’ has the right degree to be integrated over R;.

Proof. We have to investigate the kernel K’. Because of the integration over Agy we
only have to consider monomials of degree ! in dA;. That means instead of K’ we have
to compute

dety,n_i(dxif, (O¢ + 0:)7) A w(C). (13)

Observe that on Ag; we have 77 = Agn° + X Zjel i and Ag =1 — ZjerAj- From
Proposition 3.1 (ii) and (x) we have that all 7 are holomorphic in z. Thus (13) is
equal to

detin_i(D_(x7 — 1°)dA;, Ao(F¢ + 8:)n° + D X;0:(x7)) Aw(()
jel JEI

which is a linear combination of

dEtI.n,n—l—a(Z(Xﬁj - no)dAJ" ’\0(5( + 5:)7?0’ Z ’\jgc(Xﬁj)) Aw(() for 0<s<n—1L
jel jel

In the s columns in the middle we have Ao(d; + 8.)n° = )\0(]‘{5_;5[; — 702 2 Tf_‘zlc‘z ) and

the last n —I—s columns are ;¢ /\jé((Xﬁj) =3 el x)\j%? + 2 ser (O x —x-'-g-g?-)ﬁj.

Now we expand the sums in all columns. Keeping in mind that the determinant

vanishes if there are forms b;, b; and functions ¢; such that for two different columns
ay; = cxb; and ag; = ¢bj, we compute that (13) is a linear combination of some terms

o d{ — dz O P’
detl,1,...,1,3—1,11.—!—3(7?0: 7% s} C ::: EXAJ'E_) A
|C | jeI (I)j
() ndhy A Pt ONC—al ve o ooy
¢ — 2|
—z
i ., d¢—dz F;) P-’
detl,l,...,l,a,n—l—a—l(noaT] 17 R/ ‘7 ICC Z|2, ZX i E. .
Jjel J
8(@ i-1ya
Aw(C) AdAp A (Fex ~ X(I) ) MAp, for 0<s<n—-I-1hel,
h
dety .1 anoiza(iy oy @' lz, Z /\
—z jel J
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A(C)AdAr XAy for 0<s<n—I,

y ., df—dz O P
det],l,...,l,a,ﬂ“l—’(n07 n 17 heey n l, |C 12 3 Z X 7 &) ) A
jel b

Aw(O)AdArxTIA, for 0<s<n—1I hel,

where 7", ..;.., 77" means that the #* must be omitted and dA; denotes dX;, A...Ad);,.
Now we still have to expand the sum in the last columns and to collect all A;, ®; and
|¢ — z|? outside the determinant. We get

detm,",'1',_1'1‘_".1(P0 _P"1 Pi‘ dE dE 5(PJ ...,3(Pj"_l—') A
X""Poly(z\) () A dAI A (a< +8,)|¢ — 2|
é. . "|C — zlz(’)‘*‘l@ . @

n

Jan—I—s
forl1<s<n-—1and ji,..,Jn-1- €1,
detl,]’__,'1’,'1',__,1(})0,Pil, ...,Pil,dz —dz 5(PJ ...,B(Pj"_'-’-l) A
X"~*Poly(MNw(C) A dAs A (Bex — éa‘ﬁ)
&),‘1 e &);‘IC - Zlg(""l)é_ﬁ Y

Jant—s—1
for0<s<n-1I!-1and j,...,Jaui—s-1, R €I,
detl'_,”],,’l'_",](Pil, ...,Pil,dg df E(le, ...,S(Pj"—'-') A

X" *Poly(Mw(¢) A dA;
B - 2P, . B,

)

Fan—i—a
for0<s<n-—1land j,...,jn-1-5 € I,
dety 1, 1,01,..0(P% PY, 1, P dC — dZ,0, P, ..., O Pin—1=) A

