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ALGEBRAIC SURFACES WITH EXTREME CHERN NUMBERS

{Report on the thesis of Th. HS6fer, Bonn, 1984)

by
F.HIRZEBRUCH

(Lecture, Steklov Institute, Moscow, September 1984)

For a smooth algebraic surface X the Chern numbers cf(x) and c2(x)
are defined. Here cz(x) equals the Euler-Poincaré characteristic of X
and cf(x) is the selfintersection number of a canonical divisor of X .
For a surface of general type they satisfy the Miyaoka-Yau inequality

c] <3c, (see {Mi1] and [Y] ) where the equality sign holds if and

only if the universal cover of the surface is the unit ball

| 2, |2 + | z, P <1 (see [¥] and [Mi2] § 2 for the difficult and

[#i1] for the easy direction of this equivalence). If cf = 3c2 . then

2 > 0, in fact c2 is the volume of the surface

(normalized by the GauB-Bonnet form) with respect to the complex-hyper-'

automatically c¢
bolic metric induced from the ball.

We wish to construct surfaces of general type with extreme Chern numbers

(cf = 3c2) which are ramified covers of the complex projective plane branched
along lines. Thus we continue the investigation of the paper [ Hi2] . How-
ever, the much more developped theory and the new examples are due to Thomas

H6fer (Bonn, dissertation in preperation, [H53] ). This note is a report on

his work.



We have to omit many things. For example, we only consider the case
where the surface is the quotient of the ball by a discrete group

I' of automorphisms, T operating freely with compact quotient. H&fer
includes the case where T may have torsion and cusps (at infinity),
and constructs many such ball quotients as ramified covers of the plane.

His formulas (with suitable modifications) hold for this more general

case.

1. Let S be an algebraic surface and Ci(i = 1,...t) finitely many
distinct smooth irreducible curves on S such that the curve C = ZCi
has only ordinary double points. Let Y be a smooth algebraic surface
which is a Galois cover over S with covering map

w: Y8
which ramifies only over C . Then, for every point p T Y there exist
local coordinates (u,v) on Y with center p and local coordinates

(z,w) on S with center f£f(p) such that 7 1is given by functions

(1) a _ b

where a,b are positive integers. If a or b is 2 2 , then

p € ﬂ_l(c) . We can associate to each Ci a positive integer a

such that for a smooth point q of C 1lying on Ci , the map

i

-1
T is given locally (for p € 7 "(q) ) by (1) with a = a,

-1
and b =1.If gq € Ci n Cj (i # j) , then, for p € v (q) ,

the map 7 1is given locally by (1) with a = a; b = aj '

and, if 4 is the mapping degree of 7 , the number of inverse

image points of q equals d/(aiaj) . Acovering Y of S with

the properties explained in this section will be called a good

" covering with respect to the curves C and the branching numbers a, .

i



a. As in [Hi2] we consider the complex projective plane P2(E)

with homogeneous coordinates zy 2 2y 3oz, and an arrangement of k

distinct lines Ll""'Lk given by 1i =0(i = 1,...k) where 1i

ia a linear form in Zgr Zyr Z, - For a point p 1in the plane we let

rp be the number of lines in the arrangement passing through p and

tr (for r > 2) be the number of points p with rp = r . Then we have

(2) k(k - 1)
T

Given an arrangement, we blow up the points pj in the plane with

rp 2 3 to get an algebraic surface S in which we have a configuration
3

of curves Ci as in 1. , namely the strict transforms of the lines of

the arrangement, (which we also call Ll""L as smooth irreducible

k

curves on S ) and the curves El""'E obtained by blowing up the

points pj where 1 < j<s and s . (The number t of 1.

ive~— ®»

equals k + s ).

We now associate weights RyoDyreeesD (integers 2> 2) to the "old"

k

lines L1,L2,...,L

X and weights ml,mz,...,ms (integers > 1) to the

"new lines" EI'EZ""'ES or equivalently to the points pj .

We speak of a weighted arrangement of lines in the plane. (Each line

Li has a weight n, and each intersection point pj with rp 23
J
has a weight mj. For a weighted arrangement we have the surface S
and on it curves Ll""’Lk'El""'Es with branching numbers
ByvecesPy Moo m (which in 1. were called a, ). Let Y be a

good covering of S with respect to Li""'Lk’El""'Es and the given

branching numbers. (Right now, we do not consider the difficult problem

whether such a surface Y exists. For a partial result see [Ka] .

