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Metric Curvature and Convergence

by Conrad Plaut

We present conditlons under which metric curvature bounds
and geodesic completeness are preserved in Gromov-Hausdorff
limits. In particular we show that Iif Xi ~> X and the
"comparison radius" for bounded curvature in each }(,i is uniformly
bounded below by some r > 0, then X has the same curvature bound,
with compari;on radlus at least r. If in addition the Xi are
geodesically complete, then X 1s also geodesically complete,
provided the iInjectivity radii inj (Xl) have a uniform positve
lower bound.

As a consequence of these general results we obtain a
"Compactness Theorem" (Theorem 9) for pgeodesically complete
inner metric spaces having curvature and injectivity radius
bounded below, and diameter bounded above. Since Theorem 9 does
not require an upper curvature bound, it 1s both a weakened
generalization of the Convergence Theorem for Riemannian
manifolds ([Pel], [GW], ([Ka]) and a generalization (with
exceptional dimensions 3 and 4) of Cheeger’s Finiteness Theorem
([€), [Pe2]). Our results also allow an entirely "metric" proof
of the Convergence Theorem using [N1] (cf. also [N2]).

Our result on the lower curvature bound (Proposition 6) was
essentially proved In [GP], §2, under the additional assumption

that each Xi is geodesically complete. Our removal of this extra



assumption is important for the following reason: In [P2] we
prove a generalization of Toponogov's Theorem for convex,
geodesically complete inner metric spaces of curvature > k, which
essentlally states that phe (lower _curvature bound) comparison
radius for such a space is iInfinite. It is not known if the
theorem can be further generalized by weakening geodesic
completeness to metric completeness. Theorem 8 c) shows that the
class of spaces for which Toponogov's Theorem holds 1is
Gromov-Hausdorff closed, -making a counterexample, if one exists,
more difficult to find.

A few definitions and will be recalled below. For more
details, and examples, see [Pl]. All curves are assumed
parameterized proportional to arclength, We assume throughout
that X is a2 metrically complete, convex inner metric space. Then
by definition every pair of points x, y € X can be connected by a
minimal curve whose length realizes d(x, y); a curve which is
locally minimizing is called a geodesic. The notation T is
reserved for a geodesic from a to b. A geodesic terminal is a
point In X beyond which some geodesic cannot be extended. An
open subset U of X is geodesically complete 1f it has no geodesic
terminals.

Sk will denote the simply connected, 2-dimensional space
form of curvature k. By monotonicity we mean the well known fact
that the angle between two minimal curves of fixed length in Sk

is a monotone increasing function of the distance between the



endpoints opposite the angle.

Definition 1. An open set U in X is sald to be a region of

curvature = k (resp. s k) if for every triangle (7ab, Yo 7u)
of minimal curves in U,
a) there exists a representative (7AB, Vac 1CA) in Sk

-— -—

(i.e., Vo' Yo' Toa 8T minimal of the same length as thelr

correspondent curves) and

b) for any y on T and Y on ;AB such that d(y, a)

d(Y, A), d(y, ¢) =z d(Y, C) (resp. d(y, c) s d(¥, C)).

If x is contained in a region of curvature = k, let ck(x)
sup {r : B(x, r) 1is a reglon of curvature = k}, and put ck(x) =0
otherwlse. Then the comparison radius c, is continuous or c, -
o, If for all x € X there is a k such that ck(x) > 0 then we say
X has curvature locally bounded below. If for some fixed p € X
and k, c ha; a positive lower bound on B(p, r) for all r, we say
X has curvature uniformly = k. If X 1s 1locally compact,
curvature uniformly = k is equivalent to c, > 0 on X. Using
regions of curvature =< k we can similarly define c* and curvature
locally or uniformly bounded above.

Monotonicity implies that a region of curvature > k (resp. <
k) contains a Gebiet der Riemannscher Krimmung = k (resp. < k) in
the sense of [R] (and conversely, such a Gebiet satlsfies
Definition 1); therefore the angle a(11, 72) between two

geodesics exists and is a bona fide metric on the space of



directions § (unit geodesics) at a polnt p € X. For v € Sp we
P
let C(y) = sup {(t : 7[[0 o] is minimal} and define the

injectivity radius inj (p) = inf (C(y) : v € SP}. Finally, we

let inj (X) = inf {inj (p) : p € X}.

Definition 2. We say that a (geodesic) triangle
(71, T, 73) in X is TI(k) (resp. AI(k)) 1f there exists a

representative triangle (;l, ;2, 73) in Sk and a(;i, ;2) =<
a(y,, v,) (resp. aly, v,) = aly, 7v,)) for i =1, 3. Ve say
that a (geodesic) wedge (Tab’ ﬁac) is T2(k) (xesp. A2(k)) 1if
there 1s a representative wedge (;AB, EAC) in Sk (i.e., whose
sides are minimal with L('YAB) - L(-ynb), L(,BAC) - L(ﬁac),
a3, B,) = aly_, B_)) and d(B, C) = d(b, ¢) (resp. d(B, C) >

d(b, c)).

