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Abstract

Singularities of the solution of the Cauchy problem on complex manifold
are investigated. The case of differential equation with constant coefficients
is considered in detail with the help of integral representations of solutions.
In the case of varia.ble coefficients the singularities of the solution a.re exam­
ined by expansion in series with parameter-dependerit integrals as their terms.
Normal forms of corresponding integral representations are obtained that al­
lowed to construct asymptotic expansions near singular point of the solution
for singularity types of generic position.
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The present paper is written in the framework of analysis of differential equations on
complex manifolds. This theory originated by the classieal works of Jean Leray [1]
- [6] at present have its further development in a set of works by Boris Sternin and
Victor Shatalov (see [7] and the bibliography therein). In particular, for differential
equation with constant coefficients it allows to obtain explicit solution in form of
parameter-dependent integral with the help of an integral transform of ramifying
analytic functions introduced by Boris Sternin and Victor Shatalov (see [7] - [10]).

In case of equation with variable coefficients, clearly, there is no possibility to
present an exact formula for solutions. However, it is possible to obtain an asymp­
totics of solutions near its singular l points. Such asymptotics have the form of
parameter-dependent integrals over some cycles (homology classes) of the corre­
sponding complex spaces (see [7], [11]).

Clearly (this concernes the case of constant coefficients as weH), one should like
to obtain more explicit expressions for asymptotic expansions of solutions (say, in

lSingular points arising in this theory are as a rule ramification points of a solution.
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(1)

the form of Puiset series). This paper 'is aimed at writing out such formulas at
least in generic position. To this end, since solutions to Cauchy problems are, as a
rule, ramifying, such an investigation must include the description of the Rieman­
nian structure of solutions. This can be done in terms of normal forms, and the
investigation can be naturally accomplished within the framework of the theory of
singularities [12], [13] and given paper is devoted to this theme.

1 Preliminary Results

1.1 Integral representations of the solutions

The main tool of investigation of solutions to differential equations on complex
manifolds is the integral representation given in [7]. To make the presentation in this
paper self-contained, let us make a short description of corresponding representation
for solution to the Cauchy problenl with constant coefficients.

1. Let f(x) = f(x 1
, •• • ,xn

) be a complex-analytic function,

x = {x E C n Is(x) = O}

be a complex algebraic nlanifold. Consider a linear differential operator of order m
with constant coefficients

where 0' = (ab ... ,an) is a multiindex with integer ais, 10'1 = 0'1 +... + an, and

Consider the Cauchy problem

{
H (--Ix) u(x) = f(x),

u(x) == 0 (mod m) on X,

where the comparizon in (1) means that the function u(x) has zero of order m on
the manifold X. The solution to this problem may be represented in integral form
(see [7]):

u(x) = (n - m - I)! (i-) n-l JRes f(y) dy A w(p)
21r H (p) (p(y _ x))n-m ,

h(x)

3
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u(x) = (-1 )m-n (i..) n-l J f(y) (p(y - X ))m-n dy /\ w(p),
(m _ n)! 21r H(p) n ~ m, (3)

hItx)

where w(p) is Leray's form

n

w(p) = :L) -1)ipidp1 /\ ... /\ iPi /\ ... 1\ dpn,
i;;;;1

and
n

p(y - x) = L:: pj(yi - xi).
i;;;;l

The homology dasses h(x) and hdx) involved in the integrals on the right in (2)
and (3) can be described as folIows. The dass

is a homology dass in the space C; X CPn-1,p coinciding with the vanishing cyde
of tbe complex quadrics (~r, ~r n X) for x dose to X (one can show that the
intersection Er n X is biholomorhic to a complex quadrics for such values of x). The
dass

h1(x) E H2n- 1(C; X CPn-1,p \ char H, ~r U X)

is now defined as a solution to the equation

8hI(x) = h(x),

where

is the Bokstein homomorphism. In the latter formulas we used the following nota­
tion:

~r = {(y,p) E C; X CPn-1,plp(y - x) = O},

char H = {(y,p) E C; X CPn-1,pIH(p) = O},

and X is tbe lifting of initial manifold to the space C; x CPn-1,p' We remark that
near any noncharacteristic point x of the initial data manifold the solution u(x) to
problem (1) belongs to function space Am (see (7]). The latter means that there
exist a constant C such that
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Near a noneharaeteristic point of X, the solution to Cauehy problem (1) in the
integral form (2), (3) ean be expanded in aseries in integer degrees of x (the Taylor
formula). On the contrary, it is clear that in the neighborhood of a eharacteristic
point there exists no such expansion. So, the problem of obtaining an asymptotie
expansion for solutions to the Cauchy problem near characteristic points of the
manifold X is of great inerest.