For the very special case n, = mj =n see [Hi2] .)



It is possible and in principal not difficult to calculate the
Chern numbers of Y in a similar and rather elementary way as it
was done in [Hi2] in a special case. However, the formulas for
arbitrary weights are not easy to handle. H8fer found several nice
formulas to express (3c2(Y) - cf(Y))/d in terms of the weights

and the combinatorial features of the (unweighted) arrangement:

Let o, be the number of points p with rp 2 3 lying on the
i line of the given arrangement of k 1lines in the plane. Consider

the k x k symmetric matrix A with

30, - 4 i =3
= = n
(3 . Aij 2 (1 #3, p=1L Lj with r,
-1 (1 #3, p=1L, n Lj with rp 2

Associate real variables x

i to the k 1lines and let x be the

column vector (xl,...,xk) . Associate real variables yj to the s

points pj with rbj > 3 . For the point pj with ¢ 2 3 we consider
3

the linear form

Py(x,y) = 2yj + ¥ x, where y = (y,s...s¥,)
pj € Li

Héfer's formula.

For the algebraic surface Y (good covering of S of degree d with

respect to Ll""'Lk'El""'Es and the given branching numbers

ni,...,nk,ml,...,ms ) we have

S
(4) (3ep(0) - cin/a = Famx + ] B xo?)
3 =1
if we put
xi-i-ﬁ and yj--1-.1.

oy



Thus Hofer's formula expresses (3c2(Y) - cf(Y))/d as a quadratic
form over ngas in the x; and y3 . The quadratic form depends

only on the unweighted arrangement.

The sum of the entries in each line of the matrix A equals
31.‘i ~ (k + 3) where T is the number of points p on Li with
rP 2 2 . This follows from the equation
Y (x_-1) = x-1

P
p € Li
The formula (4) implies:

If for all lines 3Ti =k +3 and if all weights n, are equal

(ni=nforléi§_k),then

2 1 2
() (3e,(¥) - cf (M/d = 7} P (x,y)
j=1
! -1 -4
where xi =1 - a and yJ = -1 mj

3. I know only the following arrangements with 3Ti =k + 3 for

all lines L, of the arrangement. We exclude the triangle k = 3, t2 = 3.

i
3
They all are related to unitary reflection groups acting on L (see fai2]).

a) The complete quadrilateral

k=6,t,=3,¢t, =4, tr = 0 otherwise

2 3



b) The arrangements Agm . m 2 3.
2
3 =m tm =3, tr = 0. otherwise,

k=3m, t,=0,¢t

2

(form=3 ,t, =0, ¢t

2 =12) .

3

In homogeneous coordinates the 3m 1lines can be given by the equation

(zm -

m m m m m

c) The arrangements Ag(m) o m > 2,

= 3m , t3 = m2 , t =3, tr = 0 otherwise

k=3m+3, t m o+ 2

2
In homogeneous coordinates the 3m + 3 lines can be given by the equation

m_ om . m_ m o m_ m _
29212,(2y - 20 (2 - z)(z, - 2z5) =0

d) The Hesse arrangement

k=12 , ¢, =12 ,t, =9, tr = 0 otherwise

2 4

The Hense pencil of all cubics passing through the 9 inflection points
of a smooth cubic has 4 singular cubics (triangles) which make up the

12 lines. These 12 lines are dual to the 12 triple points of A§(3) .

e) The extended Hesse arrangement (see [Hi2])

5 = 12 , t_ = 0 otherwise

r
The extended Hesse arrangement contains the 12 lines of the Hesse
arrangement and nine additional lines which make an arrangement A§(3)
such that the 12 triple points of A§(3) coincide with the 12 double

points of the Hesse arrangement.



f) The icosahedral arrangement

k=15 ,t, =15, t_, =10 , t. = 6 , tr = 0 otherwise

g) The G168 - arrangement

The simple group or order 168 operates on the complex projective plane.
It has 21 involutions with 21 fixed lines.

k=21, t, =28, t, =21 , t_ = 0 otherwise

3 4 5

h) The AG - confiquration

The alternating group A (of order 360) operates on the complex pro-

6
jective plane. It has 45 involutions with 45 fixed lines.

k=45, t, =120 , t, =45 , t. = 36 , tr = 0 otherwise

3 4 5

Is this a complete list of the arrangements with 311 =k + 3

for all lines Li?




