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Nowadays much attention is paid to the exactly solvable models of statistical
mechanics. The integrable N-state chiral Potts model is the first solvable model
where the Boltzmann weights lie on a complex curve of genus greater than one.
It contains the natural generalization of Ising model and many of the remarkable
properties known for the Ising model (N=2) can be extended to the cases N~3

(see refs. [1, 5, 8, 15] and references therein) . This model gives the solution
of Yang-Baxter equation ( or the star-triangle equation) which has a very simple
product form for the Boltzmann weights

W pq (n) = :iI dphq - apr.qw} ,

Wpq(O) j=l bpdq - r.paqw1

W;;;(n) = :iI wapdq - dpaqwi ,

nTpq(O) j=l r-phq - hpr;qW'

depending on the two "rapidities" p,q and a parameter k', where

~:lti •

W = e T , j: integer moa. N.

The "rapidity" variables p,q are represented by the ratio of 4-vectors [a,b,c,d]
satisfying

ku N + k'r;N = dN ,

kbN + k'dN = r;N ,

with
k~ + k'~ = 1 .

These equations descrlbe a complex curve of genus N:>'-2N~+1 as the intersection
of two "Fermat surfaces" in P\ or as the fiber product of two Fermat curves over
the rational curve. It has a group of automorphisms of order 4N:>' and the quotient
of some N~ automorphisms gives a genus (N-l) hyperelliptic curve which is
represented by
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( The integer N shall always be assumed to be ~ 3 unless otherwise spedfied.)
The transfer matrix T(u) of the classical statistical mechanical model now depends
on the variables lying on Riemann surface WN,k" and it satisfies the commutating
relation for different u, u'. However this is not sufficient to salve the eigenvalue
problem of the quantum chiral Potts spin chain associated to T(u). One needs
a functional equation for the transfer matrix T(u) which was obtained by [1,
2, 11, 13]. For the superintegrable case, when the "vertical rapidity" p has a
special value, some simplifications occur and the eigenvalue problem for T(u) are
solved in [1, 2, 9]. For the general case, one can explicitly salve the functional
equation for the largest eigenvalue in the large-Iattice limit [10, 11], and compute
the spectrum of low-lying excitations to discuss the phenomena of level crossing
transition to a new ground state [15] from the physical consideration. Here no
uniformizing substitutions are used to obtain all those results. It is the belief that
these results should be Abelian integrals over the Riemann surface. One difficulty
is that it lacks the "different property" as in the eight-vertex model solved by
Baxter, where the uniformizing parametrization leads to the elliptic functions.
However in [6, 7], the significance of the Abelian functions was indicated in the
computation of single-spin expectation values of the general chiral Potts N-state
model. Hence the theory of prime form of hyperelliptic curves [17] is expected
to immerse into the computation of thc interesting physical quantities.

This note deals with two mathematical problems arisen from thc above rational
family WN,k' of hyperelliptic curves. In this paper, we shall call 111N,I/ a chiral
Potts N-state curve , or simply a CP N-curve. The first problem is to give a
geometrical characterization of this family of CP N-curves among the hyperelliptic
curves and compare them with the case of ellliptic curves. The other is to describe
the relationship between the symmetries of a CP N-curve and its Jacobian, in
particular how the general prime form of Riemann surfaces can be applied to the
expression of k' in terms of the period of l-VN •k , which was obtained by Baxter
in [6].

First we note that HTN.k' for N=2 is the algebraic form of an elliptic curve
with a spin 1/2 structure. As an 1--dimension complex torus, the fixed part of
the canonical involution (J of an elliptic curve E consists of 4 elements. It is
in one-one correspondence with the branched Iod S under the natural projection
from E to pl (=E/<8» . Tbe order 2 translation of E corresponding to the spin
1/2 structure induces an automorphism of pl, and its orbits in S form a partition
of it with each member having 2 elements. Such partition of S naturally leads
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to the algebraic expression of W N,k
'

for N=2, also in the same process to the
general N:i!:3. The original Boltzmann weights a,b,c,d are closely connected to
the elements in S. Thc derivation and their relationship will be given in Sections
2 and 4. In section 1, we discuss the parametrization of these partitions of S
for a subset S of pl with 4 elements. The formulation is guided by the intent

of finding the geometrical meaning ef the relations between different variables
appeared in the physical literatures [1, 6, 10]. In Section 3, we shall derive the
original "product Fermat" curve of the variable [a,b,c,d] from the curve lt17N,'"

and the other two related ones, HTN,if ,WN,k' In Sectien 5, we shall discuss the

unifonnizing parametrization of a chiral Potts N-state curve. The special form
of the period obtained by Baxter [6] is discussed from the geometrical point of
view, that is how does it refleet the symmetries of the Riemann surface. We apply
the theory of prime form to obtain the explicit expression of the parameter k' in
terms of the hyperelliptic theta functions.

I am mueh indebted to Prof. B. M. McCoy for the invaluable help for learning
the integrable chiral Potts model. Through my collaboration with hirn, we found
the mathematical strueture involved in this subject revealed a surprising similarity

from the physical and mathematical consideration. This strongly indicates the
promising role of complex geometry on exactly solvable models. It is in this
belief that this note began with. I also wish to thank Prof. R. J. Baxter for
his beautiful preprint [6], in which the relation between Boltzmann weights and
hyperelliptic theta functions are found via the classical work of Sonya Kowalevski
(14]. One of the purpese of this paper is to understand the qualitative feature cf the
identities cf different quantities in [6] from the symmetries of "rapidity" curves.
I am most grateful to Prof. F. Hirzebruch for his kind invitation and hospitality
of Max-Planck-Institut fur Mathematik where this work was completed.

1. Paramf'.trization 0/ 4 point", in pl

Let E be al-torus ( = I-dimension complex torus ), T be the subgroup cf
Aut(E) consisting of all translations ef E, Le. the automorphisrns t.a:E ---+ E , x
........ x+a , Xf. E. T is isomorphie to E. Denote T(2)= the 2-torsion subgroup of T.

Let B: E -> E be an involution with 4 fixed points.

LEMMA 1 T(2) = { t f. T I t (} = B t }.
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Proof. Write E = C !L , and 0: [z] --+ [-z + C ] for some lattice L, and efC .
Theo the conclusion follows easily from the definition of T. q.e.d.

Denote H = (T(2) x <f}>)/<B>. Identifying E/<B> with pl, H can be
considered as a subgroup of Aut(pl) through its action on Fl<B>. The branched
locus S of the double cover

\Ii (= \lin) : E--+ E/<6>=pl . (1 )

forms a H-orbit with 4 elements. As any two such involutions Bof Eare conjugate
by a translation, the subset S of pl is uniquely determined up to the action of
Aut(pl). It is well-known that every I-torus can be obtained as a double cover of
pl with 4 branched points, hence we have the one-one correspondence between
the following sets:

{isomorphic:drl'ssof 1 -toT1JS} +-+ {SIS c pl,ISI =4}/A7J,t(P'). (2)

DEFINITION For a subset S of pl consisting of 4 elements, a partition of
S with 2 elements in each of its member is called a (2,2)-partition of S.

