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Metric Curvature and Convergence

by Conrad Plaut

We present conditions under which metric curvature bounds

and geodesie completeness are preserved in Gromov-Hausdorff

limits. In particular we show that if X -> X and
i

the

"comparison radius" for bounded curvature in each X is uniformly
i

bounded below by some r > 0, then X has the same curvature bound,

with comparison radius at least r. If in addi tion the X are
i

geodesically complete, then X is also geodesically complete,

provided the injectivity radii inj

Iower bound.

(X) have a uniform pos i tve
i

As a consequence of these general results we obtain a

"Cornpactness Theorem" (Theorem 9) for geodesically complete

inner metric spaces having curvature and injectivity radius

bounded below, and diameter bounded above. Since Theorem 9 does

not require an upper curvature bound, it 1s both a weakened

generalization of the Convergence Theorem for Riemannian

manifolds ([Pei], [GW] , [Ka]) and a generalization (with

exceptional dimensions 3 and 4) of Cheeger's Finiteness Theorem

([C], [Pe2]), Dur results also allow an entirely "metrieIl proof

of the Convergence Theorem us1ng [NI] (cf. also [N2]),

Dur result on the lower curvature bound (Proposition 6) was

essentially proved in [GP], §2, under the additional assumption

that each X is geodesically complete~ Dur removal of this extra
i



assumption is irnportant for the following reason: In [P2] we

prove a generalization of Toponogov's Theorem for convex,

geodesically complete inner metric spaces of curvature ~ k, which

essentially states that the (lower "curvature bound) cornparison

radius for such aspace is infini te . It is not known if the

theorem can be further generalized by weakening geodesic

completeness to metric completeness. Theorem 8 c) shows that the

class of spaces for which Toponogov's Theorem holds is

Gromov-Hausdorff closed, 'making a counterexample, if one exists,

more difficult to find.

A few definitions and will be recalled below. For more

details, and examples, see [PI]. All curves are assurned

parameterized proportional to arclength. We assume throughout

that X is a metrically complete, convex inner metric space. Then

by definition every pair of points x, y E X can be connected by a

minimal curve whose length realizes d (x, y); a curve which is

locally minimizing is called a geodesic. The notation -y is
e.b

reserved for a geodesic from a to b. A geodesic terminal is a

point in X beyond which some geodesie cannot be extended. An

open subset U of X is geodesically complete if it has no geodesie

terminals.

S will denote the simply connected, 2-dimensional space
k

form of curvature k. By monotonicity we mean the weIl known fact

that the angle between two minimal curves of fixed length in S
k

i5 a monotone increasing function cf the distance between the
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endpoints opposite the angle.

Definition 1. An open set U in X is said to be a region of

curvature ~ k (resp. ;$ k) if for every triangle (1'ah' 'Y
bc

' 1'c)

of minimal curves in U,

a) there exists a representative (;AB ' '"tBC' :YCA) in S
k

(i. e. , 'Y
AB

, 'Y
BC

, 'Y
CA

are minimal of the same length as their

correspondent curves) and

b) for any y on '"t
ab

and Y on 1'AB such that d(y, a)

d(Y, A), d(y, c) ~ d(Y, C) (resp. d(y, c) ;$ d(Y, C» .

Tf x is contained in a region of curvature ~ k, let c (x)
k

sup (r : B(x, r) 1s a region of curvature ~ k}, and put c (x) - 0
k

otherwise. Then the comparison radius c is continuous or c -
k k

~ Tf for all x E X there is a k such that c (x) > 0 then we say
k

X has curvature locally bounded below. If for same fixed p E X

and k, e has a positive lower beund on B(p, r) for all r, we say
k

X has curvature uniformly ~ k. If X is locally eompaet,

curvature uniformly ~ k is equivalent to c > 0 on X.
k

Using

regions of curvature ;$ k we ean similarly define e
k

and curvature

locally or uniformly bounded above.

Monotonieity implies that a region of curvature ~ k (resp. s

k) eontains a Gebiet der Riemannscher Krümmung ~ k (resp. S k) in

ehe sense of [R] (and eonversely, such a Gebiet satisfies

Definition 1); therefore the angle 0(1
1

, 'Y
2

) between twe

geodesies exists and is a bona fide metrie on the space of
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directions S (unit geodesics) at a point p E X. For ~ E S we
p p

let C(~) sup {t 'V I is minimal} and define the
, [0, t]

injectivity radius inj (p) - inf {C(1) : 1 ES}.
p

let inJ (X) - inf {inj (p) : p EX}.

Finally, we

Definition 2. We say that a (geodesie) triangle

(~l ' 1
2

, 1
3

) in X is TI(k) (resp. AI(k)) if there exists a

representative triangle (1'l' 1
2

, 1
3

) in S and 0:(1" , 1'2) :S
k i

0:( 1 , 1'2) (resp. 0:(1" , 1
2

) ~ 0: (1' , 1"2)) for i - 1, 3. We say
i i i

that a (geodesie) wedge (1ab , ß ) is T2(k) (resp. A2 (k)) if
ac

there is a representative wedge (~AB ' ß
AC

) in S (i. e. , whose
k

sides are minimal with L(~ ) L(1'ab) , L(eAC) L(ß ),
AB ac

a:(~ , ß
AC

) - CI.(~ , ßao
) ) and d(B, C) ~ d(b, c) (resp. d(B, C) ~

AB ab

d(b, c)).