When no confusion is likely to result we omit the "k" from
the notation, e.g. writing "T1" for "T1l(k)."

A triangle (71, Y, 73) or wedge (71, 72) 1s (k-)proper 1if
7, and v, are minimal and L(vz) < n/fk. 1If ck(x) = p > 0 (resp.
ck(x) = p > 0) then every proper triangle in B(x, p) is Tl(k)
(resp. Al(k)) and every proper wedge in B(x, p) is T2(k) (resp.
A2(k)).

The Gromov-Hausdorff metric is defined in [éLP], [G]. Let
Xi be a collection of compact, metrically complete inner metric
spaces of diameter =< D < o, which are convernt 1in the

Gromov-Hausdorff metric to a metrically complete metric space X.
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By the results of §6 in [G] we can assume that the spaces Xi and
X are all embedded in a fixed compact metric space Z, and
convergence is in the classical Hausdorff sense.

A prerequisite to understanding the geometry of X is the
ability to express a minimal curve in X as a uniform limit of
minimal curves in Xi. We now give a condition on X which

guarantees that this is possible.

Definitlion 3. Let Y be and inner metric space. A closed

branch in Y is a palr of minimal curves a_ B (0, 1] — Y

such that for some T € (0, 1), ab(t) - ,Bah(t) for all ¢t =2 T and
a

ab

am(s) > ,Bab(s) for some s < T. If T is taken to be the smallest
such value, the point ¢ = anh(’l‘) is called the branch point of
the closed branch.

The non-existence of closed branches in a space Y is
equivalent to the following: 1if 4 : [0, 1] — Y is nminimal,

ab

then for all t € (0, 1), 7ab|[o ol is the unique minimal curve

from a to '1ab(t).

Proposition 4. If X has no closed branches then for every
minimal curve vy in X there exist minimal curves 7, in Xi such
that some subsequence of {'yi} converges uniformly to .
Furthermore, 1f a is minimal in X and has & common endpoint with
v, then each approximating curve a can be chosen to have the

corresponding endpoint in common with 7,



Proof. Let v : [0, 1] —> X be minimal from a to b. Suppose
b = 9(t) with b -> b, Let a, b € X be such that &, —> a
3 3 . 3 i 31 1 It
and bji - bJ for all j, and let 13 denote the segment of vy from
atob . Let ¥y ¢ [0, 1] = X be minimal from a to b . For
J Ji i i I
fixed j, the curves Y are arclength parameterized and have
lengths uniformly bounded above, so we can apply Ascoli’s Theorem
to obtain a convergent subsequence of {731}. Such a subsequence
converges uniformly to a minimal curve from a to bJ, and since v,
is the unique such curve, the subsequence must in fact converge
uniformly to 7J. We now choose the desired approximating
sequence from {131} using a standard "diagonal" argument.
The second part of the proposition is obvious from the above

construction. a

We will show that the hypothesis to Proposition 4 1s
satisfied in any reglon which 1is a 1limit of reglons having
curvature bounded either above or below: in the first case,
minimal curves do not "close," and in the second they do not

"branch."

Proposition 5. Suppose x € X and there exist X € Xi such
that X, —> x and for some fixed 0 < r = n/zji and all i, ck(xi) >

r. Then B(x, r) contajins no closed branches, and ck(x) > r.

Proof. .Suppose a, 8 : [0, 1] => X are minimal curves from a

to b. let a, b € X with a —> a and b -> b, and a be
i i i i i i



minimal from a, to bi. Passing to a subsequence we can assume a
is uniformly convergent to a minimal curve from a to b; changeing
curves if necessary we can assume that a > a. Suppose there
exlsts some t € [0, 1] such that ¢ = a(t) » F(t) = ¢’. Let c =
ai(t) and c; (S Xi be such that cl -> ¢’ . Let n, be minimal from

s

a to ¢
i

. and v, be minimal from cl to bi. Then since

L('}i) + L(Ui) - L(ai), if (;1, Ei, ;1) represents (ni, o, v)

1 i
in S, lim_ a(y_, n) = x. Since L(a) < n//k, Definition 1
implies that };Em d(ci, c;)_- 0, a contradiction. Therefore «
and 8 are identical, and cannot form a closed branch.

The second part of the proposition follows immediately from

Proposition 4 and Definition 1. O

Proposition 6. Suppose x € X and there exist x € Xt such
that X, —> x and for some fixed r > 0 and all i, ckaﬁ) = r.

Then B(x, r) contains no closed branches and ck(x) z r.