We are going to characterize the data of 5 with a (2,2)-partition . First we
notice that the above group H is determined by the set S via (i) of the following
lemma.

LEMMA 2

(i) For each subset S of pl with [51=4, there exists an unique subgroup H of
Aut(pl) such that H ~(l/2Z)2 and S= a H-orbit.

(H) Let H be a subgroup of Aut(pl) with H ~(Z/2Z? . Then (p')h , h f.

H-{id.}, are mutually disjoint.

Proof: (i) Let H be a subgroup of Aut(pl) satisfying the condition. The
<h>-orbits in S forms a (2,2)-partition of 5 for a given non-trivial element h of
H. Then h is uniquely determined by its values on S. Since S has exact three
(2,2)-partitions , H is unique. It remains to show that for any (2,2)-partition of
S, there always exists an automorphism h of pl such that the <h>-orbits in S
form the given (2,2)-partition. By conjugating sorne element in Aut(P'), we may
assume 5={O,oo,1,0'} and tbe partition = {O,oo} JJ{I, Q}. Then h is defined by
z --+ atz, Z f C.

(H) If H has a common fixed point x in P' , the homomorphism which assigns
each element of H to its differential at x is an injective map. Since the linear
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transformation group of the tangent at x is isomorphie to C·, H is eyelic. This
contradicts the assumption of the structure of H. q.e.d.

PROPOSITION 1 { isomorphie class of (E,t)1 E: i-torus, tt: T(2)-{id.}} is
in one-one correspondence with each of the following sets:

(i) {eS with a (2,2)-partition) I S c pl, ISI=4 }/Aut(Pl) .
(H) { 1T:pl ....... pl, a degree 2 morphism with critical value not equal 10 0, 00

}/ I'V , here 1T"1""1T"2 iff for same f, f' F. Aut(pl) , f({O,oo})= {O,oo},

f'pl _ 4 pl

11r1
() l1r2

pl --[--4~ pl

(iü) { (p , p) Ip F.P1
- { oo} , p : a degree 2 endomorphism of P 1 with critieal

value not equal to p, 00 }/ ~, here Pl~P2 iff for some f,g f. Aut(p') with g( p
) = p, g(oo) = 00,

pl f pl

1Pl () 1P2

P1 _--->g__-+. p 1

Proof. For S C pl with ISI=4, let E be the corresponding i-torus of (2).
The group H in Lemma 2 (i) corresponding to the set S can be identified with
(T(2) x <a»/<a>. For t in T(2)-{id.}, let h be the coset of t in H. Then the
<h>-orbits in S forms a (2,2)-partition of S. In this way we define a map from {
isomorphism dass of (E, t)1 tf. T(2)- {id.} } to (i), ~hich is bijective by Lemma 2.

For the above automorphism h of pl, the degree 2 morphism 1T" :pl ~p' I<h>
=pl has the critical points disjoint with S. By a suitable coordinate of P' , we may
assume that S= 1T"-1 ({O,oo}). In this way, we have the one-one eorrespondence
between (i) and (H).

Thc projeetion

P : p 1/<h> -+pl /H ,

can be considered as a degree 2 endomorphism of P'. The H-orbit S corresponds
to a point of pl/H = Pl, which equals to 00 by a suitable coordinate of pi IH.
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The fixed point set of h corresponds to another H-orbit p. Then p is not equal to
00 and the critical values of p can not be p or 00 • This gives the correspondence
between (ii) and (ni). q.e.d.

Then by (2), the following correspondence can easily be obtained.
PROPOSITION 2 { isomorphie dass of 1-torus } is in one-one correspon

dence with each of the following sets:
(i) { S I S Cpl, IS\ = 4 }/ Aut(pl) .
(ii) fn-:pl ---+ pl degree 2 morphism with critical value not equal to 0, 00 }

/ ~, here 7rl~ 7r2 iff for some r in Aut(pl) , r sends 7r;' {O,oo } to 7r;' {O,oo } .
(Hi) { (p, p ) IP F.pl_ {oo}, p: a degree 2 morphism of P' onto itself with

critical value not equal to p, oo}/ ~, here (Pl, p,) :: (P2, P2 ) iff there exists
some g in Aut(p') such that g((0) = 00, and g( { p" critical values 0 f p1 }) =
{ P2, critical values of P2 }.

We are going to parametrize of the data in Proposition 1 and 2. The following
easy lemma is useful for our derivation, and its proof is omitted.

LEMMA 3 For 4 distinct elements x,y,z,w in p' , there exists an automor
phism g of pl with g(x)= 0, g(y)= 00, g(z)= 0', g(w)= 0'-1 for same a in C-{O,
± 1}. And 0' is unique up to sign.

Define

here a is a constant in C-{O,±1},

1 1 (+ (-1
PO:P---+P, ( ........ 2 .

A= C-{O, ±1}/ =, here ()' =ß iff D'~ = ß±~ .

PROPOSITION 3 A is in one-one correspondence with the data in Proposi
tion 1. In fact, for an element [()'] of A determined by a complex number 1'1', the
elements of (i), (H), (iii) in Proposition 1 corresponding to [0'] are as folIows:

(i) the dass of {O, 00, a,O'-l } with the partition {O, 00 } U{a,a-1 }.

(ii) the dass of 7r cy.

(iii) the dass of (po, ~~~~) .
Proof :By Lemma 3, every element in (i) of Proposition 1 is represented by

{O,oo, a, a-1 } with the partition {O,oo} U {O', a-1 } for aF. C-{O, ±1}. This
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corresponds to an element of (ii) in Proposition 1, which is represented by some
1T:P1

-t P1 . Choose the coordinate ,\ of C (cP1) such that 7r -
1(00)= {O, oo},

7r-
1(0)= { (Y, 0-

1} . Then 7r is equivalent to 7r()'. Since the critical values of 7rrt are
~+~, ~:!:~, the element in Proposition 1 (iii) is represented by (p, p) with p-1 «(X»
= {O,oo}, p-1 (P)= { ~ +~, ~ :!:~}. So p is equivalent to (Po, ~ :!:~~ ). It remains to

show that if (Po, ~:!:~~) is equivalent to (po, ~~~~), then [a] = [ß], Le. ß2= (}'±2.