When no confusion is likely to result we omit the "ku from

the notation, e.g. writing IITI" for "TI(k)."

A triangle (1', l' , 1) or wedge (1' , 1') is (k-) proper if
12312

~ and 1 are minimal and L(1) < ~/jk. If c (x) - p > 0 (resp.
1 3 2 k

k
C (x) - p > 0) then every proper triangle in B(x, p) is Tl (k)

(resp. Al(k)) and every proper wedge in B(x, p) is T2(k) (resp.

A2(k)).

The Gromov-Hausdorff metric is defined in [GLP] , [G]. Let

X be a collection of compact, metrically complete inner metric
i

spaces of diameter S D < 00, which are convernt in the

Gromov-Hausdorff metric to a metrically complete metric space X.
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By the results of §6 in [G] we can assume that the spaces X and
i

X are all embedded in a fixed compact metric space Z, and

convergence is in the classical Hausdorff sense.

Aprerequisite to understanding the geometry of X is the

ability to express a minimal curve in X as a uniform limit of

minimal curves in X
i

We now give a condi tion on X which

guarantees that this 1s possible.

Definition 3. Let Y be and inner metric space. A closed

branch in Y is a pair of minimal curves Q~, ß~ [0, 1] -> Y

such that for some T E (0, 1), Q (t) - ß (t) for all t ~ T and
ab ~

Q (S) ~ ß (s) for some s < T. If T is taken to be the sma11est
~ ab

such value I the point c - Q (T) i5 called the branch point of
ab

the closed branch.

The non-existence of closed branches in aspace Y is

equivalent to the following: if 'Y : [0 I 1] -> Y is minimal,
ab

then for all t E (0,

from a to 'Y (t).
ab

1), "V I is the unique minimal curve
I ab (0, tj

Proposition 4. If X has no closed branches then for every

minimal curve 1 in X there exist minimal curves 1 in X such
i i

thst some subsequence of converges uniformly to 1.

Furthermore, 1f Q 1s minimal in X and has a common endpoint with

'Y, then each approximating curve Q can be chosen to have the
i

correspond1ng endpoint in common with 'Y •
i
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Proof. Let 1 : [0, 1] -> X be minimal from a to b. Suppose

b
j

1(t) with b -> b.
j j

Letab E X be such that a -> a
i' ji i i

and b -> b for all j, and let 1 denote the segment of 1 from
ji j j

the curves 1 are arclength parameterized and have
ji

a to b .
j

fixed j,

[0, 1] -> X be minimal from a to b
i i ji

For

Such a subsequence

lengths uniformly bounded above, so we can apply Ascoli's Theorem

to obtain a convergent subsequence of {1 }.
ji

converges uniformly to a minimal curve from a to b , and since 1
j j

is the unique such curve, the subsequence must in fact converge

uniformly to 1.
j

We now choose the desired approximating

sequence from {1
ji

} using a standard "diagonal" argument.

The second part of the proposition is obvious from the above

construction. o

We will show that the hypothesis to Proposition 4 is

satisfied in any region which is a limit of regions having

curvature bounded either above or below: in the first case,

minimal curves do not uclose ," and in the second they do not

"branch. n

Proposition 5. Suppose x E X and there exist x E X such
i i

that x -> x and for some fixed 0 < r ~ 1r/2./k and all i, c (x) ~
i k i

kr. Then B(x, r) contains no closed brsnches, and c (x) ~ r.

Proof . .Suppose~, ß : [0, 1] -> X are minimal curves from a

to b. Let E X
i

with a
i

6

-> a and b
i

-> b, and ~
i

be



minimal from a to b. Passing to a subsequence we can assume a
i i i

is uniformly convergent to a minimal curve from a to b; changeing

curves if necessary we can assume that a -> Q.
i

Suppose there

exists some t E [0, 1] such that c a(t) "" ß(t) c'. Let c
i

a (t) and c' E X be such that c' -> c'. Let ~i be minimal from
i 1 1 1

a to c' and 11 be minimal from c' to b . Then since
1 1 1 1 1

L( rJ ) + L(1I ) -> L(a ), if (~1 ' a 1 ' 11 ) represents (11
1

, a 1 ' 11 )
1 1 1 i i

in S , lim Q( 11 , n ) - 1r. Since L(a) < 1r/./k, Definition 1
k i->(O i 1

implies that 11m d(c , c' ) 0, a contradiction. Therefore Q
i->co 1 1

and ß are identical, and cannot form a closed branch.

