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Consider the 2x2 matriees with entries in a field k

= r1 tl A =
lO 1 J' 0

r1 01
lO 1 J •

If k 1s the field of real numbers m, lim At = AO has the
t-+O

standard definition. For an arbitrary field k , we may

consider the family {A} as a subset of the variety
t t € k

of 2x2 matrices over k and say that lim At = AO in the
t-+O

sense that A
O

iso in the (Zariski) closure of the set {At}
t * 0

In studying limits in the algebraic sense, two different

viewpoints have arisen: deformations and orbit closure.

In deformation theory, the above example would be

written
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and we would say that At is adeformation of AO . As an
-1

orbit cl05ure example, we would note that At = StA1St

where

and 50 Ao is in the (Zariski) closure of the orbit of A
1

under the conjugation action of GL2 (k) on the variety of

2x2 matrices. For orbit closure, we say AO is a

degeneration of A
1

• (Note the duality in viewpoint between

11 deformation 11 and 11 degeneration 11 • )

The family

= f·t 01
La 1 J

is adeformation of BO ' but BQ is not adegeneration of

B1 · It is easy to verify that

is adegeneration of

c = f1 11
1 La 2J

but no one-pararneter farnily giving adeformation of Co
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contains C1 ·

Deformation theory was originally developed in the

category of analytic structures (see, for instance [12]

and [15]). The basic ideas of the deformation theory of

analytic structures motivated the deformation theory of

algebraic manifolds (see, for instance, [2] and [19]),

and of algebras (see, for instance, [9] and [17]).

The orbit closure questions appear only in situations

which can be formulated in terms of group actions.

Nevertheless, there are many categories in which both

deformations and orbit closure may be considered: nxn

matrices [8], associative algebras [9],Lie algebras ([17],

[21], [6], [10]), representations of a group or of an

-algebra ([13], [16]), representations of a quiver [14],

linear systems of differential equations [20], etc. (This

list is far fram complete.)

Understanding the'differences between defarmations

and degenerations, we were surprised to find a common

formulation for these viewpoints, which we present here.

In fact, we establish that if a finite dimensional Lie

algebra ~O is in the closure of the orbit of a Lie algebra

~1 ' then there is such adeformation family of ~O' which

eontains a Lie algebra isomorphie to ~1 .

In order to make the exposition readable, we will

concentrate on one category, that of n-dimensional Lie

algebras, although occasionally we will use examples fram

the eategory of nxn matriees. In the fallawing, the reader
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may substitute the category of his or her choice.

We would like to thank Fritz Grunewald for pointing

out that every degeneration of finite dimensional Lie

algebras can be realized by adeformation.
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1. Deforrnations and D.egenerations

Throughout this paper, we consider an n-dimensional

Lie algebra as an element of Hom(A
2

V,V) , where V is an

n-dimensional vector space over an algebraically closed

field

L of

k • The set of Lie algebras is an algebraic subset

2
Hom(A V,V) , and the general linear group GL (k)

n

acts on L by:

(g • lJ) (x,y)
-1 -1'

= g(~(g x, g y))

The orbits under this action are the isomorphism classes, and

we say that ~1 degenerates to lJ O
, or ]Ja is a

degeneration of lJ 1
, if lJ O is in o (~ 1 ) the Zariski

closure of the orbit of lJ 1
. For example, every Lie algebra

degenerates to the abelian Lie algebra via:

-1 -1
(t I· lJ) (x, y ) = t 11 (tx, t Y) = t II (x , y )

Then
-1

1im t I· lJ = lJ , where. 0 fJO(x,y) = 0 •

The intuitive definition of a deformation of

one-parameter family

2= lJ O + t~1 + t ~2 + •••

llO is a
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~(t) E L for each t € k . The

example above is adeformation; we have

~(t) = ~O + t~

Note that this definition of deformation does not

require the vector space V to be finite dime~sional; in

fact, deformations of infinite dimensional Lie algebras

have been studied (see, for instance, [5] and [7]' and the

infinite dimensional case is of great interest to physicists

(see, for instance, [4]). Because the orbit closure

formu1ation requires the Lie algebra structures to 1ie in

a variety (i.e. a finite nurnber of structure constants) ,

deformation theory for infinite dimensional Lie a1gebras

has no reasonab1e orbit.closure analog.

Of course, even in the case of finite dimensional Lie

a1gebras, not every deformation is adegeneration and vice

versa, "as we demonstrated in the introduction for the case

of matrices. One point in the intersection of these two

theories is the following.

Proposition 1.1 If ~(t) i5 adeformation of ~o parametrized

by t, then ~O € U O(~(t))
t€k

But a more unexpected connection between deformation and

orbit closure arises when one considers formal deforrnations
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more generally. From the viewpoint of formal deformations,

we consider a deformation ~(t) not as a family of Lie

algebra structures, but as a Lie algebra over the field

k((t)) . Then a natural generalization is to allow more

parameters, i.e. use k[[t 1 , ••• ,tr ]] or eonsider k-algebras

other than power series rings. (By "k-algebras" we mean

associative, eommutative k-algebras with identity.)