Tbe asymptotic expansions for solutions to the Cauchy problem ean be solved
with the help of classification of singularities of special contour integrals being the
representation of the solution. For problem (1) this investigation can be naturally
split into the following three subproblems:

• To construet normal forms of sets X, Ex and char H included in representations
(2), (3).

• To obtain normal forms of integrals (2), (3).

• To investigate singularities of obtained normal forms of integrals and point
out possible types of ramification.

2. Let us consider now the Cauehy problem with variable coefficients:

{
H(x, -B/8x)u(x) = f(x),

u(x) =0 (ITIod m) on X,

where function f is holomorphic,

x = {x E C n Is(x) = O}

is a eomplex algebraic manifold, and

(4)

is a ditrerential operator with variable holomorphic coeffieients a o ( x ). The asymp­
totie expansion of the solution to problem (4) can be written down (see [7]) in the
form integrals similar to that involved in representations (2), (3), but with different
phase function and with same amplitude function not equal to 1, namely

(

. ) n- I J( B ) n-m,
u(x) = 21ri 2~ f)qo G(x, q, t) 1••=0 f(y )w(t, q') !I dy,

h(x)

5
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In the latter formula we have used the following notation:
i) The variables q, q', and t belong to the spaces

q = (qo, qI, . .. ,qn) E C;+I, q' = (ql" .. , qn) E C;/ and t E Ct,

and qy = qo + qlyl +... +qnyn.
ii) w(t, q') is modi~ed Leray form

w(t, q') = (1 - m)t dql /\ ... /\ dqn - dt /\ w(q'),

where
n

w(q') = L (-I)i-1qjdql/\"'/\ dqi /\ ... /\ dqn.
j;;:;:l

iii) The function G(x, q, t) is an elementary solution to problem 4 (see [7], [14]).
This solution has the form

00

G(x,q,t) = L ak(x,q',t)!k+l(qO+ S(x,q',t)),
k=-l

(6)

where ak(x, q, t) is some holomorphic amplitude function and {!k(Z)} is the following
Ludwig sequence2 ([15]):

where

{

(-I )j-1 ( - j z-; I)! ,
!j(z) = .

Z1 (]T In z - Cj),

{

O~ j = 0,
c· = 1

1 ~ 1ji j ~ l.
j:;::1

j < 0,

j '2: 0,

(7)

iv) If the operator (ßj8qo)n-m has negative power n < m, then by definition

and operators (8j8qo), (8j8qo)-1 are obviously inverse to each other on the set of
functions representable in the form (6).

2 A function sequence h~(z) is called a Ludwig sequence if it is closed under differentiation:
f; (z) = h- 1 ( z).
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v) The function S(x, q', t) is a solution to a special Cauchy problem for the
Hamilton-Jacobi equation

{

8S(x, q', t) H ( 8S(x, q', t)) = 0
8t + x, 8x

S(x, q', 0) = qIX I +... +qnxn = q'x.

To describe the dass h(x), we introduce the set of singularities of the integrand
in (5):

Ex = {(q',t,y)IS(x,q',t) - q'y = O}.

Then h(x) is a relati ve homology dass

(9)

(10)

More precisely, h(x) is to be a homology dass on the Riemannian surface of elemen­
tary solution G(x, q, t) ramifying along Ex logarithmically. The detailed description
of h(x) the reader will find in Subsection 4.2 below.

1.2 Some facts from the theory of normal forms

The notion of monodromy naturally arises in the investigation of ramification of
parameter-dependent integrals. Suppose that on a level set Gz = {g(y) = z} of
some function g(y) a homology dass a(y) is defined, and in the plane C with the
coordinate z some path , is given. Then the analytic continuation of integral

along patb , can be found in the form of tbe integral

wbere the monodromy operator M-, is an automorphism of homology groups of the
set Gz onto itself along path ,.

Let us now introduce some facts from the theory of normal forms (see, for exam­
pIe, [13]) that will be used in the sequel for investigation of singularities of parameter­
dependent integrals in question.

Let

7



Figure 1. Marked set of cycles

be a holomorphic function defined on n-dimensional complex manifold M, and U be
some contractible compact domain in the plane C. As above, we denote the level
set of the function 9 by Gt = g-l(Z) and fix some non-critical value Zo E au on the
boundary of the domain U.

Definition 1 A set of cycles ~I, .•• , ~IJ. from (n - l)-dimensional homology group
Hn - 1 (G zo ) together with the set of paths v}, ... , vIJ. connecting the base point Zo

with critical points Zl, ... , ZIJ. is called the marked set 0/ cycles if it the following
three conditions are fulfilled:

• for any i = 1, ... ,J1 the cycle ~i is a vanishing cyc1e along the path Vi;

• any two different paths Vi and Vj have the only common point vi(l) = vj(l) =
Zo;

• the paths Vb"" VIJ. are enumerated in accordance with the order, in which
they enter into point Zo counterclockwise, beginning from the boundary au of
domain U (see Fig. 1).