. "-~-1Poly(x) (¢) A dA;
B BalC = 2, - B,

JIn—i—a

for 0 < s <n—1landji,..., ju-i-s, h € I and Poly()) means a polynomial in the A; for
J € I. Now we can integrate with respect to A € Ag; and the proposition follows. I

Let T = {7y,...,14;} be a fixed ordered subset of {1,...,k}, let {, be a fixed point on
St and let U({o) be a sufficiently small open neighbourhood of {p in C*. In the sequel
it might be necessary to shrink U((p) even if we do not explicitly mention it. We also
assume z € U({o) and U((p) so small that for all z, { € U({y) we have |( — 2| < ¢;
where ¢; is the constant from Proposition 3.1. For a fixed z we choose real coordinates

on U((o)-
T = (-Tl; ---amZn) - (mh ey Ton—|y QI(C) - QI(Z): 2( ) - QI(C) " Ql( ) — QI(C))

e
) and " = (z20-142, .., T2n). Then
0. Moreover we may assume z'(z) =

We use the notations z’ = (2, ...,Zon-1), t = 01(C
RiNU((o) lies in the set defined by z” = 0 and ¢ <

13



Tan-1+1(2) = 0. Set u;() = u;({,2) = Im Fy((, z) and take the Taylor expansion of
u;((, z) as a function in { at the fixed point z.

(0 = 3 2o = 2E)+ 3 cun(a)en = 22 2u(2)) + O(C = 2F)
We define
PGA= Y @ -n@)t D el - ale)e - o)
and
Qj(C7 z) = PJ'(C!Z) + cj.2n—l+1(z)(t - O (Z))
Notice that R
(1 (¢, 2)1 + ¢ = =7) 2 Cllas(¢, ) +1¢ = =), (1)

In the following we want to use the notation O(|¢ — z|) also for forms. A form f((, z)
1s said to be O(|¢ — z|) if the function |f((, z)| is O(|¢ — z|). Here | - | is any of the
norms of a form at a point. On R; we have dt = dp;, = ... = dp;,. Using this fact we
can derive from Proposition 3.1 (i)

A Fi(¢z) = 200;(C) + O(I — 21),

deFi(C,2) = 200;(C) + O(I¢ = 2l) = 2dt — 200;(¢) + O(I¢ — =)

and consequently
deu; (¢, 2) = —i(200;(¢) — dt) + O(|¢ — =)

or
90;(C) = /2d¢u;({) +1/2dt + O(|¢ — 2|)
= 1/2d¢p; (¢, 2) + (1/2 + ¢jzn141(2))dt + O(|¢ — 2|). (15)
Using again that dt = dgy on R we derive
Fe(Fn — 20n) = O(|¢ — 2[) — 200s = 2001 — 2dt + O(|¢ — 2|). (16)
Now we can state the following lemma.

Lemma 4.2 Let I be a fized ordered subset of {1,...,k} and let {y be a fized point on
S1, let U({p) be a sufficiently small neighbourhood of (o and let z € U((y) be fized.
Then the kernels A’ given in Lemma 4.1 can be estimated on Ry NU({y) by kernels of
the following type:

qu] A asa A qua A dt A wzn_l-’
IQJ]' L] |¢1.| R I(phl . |C . Zlnﬂ'_l_""‘l

fOT OSSSI, hsjla"'ajsej-

The wen_i-, denote some uniformly bounded forms of degree 2n — 1 — s in (.
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Remark. Note that the ¢; are quadratic polynomials in {. So they define a finitely
sheeted branched covering and we may use them as independent coordinates.