Let f, g be the elements of Aut(p1) with fpo= po g, and g(oo) = 00, gC'i:~~)=

~~~. Then f{O,oo} = {ü,oo} and f({l,-l})= {1,-1}, hence fis defined by f «(
)= ±(±1. Therefore g is defined by g«()= ±(, which implies ß2= (}'±2. q.e.d.

LEMMA 4. For a subset S of p 1 with 4 elements, let H be the subgroup of
Aut(p1) associated to S in Lemma 2, and <1>: p1 -+ p1 /H be the natural projeetion.
Then the following data are in one-one eorrespondenee:

{(2,2) - part.it.ion of S} +-+ H - {iei,} +-+ {c:rit.ic:al vahlP- of <T>}

~ ........... h........... c:

with the relation ~ = the <h>-orbits decomposition of S, (pl )h= <1>-1 (e).

Proof. For a eritical value e of <1>, <1> -1 (e) is the fixed point set cf a non-trival
element of H, and vice versa. Then the conclusion follows immediately from
Lemma 2. q.e.d.

With the same convenHon as in [1, 6, 10], we shall always denote k the
solution of the equation

for a given k' f. C- {O, ± 1}, and .,\ ( or .,\ j) the coordinate of the domain of 7r() •

PROPOSITION 4

(i) For [k'] f. A, the elements of A having the same image as [k'] in Proposition

2 are: [k'], [k], [if].
(ii) For S = {O,oo, k', k,-l }, the elements in (i) of Proposition 1 corresponding

to the above three elements of Aare as folIows:

[k'] S with the partition {O, oo} 11 {k', k'-l },

[!f] S with the partition {O, k,-l } 11 {(x), k'}.

[k] ........... S with the partition {O, k'} II {(x), k,-l }.
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(iii) Let (, (1, (2 be the coordinates of the domains of po in (iii) of Propos iti on
3 such that :

[k'] (po, ~!t: ) with the coordinate ( ,

[if] (Po, 1-2k,2 ) with the coordinate (1,

[k] (Po, ~~i; )with the coordinate (2.
Then (, (1 .(2 are related by

(1 +(1 +2 =k2 «(+ (-1 +2) ,
1.'2 -1(2+ (2 -2 = -pr«( + ( -2).

Proof. In this proof, we shall always denote k' an element in C-{O, ± 1},
S = {O,oo, k', k'-l} , H = the order 4 subgroup of Aut(P1

) associated to S in
(i) of Lemma 2, (, (1, (2 = the three coordinates for pI in the above (iii) of
this Proposition. Let h, hlJ h2 be the non~trivial elements of H such that the
correspondence in Lemma 4 are as folIows:

h...,..,... {O,oo} II {k',k'-l},
h1 {O, k'-l} Il {oo, k'},

h2 {O,k'} Il {oo,k'-l}.
Identify the projection p1 -Jo P1/<h> with 'lrl:/ , P1/<h> -JoP' IH with po,
and <P: p' -+ p 1/H with PO'lrk

'
• Theo {critical values of ~}={±l,j:ttl~}' and

h, h 1 , h'2 are defined by

h( \) = \ -, 1-1.:'), (\) 1.:'-),/\ /\ ,h, (A) ="""fCJ: ' ~ /\ = f=k7X .

The correspondence between the critical values of <l» and the elements of H-{ id. }
in Lemma 4 is described as folIows:

Let [0'] be an element of A having the same image as [k'] in Proposition 2 , and
1:1'2 '2

assurne [O'J.l=[k']. Then (po, ~) and (po, ~!~j) are equivalent under the relation

Z in (iii) of Proposition 2, Le. for some g in Aut(Pl), g(oo) = (00), g({ l~~~,
'2 kn

± 1 })= {~ !~2 , ±1 }. By (iii) cf Proposition 1, we may assume g(~ !in)= ±1.

Then the g is uniquely detennined by the value of 1. When (g(~!i:), g(l))= (1,

~!~~) or (-1, ~!~~), g(-1)= -1 er 1 respectively. It foUows g( Tl )=±(k:21]-k:'2)
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, which implies a 2= =t:- or ~ ' hence [a]= [if]. In this eases, the (2,2)

partition of S is given by the <h1>-orbits. When a 2= =t:- ,we have

k2C:+§-1 )_k'2= (1+2(,-1 ,hence (1+(11 +2 =k2«(+ (-1+2).

When (gC:!:~:), g(l))= (1, -1) or (-1, 1) , the (2,2)-partition of S is given by
the <h2>-orbits and g( 7] )= ±(k27]-1)/k'2. This implies a 2= k-2 or ],-;2, henee

[a]= [k]. When a 2= k 2, we have ~[_k2«(+§-1)+1] = (~+2~-1 , henee (2+ (21

-2 = - ~«( + (-1_2) . This completes the proof of this proposition. q.e.d.

REMARK

(i) By Proposition 1 (H), there is an automorphism f of p1 which sends {O,

k,-l } 11 {oo, k/} to {O, oo} 11 {-ifr ,i t }. In fact, f' is defined by

f'()..) = ik)"
1 - k'A

And the f sending {O, k'} II {oo, kl-1} to {O, oo} II {k, k-1
} is defined by

I'(A) = :X~k' .

(H) By introducing the variables 11., <P,4>

_r _ f.2iu _r _ e2i4> r _ f. 2i"'J
~ -. , ~ 1 -. ,~~ -. ,

the relations of (Hi) in the above proposition are equivalent to

sin 4> = ±ksin 1l, k' sin 4>= ±ikc.os u,
which are the relations of the parameters for Hp-variables" in [1, 5, 6, 10]. The

variables eiu , e. itP , f/j, ( as Im(1l), Im(if'), Im(4») -+ 00) can be considered as the
loeal coordinates of the 2-torsion points of the elliptic curve corresponding to
[k] in Proposition 2.

2. Chiral Pott,q N - ,qtate C1trve.';

The algebraic curve where the "rapidity" variables of chiral Potts N-state
model ( N~ 3 ) He is defined as follows:

DEFINITION. The chiral Potts N-state curve ( N~ 3 ) is a genus (N-1)
hyperelliptic curve W with an order N automorphism having exactly 4 fixed
points. And we shall call W a CP N-curve.
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pl = W/<9,n>.

(3)
= W/<ß>pl

The order N automorphism of W in the above definition shall always be
denoted by f} (=f}w), and the hyperelliptie involution be denoted by a (=a w). By
the uniqueness of the hyperelliptic involution, (J commutes with a. First we note
that the following properties hold for CP N-curves.

(I) <f)> acts freely on W - Wo, and W/<f}> ~pl.

Let go be the genus of W/<(J>. By the Hurwitz theorem for the projection
from W to W/<(J>, 4 - 2N = N( 2- 2go ) - 4(N-l) ---k J here * = the surn of