The matrix of intersection numbers for marked set of cycles (this set forms a basis
in corresponding homology group) defines the monodromy group of the singularity.
There exist a number of ways to describe intersection numbers of cycles. We shall
use below the so-called D-diagrams (Dynkin's diagrams, [13]). To define D-diagrams
we need the notion of stabilization.

Definition 2 [13]. Let
g(x) : (Co, 0) ~ (C,O)

8
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Figure 2. Diagrams of singularities

be a germ of holomorphic function. For any integer m a germ of function

m

g(x) +L t; :(cn +m ,0) ~ (C,O)
j;1

is called a stabilization of germ g(x).

Definition 3 [13]. D-diagram is a graph satisfying tbe fallawing two conditions:

• nodes of graph are in one-ta-one correspondence with elements ßi of marked
base of homology group of level lnanifold considered for stabilization of the
initial function with number of variables equal to N =3 fiod 4;

• i-th and j-th nodes of graph are connected by edge of order< ßi, ßj >, where
by <, > we denote the intersection number; edges of negative order are shown
by dot ted lines.

For simple singularities the following theorem holds (see [13, p. 75]):

Theorem 1 For simple singularities 0/ the types

A k (X k+l + L tn,
Dk (x2y +yk-l +L tn,
Es (x3 + y4 +L t~),

Er (x3 + xy3 + L t;),

Es (x 3 + y5 + Ltn
9



there exist marked bases 0/ vanishing cycles, /or that intersection numbers are given
by D-diagrams shown on Figure 2.

Having intersection numbers of vanishing cycles for stabilization with some fixed
numbers of variables, one can easy calculate intersection numbers for stabilization of
any number of variables with the help of the following proposition (see [13, p. 46]):

Theorem 2 I/ {ßi} - marked base 0/ cycles in homology group 0/ non-singular level
mani/old /or singularity g(x), then there exisls a marked base {.6. .. } /or singularity

g(x) + l:i=l t~ such that the matrix 0/ intersection numbers is defined by the relation

- _ m( ... -1)

< ßi,ßj >= [sgn(j - i)]m(_l)nm+ 2 < ßi,ßj >,

and marked bases {ßd, {.6.d correspond to the same sets 0/ palhs connecting crilical
and non-critical values 0/ /unetions g(x), g(x) + l:i=l tt .

Consider now a holomorphic function

h(y) : C; -+ C

with an isolated critical point and let

h: C; x C; -+ C
be its deformation, that is h(y,O) = h(y). Let some complex plane be chosen in
parameter space CP; which is not contained in the set of critical values a of the
function h(x, y). Then intersection of the plane and set of critical values is discrete.
Denote by t a holomorphic coordinate on the plane with the origin in point of
intersection. In a small neigbborhood of the selected point let us consider a sector
a ::; arg t ::; b. For any t =f:. 0 in this sector one can choose a base

in homologies of local non-singular level hypersurface of function h. Let a form w be
a holomorphic (n - 1)-form in CP; x CP; near the origin. In the sector introduced
above we consider tbe vector-function

I(t) = ( Jw, ... , Jw)
6 1 (t) 6~(t)

The following theorem is valid (see [13], [16]).
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Theorem 3 The function I(t) admils the expansion into the series

L ak,o t O (1n t)k
o,k

convergent for sufficiently small in module value 0/ the parameter. The numbers
a are rational and non-negative. For every a involved in the lalter expansion the
number exp(271'"io) is an eigenvalue 0/ the classical monodromy operator. The coef­
ficients ak,o are vectors in CJJ such that ak,O = 0 for any k > 0, and ak,o = 0 when
Jordan form 0/ classical monodromy operator has no blocks of dimension more than
k with the eigenvalue exp(211"io).

2 The Cauchy Problem with Constant
Coefficients

2.1 Geometrie deseription

The following two sections are aimed at the consideration of the Cauchy problem (1)
with constant coefficients.

As it was mentioned in the previous section, solutions to Cauchy problem in
question can be written down in the form of integral representations (2), (3). The
integrand in bath these representations is a differential form on the space C; x C~ x
CPn-l,p' We remark that, since X is an algebraic manifold, it can be lifted into the
space CP~ as an analytic set. This allows one to use the Thom theorem (see, e. g.,
[17]) for investigation of singularities of solutions to (1). More precisely, to apply
the Tham theorem, one has only to compactify the space C~.

Denote by
Ex = {p(y - x) = O} E C~ x CP~ X CPn-l,p

and
char H = {H(p) = O} E C; x CP: x CPn-l,p

the zero sets of the denominator in the representation (2), and by X the lifting of
the initial set to C~ x CP~ X CPn-I,p (we remark that all these sets included in the
defini tion of cycles h(x) and hl (x) a.re well-defined in this space).