Proof. First we apply the inequality |®;(¢, )| > C|¢ — 2|? to the products &;, -

®;, ... Then we can assume x = 1, d;x = 0 since ( is in a small neighbourhood of bD.
Now we consider the columns of the determinants which contain the P7, j € I. From
Proposition 3.1 (xii) we get P7((,z) = H;((,2)Vo;(¢) + v;(¢, 2) with ¢ < |H;(¢,2)| <
C, 7;(¢,z) = O(|¢—2|) and Vp;({) denotes the column (0p;/3¢s, ..., Bp;/0¢,)*. Further
let (71,...,j1) be any permutation of I respectivly I\{t} if we consider the fourth of
the kernels. Now the determinants can be estimated by a sum of determinants of the
following type:

det‘(Vqu ] ngr:7jr+n ey YiLs )

with 0 <7 < lresp. 0 <r <1—1 in the fourth case and the last columns contain
some P° d{ — dz and some 8, P’, j € I. Since the forms d{ — dz and 0, P?, j € I are
uniformly bounded and since P° and v; can be estimated by C|{ — z| it remains to
consider the first » columns of the determinants. Using the equation

doi \" .
i (35) wO=tpomn A d
aCka ii=1 i=1 £k oo ky
we conclude, that the kernels A’ can be estimated by a sum of terms like

gcéh A 89,-, ALLA 89,; A w2n—1-—r|C - zll-—r+1
@i ] - o I(I)iil H|¢ = 2[*n=D

for OST’SI, hvjlv""jre]a

(17)

80j, Ao AB0s, Awan_i—ria|C — 2|7 '
051 0. A Wan-i-r1|¢ — 7| for 0Zr<!, j1,..,0r €1, (18)

|él‘1 l Y eea |é"| . |C —_ zlz(n—l)
Boj A .. ABpj, Nwan_i—rqa|( — 2|
l‘I).',| Cfee |(I)51| . |C — z|2(n—l+1)

for 0<r<I=-1, h€el,n,.,j€I\{h}
(19)

where wy,_;_,41 denotes some uniformly bounded form of degree 2n — 1 —r + 1 in (.

Because of Proposition 3.1 (v) and the uniform estimates for H, we can replace
g(éh by 5<(Fh — 2px). Now we consider the forms dpj, A ... A Opj, A wan—i—r4+1 and
Oc(Fy — 201) A 8pj, A ... A Doj, A wyn_i—,. Using (15) and (16) we get

Oos A ... ANDpj, N Wan—i—rs1

= Z Z dp‘r(l) ALA dp.,-(,) A Wan—t—s+1 IC - er_’
=0 T
r—1
+ Z Z dpr(l) AA dp‘r(a} AdtA w?n—l—le - z‘r—a—l

=0 T

and
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O¢(Fn — 20n) A Ogjy A ... ABpj, Awan—i—r

= dph A (Z Z dp’r(l) ALA dp'r(a) A wZn—l-—aIC - Zr_a

a=0 T

r—1
+ Z Z dpf(l) AL A dpf(.) AdtA Wen—l—a—-1 |C _ zl'r—a—l)

=0 7

+3 Y dpy Ao Adpr) AdE Awsago,|¢ — 2|70

=0 T

+(O° 2 dpry A e Adpr(s) Awpn g [¢ — 2|77

s=0 T

r—1
+ E Z dpry A oo Adpr(p) Adt A won_1, ¢ — 2777)

a=0 T

where 7 is a permutation of {ji,...,7,} and ¥, means the summation over all such
permutations and wy, denotes any uniformly bounded form of degree m in { (w, may
denote different forms only of the same degree even in the same sum). Now let us look
at the terms which do not contain a dt. Since the dp; have by definition no component
in the direction dt there must be a dt contained in the corresponding w,,. Because
otherwise the whole form would vanish on R; due to degree reasons considering the
other coordinates. So we have a dt in all of the terms and we can replace all the dp;
by the corresponding dg;. Some of the terms obviously can be estimated by other
ones. We get two inequalities which we can combine with (17)-(19). After some simple
changes of the indices we conclude that the kernels A’ can be estimated by a sum of
the following terms

dg;, A ... ANdg;, Ndt Awan_y,|¢ — P atas
|®n] - |(I)£1| ST |<I>|-t| ¢ = Z,Z(n—l)

for 0<s<, h,j1,.,9s€1,

dg;, A ... Adg;, A dt Awani_y|¢ — 2|1
|éi1| Teee” |éi|| ' IC - zl?(n-!)
dgjy A . Adg;, Adt A won_iy|¢ — z)~*1
i - oo+ [ Bi] - |¢ = 2[2nt)

for 0<s<I-1, 7j1,.,9.€1,

for 0<s<1-2, hel,j,.,j, € I\{h}.

