METRIC CURVATURE AND CONVERGENCE

by

Conrad Plaut

Max–Planck–Institut für Mathematik Gottfried–Claren–Str. 26 5300 Bonn 3 Federal Republic of Germany

MPI/90-71

.

. .

.

-

Metric Curvature and Convergence

by Conrad Plaut

We present conditions under which metric curvature bounds and geodesic completeness are preserved in Gromov-Hausdorff limits. In particular we show that if $X_i \rightarrow X$ and the "comparison radius" for bounded curvature in each X_i is uniformly bounded below by some r > 0, then X has the same curvature bound, with comparison radius at least r. If in addition the X_i are geodesically complete, then X is also geodesically complete, provided the injectivity radii inj (X_i) have a uniform positve lower bound.

As a consequence of these general results we obtain a "Compactness Theorem" (Theorem 9) for geodesically complete inner metric spaces having curvature and injectivity radius bounded below, and diameter bounded above. Since Theorem 9 does not require an upper curvature bound, it is both a weakened generalization of the Convergence Theorem for Riemannian manifolds ([Pel], [GW], [Ka]) and a generalization (with exceptional dimensions 3 and 4) of Cheeger's Finiteness Theorem ([C], [Pe2]). Our results also allow an entirely "metric" proof of the Convergence Theorem using [N1] (cf. also [N2]).

Our result on the lower curvature bound (Proposition 6) was essentially proved in [GP], \$2, under the additional assumption that each X_i is geodesically complete. Our removal of this extra assumption is important for the following reason: In [P2] we prove a generalization of Toponogov's Theorem for convex, geodesically complete inner metric spaces of curvature $\geq k$, which essentially states that the (lower curvature bound) comparison radius for such a space is infinite. It is not known if the theorem can be further generalized by weakening geodesic completeness to metric completeness. Theorem 8 c) shows that the class of spaces for which Toponogov's Theorem holds is Gromov-Hausdorff closed, making a counterexample, if one exists, more difficult to find.

A few definitions and will be recalled below. For more details, and examples, see [P1]. All curves are assumed parameterized proportional to arclength. We assume throughout that X is a metrically complete, convex inner metric space. Then by definition every pair of points x, $y \in X$ can be connected by a minimal curve whose length realizes d(x, y); a curve which is locally minimizing is called a geodesic. The notation γ_{ab} is reserved for a geodesic from a to b. A geodesic terminal is a point in X beyond which some geodesic cannot be extended. An open subset U of X is geodesically complete if it has no geodesic terminals.

 S_k will denote the simply connected, 2-dimensional space form of curvature k. By *monotonicity* we mean the well known fact that the angle between two minimal curves of fixed length in S_k is a monotone increasing function of the distance between the

endpoints opposite the angle.

Definition 1. An open set U in X is said to be a region of curvature $\geq k$ (resp. $\leq k$) if for every triangle $(\gamma_{ab}, \gamma_{bc}, \gamma_{ca})$ of minimal curves in U,

a) there exists a representative $(\tilde{\gamma}_{AB}, \tilde{\gamma}_{BC}, \tilde{\gamma}_{CA})$ in S_{k} (i.e., $\tilde{\gamma}_{AB}, \tilde{\gamma}_{BC}, \tilde{\gamma}_{CA}$ are minimal of the same length as their correspondent curves) and

b) for any y on γ_{ab} and Y on $\tilde{\gamma}_{AB}$ such that $d(y, a) = d(Y, A), d(y, c) \ge d(Y, C)$ (resp. $d(y, c) \le d(Y, C)$).

If x is contained in a region of curvature $\geq k$, let $c_k(x) = sup \{r : B(x, r) \text{ is a region of curvature } \geq k\}$, and put $c_k(x) = 0$ otherwise. Then the comparison radius c_k is continuous or $c_k = \infty$. If for all $x \in X$ there is a k such that $c_k(x) > 0$ then we say X has curvature locally bounded below. If for some fixed $p \in X$ and k, c_k has a positive lower bound on B(p, r) for all r, we say X has curvature uniformly $\geq k$. If X is locally compact, curvature uniformly $\geq k$ is equivalent to $c_k > 0$ on X. Using regions of curvature $\leq k$ we can similarly define c^k and curvature locally bounded above.