Consider the natural projection

C~ x CP; x CPn-I,p -+ C~,

that determines (in general, not locally trivial) bundle

Ex \ (char H U X) -+ C:.

11
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Later on, bundle (11) induces the projection of the space r~(~x \ (char H U X)) to
the base space C;:

Tx(~x \ (char H U X)) -+ C:.
Let L C C~ be a set of points in the base of bundle (11) such that the rank of
the latter projection degenerates. Then, due to the Thom theorem, bundle (11) is
locally trivial in a sufficiently small neighborhood of any point x E C; \ Land,
hence, all singularities of integrals (2), (3) Iye in set L.

Geometrically, it means that singularities of the solution to problem (1) occur
for values of x such that the manifold ~r is tangent to same stratum of the union of
initial and characteristic sets X U char H. We distinguish the following four cases:

• ~x is tangent to char H. The tangency condi tion has the form

8H(p)
(x - y)dp - p dy = A 8p dp

for a constant A. One cau easily see that it holds just for p = O. However,
this is impossible since p E CPn-l,p' So, this case does not contribute to the
singularity set of the solution.

• ~r is tangent ta X and not to X n char H. The direct computation shows that
this is possible iff x is a noncharacteristic point of X. However, as it follows
from the Cauchy-Kowalewski theorem, integrals (2) and (3) are holomorphic
for such values of x (see, for instance, [18]). On the other hand one can give
a direct proof of the assertion that integrals (2) and (3) are holomorphic at
such a point. Namely, the tangency condition

8s(y)
(x - y)dp - pdy = A7ii/dy

8s(y)
x = y and p = -A--,

8y

that is, x E X and p is a covector of X in the tangency point. Later on, the
integration eyde h(x) is the vanishing eyde of the quadrics ~rnx of dimension
2n - 2. The self-intersection number < h, h > equals zero for given dimension
of h(x). According to Picard-Lefschetz theory [19] for quad ric singulari ty the
vanishing cyde variation vanishes:

var h(x) = (-1 )(2n-2)(2n-l)/2 < h, h > h = 0,

12



Figure 3. E,:c contacts X n char Hand not contaets X

whieh means that there is no ramifieation at the point in question. Sinee
u(x) E Am with m > -}, and (2) is a single-valued function, integral (2)
is holomorphic due to the removed singularity theorem. As it will be shown
below integral (3) ean be evaluated via derivatives of integral (2) with respeet
to x, whence it follows that integral (3) is also holomorphie .

• :Ex is tangent both to X and X n char H. The straightforward computations
show that this is possible iff x is a characteristie point of the inital manifold
X. This ease was investigated by Jean Leray [1], [6] with the help of the
uniformization of the Cauchy problem.

• E,:c is tangent to Xnehar H und not to X. Integrals (2),(3) do have singularities
for such type of tangency. The geometrie explanation of this fact is that cycles
of integrat,ion h(x) and h1(x) are covanishing eycles and their variation does
not vanish. The simplified representation of this ease is shown on Figure 3.

2.2 General form of integrals

Let us show that for investigation of singularities of the solution of the problem (1)
it is suffieient to examine integral (2).

Let x be a point where the solution u(x) is regular and let m = n. One can
easily eheck that derivatives of funetion u(x) are given by

8u(x) = (~)n-l JRespjf(y)dy I\w(p)
8x j 271" H(p) (p(y - x)) ,

h(x)

13



due to representation (3) and the identity ßh 1(x) = h(x). lf m > n, then the
equality

ßm-nu(x)
------..;.........;.....--=
ßxi1 ... ßxirn- n

= (i..)n-l J Pit·· 'Pirn-nf(y) (p(y - x))m-n dy 1\ w(p),
2w H(p)

h1 (x)

holds, which allows to write down integral representation for derivatives of the so­
lution

ßm-n+1 U(X) = (i.) n-l JR Pil'" Pim-n+l f(y) dy 1\ w(p)
ßxi1 ". ßxirn-n+1 21t" es H(p) (p(y - x)) ,

h(x)

for any m 2: n. Next, if function u(x) is regular along some path connecting points
a and x then

By that, singularities of the solution are expressed by singularities of its first deriva­
tives, singularities of first derivatives are expressed by singularities of second deriva­
tives, and so on. Hence, the investigation of singularities of the solution of prob­
lem (1) is reduced to the investigation of integrals of the form

JR
j(y) dy 1\ w(p)

es N'
H(p) (p(y - x))

hex)

N = 1,2,3, ... (12)

with some holomorphic function j(y).
In spaee CP; x CPn-l,p, we have three manifolds Ex, X and ehar H defining

the integratiion cycle h(x). On the other hand, as it follows from definition of
representation (2), one can see that h(x) C Ex. Let us use this fact and restriet
integral (12) to Ex for its investigation. Evidently, the dass h(x) on Ex is now defined
by two manifolds Ex n X and Ex n ehar H, and the singularities of integral (12) are
originated by their tangency. Under the requirement that X and ehar H are regular
manifolds, the interseetions Ex n X and Ex n ehar H are also regular (supposing
Ex nX and Ex nchar !f are not tangent to eaeh other), and one ean use eoordinates

14



(13)

z = (zo, ... ,Z2n-2) such that

~r n X = {zo = O},

~x n char H = {zo = ~(Zb"" Z2n-2, x)}.