The three kernels still have a lot of ®; in the denominators. We want to keep there
only the (133-1 - &)J-, and one more that will be denoted by ®;. To the rest of the &)j‘ we
apply the inequality |<i>j((',z)| > C|¢ — z|* and the proposition of the lemma follows.
[

In addition to the estimates given in Lemma 4.2 we also need some estimates for
the derivatives of T, f with respect to 2. we need these estimates because we will prove
some Holder estimates with the help of the Hardy-Littlewood lemma.! Let § denote
any of the 0/0z; or 0/0%;. We can compute 6T, f by differentiating under the integral
sign. And by Lemma 4.1 it remains to investigate the terms § A’. We get the following
result.

'This lemma shows that a function is a-Holder continuous if the gradient of the function can be
estimated by dist(z, bD)*~?.
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Lemma 4.3 Let I be a fized ordered subset of {1,...,k} and let {y be a fixred point on
S1, let U({o) be a sufficiently small neighbourhood of (o and let z € U({o) be fized.
Then the terms 6 A’ can be estimated on Ry N U((o) by terms of the following types:

qu‘; ALA qu'. A dt A Won—f—»
D51 - oo v (R4, ] - |®h] - | — 2[*m=i=e

fOT‘ 053S17 h)jl?"'!jCEI7

dg: AN ...ANdg: ANdit A i
i %, Wan—i~s for 0<s<l, Rk g1, nis€l,

Bl B,]- [Bal - (B - [C = 2[2n-i-e
0 AL ; dt neie | |
_ dg;, A~ /\d‘IJ;-; A i A wan_i +1_l“ — for 0<s<!, h,jr,.,js €1
|¢J:| t et I¢j5-1| . |¢)J. . I(I)hl . [C _ leu -1

The wy,_i1—, denote some uniformly bounded forms of degree 2n — 1 — s in (.

Proof. First we use the product rule to get sums of terms where the ¢ is applied to
only one of the columns of the determinants ore one of the other factors of the kernels.
Since the P/ and &; are holomorphic in z the arising factors (67 and so on) are again
uniformly bounded. Now we can trace all the estimates given in the proof of Lemma
4.2 to conclude the proposition of this lemma. |

Besides the Martinelli-Bochner operator there are now four types of integrals we
have to investigate. From Lemma 4.2 arises the integral

[dist(¢, N)]=Pdg;, A ... Adg;, Ndt Awzpi_,
1D, oo - @50 [@a] - |€ — 2P~

J() =
BinU(¢o)

for 0 < s < ! and h,jy,...,7s € I. And the estimates of the derivatives of the kernel
given in Lemma 4.3 lead to the integrals

Jy = / [dist(C, J\f)]"ff’ah{jl A ... Adg;, Adt A Wancizs
T YT BT AP e
Jy 1= [C.l_iSt(Cy N)]:ﬁd‘b'. A Adgj, Adt A wani-s ,
RNU(¢o) I(I)jxl Tt Iq)i-‘ | Pal - [Parl - ¢~ zlzn_l—'—l
and
J3 = / [dlft(Cs N)]_qujl A ~ A dq;j.-1 Adt A Wan—i-s+1
[Bial o 185s8 1841 - 1C = 2170

RinU(¢o)

for0<s<land h,h' j,..,7, € 1.
Remember that we suppose that the submanifold N satisfies the condition (G).
Indeed we need this only if 8 is greater or equal to 1. We prove the following lemma.