Monotonicity implies that a region of curvature $\geq k$ (resp. $\leq k$) contains a Gebiet der Riemannscher Krümmung $\geq k$ (resp. $\leq k$) in the sense of [R] (and conversely, such a Gebiet satisfies Definition 1); therefore the angle $\alpha(\gamma_1, \gamma_2)$ between two geodesics exists and is a bona fide metric on the space of

directions S_p (unit geodesics) at a point $p \in X$. For $\gamma \in S_p$ we let $C(\gamma)$ - sup {t : $\gamma|_{[0,t]}$ is minimal} and define the injectivity radius inj (p) - inf { $C(\gamma) : \gamma \in S_p$ }. Finally, we let inj (X) - inf {inj $(p) : p \in X$ }.

Definition 2. We say that a (geodesic) triangle $(\gamma_1, \gamma_2, \gamma_3)$ in X is Tl(k) (resp. Al(k)) if there exists a representative triangle $(\overline{\gamma}_1, \overline{\gamma}_2, \overline{\gamma}_3)$ in S_k and $\alpha(\overline{\gamma}_1, \overline{\gamma}_2) \leq \alpha(\gamma_1, \gamma_2)$ (resp. $\alpha(\overline{\gamma}_1, \overline{\gamma}_2) \geq \alpha(\gamma_1, \gamma_2)$) for i = 1, 3. We say that a (geodesic) wedge $(\gamma_{ab}, \beta_{ac})$ is T2(k) (resp. A2(k)) if there is a representative wedge $(\widetilde{\gamma}_{AB}, \widetilde{\beta}_{AC})$ in S_k (i.e., whose sides are minimal with $L(\widetilde{\gamma}_{AB}) = L(\gamma_{ab})$, $L(\widetilde{\beta}_{AC}) = L(\beta_{ac})$, $\alpha(\widetilde{\gamma}_{AB}, \widetilde{\beta}_{AC}) = \alpha(\gamma_{ab}, \beta_{ac})$) and $d(B, C) \geq d(b, c)$ (resp. $d(B, C) \geq d(b, c)$).

When no confusion is likely to result we omit the "k" from the notation, e.g. writing "Tl" for "Tl(k)."

A triangle $(\gamma_1, \gamma_2, \gamma_3)$ or wedge (γ_1, γ_2) is (k-)proper if γ_1 and γ_3 are minimal and $L(\gamma_2) < \pi/\sqrt{k}$. If $c_k(x) - \rho > 0$ (resp. $c^k(x) - \rho > 0$) then every proper triangle in $B(x, \rho)$ is Tl(k) (resp. Al(k)) and every proper wedge in $B(x, \rho)$ is T2(k) (resp. A2(k)).

The Gromov-Hausdorff metric is defined in [GLP], [G]. Let X_i be a collection of compact, metrically complete inner metric spaces of diameter $\leq D < \infty$, which are convernt in the Gromov-Hausdorff metric to a metrically complete metric space X.

By the results of §6 in [G] we can assume that the spaces X_{i} and X are all embedded in a fixed compact metric space Z, and convergence is in the classical Hausdorff sense.

A prerequisite to understanding the geometry of X is the ability to express a minimal curve in X as a uniform limit of minimal curves in X_i . We now give a condition on X which guarantees that this is possible.

Definition 3. Let Y be and inner metric space. A closed branch in Y is a pair of minimal curves α_{ab} , β_{ab} : $[0, 1] \rightarrow Y$ such that for some $T \in (0, 1)$, $\alpha_{ab}(t) - \beta_{ab}(t)$ for all $t \ge T$ and $\alpha_{ab}(s) \neq \beta_{ab}(s)$ for some s < T. If T is taken to be the smallest such value, the point $c - \alpha_{ab}(T)$ is called the *branch point* of the closed branch.