Definition Let the parameter ring A be a Ioeal finite

dimensional algebra over k and let ~O be a Lie algebra

over k (not neeessarily finite dimensional). If ~A is a
2

Lie algebra in Hom(A V,V) , where V is a free A-module,

then for a morphism f : A ---> B , ~A ~A B is a Lie

algebra in Horn(A 2 (V0B), V0B) which is defined in the

natural way. A formal deformation of ~O parameterized

by A is a Lie algebra

~A 0A k = 110

over A such that

where the tensor product is defined by the residue map

~ ---> A/mA = k •

More generally, if A is a complete loeal k-algebra

(i.e. A = lim A/m~ ) such that
<--

is finite dimensional

for all n, then adeformation of the Lie algebra ~O

parametrized by A is a Lie, algebra over A such

that 11 = 1im 11 where
"""A """n '<-

is adeformation of lJ O
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parametrized by A/m~+1 . Two deformations and ~I
A

of

~o pararnetrized by Aare equivalent if there is a Lie

algebra isomorphism ~A ~ ~i which induces the identity

map on ~A 0 k = ~O ·

In the case that the parametrization algebra A is

k[[t]] I this definition coincides with Gerstenhaber's

concept of deformation [9].

The analogous viewpoint in the theory of orbit closure

is the follo~ing characterization of orbit closure, which

we present here for the category of n-dimensional Lie

algebras, although it holds for many algebraic group actions

on varieties.

Theorem 1.2 [10] Let ~ , ando ~1 be n-dimensional Lie

algebras over k . The Lie algebra ~O is adegeneration

of ~1 (i.e. ~O E O(~1) ) if and only if there is a discrete

valuation k-algebra A with residue field k , whose

quotient field K is finitely generated over k of

transcendence degree one, and there is an n-dimensional

Lie algebra over A such that

and ~A 0 k = ~O
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The orbit closure example given at the beginning of

this section would be characterized as follows. Let "

A = k[t]~t> ' the polynomial ring localized at the prime

ideal <t>, and let ~A = t~ ." Then ~ is K-isomorphic

to ~A via the isomorphism t- 1
1 (K = k(t)) , and

~A ~ k = ~O •

From Theorem 1.2, and ignoring the conditions on A

specified in the definition of formal deformation, we could

say that ~O E O(~1) if and only if ~1 is K-isomorphic to

a formal deformation of ~O parametrized by A, for some

A satisfying the conditions of Theorem 1.2. A crucial

difference between the definition of formal deformation

and the statement ·ofTheorem 1.2 is that, in the former, the

k-algebra A is Artinian, and in the latter it is Noetherian.

On the other hand, if we consider the completion A

of the discrete valuation k-algebra A" from Theorem 1.2,

then we see that every degeneration can be realized by a

deformation. If ~A is the Lie algebra Qver A defining

the degeneration (i.e. ~A ~ k = ~O and ~A @ K ~ ~1 @ K ),

let ~n = ~A 0 A/m~+1 and let ~~ = lim ~n . Then
<-

~n ~ k = ~O for all n . Thus ~~ is a formal deformation

of ~O · And so we have:

Proposition 1.3 If ~O is in the boundary of ,the orbit of

~1 ' then this degeneration defines a non-trivial deformation

of ~O •



(A deformation of ~o

- 10 -

is trivial if it is equivalent

to ~O 0 A .)

Since every degeneration can be realized by adeformation,

then the existence of non-trivial degenerations to ~O

implies the existence of non-trivial deformations of ~O ·

For a counterexample of the converse in a different category,

consider conjugacy classes of nxn matrices. We know from

[8] that a matrix with one Jordan block for each eigenvalue

is adegeneration of no other non-equivalent matrix, but

every matrix has non-trivial deformations.

So far in this comparison of deformation and degeneration,

we have considered only the one-parameter case. Even though

Theorem 1.. 2 specifies that the quotient field K of the

k-algebra A has transcendence degree on.e over k (one

parameter), the proof of the theorem does not require such

a restriction. (The theorem is stated in this way to

establish that the.degeneration can be realized by such an

A , not that it must be.) And so, just as one may generalize

Gerstenhaber's concept to include k-algepras like k[[t" ... ,tr ]]

one may also realize orbit closure by k-algebras with

transcendence degree greater than one.



- 11 -

2. Versal Deformations and Versal Degenerations

An important concept in deformation theory is that of a

versal deformation, that is, one deformation whieh induees

all others. Since this deformation is not unique, we eall

it "versal" rather than "universal".

Definition Adeformation lJ R of 1-1 0 parametrized by a

eomplete loeal k-algebra "R is called formally versal if

for any deformation of 1-1 0
parametrized by a eomplete

Iocal k-algebra A, there is a morphism f : R ---> A such

2 2
"that the induced map mRfmR ---> mAfmA is unique and .