Lemma 4.4 There are constants C depending only on B such that
(i) o< C for 0<B<1/2,
(ii) Ji,Jp, Ja < C[dist(z,bD)]"Y/2#" for 0<B< B <1/2,
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(i11) Jo < Cl[dist(z,bD)]V*#" for 1/2<B <P < 1.

Let the submanifold N satisfy the condition (Py) and suppose that (C) holds in a
neighbourhood of My = NN S; then we have

(iv) Jo < C[dist(z,bD)]V*#" for 1<B<f <1+d
where d was the codimension of N in bD and is the codimension of My = NN Sy in

St because of (Py).

Proof. Remember that we have [t| < Cdist({,bD) < Cdist(¢, N) and that |g;(2)] 2

Cdist(z,bD) for all j. For simplicity let us assume that we have on R; coordinates

Ty, eeey Tonogpr With @7 = (2,41, .., Top—i41) such that wo,_j_, = dreg Ao Adzoy_1yq.
We consider the case 0 < § < ' < 1/2. Using (5) and (14) we get

Jo <
C

RiNU

[t|=Pdg;, A ... Adg;, Adt Adogn_i,
(lea Ol + 1gil) - - - (05, (O] + 1g5.1)(len(2)] + 1t + 1€ = 2[)I¢ — z[*n=t=e=1"

Integrating with respect to the g;, we obtain

172 T12e, (1 + 1n |05, (O))dt A dogn-i—
Jo<C = ;
"o o<|!;c (lon(2)] + It + |="(¢ — 2)|¥)|="(¢ — z)|2n—I—a—1
o<|zl<C

and because [t["P[T%=,(1 + In [t]) < C[¢|=#' this gives

t|=P'dt A dogn-i-.,

Jo £ C
’ o<l:|<C (lQh(Z)| + ltl + |-'L'"(C - z)|2)|;n”(§ - z)|2n-i-s-1
0<|z”|<C
da?n—l—s
= C ~/ " 2 .
- - B |t — 2n=l—s=-1
ocinee (BET+2(C = 2P 1"(C = 2)

Omitting |gx(2)| we find further

C

211 I—a—ld

Jo < / i
0

n—l—a-1428'
<
By the same arguments as in the case 0 < f < 1/2 we obtain for 1/2 < g < 8 <1

[t|=F'dt A doan_i_,

JO g C 1" i n—{—g—
seiree (lon(z) + [t + 127 = 2)P)|z"(C — 2)[r=t=e1
o<z | C
dogn_i1—s
< C / t 2 :
- ’ B — 2n—l-s-1
o TG F BC— DPPIC— )
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And therefore we get

¢ n—{—s-1
< C/ r 'dr

] TN+ o
< Cldist(z, bD)]}/2#,

Now (1) and (iii) are proved.

To prove (iv) we introduce some special coordinates related with N. We fix (, €
M; = NN 5. First we consider the coordinates g;,,...,q;,,1 = ZTs41, Tot2y-.ry T2n_i41
from above. These are coordinates only if dg;, A ... A dg;, does not vanish. But this
holds since we assume (C) in a neighbourhood of the {y. After a simple translation
we may assume ¢j; (o) = Z,41({o) = z"({) = 0. In U({,) there exists, maybe after
shrinking U, also an other coordinate system yi,...,¥g)+1, .. ¥2n-141 such that with

Y = (Y1) s V(o)1)
Cdist({, N) > dist(¢, M;) > |y'| (20)

and
t € span {y1, ..., Y[gj+1}- (21)
Now we can take the 3, ..., yg]+1 and choose some g;;, and some z; so that they all

together form coordinates on R;. Without loss of generality let us assume that the

coordinates are yi, ..., Y(a)4+1s Giguyays -» Tias Tatut1s ey Tan—ig1 With v 4+ p = [B] +1 and
# > 1 because of (21). We introduce the abbreviations ¢' = (g;,,,), - ¢;,) and =" =