4. We wish to study good coverings Y of an arrangement with

3Ti =k + 3 for all lines and the weights ni along the lines all

equal to n . We are looking for surfaces Y with 3c2(Y) = cf(!) .

Then by (5) all Pj(x.y) have to be 0 which means

1 1
2(- 1 - =) o+ r1 - E) = 0
]
where mj is the branching number (weight) in the point pj with
rp =r >3 . Thus we have to look at all triples n,r,m of natural
]

numbers with n >2 , r >3 , m > 1 satisfying

2
t6) st i = r -2

There are exactly 11 possibilities

(7) ri{fs (6 |8 |4 (6 {3 14 |3 ]5 1313

Now we can list good coverings Y for weighted arrangements with
constant weight n for all lines Li which satisfy 3CI(Y) = cf(Y) .
We list all such cases for the arrangements given in 3. where (5)
gives the value O . In all these cases H&6fer shows that such good
coverings Y of S exist (for some degree d ), that these surfaces

Y are of general type and therefore have the ball as universal covering.

For the complete quadrilateral we can take ni =n = 4,5,6,9, the weight

in each of the 4 triple points being 8,5,4,3 respectively.

For the following arrangements we indicate only the constant weight n



for the lines L, , because the weight m

N 3 in a multiple point p

3

with rpj =r > 3 is determined by (6) and listed in (7)

For the arrangement A§(3) we can take n = 4,5,6,9, for A§(4)

we can take n = 4 , for A;(S) the constant weight n = 5 is possible.

These are all cases among the Ag(m) .

For Ag(2) we can take n = 4 , for A§(3) we can take n =5

These are all cases among the Ag(m) .

For the Hesse arrangement n =3 and n = 4 is possible. For the
icosahedral arrangement n = S5 gives a solution, and for the G168-

arrangement n = 4 . There is no solution for the extended Hesse

arrangement neither for the A6-arrangement.

5. H6fer has associated to each arrangement a quadratic form over

R in k + s variables Ryvooor Xy o¥qreeos¥, (see (4)) which he
denotes by Prop(x,y) because it gives the deviation from the "propor-
tionality" 3c2 = cf . We have by definition

1, t 3 2
(8) Prop(x,y) = z(x AX + 2 P.(x,y)")
J
i=1
Hofer's formula (4) and the Miyaoka-Yau inequality could lead to the
guess that this form is semidefinite. However, this is wrong in general
(see [Hi2]). But, in some cases positive semidefiniteness can be shown.
The matrix A can be written in the form
A = 3B -1U

where U 1is the matrix with all entries equal to 1 and B has
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B, =0, - 1 and Bij =1 if i #%#3j and p = Li n Lj is a double

point (r = 2) . Otherwise Bij =0 . If for all lines 311 =k + 3
then the column vector e = (1,...,1) € nk satisfies Rhe = 0 and
for every vector x ortlogonal to e (in the standard metric of Rk)
Ax = 3Bx
Therefore Prop(x,y) is positive semidefinite, if B is. For all the arrange-
ments listed in 3. the matrix B is positive semi-definite and in cases
b), d), f), g), h) positive definite which implies that Prop(x,y) (form
in k + s variables) is positive semidefinite with an eigenvalue O 6f

multiplicity 1 , and the good coverings Y with 3c2(y) = cf(Y) must

have constant weights for all lines Li of the arrangement.

6. The quadratic form Prop(x,y) (see (8)) can be written as

k S
1 3 9
(9) Prop(x,y) = - (2 x, =~ Prop(x,y) + 2 Y. == Prop(x,y))
2 g2y 19% 321 3%y
where (see (4))
9
3 Prop(x,y) = P, (x,¥y) , 1 <B<s
YB B
We define
i—- Prop(x,y) = (x,y) 1 <ac<k
axa PiX,Y = QO. 'Y ' =% =

The k + s homogeneous linear equations in the k + s real variables

RyoeoorXps¥yreeor¥

Q. (x/¥) =0 ' Pe(x,y) =0

or equivalently

in

(10) Ax =0 , PB(x,y) =0 (1 2B % s)
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define the nullspace of Prop(x,y) whose dimension equals the corank
of A . If (10) holds, then Prop(x,y) = 0 . The converse is true, if
Prop(x,y) is positive semidefinite. Hence, for all the arrangements
listed in 3., an algebraic surface Y (good covering of S of degree
d with respect to Ll""'Lk'El""'Es and the given branching numbers
2

nl,...,nk,ml,...,ms) satisfies 3c2(Y) = cl(Y) if and only if (10) holds
with

_ 1 _ i
(11) x, =1 o and yj = =1 «

1 m

i 3 3

-
o]

v
[\¥]

-

B

v
-

For the complete quadrilateral the corank of A is 4 , there are
finitely many solutions of (10) , (11) . This corresponds to the theory
of the hypergeometric differential equation [DM] . We come back to this

later.