~R @R A is equivalent to ~A·

The following theorem establishes the existenee of a

versal deformation in the case that the 2-eohomology spaee

with coefficients in the adjoint representation is finite

dimensional. Of course, this condition always holds for

finite dimensional Lie algebras.

Theorem 2.1 [7] Let ~O be a Lie algebra over k (not

2
necessarily finite dimensional). If H (~O'~O) is finite

dimensional , then there is a formal versal deformation

of llO •
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This theorem was established by applying a theorem of

Schlessinger [19, 2.11] to the category of Lie algebras.

Schlessinger's construction of a versal deformation is

based on the fact that the parameter ring A is Artinian.

His construction does not provide a method for computing

versal deformations, and, for a given Lie algebra, it

remains a difficult problem to compute a versal deformation.

One might ask if such a versal object exists in the

case of orbit closure, or even if such an idea makes sense.

First we note that the statement analogous to "1-1 1
is a

deformation of 1-1 0 " is the dual statement "1-10 is a

degeneration of l-1 1 ". The existence of a versal deformation

depended on the fact that the parameter rings were Artinian,

and the analogous rings in the orbit closure case are

Noetherian. Therefore we might expect such a versal object

to induce degenerations, the dual of deformations. With this

in mind, we state the following definition.

degeneration of

be an n-dimensional Lie algebra. A versalDefinition Let

is an n-dimensional Lie algebra over

a k-algebra R such that for any n-dimension~l Lie algebra

lJA over a discrete valuation k-algebra A which defines a

degeneration 1-1 0 of 1-1 1
(i.e. 1-1 A @ K ~ 1-1 1

@ K , where K is

the quotient field of A , and lJA
~ k = 1-1 0

) , there is a

morphism f . R --> A such that ( 1-1
R

~ A) o K and 1-1A ~ K.
are isomorphie over K .
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To construct a k-algebra Rand a versal degeneration

I:lR ' 'we use the algebraic geometry involved. The coordinate

ringof the algebraic set of n-dimensional Lie algebras is

k[Xijk]/I , where the X. 'k are the coordinate functions of
~J

the structure constants and I is generated by the anti-

cornrnutativity and Jacobi conditions. Let R be the coordinate

ring of O(~1) ; then R = k[Xijk]/J , for some ideal J

containing I . Let ~R be the Lie algebra over R defined

by the structure constants

X. 'k in the quotient ring
~J

in Rn, let

(X~jk) (Xijk

R ); i.e. for

is the image of

e, = (0,.ee,1,eeeO)
~

~R(e.,e,)
1. J

= E Xijk ek e
k

The elements of O(~1) (the degenerations of ~1 are the

Lie algebras over k derived from ~R e An element ~O of

the algebraic set O(~1) defines the evaluation morphism

R --> k given by Xijk ----> a ijk '

where . ~O has structure constants (aijk ) relative to a

fixed basis of k n . From the definition of e O ' we have:

Thus the coordinate ring R of O(~1) and the Lie algebra

~R are natural candidates for a versal degeneration.
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Theorem 2.2 The Lie algebra ~R , where R i5 the coordinate

ring of o (~ 1 ) , i5 a versal degeneration of ~1 .
Proof: Let ~A define adegeneration of ~'1 , i.e.

~A ~ K R:f ~1 0 K , where K is the quotient field of A ,

f
1

: R'---> k be given by

(c ijk ) are the structure con5tants

where i i5 the inclu5ion of k

into A. It follows that

Remark: Although the versal degeneration ~ which we

constructed i5 not defined over a local ring (one of the,

conditions in Theorem 1.2), for a given 4egeneration ~O

of ~1 we can choose a localization RM of R such that

~I\t 0 k = ~O '

where ~R = ~R 0 RM · Simply let M be the maximal ideal
m

of R corre5ponding to ~O (M = ker e O) . A natural

que5tion 15: does ~R define adegeneration of ~1 to
M

~O ? That is, do we have

~R 0 K R:f ~1 0 K ,
M

where K is the quotient field of R?
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Remark: An analytic version of deformation and versal

deformation which exploits the orbit structure is

considered, for instance, in the case of nxn matrices

over ~, by Arnold [1]. (In particular, the deformations

A(A) in k[[t
1

, ... ,t
r

]] and parameter changes

r s
~ : ~ ---> ~ are required to be holomorphic at 0.)