(Tstpt1s -y Ton—i+1) and € = 1/2dist(z, bD). Further we set

[dist(¢, N)]Pdg;, A ... Adgj, Adt Adogn_i—,

I o= { AR
CERNU(Sp) I(I’J'll feee? I(Dial ' |‘I)h| ' |C - "zlh_l‘_"'—1 ,
dist(¢,N)>e

o [dist(¢, N)]7Pdgj, A ... Adg;, Adt A dogni-,

0 = = =
CERInU(CD) |¢Jll T |¢Jl| ) ’th : IC - z]zﬂ—l-l—l
dist( ¢, N)<e

From (5) and (14} we get for some A with 1/2 < A< NV <1

J, < CerP
f 'tl_'\qu‘J ARREA dgj: A dt A da?n—-l—a
I (e Q1+ 1D o (e (OT+ g DUeal@ + T+ 10 = 2P)J¢ — 2P=i=>=T

R
Using the same arguments as in the case 1/2 < f < 1 we obtain that

Jo < CerPel N < oetP
< Cldist(z, bD)]H/*# (22)
with 1 < < f <1+d.

To estimate Jy we use the coordinates yi, ..., Yig)+1, igsys o> Tier Todutls -y L2nib1
introduced above. Note that |[( — 2| > ¢ if dist(¢,N) < ¢ and therefore |{ — z| >
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1/2(/¢ — 2| + €). Together with (20) and |2;(¢,2)| > C(le;(2)| + lgs| + I¢ — 2*) 2
C(e + |g;| + |¢ — z|*) this implies

< C '[P dog41d5, 41095, 42101
B o [@5,1(e + |2(C = 2) )+ 2™(( — z)[Pnimemt

'l<e, la'1<C 1Pl
el <O

< C f ly'| P dogy

ly']<e
dqjv_'_1 .dq;,
o EF T+ T
da?n—l—a—p+1
. 23)
mir _ 2\l |ttt m—{—-s-1 (
oo T AP =)
For the first integral we get
/ |y'|_ﬁd0'[,9]+1 < C =P84
ly'l<e Y
< CEI+LG]—ﬁ. (24)
Further it 1s y d
q.?u-l-_‘l"' ch S C(]. _|_ln€)a—u- (25)

(5 + |Q.7'u+1|)"'(5 + l%}l)

le’|<C

So the product of the first two integrals is less than Ce!*1¥1-%", During the investigation
of the third integral we have to consider different values of 1. Remember that we have
g > 1. Thus we obtain

dazn—l—a—p-}-l < Cf 21’1 l—3— Bdr
(e + |z"(¢ — z)|2)u+1|mm(c Y (€ 4 r2)v+ip2n=i-s-1

e<|z"|<C

IA

gV letH for u>2
g~v1 lns for p=2 (26)
g7 w2 for p=1.

I/\

¢ rl1=#dr
Cj (e + r2)v+1

Combining (24), (25) and (26) it follows that

J < Cel=#  for p>2
Cell?F" for p=1.

Together with (22) this proves part (iv) of the lemma.
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Now we consider the integrals Jy, J; and J3. Like in the proof of (i) we can integrate
with respect to the q;. With € :=1/2dist(z,bD) and 0 £ 8 < 8’ < 1/2 we find that all
the integrals J;, J; and J3 can be estimated by