The second part of the proposition follows immediately from

Proposition 4 and Definition 1. o

Proposition 6. Suppose x E X and there exist x E X such
i i

that x -> x and for some fixed r > 0 and all i, c (x) ~ r.
1 k 1

Then B(x, r) contains no c10sed branches and c (x) ~ r.
k

Proof. Let a, ß : [0, 1] -> X be minimal such that a(t) -

ß(t) for all T S t S 1 for some T E (0, 1). For sorne s < T, let

a - a(s), b ß(s), c - a(T), and d - a(l), and choose a , b ,
1 1

Cl' d E X converging to the respective points in X. Let 11 i '
11

i i i

be minimal from b and a , respectively, to Ci' and r
i

be minimal
i 1

from C to d. Now 1im [L(11
1

) + L(r )] - lim [L(1I ) + L( r )] -1 1 i->co 1 l->co i i

lim d(a , d ) 1im d(b , d ) , and Tl implies that
1->CO 1 1 l->co 1 i

1im a(1J , r
1

) 1im a(1I , r
1

) 1'[", By Lemma 2.3, [P2] ,
i->oo i l->co 1

1 im Q (1J , 11) - O.
1->00 1 1

T2 now implies that lim d(a, b) - 0; in
i->CO 1 1
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other words a(s) - ß(s). Since this holds for all s < T, a and ß

coincide, and cannot form a closed branch.

The second part of the proposition again follows from

Proposition 4 and Definition 1. o

Proposition 7. Suppose that for same r, € > 0, B (x , r)
i

is •
;.~

geodesically complete and inj ~ c on B(x, r). Then if B(x, r)
i

has no closed branches, B(x, r) is geodesically complete and

every geodesie of length Sein B(x, r) is minimal.

Proof. It suffices to prove that every minimal curve

~ : [0, 1] -> B(x, r) with L(~) < c can be extended as a minimal

curve beyond )' (1) . Let [0, 1] -> B(x,
i

r) converge

uniformly to ~ (passing to a subsequence, if necessary). For all

sufficiently large i we can extend ~ pas t ~ (1) as a minimal
i i

curve ~' of length min {c, (r - d(~(l)t x) / 2}.
i

converges uniformly to a minimal curve which extends ~.

Then ()")
i

o

The next theorem follows immediately from the above three

propositions.

min (r, 1r/jk).

Note that if ck(y) ~ r then inj (Y) ~
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Theorem 8. For fixed c, r > 0 and k, the following

cissses of loc811y comp8ct, metric811y complete, inner metric

spsces are Gromov-Hausdorff closed:

a) (y ck(y) ~ r, r :S 1r/2./k) ,

b) (y ck(y) ~ r, r .:S 'Tr/./k, Y geodesic811y complete),

c) (y c (Y) ~ r) ,
k

d) (y c (Y) ~ r, inj (Y) ~ E , Y geodesicslly complete).
k

The Convergence Theorem is an immediate consequence

corollary of Theorem 8 and [NI], where i t is proved that a

geodesically complete inner metric space with curvature bounded

above and below i5 a smooth manifold with C
1

•
a

Riemannian metric.

A locally compact, metrically complete inner metric space Y

is called almost Riemsnnian ([ P2]) if Y is finite dimensional,

geodesically complete, and has curvature locally bounded below.

We let A(n, k, E, 0) denote the class of almost Riemannian spaces

having dimension n, curvature ~ k, injectivity radius ~ c, and

diameter.:S 0, and endow A(n, k, c, D) with the Gromov-Hausdorff

metric.

Theorem 9. A(n, k, E, D) is compact space of topological

manifolds, which, except possibly for n - 4, are smooth with

continuous Riemannian metric. A(n, k, E, D) has finitely many

homotopy types for any n, finitely many homeomorphism types for

n ~ 3, and finitely many diffeomorphism types for n ~ 3, 4.
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Proof. By Theorem G, [P2], any Y E A(n, k, €, D) is a

topologica1 manifold with continuous fiber metric on its

topological tangent bundle TY. In particular, if n pt#. 4 Y is

smooth and the metric is a continuous Riemannian metric.

A(n, k, E, D) is precornpact by Theorem H, [P2]. By Theorem 8, to

prove compactness we need only show that if X E A(n, k, E, D)

then dirn X - n. ,Choose X E A(n, k, E, D) with X -> X and p E
i i i

X with P -> p.
i i

Let 0:
ji

be an orthonorrnal basis for T
Pi

choosing a subsequence if necessary we can assume {a } converges
1j

uniformly to some 0: E S for all j. Then by Tl and the uniform
i p

convergence, a(a , a) .:$ 1im 0:(0: , 0: ) - tr/2.
j k 1 - >co ij ik

Since X and X
i

are geodesically complete, we can app1y the same argument

to complementary angles and obtain 0:(0: ,
j

Q )
k

1im 1f - a(o: , a ) - -rr/2.
i - >co ij ik

In other words ... , a
n

spans an

n-dimensional subspace of T and dirn X ~ n. To show dirn X .:$ n we
p

note that given independent 0:
1

, ••• , 0: E S we can approxirnate
m p

each Q uniformly by er EX, and repeat the above argument to
j ji i

show dirn X ~ m for sufficiently large i.
i .

The fin.iteness parts of the theorem follow from the fact

that elements of A(n, k, E, D) have injectivity radius ~ E (and

so are all LGC (p) with p (r) - r on [0, E/2]), and the general

finiteness theorems of [PV] and [GPW]. Note that dirn X S n also

follows from [PV]. 0
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