He shows that adeformation A(A) is a versal deformation

of A = A(O)o if and only if A is transversal to the

orbit (conjugacy class) of A(O) at 0 (i.e. the tangent

space to the rnanifold of matrices at A(O) is the surn of

the tangent space to the orbit at A(O) and the image

under of the parameter space r
.~ ). It is natural to

consider the same idea from an algebraic viewpoint, and,

in fact, an algebraic formulation of this idea appears in

[ 6 ] •
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3. Rigidity and Cohomology

For both orbit closure and deformation theory, we may

consider rigidity. In the first case, a rigid Lie algebra

~ is one whose orbit is open (and so no Lie algebra not

isomorphie to n degenerates to ~). In the second case,

a (~ormally) rigid Lie algebra is one which has no non-trivial

formal deformations. From Proposition 1.3, we see that if

~o is rigid in the sense of deformation theory, then there

are no non-trivial degenerations to ~O . However, the

absence of non-trivial degenerations does not necessarily

imply that the orbit iso open (for conjugacy classes of

matrices, no orbit is open) .

In both cases we have the same ~igidity theorem: a Lie

algebra ~ i8 rigid if the 2-cohomology of

eoefficients in the adjoint representation

~ with

2
H (~,~) vanishes.

(For orbit closure see "[ 17] i for deformation theory- see

[9].) Für instance, if a finite dimensional Lie algebra ~

is semisimple or if ~ is a Borel subalgebra of a finite

dimensional semisimple Lie algebra, then H2(~,~) = 0 and

so ~ is rigid with respeet to orbit elosure and with

respect to deformation [3, 24.1].

In the category of commutative algebras, rigidity with

respect to deformation is equivalent to the vanishing of the

symmetrie 2-eohomology space H2(~,~)s [11].

In the case the orbit closure, the proof of the rigidity
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theorem is based on the idea that there is an injection

tangent space of ~ to L

tangent space of lJ to O(lJ)

2--> H (lJ,lJ)

and from this it follows that lJ is rigid if 2
H (lJ,lJ) = 0 •

In the ease of deformations, the elements of

eorrespond to infinitesimal deformations.

Definition Adeformation of lJ o parametrized by A is

of order r if m~+1 = 0 . Adeformation of order 1 is ealled

an infinitesimal deformation.

From Seetion 1, reeall the definition of a formal

deformation parametrized by a complete loeal ring. A

deformation of parametrized by A is a projeetive

limit lim lJn ' where lJn is adeformation of lJ O
<- n+1

parametrized by A/mA . Then if lJA is adeformation

parametrized by a eomplete loeal ring, the Lie algebra lJ r

is adeformation of order r.

For instance, if A = k[ [t1 , ... ,ts ]] , and llA is a

deformation of lJ O ' then lJ
1

can be written

s
lJ 1 = 1:10 + E

i=1
t. tP. •

1. 1.

It fellows frem the Jaeobi identity that tP·1.
is a 2-eocyele
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for all 1. If ~. is a 2-coboundary for some i, then
1.

there is an equivalent deformation where the t.-term 1s zero
1.

and at least one of the non-zero terms of lowest degree

cohomologous to zero [9]. It follows that if

1nvolv1ng t.
1.

has a coefficient wh1ch is a 2-cocycle not

2
H ('tJO,lJ

O
) = 0 ,

then every infinitesimal deformation of lJ O is trivial.

In the case of an arbitrary complete loeal ring, the

rigidity theorem is established by a similar argument.

If
2

H ('tJO,lJ
O

) * 0 , then a maximal set of non-trivial

pairwise non-equivalent infinitesimal deforrnations forms a

2 2
basis of H ('tJO,lJO) • (For ~ E H (lJO,lJ

O
) , ehoose one of

the generators C of the parameter ring A; then lJ O + e~

is an infinitesimal deformation of lJ O .)

3The 3-cohomology space H (lJO,lJ
O

) can be interpreted as

obstructions to extending an infinitesimal deformation to a

higher order deformation. These obstructions are closely

connected with the Massey operations in the cohomology space.

(See [7].)

The 3-cohomology space also appears in the theory of

degenerations. In the case of degenerations of Lie algebras

over m or ~ , there is an analytic map from H2
(lJ,lJ) to

3
H (jJ,lJ) whose zeroes parametrize a neighbourhood of lJ [18].

In particular, if this rnap 1s injective, then the orbit of

lJ is open.



- 19 -

References

[1] V.I. Arnold, On matriees depending on parameters.

Uspekhi Mat. Nauk 26, N. 2 (158), 1971, 101-114.

Translation: Russian Math. Surveys, 29-43.)

[2] M. Artin,"Algebraization of formal moduli In in:

Global Analysis, Prineeton Univ. Press, Princeton.

N.J. & Tokyo Univ. Press, Tokyo, 1969, 21-71.

[3] C. Chevalley and S. Eilenberg, Cohomology theory

of Lie groups and Lie algebras, Trans. Amer. Math.

Soe ., 6 3 (1 9 48), B5 -1 2 4 •

[4] L. Dolan, Why Kae-Moody algebras are interesting in

physics, in Lectures in Applied Math. (AMS), 21 (1985),

307-324.

[5] A. Fialowski, Deformations of nilpotent Kac-Moody

algebras, Studia Sei. Math. Hung. 19 (1984).

[6] , Deformations of Lie algebras, Mat.