ramification contribution of x f. W - W 8

• Hence 0 = 2Ngo +* J and go = * =
O. Then the conclusion follows immediately.

(II) WO is disjoint with W".

By the commutativity of fJ and a J WBis stable under a. Hence jTiVBn{111T1
= 2 or 4 when it is non-zero. AB <(J> acts freely on W" - WB J the order of
W" - W 8J (= 2N-2 or 2N-4 )J is divisible by N. By N ~ 3, this is only possible

for N = 4 , and IW8n"'"1 = IWBj = 4. By Hurwitz's Theorem J the sum of
all the ramification contribution of elements in W for the projection W ---7 W/<(J,
a> (=pl) equal to 20, whieh is greater than the contribution from the 4 elements
in Wo. This gives a contradietion because the ramification contribution of each

element in W 8 is 7. Therefore W 8 nW"= 0.
Now we are going to deseribe the algebraic fann of CP N-eurves. Let

\D, t/J, n, 7r be the morphisms defined by the following commutative diagram:

w

Let S be the branehed locus of l1i J and h be the automorphism of P1 (= W/<8>)
induced by a. By the above (II), the orbits of the automorphism of W/<8>
induced by a form a (2,2)-partition of S. By Proposition 3, for some coordinate .\
of pl and some k' f. C-{O, ±1}, S = {O, oo} Il {k', k'-

1
}, and 7r= 7rk' . Choose

the coordinate t of pl (= W/<a> ) suc.h that 'ljJ is defined by t """'+ t,N. Then \V

is isomorphie to

t N -, - (4)
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In terms of the coordinate (t, .\), 8 and (1 are defined by

8: (t, A) ...... (wt, A)

(1: (t,A) ...... (t,A-') , here w=e2Ti/ N .

Since the branched locus of n is equal to

{ h I hN = t;1; or ~!i: } . (6)

WN,.c
'

is also birationally equivalent to the curve in C:l defined by the equation:

w 2 = (t N
- ~ +1:)(t N

- ~ !Z;) , (t, 1J))e: C2
• (7)

The above coordinates A, ware related by

For the rest of this note, (t, A) and (t, w) shall always denote the above coordinates
for the curve HfN,.c' • In terms of the coordinate (t,w), (J and (1 are defined by

(J : (t, w) (wt, w) ,
(1 : (t,w) (t,-w).

Let I, ( = I,wN'I<') be the order 2 automorphism of HfN,I<' defined by

which is the same as

( ~ 1 - k',\)
I, : (t,A)...... 1 ---

t k' - A

by the equality

1 A - .\-1 k2 ,1 1 - k' A
2( t N - k't N + k + k' ) = k:' - A

11
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Then B I, = I, B-
1

, and < B, I, >~ the subgroup DN of Aut(pl) with the Klein
group DN as its double cover. Now we can described a11 the symmetries of a
CP N·curve.

PROPOSITION 5 For a CP N·curve W, Aut(W) = <a, B, I, > ~Cl/2Z) x
D N , and <B> is the unique order N cyclic subgroup of Aut(W) generated by an
automorphism with non-empty fixed point set.

Proof. Since a commutes with any automorphism of W, the group
Aut(W)/<a> acts on pl (= W/<a> ) and preserves the branched locus (6), It
is not hard to see < B, I, > ~ Aut(W) /<a> ~ DN , hence Aut(W) ~Cl/2Z) x r>;;,
For an order N automorphism 1J of W with non-empty fixed part vV~, write cf; =
(1m I,nBi , for some integers Osrn,n:s;l, Osj:s:(N-l). We need to show m=n=O, Since
I, • Bi is of order 2, n has to be O. If 4>= a . Bi, j is greater than O. The image of
the fixed point set of 4> under the projection n in (3) is contained in the fixed part
of the automorphism of W/<n> induced by Bi. Hence W~ is contained in H18,

then also in W,.,.. But the fixed parts of Band (1 are disjoint. This contradicts
the assumption of the non-emptyness of the fixed point set of rjJ. Therefore j =0,
and <4»= <B>. q.e.d.

COROLLARY. The morphism W: W ~ pl is the unique (up to isomorphism
) order N cyclic covering of W over pl with exactly 4 distinct critical values,

Proof. Let rjJ be an order N automorphism of W such that the projection W
~ W/<q.,> = pl has exactly 4 critical values. By Hurwitz's Theorem, ]H1iftj=
4. Hence <4»= <8> by the above Proposition, and the conclusion follows
immediately. q.e.d.

COROLlARY The curves W N,n and W N,t! are isomorphie as Riemann
surfaces if and only if [0'] = [ß] in A.

Proof. Let 4> be the biregular isomorphism frorn WN,n to Vl'N,t!' Then

4>-1 aWN,,'q.,= aWN,n ( by the uniqueness of hyperelliptie involution),

4>-
l IJWN,J'·q., = BWN,n ( by the above Corollary).

Hence the diagrams (3) for the curves WN,n and W N,,., are equivalent through
the morphisrns induced by 4>. This is equivalent to [(}'] = [ß] in A because the
(2,2)-partitions of the branched locus of l1i for W N,n and W N,t! are equivalent in
the relation of Proposition 1 (i). q.e.d.
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3. Three related r..hiral Potts N - r..urves

We continue to study the CP N-curves. By the Corollary of Proposition 5, the
CP N-curves are parametrized by A . For a given k'f.C-{O,±l}, the elements

[k'], [~], [k] of Aare related in the sense that they determine the same l-torus

in Proposition 2 by the result of Proposition 4. For a given k'f.C-{O,±l}, we
are going to study the relation between the three CP N-curves MrN,k"WN,~,l'VN,L:.

The curve WN,k' is defined by the coordinate (t, ..\) of (4). By (ii) of Proposition
3, we have

W ~~ Wr :
N'T

t N -'r - (9)

and the automorphisms rr, I. for Wr are defined by

I,wr : (tr,..\) ........

Similarly, VJTN,Ir~ Wl :

(10)

t N " -
k'_A- 1

~
(11 )

with the automorphisms

(12)

In this section, we shall write W=WN,k" Tbe morphisms W, Wr,Wl from W,
Wr,Wl to pl in (3) are now defined by W(t,..\)= ..\, wr(tr ,..\)= ..\, Wf.(tf.,A)= A.