The non-existence of closed branches in a space Y is equivalent to the following: if γ_{ab} : $[0, 1] \rightarrow$ Y is minimal, then for all $t \in (0, 1)$, $\gamma_{ab}|_{[0,t]}$ is the unique minimal curve from a to $\gamma_{ab}(t)$.

Proposition 4. If X has no closed branches then for every minimal curve γ in X there exist minimal curves γ_i in X_i such that some subsequence of $\{\gamma_i\}$ converges uniformly to γ . Furthermore, if α is minimal in X and has a common endpoint with γ , then each approximating curve α_i can be chosen to have the corresponding endpoint in common with γ_i .

Proof. Let $\gamma : [0, 1] \rightarrow X$ be minimal from a to b. Suppose $b_j - \gamma(t_j)$ with $b_j \rightarrow b$. Let a_i , $b_{ji} \in X_i$ be such that $a_i \rightarrow a$ and $b_{ji} \rightarrow b_j$ for all j, and let γ_j denote the segment of γ from a to b_j . Let $\gamma_{ji} : [0, 1] \rightarrow X_i$ be minimal from a_i to b_{ji} . For fixed j, the curves γ_{ji} are arclength parameterized and have lengths uniformly bounded above, so we can apply Ascoli's Theorem to obtain a convergent subsequence of $\{\gamma_{ji}\}$. Such a subsequence converges uniformly to a minimal curve from a to b_j , and since γ_j is the unique such curve, the subsequence must in fact converge uniformly to γ_j . We now choose the desired approximating sequence from $\{\gamma_{ij}\}$ using a standard "diagonal" argument.

The second part of the proposition is obvious from the above construction.

We will show that the hypothesis to Proposition 4 is satisfied in any region which is a limit of regions having curvature bounded either above or below: in the first case, minimal curves do not "close," and in the second they do not "branch."

Proposition 5. Suppose $x \in X$ and there exist $x_i \in X_i$ such that $x_i \rightarrow x$ and for some fixed $0 < r \le \pi/2\sqrt{k}$ and all i, $c_k(x_i) \ge r$. r. Then B(x, r) contains no closed branches, and $c^k(x) \ge r$.

Proof. Suppose α , β : $[0, 1] \rightarrow X$ are minimal curves from a to b. Let a_i , $b_i \in X_i$ with $a_i \rightarrow a$ and $b_i \rightarrow b$, and α_i be

minimal from a_i to b_i . Passing to a subsequence we can assume α_i is uniformly convergent to a minimal curve from a to b; changeing curves if necessary we can assume that $\alpha_i \rightarrow \alpha$. Suppose there exists some $t \in [0, 1]$ such that $c = \alpha(t) \neq \beta(t) = c'$. Let $c_i = \alpha_i(t)$ and $c'_i \in X_i$ be such that $c'_i \rightarrow c'$. Let η_i be minimal from a_i to c'_i and ν_i be minimal from c'_i to b_i . Then since $L(\eta_i) + L(\nu_i) \rightarrow L(\alpha_i)$, if $(\overline{\eta_i}, \overline{\alpha_i}, \overline{\nu_i})$ represents $(\eta_i, \alpha_i, \nu_i)$ in S_k , $\lim_{i\to\infty} \alpha(\overline{\eta_i}, \overline{n_i}) = \pi$. Since $L(\alpha) < \pi/\sqrt{k}$, Definition 1 implies that $\lim_{i\to\infty} d(c_i, c'_i) = 0$, a contradiction. Therefore α and β are identical, and cannot form a closed branch.

The second part of the proposition follows immediately from Proposition 4 and Definition 1.

Proposition 6. Suppose $x \in X$ and there exist $x_i \in X_i$ such that $x_i \rightarrow x$ and for some fixed r > 0 and all i, $c_k(x_i) \ge r$. Then B(x, r) contains no closed branches and $c_k(x) \ge r$.