Sb0 rny ik USSR, 198 5, 12 7 (1 6 9), N. 4 (8), 4 76 - 48 2 .

[7] An exarnple of formal deformations of

Lie a1gebras, NATO-ASI Conference on Deformation

theory of algebras and applications, I1 Ciocco,

Italy, 1986. Proeeedings.



[ 8 ]

- 20 -

M. Gerstenhaber, On nilalgebras and linear varieties

of nilpotent matrices, 111, Annals of Math. 70

(1959), 167-205.

[9] , On the deformations of rings and

algebras, Ann. of Math. 79 (1964), 59-103.

[10] F. Grunewald and J. O'Halloran, A characterization

of orbit closure and applications, Max-Planck-Institut

für Mathematik, preprint, 1986.

[11] D. Knudson, On the deformation of commutative algebras,

Trans. Amer. Math. Soc. 140 (1969), 55-70.

[12] K.Kodaira and D.C. Spencer, On deformations of complex

analytic structures, i-lI, Ann. of Math. (2) 71· (1960) ,

43-76.

[13] H. Kraft, lI Geometric methods in representation theoryll

in: Representations of Algebras, Springer-Verlag,

Berlin, Heidelberg, New York, 1982.

[14] H. Kraft and Ch. Riedtmann, Geometry of representations

of quivers, Institut Fourier Grenoble, preprint no. 49,

1986.

M. Kuranishi, On deformations of compact complex

structures,Proc. Internat. Congress Math. (Stockholm

1962), Inst. Mittag-Leffler, Djarsholm (1963),

357-359.



- 21 -

[16] A. Lubotsky and A. Magid, Varieties of representations

of finitely generated groups, Memoirs of the AMS,

No. 336, AMS, Providence, Rhode Island, 1985.

[17] A. Nijenhuis and R.W~ Richardson, Jr., Deformations

of Lie algebra struetures, J. Math. Meeh. 17 (1967),

89-105.

[18] D.S. Rim, Deformation of transitive Lie algebras,

Ann. 0 f Math . (1 96 6), 3 39 - 35 7 .

[19] M. Schlessinger, Funetors of Artin Rings, Trans.

Amer. Math. Soc. 130 (1 968), 208 - 2 2 2 .

[20] A. Tannenbaum, Invariance and System Theor~: Algebraic

and Geometrie Aspects, Lecture Notes in Math. 845,

Springer-Verlag, 1981.

[21] M. Vergne, Varieties des algebres de Lie nilpotente,

thesis, Fae. Sei. de Paris (1966).



ON A POTENTIAL FUNCTION FOR THE

WEIL-PETERSSON METRIC ON TEICHMULLER

SPACE

by

A.J. Tromba

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D-SjOO Bonn 3

MPI 87-3



ON A POTENTIAL FUNCTION FOR THE

WEIL-PETERSSON METRIC ON TEICHMULLER

SPACE

A.J. Tromba

§Q Introduction

In 1956 Weil suggested a Riemannian metric on Teichmüller space

and in [1] Ahlfors proved it was Kähler, Somewhat laterhe showed that

it had negative Ricci and holomorphic sectional curvature. In [7]

the author showed that the sectional curvature is negative. In 1982

we proved the existence of a potential ~unction for this metric.

In the ensueing.years this result has been used by·several authors

[5],[8]. R~cently [~] it was used in Jost1s own cornputation of the

curvature of Teichrnüller space, and was rediscovered by Wolf [8]

in his 1986 thesis. The growing interest in this result makes it

worthwhile to have a proof in the literature.

§1 Prelirninaries

Let M be an oriented compact, aM:: <p * and let M_
1

be the

Tarne Frechet manifold [2] of Riernannian metrics of constant negative

curvature on M. The tangent space of M_1 at a metric, g,TgM_1

consists of those (O,?) tensors h ·on M satisfying the equation

(1.1) -b,(trgh) + 0gOgh + ~(trgh) :: 0

where tr h ~ gijh, , is the trace of h w.r.t. the rnetric tensor
g 1.J

g, " 00 h is the double covariant divergence of h w.r.t. g
1.J g g

and ~ is the Laplace-Beltrarni operator on functions. For exarnple

see [2] for details.

Let Vo be the Tarne Frechet Lie group [2] of diffeomorphisrns

of M which are hornotopic to the identity. Then Vo acts on

* the case with boundary follows analogously
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M_ 1 by pull back, i.e. f ~ f*g. Teichmüller 5pace i5 then

defined as

( 1 • 2 )

co
In [2],[5] we show that T(M) is a C finite dimensional mani-

fold diffeomorphic to :IRq, q = 6 (genus M) - 6. The L2-metric on

M_ 1 i5 given by the inner product.

( 1 • 3 ) «h,k» g
1

= 2 IM trace (HK)d~g

where

from

-1
H = g h,

hand k

K = g-1 k are the (1 :1) tensors on M obtained

via the metric g, or "by rai5ing an index", i.e.

