
ZARISKI’S MULTIPLICITY QUESTION AND ALIGNED SINGULARITIES

CHRISTOPHE EYRAL

Abstract. We answer positively Zariski’s multiplicity question for special classes of non-
isolated singularities.

Let f : (Cn × C, {0} × C) → (C, 0), (z1, . . . , zn, t) 7→ f(z1, . . . , zn, t) = ft(z1, . . . , zn), with
n ≥ 3, be a germ (at the origin) of holomorphic function such that, for all t near 0, the germ ft

is reduced. Let νft
be the multiplicity of ft at 0, that is, the number of points of intersection,

near 0, of Vft
:= f−1

t (0) with a generic (complex) line in C
n passing arbitrarily close to 0 but

not through 0. As we are assuming that ft is reduced, νft
is also the order of ft at 0, that is,

the lowest degree in the power series expansion of ft at 0. Let µft
be the Milnor number of ft

at 0. One says that (ft)t is topologically constant (respectively µ–constant, equimultiple) if, for
all t near 0, there is a germ of homeomorphism ϕt : (Cn, 0) → (Cn, 0) such that ϕ(Vft

) = Vf0

(respectively µft
= µf0

, νft
= νf0

). In the special case where (ft)t is a family of isolated
singularities (i.e., when, for all t near 0, ft has an isolated critical point at 0), if n 6= 3,
then the topological constancy is equivalent to the µ–constancy (cf. Lê [7], Teissier [16] and
Lê–Ramanujam [8]).

In [21], Zariski asked the following question: if (ft)t is topologically constant, then is it
equimultiple? More than thirty years later, the question is, in general, still unsettled (even
for isolated hypersurface singularities). The answer is, nevertheless, known to be yes in sev-
eral special cases: for example, for families of plane curve singularities (Zariski [22]), fami-
lies of convenient Newton nondegenerate (isolated) singularities (Abderrahmane [1] and Saia–
Tomazalla [15]), families of semiquasihomogeneous or quasihomogeneous isolated singularities1

(Greuel [4] and O’Shea [13]), families of isolated singularities of the form ft(z) = a(z)+θ(t) b(z),
where a, b : (Cn, 0) → (C, 0) and θ : (C, 0) → (C, 0), θ 6≡ 0, are germs of holomorphic functions
(Greuel [4] and Trotman [19, 20]). For a detailed and more complete list, see the recent author’s
survey article [3].

In this note, we concentrate our attention on families f = (ft)t of the following form:

ft(z1, . . . , zn) = gt(z1, . . . , zn−1) + z2
n ht(z1, . . . , zn),

where g : (Cn−1×C, {0}×C) → (C, 0), (z1, . . . , zn−1, t) 7→ g(z1, . . . , zn−1, t) = gt(z1, . . . , zn−1),
and h : (Cn ×C, {0}×C) → (C, 0), (z1, . . . , zn, t) 7→ h(z1, . . . , zn, t) = ht(z1, . . . , zn), are germs
of holomorphic functions such that, for all t near 0, the germ gt (and ft) is reduced.

In [5], Greuel–Pfister already considered families of this type and they proved the follow-
ing result.

Theorem 0.1 (Greuel–Pfister [5, Proposition 3.2]). Let f = (ft)t with ft(z1, . . . , zn) =
gt(z1, . . . , zn−1) + z2

n ht(z1, . . . , zn) as above. Suppose that, for all t near 0, the germ ft has an
isolated critical point at 0 and the germ g0 is semiquasihomegeneous (or the germ ft has an
isolated critical at 0 and n = 3). If (ft)t is topologically constant, then (gt)t is equimultiple. In
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1In this case, it suffices to assume the semiquasihomogeneity or quasihomogeneity only for the germ f0.
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particular, if, moreover, for all t near 0, the multiplicity at 0 of gt is less than or equal to the
order at 0 of the (nonreduced) germ (z1, . . . , zn) 7→ z2

n ht(z1, . . . , zn), then (ft)t is equimultiple.

We extend here Greuel–Pfister’s result (concerning isolated singularities) to a special class of
higher dimensional singularities. We also prove similar results in the case where gt, all small t,
is convenient Newton nondegenerate or of the form a(z ′)+θ(t) b(z′), where z′ = (z1, . . . , zn−1).

Theorem 0.2. Let f = (ft)t with ft(z1, . . . , zn) = gt(z1, . . . , zn−1)+z2
n ht(z1, . . . , zn) as above.