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Denote the fiber product H' Xpl W r of W and wr by W r :

Wr

w
/

ö

p1

(13)

and W r is defined by

(l-k'>') (1_1:'>.-1)
t N = Ij-

{
t N 1-1:' >. f ( \) C :>.r - 1_ FOX 1 ,or t, tr ,/\ c: .

The automorphisms fl w ,flwr of W, Wr induce the automorphisms 8, er of W r

which are described by

El: (t,t r ,'\) ........ (wt,tr ,'\)

El r : (t, tr ,'\) ........ (t,wt r ,'\)

Then the group < El, El r > isomorphie to (lfNZ?, and acts freely on W r outside
the 4 critical points of the projection from W r to the A-plane, which has the
branched locus {O, 00, k' 1 k'-l }. Consider the quotients:

Then V1,V2 are N-sheet cover ofthe 'x-plane p1 branched at {k' ,O} and {p ,(X)}
respectively with the following coordinates:

(
-ttr ) N _ (1_1:'>.-1 1:.

~ - );2

_ (1_1:'>.)2
~ (ttr)N _ k2 (ttn .\) c: C2

Consider the degree 2 cover of the <t )-plane ,

pI --+ P1 , X .".. ( ~ ) = x2

Tbe fiber product of x-plane with V; aver the <t)-plane is reducible with two
rational curves as its irreducible components. They are described by

14



Let X be the component
N l-k'A-l

X -,- k , (x , ,x) C C2
• (14)

X is a N-fold cover of the ,x-plane pl branched at {k' ,O}. With the same
discussion for V2 , we have a N·fold cover Y of the ,x-plane pI branched at
{f; , oo} which is defined by

yN = ~ , (y,,x) C C2 (1.5)
There are the morphisms from the fiber product of X and Y over the ,x-plane
into W, Wr with the following commutative diagram:

X X p l Y

/ ,
W Ö Wr (16)

llt" / Wr

pl

which are described by:

(.T,y,,x)
/ '\.

(xy, ,x) = (t,,x) ( t r , ,x) = (~,,x)

" /
,x

Similarly by replacing the above liTr by "Tl, we have thc rational curves X', Y'
with the degree N morphisms over the ,x-plane:

X' -+ pl, x' ........... ,x, with X'N = ~, (X12 = t),
y' -+ pl y' ........... ,x wit.h IN A-

1
-k', , Y =~,

and also the diagram:

X' X p l y'

/
W

pl

15
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defined by

/
(~,A) = (t"A)

(x', y', A)

/
(t, A) = (X'y', A)

The coordinates of X , X' and Y, Y' are related by :

It follows that under the base change

(19)

we have

In fact, these are the Fennat curves in p::i! :

~ X X pl kaN+ k' ro:.
N = dN 1~ = p1 IJ' I.

m y pl khN+ k'dN = ro:.
N

,'tJ = Xp1 IJ' I.

here [a,c,d], [b,c,d] are the homogenous coordinates of p::i!, which are related with
x, y, x' ,y' ,J1. by

(~ , ~) ( )
I 1-1

= Y,J.l, x=xJ1., y=YJ1.· (20)

Consider the fiber product of X and ~ over the J1.-plane

2D=Xxp~~ (= (XX p l Y)Xp1P~)

Then 2D is is a curve of genus N:o. - 2N'2 + 1, defined by

ka N+ k' r: N = d N
2D: {khN+kldN=c N for (a,h,c,d]c;p3 , (21)

16



which is also equal to

aN + k'hN = kdN
{ k'o.N + hN = kcN for [a,h,r.,d]c:P:l . (22)

Then the curves W, Wr , Wl, X, X', Y, Y' are the quotients of W by various
order N'J subgroups of Aut(W) which are described as follows :

x= W/< [Il,h,r.,dJ [1l,wh,r.,dJ >[Il,h,r.,d] [a,b,wr.,d]

X ' = 2D/ <
[Il,h,r.,d] [Il,wh,r.,d]

>[Il,h,r.,d] - [wl1,h,wr.,d] ,

y= 2D/ < [11,h,r.,d] [wll,h,r.,dJ >[a,h,r.,d] [a,h,r.,wd]

y'= IDJ/< [a,h,r.,d] [wa,b,r.,d] >[a,h,r.,dJ [Il,wh,r.,wd]

Define

J: IDJ--.2D ,[a.,h,c,d) ........ [h, a, d, r.],

Jr: IDJ--.2D , [0., h, c, d] ........ [wL::, d, a,wth],

J,: 211--.211 ,[a,h,c,d] ........ [wtd,wc, h,wt a],

9t: IDJ --+ 2D ,[a, h, c, d]........ [wa, b, wc, d],

S: 2D --+ 2D ,[a, b, c, d]........ [wa,wh, c, d),

~: 2D--.2D ,[a,b,c,d] ........ [a,wh,wc,rl],
Then it is easy to see

t.hp. orclp.r of 91, S, ~ = N,
t.hp. orclp.r of J, J" Jr = 2,

(23)

and
9tJ = J91-1, SJ = J6, 'IJ = J'I- 1,

9tJr = Jr~) 6Jr = Jr6-1
, 'IJr = Jr 'I-1

,

91J, = J ,91- 1, SJ, = JIS-1 , ~J, = J,~,

91J,J = JJI, 6JrJ, = JIJr, 'IJrJ = JJr.

17

(24)



Hence <9', 6, 'I, -3, -3r, -3l> is a group of automorphisms of 2D, and is also equal
to <J, Jr, .3'l>. It can be shown that the quotients of 2D by various normal
subgroups of <-3,-3r,-3l> also give the curves X X p l Y, X' Xpl Y', W, H'r, liVI.:

X X p l Y = 2D/<'I>,

X' X p 1 Y' = 2D/ < 9'>,

W = fJ.D/ < fR, 'I >,

VI' rm/ < 6, 'I >, (2.5)r

liVl = 2D/ < 9', es > .

By Hurwitz's Theorem, 2D is the N'l-fold unramified cover of W, nT
r , T;V,.

This implies that with the morphisms in (16) ( or (18)), X X p l Y, (or X' X p l y'
resp.) is the N-fold unramified cover of W, Wr ( or W, liVl resp. ). (We
have demonstrated here that the curves W, W r , W l can be constructed from the
Fermat curves .x and ~. In fact, that is how the CP N-curves had originally been
derived in the physicalliteratures [1, 12]. The variables a,b,c,d are the Boltzmann
weights of the statistical model.)

The automorphism group <J, Jr, Jl> of 2D induces the groups of automor
phisms af W, VlTr , Wl. In fact, these are the graup of all automorphisms for W,
VlTr , Wl by the following result.

PROPOSITION 6

(i) Under the canonical homomorphism <-3, Jr, Jl> --4 Aut (W) ,

(ii) Under the canonical hamomorphism <J, 3r, Jl> -7 Aut (vlfr ) ,

(iii) Under the canonical homomorphism <J, Jr, 3l> -7 Aut (H',) ,

18



Proof. By (16) (18) (19) (20) (21), t = ~, t r = ';, t, = ~J A = (*)N,
lk-;~;').. = -( ~) N. Then the results follows from the the definition of -3, Jr, -3f. and
(5) (8) (10) (12). q.e.d.

When N is even, WN,I<' / < Blf > is the I-torus, and it is the double cover
of pl branched at {O,oo, k', k'-l}. By Proposition 4, the I-tori determined by