Hi. ik
J = g h kj

and similarly for K. Finally ~g i5 the volurne element induced on

M by g and the given orientation.

The inner product (1.3) 15 Va invariant. Thus Va acts

5moothly on M_
1

as a group of isometries with respect to this rnetric,

and consequently we have an induced rnetric on T(M) in such a way

that the' proj ect i ve rnap 'IT : M_ 1 ~ M_
1
iVa becornes a Riemannian

submersion [ 2 ]. In [ 3] it is shown that this induced metric 1s

precisely the metric originally introduced by Weil.

Let <,> be the induced metric on T(M). We can eharaeterize

<, > as follows. Frorn [2 ] we ean show that given g E M_ 1 every

h E T M 1 can be -uniquely written as
g -

( 1 • 4 )
TT

h = h + L g
X

where Lxg 1s the Lie derivative of g w.r.t. same (unique X) and

h
TT

is a trace free, divergence free, symmetrie tensor. Moreover the

decornposition (1.4) is L2-orthogonal. Recall that a conforrnal

coordinate system (where g .. = AO .. , A some smooth positive
1.J 1.J

function) is also a complex holomorphic coordinate system. In this

system

where Re is " rea l part ll and E;(z)dz 2 is a holomorphic quadratic
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differential. In faet traee free, divergenee free symmetrie two

tensors are preeisely the real parts of holomorphie quadratie

differentials.

Now Lxg is always tangent to the orbit of Va through g.

We say that LXg is the vertical part of h in deeomposition 1.4.

Similarly we.say that hTT represents the horizontal part of H.

Given h,k E T [g] T (M) there are unique horizontal veetors 11,k ( Tg M_
1

sueh that dTI(g)h = hand dTI(g)k = k. Then

Suppose now that go E M_1 is fixed and that s! (M, g) ~ (M,g 0)

is a smooth C' map homotopie to the identity and is viewed as a

map from M with some arbitrary metric g E M_ 1 to M with its

metric.

Define the Diriehlet, energy of s by the formula.

(, .5)

where

Eg(S) = ~ IM Idsl
2
d~g

Idsl 2 = traee ds*ds depenäs on both g and

(1 • 6 )

By the embedding theorem of Nash~Moser we may assume that

(M,gO) is isometrically embedded in some Euclidean mK . Thus we

·can think of s: (M,g) ~ (M,gO) as a map iJ.1to m K and

Diriehlet's functional takes the equivalent form

1 k i i
Eg(S) = - L Ig(x) <'V s (x),'i/ s (x»d~

2 i= 1 g g g

There is another, equivalent, and useful way to express (1 • 5 ) and

(1 • 6 ) using loeal conformal cordinate systems g .. ::::: 00 .. and
~J ~J

(gO) ij = po .. on (M,g) and (M,gO) respeetively, namely
~J

1 [ P (-s (z) ) I s I 2 + P ( 5 ( Z) ) I 5-1 2 ] d zdz( 1 • 7) . Eg (s ) = 4" IM z z

For fixed g, the eritical points of E are there said to

be harmonie maps. The follwing result is due to Sehoen-Yau [ 9].

Theorem. Given metries g and" go there exi5t5 a unique harmonie
, ,

map s(g): (M,g) ~ (M,gO) which i5 hornotopic to the identity.

Moreover 5(g) depends äifferentially on g in any Hr topology,
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co
r > 2, and is a C diffeomorphism.

Consider now the function

g ----+ E (s(g))
g

This funetion on M_~ is V-invariant and thus ean be viewed

as a funetion on Teiehmüller spaee.

For fixed g, the eritical points of E are then said to be

harmonie maps. The following result is due to Sehoen-Yau [9].

Theorem. Given metries g and go there exists a unqiue harmonie

rnap s(g) (M, g) ~ (M,gO) whieh is hornotopie to the identity.

Moreover s(g) depends differentially on" g in any Hr topology,

and is
co

r > 2, a C diffe,omorphism.

Consider now the funetion

g ----+ E (s(g))
g

This funetion on M_ 1 is V-invariant and thus ean be viewed

as a function on Teiehmüller spaee. To see this one must show that

Ef * (s(f*(g))) = E (s(g))
g . g

Let e(g) be the eornplex strue~~re assoeiated to g, and

indueed by a eonformal eoordinate system for g. For f ( Vo '
f : (M,f*e(g)) ----+ (M,e(g)) is holomorphie and eonsequently sinee

the cornposition of harmonie maps and holomorphie maps is still

harmonie we may eonelude, by uniqueness that

S(f*g) = s(g) 0 f

Sinee Dirichlet's funetional is invariant under eomplex holomorphie

ehanges of coordinates it follows immediately that

Ef * (g) (s (g) of) = Eg (s (g))

Consequently for [g] E M_ 1 IVo define the

E:M_1jVo~R

co
C smooth funetion
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E[g] = E (s(g)) •g

5

§2 The Main Result

Theorem 2.1 _[go] is the only eritieal point of E. The Hessian

of E at [gO] is given by

2--d E[gO] (h,k) = 2<h,k>

h,k f T[cr ]T(M). That is, the seeond variation of Diriehlet's energy

funetionJOis (up to a positive eonstant) ~eil-Petersson metrie.