Assume that, for all t near 0, the germ ft has an s–dimensional aligned singularity at 0. Also
suppose that (ft)t is topologically constant. Let (tk)k be an infinite sequence of points in C

tending to 0. Assume that the coordinates z = (z1, . . . , zn), or some circular permutation of
them, form an aligning set of coordinates at 0 for f0 and for ftk

, for all k ∈ N. Finally suppose
that at least one of the following four conditions is satisfied:

(1) for all t near 0, the germ gt is convenient and has a nondegenerate Newton principal
part with respect to the coordinates z′ = (z1, . . . , zn−1);

(2) for all t near 0, the germ gt is of the form gt(z
′) = a(z′)+θ(t) b(z′), where a, b : (Cn−1, 0) →

(C, 0) and θ : (C, 0) → (C, 0), θ 6≡ 0, are germs of holomorphic functions;
(3) g0 is the germ of a semiquasihomogeneous polynomial with respect to z ′;
(4) n = 3.

Then (gt)t is equimultiple. In particular, if, moreover, for all t near 0, the multiplicity at 0
of the germ gt is less than or equal to the order at 0 of the (nonreduced) germ (z1, . . . , zn) 7→
z2

n ht(z1, . . . , zn), then (ft)t is equimultiple.

For the definition of aligned singularities and aligning sets of coordinates, see Massey [9].
For the basic material about Newton polyhedra, we refer to Kouchnirenko [6] and Oka [11, 12].

Aligned singularities were introduced by Massey in [9]. They generalize isolated singularities
(obtained for s = 0) and smooth one–dimensional singularities (in particular line singularities).
Regarding this class of singularities, Massey proved the following reduction theorem.

Theorem 0.3 (Massey [9, Theorem 7.9]). The following are equivalent:

(1) for all n ≥ 4, the answer to Zariski’s multiplicity question is positive for families (ft)t

of reduced analytic hypersurfaces with isolated singularities;
(2) for all n ≥ 4, there exists an integer s such that the answer to Zariski’s multiplic-

ity question is positive for families (ft)t of reduced analytic hypersurfaces with s–
dimensional aligned singularities (i.e., for all t near 0, ft has an s–dimensional aligned
singularity at 0);

(3) for all n ≥ 4, for all integer s, the answer to Zariski’s multiplicity question is pos-
itive for families (ft)t of reduced analytic hypersurfaces with s–dimensional aligned
singularities.

The proof of Theorem 0.2 is a combination of Massey’s proof of Theorem 0.3 and Greuel–
Pfister’s proof of Theorem 0.1, together combined with the results of Zariski [22], Abderrah-
mane [1], Saia–Tomazella [15], Greuel [4], O’Shea [13] and Trotman [19, 20]. Note, nevertheless,
that Theorem 0.2 is not an immediate consequence of Theorems 0.3 and 0.1 (cf. Remark 0.4).

Theorem 0.2 answers positively Zariski’s multiplicity question for special classes of high–
dimensional singularities without any assumption on the topological constancy, that is, without
any assumption on the homeomorphisms ϕt. We recall that, under some additional hypothe-
ses on the ϕt’s, positive answers to Zariski’s question for high–dimensional singularities al-
ready exist. For example, it is known that the multiplicity is an embedded C1 invariant
(cf. Ephraim [2] and Trotman [17, 18, 20]) and an embedded ‘right–left bilipschitz’ invariant
(cf. Risler–Trotman [14]).
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Let’s give an example where Theorem 0.2 applies. Set gt(z1, z2) = z2
1 + z2

2 + (1 − t) z3
1 and

ht(z1, z2, z3) = t z2
2 , so that ft(z1, z2, z3) = z2

1 +z2
2 +(1−t) z3

1 +z2
3 t z2

2 . For all t sufficiently close
to 0, the singular locus of ft is just the z3–axis (so, ft has an 1–dimensional aligned singularity
at 0). The coordinates (z1, z2, z3) are not aligning, but one checks easily that (z3, z1, z2) are
aligning for ft, all t. Since the singular locus of f : (z1, z2, z3, t) 7→ z2

1 +z2
2 +(1− t) z3

1 +z2
3 t z2

2 is
nothing but the plane in C

4 defined by z1 = z2 = 0 and the Milnor number of ft,z3
: (z1, z2) 7→

z2
1 + z2

2 + (1 − t) z3
1 + z2

3 t z2
2 is independent of t and z3 (in fact, µft,z3

= 1 for all t, z3 near 0),

it follows from Massey [10, Proposition p. 47] that (ft)t is topologically constant. Hence
Theorem 0.2 (4) applies. Since gt is convenient and Newton nondegenerate with respect to
(z1, z2) and semiquasihomogeneous with respect to (z1, z2), this example also shows that the
special classes of high–dimensional singularities that we consider in the cases (1) and (3) (and,
obviously, (2) too) are not empty.