WN,I<"WN,tf,WN,I< are isomorphic. Hence we have the following diagram:

"rN,I< "rN, 1<' WifN,
~ j. /

1 - tonlR

j.
pl

4. N - torsion line bu.ndles 0/ chiral Potts lv- - curves

As before, W = WN,I<', 2D = the fiber product of Fennat curves with the
homogenous coordinate [a,b,c,d] defined in (21), 9\,6, 'I, -3, -Jr= the automar·
phisms of 211 in (23). Let u, u', v, v' be the elements in W whose A-values are
0,00, k', k'-l respectively, and

be the unramified N2-fold cover in (25). By (14) (15) (16) (19) (20) , the
divisors for the sections a,b,cJd in 211 are

div(n.) = p*(v), di1J(b) = p*(v'), div(c) = p*(u'), div(d) = p*(u).

For (m,o)f. (1 /N1)2 , let K( rn,n) : < 'I, 9\ > ---+ C* be the character w ith
K(rn,n)('I) = wm

, K(rn,n)(9\ ) = w n
• Theo

(2IJ x C)/(w x ( I"V wg X K(m,n)(g)()

is a line bundle over W, and its associated Ow-sheaf is denoted by L(m,n).

PROPOSmON 7
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(i) P+ CJm= EB L(m,n)'
(m,n)r(Z/Nl)::I

(ii) L(1,o)= OW[V' - U], Lco,l) = CJW[V - U], L(1,l) = OW[U' - U].
Proof. For an open set U of W, any function f of p-1(U) can be uniquely

written as f = L: f(m,n), where f(m,n) is an eigenfunction of < 'T, 91 > with
(m,n)

eigenvalue L(m,n)' Hence we obtain (i).
With the homogeneous coordinate [a,b,c,d] of 211, the divisors of the rational

functions ald , b/d , eId of 21J equal to p+(v - u), p+(v' - u), p+(u' - u) respec
tively. Since the rational function a/d ( b/d , c/d ) corresponds to a meromorphic
seetion of L(O,l) ( L(1,O)' L(l,l) resp. ) over W, (ii) follows immediately, q.e.d.

By the same argument, we have the similar conclusions for the curves Hfr , Hf,.

PROPOSITION 8 Let

Pr : 211 --+ Wr (= IDJ/ <5,'r»

and
Pi : 21J --+ Hfl (= 21J/ <~,e»

be thc unramified N 2 -fold covers in (25), Let Ur, u~vr, v~ , ( Ul , U" vf., v,), be
the elements of Wr , ( W l resp. ), such that as the divisors of 211,

div(a) = p;(vr ),di1J(b) = p;(u~),di1J(r.) = p;(v~), di1J(d) = p;(u r ) ,

div(a) = Pi.(u~), div(b) = P;,(Vl), div(r.) = Pi. (vi), div(d) = pl(Uf.).

Denote

Lr(m,n) = the OWr -sheaf associated thc character < 6, 'I >--+ C*,
'I ........ w m

, 6 ........ w n
•

L'.f,m.n) = the Ow/-sheaf associated to the character < 9\, S >--+ C*,
fR ........ w m

, 6 ........ w n
•

Then

(i) Pr+Ow = EB Lr(m,n), Pl+Ow = EB L'{m,n)'
(m,n)r(IINI)2 (m,n)r(ZjNZ)2

(ii) Over the curves "fr, Wl , we have

L r(1.0) = CJWr[~ - Ur], Lr(O,l) = CJWr[Vr - Ur), Lr(l,l) = CJWr[U~ - Ur].

Llt,1.0) = OW/ [vI. - Ud, L'{O,l) = CJw/[Vl - Ui], L'{l,l) = OW/ [u~ - Ul]'

5. .Jar-Obia11. variety of a chiral Pott,'; N - curve
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Let r be an element in C-{O, ±1}, w = e21ri / N
, g = N-1 . Assume that

11- r I :s: 1 and denote (l-r )l/N -1 1-r Jl/N eifl
/
N here 0 :s: 19- arg(l-r) < 21T In this1+r' 1+r - ffi ~, - 1+r .

section, we shall denote

w= WN,rJ

\!1 , tf;, n, 11" = the morphisms of (3) for W,

{B , (T , /, } = the generators of Aut(W) in Proposition 5.
W is a genus g CP N-curve defined by the coordinate (t, A) of (4), or (t, w) of
(7). Denote

.Tac(W) = the .Tac.ohian variety of W.

Tbe critical points of n are the elements b j , b ~ , 1 sj s N, of W with

n(b)- W- i (l.±!)l/N and n(b')- w-i (l-r)l/N We also denote 0 - b N 0' - b 'j - , -r j - , +r . - , - N'

Tbe critical points of \V are the elements p, p', q, q' of W with the A-values
0,00, r, r- 1 respectively. Then p and q are on the "same sheet" of the covering
of n. (Here we consider W as the double cover over the t-plane with cuts on the
segments from wj(~+~)l/N to wj(~!;r/N, 1 sj s N. The value of the coordinate
w detenmne the "sheet" of W. ) We are going to describe Jac(W) using the data
of { bj, bjl1 sj s N} , and then { p, p' 1 q, q'}.

It is well-known that the abelian differentials of first kind for W has the
following expression:

LEMMA 5 r(w,f2') = the C -space consisting of

dt
p(t)-, p(t) = a polynomial of degrre ~ (N - 2).

w

Denote <{Jn = tn- 1 ~I; for 1:s: ()' s g. Then {'Pn, 1s a :s: g} fonns a base of
r(W, {11) with

By a path in W we shall always mean an oriented one. It is easy to see the
following lemma holds.

LEMMA 6 For a path , in W, J 'Pn = w nm J 'Pn .
Dm(,) i
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We shall denote

J~=
J /P,

'Y

J /Pgi

"'f

Let A and B be the a-invariant l~ycles on W such that by the morphism
n A lies over the segment from C+;)N to (~)N, and Blies over a path

from wC+~)N to (~i:;)ir with A intersecting B only at 0 having the intersection
number I(A, B ) = 1. Define

Aj = 8- j (A), Bj = O-i(B) for int.eger j.
Cn = I: B j for 1 ~ 0' ~ g.

l;5i:5.'"

Then AHN = Aj J Bi +N = Bj, and L: Aj , L: B j are homologous to zero.
'Sj:5. N '~i:5.N

(Tbe cycles An, B nJ Cn are shown in Fig. 1.)

Thc intersection numbers of the cycles Ao , B o , Cn , 1 S 0' :s g, are given by

I(A,." Ap ) = I(Rn , Rp ) = 0 ,
I(A n , Hp) = 0, exc:ept. I(A n , R,.,) = 1, I(A,." Rn +,) = -1.

Hence

Let

(27)

By Lemma 6,

( JCPr .. , j'cp) = (8np ln ) (w-nß)'sn,psg
Al Ag

( j'CPr", j'cp) = (8,.,1' l~) (w-"'ßJ, ~"',P~g .
R1 Rg
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Hence

( JCP, ..., J cp ) = (hoß l~ ) ( J.~,,)1 ~o,ß~u .
r.1 r.u

here k~ß = L: w-"'o = ie~(w-()ß-l)/2~in 7f.
1$"'$"

Let cP1' ••, <P tJ the base of r (W, n1
) defined by

~ = CJ = (W- o ,)-l (50 ,10 )-1 CJ (28)