Proof. We begin by eomputing the first derivative dE[gO]. We

again view a map S : (M,g) -->" (M,gO) as a map into mk

Consider the two form

represents a traee free,

(M,gO). Henee Re ~(z)dz2

at gO. Finally

We start by proving

Proposition 2.2. If 5: (M,g) ~ (M,gO) is harmonie the form

~(z)dz2 is a holornorphie quadratie differential on the eomplex
2

eurve (M,e(gO))' and thus Re ~(z)dz

divergenee free symmetrie two tensor on

is a horizontal tangent veetor to M_
1

where h is the horizontal left of

Proof (of 2.2)

We have Diriehlet's funetional

1 ~
E(g,s) = - L

2 i=1

i i
(\7gS ,'V 5 )d~g g

Let ~

(M , go )

Then if

Suppose s is harmonie. Let Q denote the seeond fundamental form
k ~of (M, gO) c IR • Thus for eaeh p E: M, Q (p) : T M x T M ~ TM.

P P P
denpte the (non-linear) Laplacian of maps from (M,g) to

and ~ß denote the Laplaee-Betrami operator on functions.

s is harmonie we have
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(2 .4)
2

o ~ 6s = 6 ßs + L
j:= 1

Q(s) (ds(e .. ) ,ds(e.l)
J J

e
1

(p), e 2 (p) on orthonormal basis for

E;(z)dz 2 will be holomorphic of

..1..(
k 3s i i
L äZ

. ~) = 0
3Z: i=1 3z

T M with respect to g.
p

But this is equal to

2 k . 3s i
- \' ~
o i~1 6 ßs • ~

where in conformal coordinates g .. = oa ..
~J ~J

By (2.4) we see that

=

this, in time, is equal to

2 k .. 2 . 3s i
L L Sl ~ ( 5) (ds (e . ) , d 5 (e . ) ). az

o i=1 j=1 ] ]

2 2 J 35 3 ~
a j~1l I rl (s) (ds (e j ) ,ds (e j ». 8x + irl (s) (ds (e j ) ,ds (ei).o 8~J

Since n(p) takes values in T M~ it follows that both the real
p

and imaginary parts of the expression vanish. Thus ~(z)dz2 is

holornorphic.

3E 3E
Recall that 5 is harmonie iff as(g,s) = O. We now compute ag .

If we have local coordinates represented by (x,y) EW, then in this

coordinate system

1 k -1 2 2
E (g , s) ="2 I f M. g (x) <G \} 5 , 'iJ 5 >JR2 I de t G dxdY

2=1

oS2 as
2

as
2

G { }where v is the vector (ax-'ay-)' is the matrix gij of g

and < , >JR2 denotes the ordinary JR2 inner product and

Idet G dxdy is the local representation of d~g. In the following

computation we adopt the convention, that summations over the index

2 will be understood.

(2 .5)
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where H = {h .. } is the matrix of the syrnrnetries tensor h in
1.J

these coordinates. Here we lise the fact that the derivative of
-1 -1 -1G --7 G is H~ G HG • Suppose we look at this first

derivative in conformal coordinates (gO)" = AO ... Then if h
1.J 1.J

is horizontal the second term in (2.5) vanishes (h is trace free)

and

dE ~
dg(gO,s)n ::i -

Since h
11

= -h22 this is equal to

(2 .6)

Now

. 9-
(~ax

9-
i ~; ) (dx + d y) 2 = 2E;(z)dz

is a quadratic differential. But

If s is, harmonie 2Re(s(z)dz ) is a trace free divergence free

tensor. Let us compute

This inner product is qiven locally by the expression

(2 .7)

where kac is the coordinate representative of the two tensor

E;(z)dz 2 . Therefore

Thus in conformal coordinates (2.7) is equal to
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J 2\. {kachac }dxay

= J 2\.. {k 11h11+ 2k 11 h12 + k 22h22 }dxdy

Since 'k 11 = -k22 ' h 11 = -h22 this equals

Comparing this with expression (2.6) establishes the forrnula

However E[g] ~ E(g,s(g)). Since

This imrnediately irnplies that

s(g) is harmonie

dE 2
dg[gO]h = -«Re ~(z)dz ,h» go

which establishes 2.2. We should rernark that this formula teIls us

that the gradient of Diriehlet's.function on Teichmüller space is

represented as a holomorphie quadratic differential.

To complete theorem 2.1 we need to cornpute a seeond derivative.