Proof. Let @, B : [0, 1] —> X be minimal such that a(t) =
B(t) for all T = t € 1 for some T & (0, 1), For some s < T, let

a = a(s), b = f(s), ¢ = a(T), and d = a(l), and choose a, b,

1
. d1 € Xi converging to the respective points in X. Let noov,
be minimal from bi and a, respectively, to . and ¢, be minimal

from c, to di. Now }i@w [L(ni) + L(gi)] - };Em [L(ui) + L(§i)] -

lim d(a , d) = 1im d(bi, di), and T1 1implies that

i-» i i i=>

}ggm a(ni, gi) -~ 1im a(vi, gi) - . By Lemma 2.3, {P2],

1~

}iTm a(qi, yi) = 0, T2 now implies that }ggm d(ai, bi) = 0; in
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other words a(s) = B(s). Since this holds for all s < T, o and 8
coincide, and cannot form a closed branch.
The second part of the proposition again follows from

Proposition &4 and Definition 1. [

Proposition 7. Suppose that for some r, € > 0, B(xi, r) is,
geodesically complete and inj 2= € on B(xi, r). Then if B(x, r)
has no closed branches, B(x, r) is geodesically complete and

every geodesic of length s ¢ in B(x, r)} is minimal.

Proof. It suffices to prove that every minimal curve
¥ 1 [0, 1] = B(x, r) with L(y) < ¢ can be extended as a minimal
curve beyond ~y(1l). Let v, t [0, 1] — B(xi, r) converge
uniformly to ¥ (passing to a subsequence, if necessary). For all
sufficlently large 1 we can extend 7, past 71(1) as a minimal
curve 71 of length min (e, (r - d(y(1l), x) / 2}. Then {1;}

converges uniformly to a minimal curve which extends -~. ]

The next theorem follows immediately from the above three
propositions. Note that 1f ck(Y) = r then 1inj (YY) =

min (r, n//k).



Theorem 8. For fixed ¢, r > 0 and k, the following
classes of locally compact, metrically complete, inner metric
spaces are Gromov-Hausdorff closed:

a) {Y : ck(Y) 2r, rs «/éJE}.

b) {Y : ck(Y) >r, r=< K/JE, Y geodesically complete]),

c) (Y : ck(Y) =z r),

d) (Y : Cx(Y)

v

r, inj (Y) = €, Y geodesically complete}.
J -4 Y P

The Convergence Theorem 1is an Iimmediate consequence
corollary of Theorem 8 and ([N1], where it 1is proved that a
geodesically complete Iinner metric space with curvature bounded
above and below is a smooth manifold with ¢''® Riemannian metric.

A locally compact, metrically complete inner metric space Y
is called almost Riemannian ([P2]) 1if Y is finite dimensional,
geodesically complete, and has curvature locally bounded below.
We let A(n, k, ¢, D) denote the class of almost Rlemannian spaces
having dimension n, curvature = k, Injectivity radius = ¢, and

diameter = D, and endow A(n, k, ¢, D) with the Gromov-Hausdorff

metric.

Theorem 9. A(n, k, ¢, D) is compact space of topological
manifolds, which, except possibly for n = 4, are smooth with
continuous Riemannian metric. A(n, k, €, D) has finitely many
homotopy types for any n, finitely many homeomorphism types for

n # 3, and finitely many diffeomorphism types for n » 3, 4.



Proof. By Theorem G, [P2], any Y € A(n, k, €, D) 1Is a
topological manifold with continuous fiber metric on 1its
topological tangent bundle TY. In particular, if n = 4 Y is
smooth and the metric is a continuous Riemannian metric.
A(n, k, ¢, D) is precompact by Theorem H, [P2]. By Theorem 8, to
prove compactness we need only show that if X € A(n, k, €, D)
then dim X = n. .Choose Xi € A(n, k, €, D) with Xi —> X and 12 S

Xi with P, —> p. Let @, € Sp be an orthonormal basis for T ;
P
i 1

choosing a subsequence 1f necessary we can assume {a“} converges
uniformly to some a € Sp for all j. Then by Tl and the uniform
convergence, a(aJ, ak) < }i@m a(aij, aik) = w/2. Since Xi and X
are geodesically complete, we can apply the same argument
to complementary  angles and obtain x - a(ad, a) =

k

lim n - a(a , a_) = n/2. In other words a_, ., @ spans an
i->o i ik 1 n

J
n-dimensional subspace of T and dim X = n. To show dim X £ n we
p
note that given Independent R € 5 we can approximate
P

each ad uniformly by aji € Xi, and repeat the above argument to
show dim Xi = m for sufficliently large 1.

The finiteness parts of the theorem follow from the fact
that elements of A(n, k, ¢, D) have injectivity radius = ¢ (and
so are all LGC(p) with p(r) = r on [0, €/2]), and the general

finiteness theorems of [PV] and [GPW]. Note that dim X < n also

follows from [PV]. O
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