Now critical points of function ~ can be classified according to standard methods
(see [12]) and normal form of cI> can be obtained for every concrete critical point
type.

The calculation of the residue in formula (12) gives

R j(y)dYAw(p) O(y,p)
es ll(p) (p(y _ x))N = H(p)N'

with some regular form f2(y,p). The latter formula together with the Taylor expan­
sion of the form f2 allows us to expand integral (12) in aseries

L L Ci J(zo _ ;~z"x»'w,,(z).
} Q h(x)

Here and below we use the following notation:

Z = (zo, z') where z' = (ZI, .. . , Z2n-2),

i - (z )io (z )i:Jn-:JZ - 0 ••• 2n-2 ,

and
wo(z) = dzo 1\ ... 1\ d~o A . .. 1\ dz2n - 2 •

The obtained expansion leads us to the investigation of singularities of the integrals

10 ,1 J z} ~ ( )
i = (zo _ ~(z', x)), wO z .

h(x)

After the change of variables that brings function cI-( z', x) to the normal form,
the equation of the manifold ~x n char H takes the form Zo = g(z', A), where 9(Z', A)
is a versal deformation (see [13, p. 67]) for a normal form of the corresponding
singularity type, and A = A(X) is new parameters of integral (13). Here and below
we use the same notation z for variables of integration assuming that integral (13)
is already normalized. Since a versal deformation function g(z', A) has an absolute
term AO, the equality holds:

(
a )1-1 J j

8>'0 Zo _ ;(z', >') w,,(z) = (-1)'-1 (I - 1)!lj"(x).
h(>.)

15



(14)

From this, it follows that the singularities of integral (13) coincide with singularities
of the integral

J zJ

( \)wo(z).
Zo - 9 z', A

h(>')

The latter integral is an inte~ral over a relative cycle homeomorphic to the cov­
anishing cycle from the group H2~~2(Ex \ (char H n Ex)) in sufficiently small neigh­
borhood of the tangency point of manifolds Ex n char Hand Ex n X. It is easier to
use integrals over an absolute cycle, therefore we reduce integral (14) to the form

(15)

in small sector up to the factor 1/(271'"i). Here the cycle ß(A) is constructed as the
union of two copies of a representative of the dass h(A) lying on different sheets
of the Riemannian surface of the integrand and having opposite orientation. This
cycle can be treated as a representative of an absolute homology class in the space

ß(A) E H2n-'l(Ex \ (char H U X) n Ex)

(the similar construction was used in [20, p. 154].)

3 Further investigation of singularities

3.1 Non-degenerated singular point

To begin with, let us consider the non-degenerated singularity AI, for which the
manifolds Ex n char Hand Ex n X have the quadratic tangency. This means that
the function g(z', A) from integral (15) has a non-degenerated second differential and
the normal forms for the mani folds Ex n char Hand Ex n X are

Ex n X = {zo = O},

Ex n char If = {zo = (zd 2 + ... + (Z2n_'l)2 + Ao}.

In this case integral (15) can be rewritten as

Ij(A) = J
6(.\)

zi In Zo '"
(')2 A Wo(z),Zo - Z - 0

16



Figure 4. Singularity Al

where
(z'? = (zd 2 +... + (Z2n_2)2.

This integral has singularity for Ao = 0 only. The monodromy operator for the
integration cycle ß(A) (and, hence, for integral (15)) is completely defined by its
self-intersection number. Non-criticallevel manifold is diffeomorphic to fibre space of
disks of tangent bundle for (2n - 2)-dimensional sphere. Therefore, if this manifold
is oriented in accordance with structure of tangent bundle to a sphere, the self­
intersection number of vanishing cycle in this manifold equals the Euler characteristic
of the sphere

and, in considered dimension,

As it follows from Picard-Lefschetz theorem [13], the action of the monodromy
operator corresponding to encircling the critical value ..\0 = 0 is given by

Mß = ß+(-l)"<ß,ß>ß=-~,

A1M,6" - -ß-(-l)"<.6.,ß>ß=ß,

and monodromy operator corresponds to a one-cell matrix M = -1 having a single
eigenvalue exp(27J"i). Thus, non-degenerated singularity Al is a singularity of square
root type, the Riemannian surface of integral (15) is that of square root (Figure 4).
In accordance with theorem 2 from section 1.2 on asymptotic expansion of an inte­
gral, integral (15) can be expanded in aseries

'""'" . \ {2i+I)/2L..., a;Ao
;

17



in the neighborhood of such singular point. In the book [13, p. 205] it is shown
that the summation is carried only over non-negative j for singularity of square root
type.