Again working locally and thinking of the map s as now being

fixed we see that for h,k horizontal

-1 -1 -1 ~ ~
+ J <GO HCO KG

O
'iJ S , 'V S > JR2 Idet GO dxdy

and in conformal coordinates this is equal to

J _1_ <KH'V s9.. , 'V s~ >-n:: 2 dxdy +
A2 ~

Now at the point go' the unique harmonie map 5 is the

identity map of (M,gO) to itself. Sinee (M,gO) is isomrnetrieally
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(2 .8)

irnmersed in JRK, s(gO)*GlRK = gOi where G]RK. is the Euelidean

metrie on JRK. But if go is expressed in Ioeal eonformal

coordinates this says exaetly that

Thus at the point go ' we see that

a2E 2 ~ ~ ~ ~
a g 2 (go ' i d) (h, k) = rx" (h 11 K 11 +" n 1 2K 1 2 ) dxdy

Sinee k
11

= -k22 , h
11

= -h22 , applying forrnula (2.7) for the

Weil-Petersson rnetrie we see that

a2E .---2 (go,~d) (h,k) = 2«n,k»
ag

However we are interested in the rnap

E[g] = E (g,s (g)) •

Clearly

aE[g]h =og
aE ~ aE ~
3g(g,s(g))n + äS(g,s(g)) ·Ds(g)h

where Ds(g) represents the de~ivative of s with respect to g.

However the seeond term is identically zero sinee s(g) is

harmonie implies ~~ (g", s (g)) 5! o. Therefore

and by 2.8

Theorem 2.1 will now follow immediately from the following.

Proposition 2.9. DS(go)h = 0, if h is trace free divergence free.
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Proof. In order to compute this derivative we write down the

general equation of a harmonie map from a Riemanian manifold

(M,g) to a Riernannian rnanifold (Ni9). Narnely f : (M,g) ~ (N,9)

is harmonie if in loeal coordinates, f = (fl , ... ,fn ), n = dirn N

1 a .. a fCt} Ci. afY af s ij
(2.10) - ~. g~J;g

ax. + r yß ax. ax. g = 0
v'g J ~ ~ J

where r<l are the Christofel symbol of the metrie 9 .yß

If dirn N = 2 = dirn M and we express (2.10) in Ioeal eonformal

coordinates g .. = ;\0.. and g .. = po.. we see that (2.10) is
1J ~J ~J 1J

equivalent to

(2.11)

where
_ p (f)

( l o g p) f - p '( f )

In the ease under consideration 9 is the fixed metrie go on M.

We now think of f<l as depending on g, and let wCt = DfCt(h) be the'

linearization of fCt in the direction h. We now differentiate

equation (2.10) w.r.t. g in the direetion h. Ne first make three

important observation~. The Christofel symbol r~ are fixed and

do not depend on g. ·Seeond the derivative of v'g in a direction

h is given by h ~ tr h/Iq
g

If h is trace free thisderivative vanishes. Thirdly, the

derivative or gijlg in the direetion h 1s h ~ _hij .

Taking the der i vative of ,( 2 • 10) w. r . t . g in the direetion

E, evaluating it in conformal coordinates (gO)ij = AO ij at

f = id, and using forrnula 2.12 for the cornplex form of

w = w + iW2 we see that

(2.12)

Lemma 2.13

Ci. -
1 a . r .. h ..

w - + (log A) w- = + I aX
j

(het J} + ~ J 1 J
zz z z

A
2

If h is traee free and divergence free,the expression

(2.14)

Before proving 2.13 let us see how it implies proposition 2.9.
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Vsing 2.12 we see that the linearization w = DS(gO)h satisfies

or

-!. (Aw-)· = 0 •
dZ Z "

Now this implies that

f CI - -- ( >..w-) w d Z 1\ d z = 0
ClZ z

Integrating by parts we further see that

f 2 -AIWZI dz A dz = 0 .

Therefore Wz = 0 and consequently w
field on (M,C(gO)). Since(genus M) > 1

w s 0 concluding 2. 9.

Ta prove lemma 2.13 we note that

is a holomorphic vector

this clearly implies that

a 1 d>" 8.
dA 8. -

dA 8 .. }r. , = 2I{ dX. +
dXi ax~J ~a Ja ~J

J Ct

and that
......aj 1 h .. Since n is divergence free d - 0h = I -h =CtJ dX . Ctj

and so J

= __1_ h dA
,3 aj ax
1\ j

Therefore expression 2.14 equals

1 dA. h - 1 {~ 8. dA O. dA 8 .. } h ..- 0 dX. +
2>..3

+ dX. - axaj ClX. ~Ct Ja ~J ~J
J J ~ a

1 dA h . 1 dA h . 1 dA h. 1 dA h .._. - 0 dX
j

+
dX.

+
2;\.3 dX. 2)..3 axaJ 2>..3 o:.J 1.0'. ~~

J ~ a

Clearly the sum of the first three terms is zero and since his.":

trace free the fourth also vanishes. This completes lemma 2.13

and this paJ?er.
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