then

Here

_ ~ " (w°-y - 1)(w--yß - 1)W--Y/2

roß - 2N· L.-J . 'tri X-y
RIO 7V-y

2i c.os 'lri('N-ß) sin 7l- sin !.fj;w--Y/2
= N L . 'Ir i X...,.,

sm tr-y

. h P!-y
Wlt X-y = "f.-y

( The above w-i /
2 X-y for W=WN, i~ is equal to the ~ in [6] ).

Hence the period of the Jacobian of W is equal to r =t r =( r aß)1 ~o,ß~u and

Ja.c(W) = t.he t.OrtlR Cg/(zg + rZg) .

For a fixed base point * of W, we have the canonical embedding of W into
Jac(W) :

W

w

-------.) .Jac(VV)

w

[J 4> ]
*

(29)

The period of Jac(W) is related to the elements bj, bj by the following proposition.

23



PROPOSITION 8 For l:s;ß~g, let

Tß= the ß-th column of (Tnß),

P-ß= the ß-the element of the standard base of zg.
Denote ~= ~ L: eß •

1SßSI

(i) For an element W of W, let [s], [z] be the images of wunder the maps
(29) for *= 0, 0' respectively. Then [s-~] =[z].

(ii) Under the map (29) for *= 0',

o ~ [~]

bß ~ [~Tß + ~ L: p-~]
nS(.8-1 )

b~ ~ [~T" + ~ L: p. n ] ,JOT 1:::; ß ~ g.
n$..8

Proof. Let 00' be the path from 0 to 0' along the curve A. Then

JrjJ -1
({, ~+-"~ ~)-2

00'

1 JrjJ -1 J rP
1

=2' -2 = -2'
A - L: An

lSnSg

Hence w w

[7.] = [J ifJ] = [J 4>] -(J ifJ] = [8 - !]
0' 0 Oll'

So we obtain (i), hence the first correspondence of (ii) . Let b:_1 bj ) (bj bj) ,
l~j~N, be the path from b:_1 to b j ( b j to b: resp. ) along Bi ( Ai resp. ) . Let

o'bß' o'bp, l:s:ß:s:g, be the curves from 0' to b ß ' bßdefined by

o'bß = L: bj_l b j + L: bjbj
1$.;$..8 lS;$.(.8-1)

o'bp = o'bß + bßbp
Then

-1
TP.j ,
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Hence we obtain (ii). q.e.d.

We are going to express the period of Jac(W) in terms of the data {
p, p', q, q'}. Define

p= CJ = ~

Consider the following paths in W:

oq'(O'q/)= the path from 0(0' n~p.) to q' with t-values in the segment from
( !±!:.)l/N «l-r)l/N resp ) to 0
1-r 1+r . ,

pp' = po - a(po)

p'q' = a(pq)

( The above paths are shown in Fig. 2.) Then

(J;-1 (p'q/) - (J; (p/q') is homologous to -AN_i,

0-;+1 (pp') - 0-; (pp') = -A;-l + Bj
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LEMMA 7 I q; = -f., I q; = p + f., f q; = p , I q; = f..

p'q' pp' pq' pq

Proof. For 0 s j s N-l, we have

(W-flß )-l(h'flßt)-l I 'P = f q; = I q; + I cf; ,
8i (p'q') 8i (p'q') p'q' L: Anl

(N-l )2:nl2:( N -i)

(W- fltl )-1(h'flß1fl)-1 f 'P = f q; = J q; - J q; + I <ft,
8-i (pp') 8- i (PP') pp' Ci L: Anl

(;-l):2::nl :2:: 0

( here Co= L: B nl which is homologous to 0).
N2:nl2:1

By Lemma 6,

o= L: [(W-flß )-l (/ifltl lfl )-l J 'P] =N I q; +
(N-l)2:i:2::ü 8i (p'q') p'q'

0= L: [(W-fltl)-l (h'flß lfl)-1 J 'P]
(N-l)O~ 8-i (PP')

=NJq;- J cf;- J q; ,
pp' l: Ci E mAn>.

J 4>,
L: 1TtA m

(N-l)2:nl :2::1

(N-1)2:;i2:1 (N-l)2:nl2:1

which imply the first two equalities, then the rest follows immediately. q.e.d.

PROPOSITION 9 Under the map (29) for * = 0 ,

[-1 1]
q"'"'t TP+2f.

Proof. We have

] ~ = ~1 ( J~ + Ja'~)
n ~ ,,(po)

-1 J -1 J-2 </>=2 </>
PO-(T(po) pp'

-1 1
= TP - 2~ l (hy Lemma 7).
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Hence we obtain the value of p of the map (29) for * = o. The other values of
this map follows from Lemma 7 and the following identities:

p' p

J<p=J<P+J<P,
o 0

q.e.d.

LEMMA 8 For a path 1 in W,

J </> = (r~ß) J </>
8-1 (-y) "y

here

r nß = 0 except T(.8+ l)ß = 1 (1::; ß ::; g), Tn« = - 1 (1 ::; (Y s;; g).

Praof. By Lemma 6, we have
J </> =(W-nß )-l (hnßt)-l J ep

8-1(-y) 8-'(-Y)

= (w-nß )-' (hn~ln)-l(~nßw-n)Jep
i'

=(W-nß)-l (~nßln)-l(~nßw-n)(hnßt)(w-n~)J</>
"y

=(W-nß)-l (~nßw-n) (w-nß)J r/J,
"y

wmch implies the result. q.e.d.
The period of Jac(W) is expressed by the vector P via the following propo~

sition.

PROPOSITION 10 Define Po = O. Then for (Y, ß =1 ,.., g,

P -n - PN-n
pn +P~ -Pln-,BI

27



Proof. It is easy to see that -I,(A) is homologous to A. Hence the l~ 's in
(27) have the relation:

Iro = IN_ro for 1 :::; 0: :::; g .

By the definition of the paths,

-I,(pq/) is homologous to pq' .
Hence

p= J4>=- J 4>=-J'*(4))
pq' l(pq') pr.'

= _(w-OP ) -1 (8o peo)-1 J,,* ('P)

= (w-op )-l (8opeo)-1 (8"N_o)) J'P

pq'

(30)

pq'

= (W-ro")-'(cSroßP.ro)-l(broßP.ro) (bro(N_ro») (w-roß)p (hy (30))

= (w-roß)-l (bn(N-ro)) (w-roß ) (bro(N-ro)r p = (bn(N-n»)P

which implies Pro = PN-ro'
We have

(J-ß+l (pq') - O-ß(pq') = Bß

pq' - (J-ß(pq') = Cß , for 1 :::; ß :::; g.

Hence

J4>- J 4>
pq' O-ß(pqi)

= P - (rro-'f)ßP , (hy Lemma 7),
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which implies

To~ = Po + PN-ß - Plo-~l = Po + pß - Pln-~I . q.e.d.
REMARK In [6], the pn 's are solved from the expression of T np , and

described by

= .!..- " sln
2
(7) (w-..,/'J. f!~)

Pn 1\j L...t '!1 f)'
lV Sln N ~~..,

Then the identities in the above proposition can be verified through the explicit
expressions of Pn and Tnß . The proof we give here indicates these identities
follows from the symmetries of the CP N-curve W.

By the uniformizing coordinate of Jac(W)

the hyperelliptic theta function of Jac(W) is

B(8) (= 19(.~, r)) = L p-2ritm.'l+x-itmrm ,

metA"

and by Proposition 10 it can also be written as

Then B(.'i) satisfies the quasi-periodicity and evenness relations

B(8+m)=8(.q), formeZg ,

8(8 + T ß) = p--2Ti(.'Iß+Pß)B( 8), für 1 ~ ß ~ g ,

8(-8)=8(8) .

The theta function 19 [:] with rational characteristics fJ, v cf Qg are defined by
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with the quasi-periodicity relation