3.2 Singular point of A k type

The singularity Al examined in previous section is one of the series Ak (see [12],
[13]). For any k > 1 not only first but also the second differential of the function
g(z', A) from (15) is degenerated, so the situation is a more complicated one. Let us
consider singularities AI; in detail.

The manifolds E.::c n char Hand E.::c n X have the following normal farms:

:E.::cnx = {zo=O},

Ex n char H = {zo = (zt}k+l + Ak_l(zdk- l +... + AIZt +
+ (Z2)2 +... + Z~n-2 + Ao}.

The function

has k critical points and critical values, which can be easily computed for every
concrete k. For instance, when k = 2 one can obtain two critical points

Z2 = ... = Z2n-2 = 0,

with the critical values

Ao = ±2A IJ_AI .
3 3

The critical values of the parameters Ao and At for k = 2 are shown on Figure 5.
Every critical value Wj is attached with the vanishing cycle

that vanishes along the path from critical value Wj to some non-critical value. From
the theorem about matrix of intersection numbers (see section 1.2) follows that
there exists a marked base of vanishing cycles ßt, ... , ßk for which the intersection
numbers in our dimension are given by the formulas

< ßi,~i >
< ~i, ~i+t >

< ßi,ßj >

(_1)n- 12, i = 1, ... ,k
(-I)n, i=I, ... ,k-l,
0, li - jl > 1.

18



Figure 5. Critical values of parameters for A2

Figure 6. Singularity A 2

Therefore, one cau obtain the monodromy operators M j corresponding to encircling
the critical values Wj. For instance, for k = 2 we have

( -1 0)
MI = 1 1 '

and the loops trI and 1r2, en~ircling the corresponding critical points are shown on
Figure 5. Further, for k = 3

In general case we obtain k matrices defined by
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Figure 7. Singularity A3

1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 1 1 0 0 0
M j = 0 0 0 -1 0 0 0 j = 1, ... , k,

0 0 0 1 1 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

where -1 is placed in j -th row and j -th column of matrix Mj. Clearly, for
investigating the action of the monodromy on the cycle ß, that is, on the vector
(Cl' ... , Ck) of coefficients from expansion

k

ß = LCjßj,

j=l

one have to use transposed matrices. Keeping this fact in mind, for singularity A2

one can obtain

where E is the identity matrix. The latter relations for the monodromy matrices
describe also the ramification of integral (15) in the case when the parameter AQ
encircles a critical value, and corresponding Riemannian surface is shown on Fig­
ure 6. For asymptotics of integral (15), it is also easy to see that operator of classical
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monodromy M = M1M'l has two different eigenvalues exp(±7l"i/3). Now one can
use theorem 2 from section 1.2.

The ramification of integral (15) for other k can be carried out in the similar
way. For instance, the Riemannian surface for k = 3 is shown on Figure 7.

4 The Cauchy Problem with Variable
Coefficients

4.1 Geometrie deseription

In the case when the Cauchy problem with variable coefficients is considered, its
solution can be written down in the form of integral representation. So, to describe
possible singularities of solutions to the Cuchy problem, one have to investigate the
ramification of integrals of the form (5):

(

. ) n-l J(a ) n-m
u(x) = 21ri 2~ aqa G(x,q,t)lqy=of(y)w(t,q')i\dy,

h(x)

with
h(x) E H'ln(Ct X CP;, x C; \ Ex,X U {t = O}). (16)

Similar to the case of constant coefficients, we consider the following three man­
ifolds:

x = {(y, q', t) Is(x) = O},

T = {(y,q',t) It = O},

Ex = {(y, q', t) IS(x, q', t) - q'y = O}

involved in (16) (see formula (9) above) in the compactified space C~ x CP; x
CPn-1,q' X C t • Consider the natural projection

C: x CP; x CPn-1,q' X C t -+ C:,

that induces a bundle
Ex \ (X U T) ~ C;. (17)

Applying the Thom theorem to bundle (17) one can obtain a simple geometrie sense
of singular points: they are posited at points where the manifold Ex is tangent to a
stratum from the union X U T.

There exist the same four types of tangency:
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• Er is tangent to T. From the tangency conditions

\d aS(x,q',t)d' d' aS(x,q',t)d 'dAt= q-yq+ t-q Y
8q' 8t'

it follows that q' = O. Since q' E CPn-1,ql, this case is exluded.

• Er is tangent to X and not to X nT. Due to the Cauchy-Kowalewski theorem
the solution is holomorphic.