Jy o= f for 0<s<], a=1,2.
"L, EHHFRTC AP g T TR S
o<jz!|«C

Again we use the fact that |( — z| > ¢ if |t| < € and set

t|~F'dt A dogn_i_,
Jy / | for a=1,2,
© T L EEEEC AR - e
ola l<C
|t]=#'dt A dozn_1—,
Yoi= f =1,2.
" 1:1'</ (e + M+ (¢ = )Pyl = A)Primeriza 0 ©
e<|z |<C
We integrate with respect to { only if @ = 2 and get
dogn—i— +2—
Ji < CeF / — <
" o EF T = 2P — s
< C -8 ¢ r?n—l—s+l—adr
- € (5 + r?)r2n—l—~s+l—a
0
c
< Ce_ﬁf dr
s et r?
< Ce P2 (28)
And for J{ we obtain
da2n—l—s
nse | i .
S A F (e e (B e
Considering the two different values of o we find
¢ n—=l—s-1
" r dr
Ji < C/ (€ 4 r2)o-1+8'pin—l-s+1-a
&
< ro=2dy
— (6 + r2)a—l+.3"
€= lne for a=1
= C{ gl-o-8'+(e-1/2 for @ =2
< cen, (29)
Together with (28) and the fact that Jy, J; and J3 can be estimated by Jy this proves
(i1) and the proof of the lemma is complete. |

Now we are able to proof the estimates given in the main theorem of this paper.
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Proof of Theorem 3.5. By definition we have

Tf == [fAK (=" [ fAK.
R

DexAg

and it is also quite clear that

[ AR < fllwioy [ldist(¢, M 3 dl! A K.
R R

[I|=¢

On Ap K, is exactly the Martinelli-Bochner kernel. Using Lemma 4.1 the first integral
can be written as a sum of integrals over ;. For ! = 1 there arises one Martinelli-
Bochner kernel. Denoting the Martinelli-Bochner operator by B the estimates

|Bfllce < Clifllogny for 0SB <1,0<a<l-4,

1BSlle@-10) < Cliflloe) for 1<f<f <1+d

follow by well-known arguments which we omit (see, e.g., [HL] for the case g = 0). It
remains to consider the other integrals which all contain some x. So we only have to
integrate over a small neighbourhood of dD. It is even enough to fix a (p € NN S;
and to consider a small neighbourhood U({;).Z Because K’ and §K' are bounded for
|¢ — 2| > C and [dist(¢, N)]# is integrable over R; we may further assume z to be
in U({o). Using Lemma 4.2 and Lemma 4.4 we get part (ii) of Theorem 3.5. And the
Holder estimates in part (i) of the Theorem 3.5 follow from Lemma 4.3, Lemma 4.4
and the Hardy-Littlewood lemma. |

5 References

[AH] A. Andreotti, C.D. Hill:

E. E. Levi convexity and the Hans Lewy problem. Part I: Reduction to vanishing
theorems. Ann. Scuola Norm. Sup. Pisa, 26 (1972), 325-363.

[F] B. Fischer:

Cauchy-Riemann equation in spaces with uniform weights. to appear.

[HL) G.M. Henkin, J. Leiterer:
Theory of functions on complex manifolds. Akademie-Verlag, Berlin, 1984.

[LL] C. Laurent-Thiébaut, J. Leiterer: Uniform estimates for the Cauchy-Riemann
equation on g-convex edges. Prépublication de I'Institut Fourier, no. 186, 1991.

[LR] I. Lieb, R.M. Range:
Estimates for a class of integral operators and applications to the -Neumann
problem. Invent. math., 85 (1986), 415-438.

2For (g € Si\N we can choose U so small that dist(U, N) > C. So f is bounded in U and that is
the same like the case N = D and 8= 0.

22



[M] J. Michel: )
Randregularitiat des 0-Problems fir stiickweise streng pseudokonvexe Gebiete in
C". Math. Ann., 280 (1988), 45-68.

[RS] R.M. Range, Y.T. Siu:
Uniform estimates for the d-equation on domains with piecewise smooth strictly
pseudoconvex boundaries. Math. Ann., 206 (1973), 325-354.

Fachbereich Mathematik der
Humboldt-Universitat

0-1056 Berlin

and

Max-Planck-Institut fir Mathematik
Gottfried-Claren-Strafle 26

W-5300 Bonn 3

23