Now, let’s sketch the proof of Theorem 0.2. We start as in [9, Proof of Theorem 7.9]. Let
ζ = (ζ1, . . . , ζn) be a circular permutation of the coordinates z = (z1, . . . , zn). We use the
notation ζp := zn for the ‘special’ coordinate zn. Suppose that ζ is aligning for f0 and for ftk

at 0, all k. Then, since (ft)t is a topologically constant family of aligned singularities, the Lê
numbers (cf. [9, Definition 1.11]) λi

f0,ζ (0 ≤ i ≤ n−1) of f0 at 0 with respect to ζ are equal to the

Lê numbers λi
ftk

,ζ of ftk
at 0 with respect to ζ, for all k large enough (cf. [9, Corollary 7.8]).

Hence, by an inductive application of the Massey’s generalized Iomdine–Lê formula (cf. [9,
Theorem 4.5 and Corollary 4.6]), for all integers j1, . . . , js such that 0 � j1 � j2 � . . . � js,

the germs f0+ζ
j1
1 +. . .+ζjs

s and ftk
+ζ

j1
1 +. . .+ζjs

s have an isolated singularity at 0 and the same
Milnor number at 0, provided k is large enough2. In particular, by the upper semicontinuity of
the Milnor number, this implies that, for all t sufficiently close to 0, the germ ft +ζ

j1
1 + . . .+ζjs

s

has an isolated singularity at 0 and the same Milnor number, at 0, as f0 + ζ
j1
1 + . . . + ζjs

s . In

other words, the family (ft + ζ
j1
1 + . . . + ζjs

s )t is a µ–constant family of isolated singularities.

This implies, in particular, that gt + ζ
j1
1 + . . . ζjs

s , where, if 1 ≤ p ≤ s, the term ζ
jp

p is omitted,
has an isolated singularity at 03 for all small t. Hence, as in [5, Proof of Proposition 3.2], by

applying [5, Lemma 3.1] to the family (ft + ζ
j1
1 + . . . + ζjs

s )t with the hyperplane in C
n defined

by ζp = 0, one gets that (gt + ζ
j1
1 + . . . + ζjs

s )t, where again, if 1 ≤ p ≤ s, the term ζ
jp

p is
omitted, is also a µ–constant family of isolated singularities. Now, according to the case (1) or
(3) that we consider, it follows from our hypotheses that, if the ji’s are chosen sufficiently large,

then for all t sufficiently close to 0, the germ gt + ζ
j1
1 + . . . + ζjs

s (ζ
jp

p omitted) is convenient

and has a nondegenerate Newton principal part with respect to the coordinates ζ̃ ′ (case (1)) or

g0+ζ
j1
1 +. . .+ζjs

s (ζ
jp

p omitted) is the germ of a semiquasihomogeneous polynomial with respect

to ζ̃ ′ (case (3)). Since the ji’s can be chosen arbitrarily large, Theorem 0.2 then follows from
the results of Abderrahmane [1] and Saia–Tomazella [15] (case (1)), Greuel [4] and Trotman
[19, 20] (case (2)), Greuel [4] and O’Shea [13] (case (3)), and Zariski [22] (case (4)).

Remark 0.4. If one replaces the word semiquasihomogeneous by quasihomogeneous in Theo-
rem 0.2 Part (3), the argument above does not work. Indeed, in this case, g0 + ζ

j1
1 + . . . + ζjs

s

(ζ
jp

p is omitted) is neither quasihomogeneous with an isolated singularity nor semiquasiho-
mogeneous, so that we cannot apply the result of Greuel [4] and O’Shea [13] (we recall that

2According to [9], since we are using the coordinates (ζ1, . . . , ζn) for the germ ft, we use the coordinates

ζ̃ = (ζs+1, ζs+2, . . . , ζn, ζ1, . . . , ζs) for the germ ft + ζ
j1
1

+ . . . + ζ
js
s .

3For the germ gt, we use the coordinates ζ ′ = (ζ1, . . . , ζn), where ζp is omitted. For the germ gt +ζ
j1
1

+ . . .+

ζ
js
s , where, if 1 ≤ p ≤ s, the term ζ

jp
p is omitted, we use the coordinates ζ̃′ = (ζs+1, ζs+2, . . . , ζn, ζ1, . . . , ζs),

where ζp is omitted.
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a quasihomogeneous polynomial is not semiquasihomogeneous if it has a nonisolated criti-
cal point at 0). By contrast, one can replace semiquasihomogeneous by quasihomogeneous in
Theorem 0.1. Indeed, the hypothesis for the ft’s of having an isolated critical point at 0 auto-
matically implies a similar property for the gt’s and, consequently, if g0 is quasihomogeneous,
then it is necessarily semiquasihomogeneous too. This shows that Theorem 0.2 is not an imme-
diate consequence of Theorems 0.3 and 0.1. Note that one can replace semiquasihomogeneous
by quasihomogeneous with an isolated singularity in Theorem 0.2 Part (3)
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