• Er is tangent to X and X n T. This case was investigated in terms of Leray's
uniformisation (see [1], [6], [7]).

• Er is tangent to X n T and not to X. At such points x the solution to (4)
has singularities, since these points lye in the characteristic conoid of initial
manifold X.

So, geometrically there are no essential differences in investigation of singularities
in cases of constant and variable coefficients.

4.2 Investigation of integrals

For the case of variable coefficients, the' main difficulty is the definition of the ho­
mology dass since the integrand in (5) is a ramifying function. Let us describe
representation (5) in more detail. First of a11, dass (10) should be defined as a.
solution of equation

8h(x) = 8h1(x),

where 8 is the Leray coboundary homomorphism, ais the Bokstein homomorphism
and

is a relative vanishing dass of the quadrics Er nT uX. One has to take into account
that the dass h(x) must be a homology dass on the Rimmanien surface of the
elementary solution G(x, q, t) which ramifies around Ex logarithmically. However,
the dass 8hdx) can not be lifted to this surface. Consider the homology dass 8h1(x)
defined by the eyde

8")'1 ( x) +1'2 (x) - 1'3(X )

(see Fig. 8, where 1't{x) is representative of h1(x)) as a homology dass on universal
eovering of R\ Ex, whose projection to Riemannian surface R coineides with 8h 1(x).
Now the equation
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(18)

~--J;

Figure 8. Construction of homology dass h(x)

is uniquely solvable with respect to h(x) and this solution is used in the integral (5).
Further , differentiating n - m times in qo and substituting qo = -q'y one obtains

1 (i)n-l J(8 ) n-m ,
(211"i)2 211" 8qo G(x, q, t) Iqy;;;;o f(y)w(t, q ) /\ dy

hex)

(

. ) n-l { J G ( )t 1 x,q,t ,
= 211" [S(x, q', t) _ q'y]n-m+l f(y)w(t, q ) /\ dy

hex)

+ JGo(x, q,t) In(S(x,q',t) - q'y)f(y)w(t,q') A dY}

h(x)

(all manipulations with integral of the type (5) such as differentiation under the
integral sign, integration by parts and so on can be performed formally.) Denote

t

G,(x,q,t) = JGo(x,q,T)dT,
a
ql

G3 (x,q,t) = JGo(x,qo,T,q" ... ,qn,t)dT,
b

where integrations are performed over regular paths. Then second term in right side
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(19)

of (18) ean be rewrit ten a.s

J{~~,3 (1 - m )tdq' - a~2 dt i\ w(q')} i\ In(S(x, q', t) - q'y )f(y )dy

h(r)

J{G ( )(as(x, q', t) ) ( )'= - 3 X, q, t 8ql - Yl 1 - m tdq -
h(r)

( )aS(x, q', t)d - ( ')} f(y) d
G2 x,q,t 8 tl\w q 1\ S( ) Yt x, q', Y - q'y

via integration by parts. The latter formula reduees the investigation of solution to
the problem with variable eoeffieients to the investigation of integrals

JR
tj>(x, y, q, t) w I

es [S(x, q', t) _ q'y]l' = 1,2, ... ,
h'(r)

where the dass 8h'(x) is apart of h(x) encircling Er, and w is some regular form.
Sinee h'(x) E H2n- 2 (Er nT, X), we ean restriet the integrand in (19) on Er. It is

dear that the cycle h'(x) on Er is now defined by two manifolds Er n X and Er nT,
and the singularities of integral (12) arise when these two manifolds are tangent to
each other. If X and char H are regular manifolds, the intersections Er n X and
Er n T are also regular (if Er n X is not ta.ngent to Er n T), and one can ehoose
coordinates z = (zo, .. . , z2n-d such that

Er n X = {Zo = O},
Er nT = {zo = 4>(Zl' .. " Z~n-l, x)}.

Now there are no essential differences from the ease of constant coefficients. Critieal
points of funetion <I> eao be classified aecording to standard methods and anormal
form of 4> can be obtained.

Computing the residue in integral (19) and using the Taylor expansion of the
amplitude function, we arrive at the formula

J t/>(x, y, q, t) w J ( )
Res [S(x, q', t) _ q'y]I = n x, y, q, t =

h'(r) h'(r)

L L Cj(x) Jziwo(z),
J Q h'(x)

where

z = (zo, z'), z' = (zt, .. . , z~n-d,
j = (jo, . .. ,j~n-d,
Z j - (z )(J') ( . )i2n-l- 0 0··· Z~n-l ,
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and
wo:(z) = dzo 1\ ... 1\ ;r;: 1\ . .. 1\ dZ'ln-l'

By the latter expansion, we come to investigation of the integral

I'j = Jzjwo(z).
h'(r)

(20)

The change of variables transforming function 4>(z', x) to normal form reduces
the equation of the manifold Er U T to the form Zo = g(z', ..\), where g(z',..\) is a
versal deformation for the normal form of the corresponding singularity type, and ­
..\ = ..\(x) are new parameters of integral (20). Similar to Section 2 above, we can
represent integral (20) in the form

I'j(>') = Jzj 1nzowo(z),

6(>')

(21)

in a small sector up to the factor IJ(21ri) (see the end of Section 2.) Now the
integration is carried over the cyde

which determines a homology dass in a non-criticallevel set of the function g(z', ..\).
All further investigation of integral (21) is quite similar to that for constant

coefficients, as described in section 3 but one has to take into account different
dimension of the dass ß (..\).