,9 [~] ( .• + m, T) = F.2~i'fim,9 [~] ('" T),

,9 [~] ( .• + Tm, T) = F.-hi' vm-2~i' m.,-~i'mTm,9 [~] ('" T), for mc zg.

We are going to describe the prime form of the Riemann surface W. Consider
the divisor D= L: b". Then the canonical bundle of W equals to Ow [21)]. By

"J<ß<g
Riemann-Roch flieorem and Lemma 5, 1DI= a single divisor D. By the general
theory of prime forms of Riemann surfaces ( see e.f. Ref. [17]) implies the

existence of a non-singular, odd, theta characteristic 19l~ ], 8, v E, (~Z)g /zg, such
that

Then

,-
=0 <=> { w -w,

w' or W = b ß ,for Rom~ 2 ::; ß ::; g.
(31 )

["8]819 -
(= L a v (0) tPß

'SßSg 8ß

is the unique holomorphic I-form with «()= 2D. So V( is the section of Ow[n]
and the prime form is given by

. ,9 [~] (1 ~)
E(wo, w) = rFT:::\ ~' for wo, WE, W .

Y ((W)y ((wo)
(32)

For a fixed Wo point of W, E(wo, w) defines aglobaI seetion of Ow[wo] of the
Riemann surface W. Therefore

E(p',w)
E(p, w)

,9 [~] U~)

,9 [~] (I~)
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corresponds to a section of Vw[p'-p]. Consider the function of es :

,9 [~] (.q - ~P - ~f.,T)
J(.r;) = []

,9 ~ (,q + !p + ~ f., T )

, w

By Proposition 9, ~ p ,w =f ( s(w) ) , here s(w) = JO r/;. By the quasi-periodicity, p,w
o

property of 19 [~ ], we have

J(8+m)=J(8) ,
J(.c; + Tm) = e27l"i

t

m(p+,) f(.r;), for seCg , meZg .

Since

{
27ri '" ( ) } _ 21l"itmp {27ri '" }exp N L-J 8 ... + L: T ...~mlJ - e e.7:p l-'[ L-J 8... ,

1 ;5;"';5;u 1 :SßSu 1 :S:n:S:u

the function

satisfies the relation

f (+ ) 2x-it m'f ()p"p,q Tm = e p',p .q

for 8eCg
, meZg

, here &= L: P.,B' The restrietion of fp',p on W (via (29) for
lS:~S..

* = 0) can be regarded as a section in T(W, Vw (pI - p)) with the divisor
div(Jp',P )= pI - p. Similarly, the functions oi Cg defined by

19 [~ ] (.q + ~ p - ~ f., T )

Jq,p(.r;) = [6 ] 1 1 '
19 11 (.c; + 2" P + 2" f., T )
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satisfy the relations

fq,p(,q + m) = fq,p(,q) , fq,p(.~ + Tm) = f.2X'i
t

mt: fq,p(-") ,

fq/,p(.~ + m) = f.-2~iFt fq',p(.'t) , fq"p('f?, + Tm) = fq/,p(-") ,

for .'teeg , mezg. The restrietions of f q,p , fq/,p on W are the seetion
in r(W,Ow(q-p)) , r(W,Ow(q'-p)) respeetively, with div(!q,p) =
q - p, div(fq/,p) = q' - p. Note that the phase faetars in the quasi·periadicity
relations of fp/,p, fq,p, fq',p are the N-th roots of unity. These functions are
closely eonnected to the variables a,b,c,d of the N2-cover 21J of W in Section 4.
Since the N-th power of f pi,p, f q,p , f q' ,p gives the rational function on W, the
situation is much simpler for the purpose of the expression of the parameter r af W.

Consider first the case when r equals to k'. As befare, let 21J be the
curve defined in (21) with the homogenous coordinates a,b,c,d. The abave
p, p', Q, q' are now the u, u', v, v' in Proposition 7. As the rational functions
f W I N fN fN I t aN h

N r;'" .o 'V,lI' V',U' U',1I equa O;pr, (IN , ;pr Up to some constants , l.e.

aN : hN:CN: dN = Achi ~,n,9[;] (. + ~P _ ~l, T) N : B,9 [;] (. _ ~P + ~l, T) N

:C,9[;] (. _~P_ ~"T)N: c2ri~.n'9[;] (.+ ~P+ ~l,T)N

here s is the uniformizing coordinate of elements of W, and A,B,C are constants.
The hyperelliptic involution (1 of W induces the automorphism J of 21J (defined
in (23) ), which corresponds the map of es, s ....... -s. The relations

J'G:)=~: ,J'G:)=~;
imply B=AC, C2 = 1. For S= the origin, it corresponds to the element 0 of \V

1

with the eoordinate (t, .\) (defined in (4»= ( (~!t:) N, -1). By (19) (20), the
constants A, B, C must satisfy

A = R, C = 1.
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(33)

By (21), we have the relation

kAp.2~i ~,. ,9 [;] (. + ~ p _ ~" T ) N + k',9 [;] (, - ~p - ~" Tr
= p.2~i ~ '. ,9 [;] (, + ~p + ~" T ) N

Substituting s= 2' p + ~f., by (31) we obtain

_e-'lI'"i(p, +"'+P"),9 [~ ] (f., T) N
k' = v

'9[~](p,T)N

When r=it, the CP N-curve is the curve Wr of (9) in seetion 3. Its
hyperelliptic involution is induced by the automorphism Jr of 2IJ by Proposition
6 (ii). Let T r be the period for W r• By Proposition 8,

with Ar = ArCr , (Ar)2 = - 1. Hy the definition of the element 0 of 11fr, together
with the description of the function f' in the remark (i) of Proposition 4, the
.\-value of 0 equals to k'+ik. Hy the relations (17) (20) , ~ = .\ -'k-I/ , hence
Ar = (-1 )gi. Hy (22),

21Ti L: "'0 [b] ( 1 1 ) N [;S] ( 1 1 ) N
Are 0 ,9 V 8+"2Pr -"2f.,Tr +k'i(-1)"19 V .lt-2"Pr-2"f. 1 Tr

2 'lI'"i L: ·'lo [h] ( 1 1 ) N
= ke 0 ,9 V .., + 2"Pr + 2"f., Tr

Hence

ik'
k

(-1) Ne-'I"i(Prl +...+Pr,),9 [~ ] (f., T r ) N

19 [~ ] (Pr, T r ) N
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(35)

For the case r=k, let Tl be the period of WN,Ic(~ Wl in (11». Similarly, we have

and

hence

k = [_]e-7ri (pl.l+ ...+PI.I1)19 ~ (E, TdN

Using the identities obtained by Sonya Kowalevski [14], Baxter wrote down the
explicit expression of the above ~ , v , and they are given by

(1) (')1 ~ _ l'
~ = 2 ~ , 1I = -2 i . (36)

(The above 19 [~] (S,T) is the function B{8}t of [6]). Therefore we have obtained

the following conclusion.

THEOREM Let T, Tr , Tl be the period for the CP N-curves VlTN.kl,VVN,!f.,HTN,k

respectively. Then the relations between k', i}, k and T, T n Tl are given by (33)
(34) (35) and (36).
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