Proof. Let α , β : $[0, 1] \rightarrow X$ be minimal such that $\alpha(t) = \beta(t)$ for all $T \le t \le 1$ for some $T \in (0, 1)$. For some s < T, let $a = \alpha(s)$, $b = \beta(s)$, $c = \alpha(T)$, and $d = \alpha(1)$, and choose a_i , b_i , c_i , $d_i \in X_i$ converging to the respective points in X. Let η_i , ν_i be minimal from b_i and a_i , respectively, to c_i , and ζ_i be minimal from c_i to d_i . Now $\lim_{i\to\infty} [L(\eta_i) + L(\zeta_i)] = \lim_{i\to\infty} [L(\nu_i) + L(\zeta_i)] = \lim_{i\to\infty} d(a_i, d_i) = \lim_{i\to\infty} \alpha(\nu_i, \zeta_i) = \pi$. By Lemma 2.3, [P2], $\lim_{i\to\infty} \alpha(\eta_i, \nu_i) = 0$. T2 now implies that $\lim_{i\to\infty} d(a_i, b_i) = 0$; in

other words $\alpha(s) = \beta(s)$. Since this holds for all s < T, α and β coincide, and cannot form a closed branch.

The second part of the proposition again follows from Proposition 4 and Definition 1.

Proposition 7. Suppose that for some r, $\epsilon > 0$, $B(x_i, r)$ is geodesically complete and inj $\geq \epsilon$ on $B(x_i, r)$. Then if B(x, r) has no closed branches, B(x, r) is geodesically complete and every geodesic of length $\leq \epsilon$ in B(x, r) is minimal.

Proof. It suffices to prove that every minimal curve γ : $[0, 1] \rightarrow B(x, r)$ with $L(\gamma) < \epsilon$ can be extended as a minimal curve beyond $\gamma(1)$. Let γ_i : $[0, 1] \rightarrow B(x_i, r)$ converge uniformly to γ (passing to a subsequence, if necessary). For all sufficiently large i we can extend γ_i past $\gamma_i(1)$ as a minimal curve γ'_i of length min $\{\epsilon, (r - d(\gamma(1), x) / 2\}$. Then $\{\gamma'_i\}$ converges uniformly to a minimal curve which extends γ .

The next theorem follows immediately from the above three propositions. Note that if $c^{k}(Y) \ge r$ then inj $(Y) \ge$ min $(r, \pi/\sqrt{k})$.

Theorem 8. For fixed ϵ , r > 0 and k, the following classes of locally compact, metrically complete, inner metric spaces are Gromov-Hausdorff closed:

- a) $(Y : c^{k}(Y) \ge r, r \le \pi/2\sqrt{k}),$
- b) (Y : $c^{k}(Y) \ge r$, $r \le \pi/\sqrt{k}$, Y geodesically complete),
- c) $(Y : c_{1}(Y) \geq r)$,
- d) (Y : $c_{(Y)} \ge r$, inj (Y) $\ge \epsilon$, Y geodesically complete).

The Convergence Theorem is an immediate consequence corollary of Theorem 8 and [N1], where it is proved that a geodesically complete inner metric space with curvature bounded above and below is a smooth manifold with $C^{1,\alpha}$ Riemannian metric.

A locally compact, metrically complete inner metric space Y is called *almost Riemannian* ([P2]) if Y is finite dimensional, geodesically complete, and has curvature locally bounded below. We let A(n, k, ϵ , D) denote the class of almost Riemannian spaces having dimension n, curvature \geq k, injectivity radius $\geq \epsilon$, and diameter \leq D, and endow A(n, k, ϵ , D) with the Gromov-Hausdorff metric.

Theorem 9. $A(n, k, \epsilon, D)$ is compact space of topological manifolds, which, except possibly for n - 4, are smooth with continuous Riemannian metric. $A(n, k, \epsilon, D)$ has finitely many homotopy types for any n, finitely many homeomorphism types for $n \neq 3$, and finitely many diffeomorphism types for $n \neq 3$, 4.