5 Examples

1. Consider the Cauchy problem

(22)

with a holomorphic function f(x). The initial manifold X is given by
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where a f:. b. The integral representations of the solution and its derivatives have
the form

811, I ~)
8xt (x ,x

811, (t 2)
8x~ x ,x

The characteristic set char H has three strata.
The stratum

is tangent to the initial manifold, so that we do not consider it.
Let us examine the stratunl

A 2 = {PI + i P2 = 0 \ PI = P2 = O}.

The tangency condition for the manifolds A21Ez and XI Ez at some point (y,p) is

where the last equality expresses the proportionality of differentials. Resolving this
system, one can find the singularity manifold

Later on, one can choose new variables z = (zo, Zl, Z2) such that the manifold XI Ez
has the equation Zo = 0 and the manifold A~IEz has the equation Zo = (Zt}2 + (Z~)2 +
;\(x) (in the case of square root type ramification). Such symmetrie change does
exist and does not lead to any essential modification in the investigation. Actually,
the substitution Zo = y~ - iyl_ x 2+ ix l leads to the equation Zo = 0 for the manifold
XIEz and, moreover, we obtain
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where .\(x) = x~ - ix I. Since the second differential of the function on the right in
the latter equation is non-degenerated, the considered singularity is of Al (square
root) type at point .\(x) = Jb'J - a2 and the following expansions take place

00

= L a;l)(x~ - ix l )(2j +l)/2,

j=O

8u
8x~

00- L a)2)(x2 - iXI)(~j+I)!2.

j=O

Therefore, tbe solution of the Cauchy problem (22) in the neighborhood of tbe point

can be expanded into the series

Singularities originated by the stratum

can be investigated in the similar way, and one obtains the asymptotics near this
singularity in tbe form

00

u(x) ~ L Cj(x2+ ix l )(2j +I)!2.

j=l

2. Let us examine the problem

(23)

where a function f(x) is bolomorphic and the initial manifold is defined by the
equation
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The corresponding integral representations for the solution and its derivatives are

au (I 2)ax l X ,x = i- JRes PI f(y) dyl /\ dy'l /\ (PI d]>'l - ]J'ldpI)
27l' ((PI)'l - (P:l)'l)(PI (yl - Xl) + ]J'l(y'l - x'l)) ,

h(r)

_ i.. JRes P2f(y) dyl /\ dy:l /\ (PI d]J'l - P'ldpI)
21r ((PI)'l- (P'J)'l)(PI(yl - Xl) +P'J(y:l - x:l))·

h(r)

The characteristic set char H has three strata Al, A2 and A3
•

The stratum
Al = {PI =P:l = O},

similar to the previous example, is tangent to the initial manifold X.
Let us consider the stratum

A2 = {PI - ]J'l = 0 \ PI = P'J = O}.

The tangency condition for manifolds A2IE% and XIE% at some point (y,p) is given
by the system

{

(y2 _ x 2 ) + (yl _ Xl) = 0,
(yl)2 + (y2)2 = 1,
y2 _ yl = 0,

where the the latter equality expreses the condition of proportionality of differentials.
The equation of singular manifold can be found in the form

Similar to the previous section, we can choose a variable change such that the
equation of manifold X1E.s becomes Zo = 0, and the equation of A2IE.s -

(for ramification of square root type). Actually, if Zo = y2 + yl - x2 - xl, then the
equation of XIE.s becomes Zo = 0, and the equation of A21Ez is
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where A(X) = x 1 + Xl. Since second differential is not degenerated for the function
on the right in the latter equation, there is ramification of square root type at point
A1 (x) = 2. The derivatives of the solut ion u (x) of the problem (23) are

00

= L a~1)(x1 + ix l )(1i +l)/1,

i=O

00

= L a~1)(x1 + ix l )(2i +l)/1.

j=O

Hence, the solution u (x) can be expanded near the point A1 (x) = 2 in aseries

Singularities qriginated by the stratum

A
3 = {PI + P2 = 0 \ PI = P2 = O}

are examined similarly, and the expansion in a neighborhood of the corresponding
singular point are

00

u(x) ~ L Cj(x1 - ix l )(2j +l)/2.

j=l
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