Proof. By Theorem G, [P2], any $Y \in A(n, k, \epsilon, D)$ is a topological manifold with continuous fiber metric on its topological tangent bundle TY. In particular, if $n \neq 4$ Y is smooth and the metric is a continuous Riemannian metric. A(n, k, ϵ , D) is precompact by Theorem H, [P2]. By Theorem 8, to prove compactness we need only show that if $X \in \overline{A}(n, k, \epsilon, D)$ then dim X - n. Choose $X_i \in A(n, k, \epsilon, D)$ with $X_i \rightarrow X$ and $p_i \in A(n, k, \epsilon, D)$ with $X_i \rightarrow X$ and $p_i \in A(n, k, \epsilon, D)$ X_i with $p_i \rightarrow p$. Let $\alpha_j \in S_{p_j}$ be an orthonormal basis for T_{p_j} ; choosing a subsequence if necessary we can assume $\{\alpha_{i,i}\}$ converges uniformly to some $\alpha_i \in S_p$ for all j. Then by T1 and the uniform convergence, $\alpha(\alpha_i, \alpha_k) \leq \lim_{i \to \infty} \alpha(\alpha_i, \alpha_k) = \pi/2$. Since X and X are geodesically complete, we can apply the same argument to complementary angles and obtain $\pi - \alpha(\alpha_{j}, \alpha_{k}) \leq$ $\lim_{i\to\infty} \pi - \alpha(\alpha_{ij}, \alpha_{ik}) - \pi/2.$ In other words $\alpha_{1}, \ldots, \alpha_{n}$ spans an n-dimensional subspace of T and dim $X \ge n$. To show dim $X \le n$ we note that given independent $\alpha_1, \ldots, \alpha_m \in S_p$ we can approximate each α_{j} uniformly by $\alpha_{ji} \in X_{i}$, and repeat the above argument to show dim $X_i \ge m$ for sufficiently large i.

The finiteness parts of the theorem follow from the fact that elements of A(n, k, ϵ , D) have injectivity radius $\geq \epsilon$ (and so are all LGC(ρ) with $\rho(r) - r$ on [0, $\epsilon/2$]), and the general finiteness theorems of [PV] and [GPW]. Note that dim X \leq n also follows from [PV].

References

- [C] Cheeger, J. Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61-74.
- [GW] Greene, R.E. and Wu, H. Lipschitz convergence of Riemannian manifolds, Pacific Math. J. 131 (1988), 119-141.
- [G] Gromov, M. Groups of polynomial growth and expanding maps, Publ. Math. I.H.E.S. 53 (1981), 53-78.
- [GLP] Gromov, M., Lafontaine, J., and Pansu, P. Structure Métrique pour les Variètés Riemanniennes, Cedic/Fernant Nathan, Paris, 1981.
- [GP] Grove, K. and Petersen, P. Manifolds near the boundary of existence, preprint.
- [Ka] Kasue, A. A convergence theorem for Riemannian manifolds and some applications, *Nagoya Math. J.* 114 (1989) 21-51.
- [N1] Nikolaev, I. G. Smoothness of the metric in spaces with bilaterally bounded curvature in the sense of A. P. Aleksandrov, Siberian Math J. 24 (1983) 247-263.
- [N2] Nikolaev, I. G. Bounded curvature closure of the set of compact Riemannian manifolds, to appear.
- [Pe1] Peters, S. Convergence of Riemannian manifolds, Compositio Math. 62 (1987), 3-16.
- [Pe1] Peters, S. Convergence of Riemannian manifolds, Compositio Math. 62 (1987), 3-16.
- [Pe2] Peters, S. Cheeger's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. Reine Angew. Math. 349 (1984) 77-82.
- [PV] Petersen V, P. A finiteness theorem for metric spaces, to appear, J. Differ. Geometry.
- [P1] Plaut, C. A metric characterization of manifolds with boundary, Max-Planck-Institut preprint no. 89-60.
- [P2] Plaut, C. Almost Riemannian Spaces, preprint--see also Max-Planck-Institut preprints 90-20, 90-47, 90-50.

[R] Rinow, W. Die Innere Geometrie der Metrischen Raume, Springer-Verlag, Berlin, 1961.

.

.

Max Planck Institute fur Mathematik Bonn

Ohio State University Columbus

.