For the extended Hesse arrangement (see 3.e)) the corank of A is 2 .
The x, have to be constant for the lines of the Hesse arrangement and
also constant for the additional 9 lines. H8fer shows that there are

exactly 3 solutions of (10) , (11) . The weights n; are:

Hesse lines additional lines
3 9
4 2

4 6\

The weights m, are determined by P_(x,y) = O . HOfer shows that such

3

coverings exist.

3

7. The ball |zll2 + l22 [ is embedded in PZ(E) . The automorphisms

of the ball are exactly the projective isomorphisms of pz(n) which map
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the ball to itself. The ball carries the invariant complex hyperbolic
metric. The totally geodesic smooth curves (totally geodesic as 2-dimen-
sional surfaces in a 4-dimensional Riemannian manifold) are the inter-

sections of lines of Pz(c) with the ball.

let Y be an algebraic surface whose universal cover is the ball. Then

Y inherits the complex hyperbolic metric from the ball. Up to a constant
factor, this the unique Einstein-Kdhler metric of Y . Every automorphism
of Y is an isometry. The totally geodesic curves of Y are those curves
which when lifted to the ball become lines. If a curve is pointwise fixed
under an automorphism of Y (different from the identity), then this
curve is totally geodesic. Therefore, if Y is in addition a good covering
of S8 as in 1. , then all curves n-l(ci) {they are .smooth, but not
necessarily connected) are totally-geodesic, if the branching number ai
is greater than 1 .
If a smooth curve C on Y is totally geodesic, then

e(c) = 2cC
where e(C) is the Euler-Poincaré characteristic of C and CC the
selfintersection number. This follows from a relative version of the "propor-
tionality principle" [Hi1] , because it is true in Pz(n) where the

totally geodesic curves are the lines (e(L) = 2 , LL = 1) .

Enoki has proved [E] that for every smooth curve on Y (the universal

cover of Y is still supposed to be the ball)

(12) e(C) £ 2cC

and that C is totally geodesic if and only if the equality sign holds in

(12) .

As deviation from proportionality we define

(13) prop(C) = 2CC - e(C)
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for a smooth curve C on an algebraic surface Y . If the universal
cover of Y is the ball, then prop(C) > 0 according to Enoki's ob-

servation.

8. Consider again a weighted arrangement of lines in the plane (as
in 2.) and let Y be a good covering of S with respect to
Ll""'Lk'El""'Es and the branching numbers Nyreeesny (ni > 2)

and ml,...,mS (m, > 1) . Let d be the degree of w: Y = S .

J

Then W-I(Li) and n-l(Ej) are smooth curves in Y (generally not

connected) . The partial derivatives of Prop(x,y) introduced in 6.

have, as H&fer shows, a geometric meaning, namely

(14) Q. (x,y) = %“ Prop(w"I(La)) » PBalxy) = 33 Prop (w-l(EB))

if X, = 1 - %a ' y8 = -1 ; éﬁ .

According to (9) we have

(15) 3e,(¥) - cfm = %(Z(ni - 1)prop(1r-1Li) - E(mj + 1) prop(ﬂ_lEj))

Actually, this is a formula of a rather elementary nature to be obtained
directly, but is useful to recognize the prop of the lifted ramification
locus as partial derivatives of the quadratic form Prop(x,y).

If Y has the ball as universal cover (equivalently, Y of general type
and 3c, (V) = cf(y» , then prop('n'—lLi) =0 and pr-op('n'-lEj) >0, see7.
Therefore, by (15) also the 'prop(n_lzj) vanish. Thus we get a result
which we cannot formally obtain from section 6. because we do not know

in general that Prop(x,y) is positive semidefinite.
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Suppose Y is obtained as in the beginning of this section. Assume

it is of general type. Then the universal cover of Y 4is the ball if

) vanish.

and only if all prop(n_lLi) and prop(ﬂ-lEj

9. As an illustration let us look at prop(n-lzj

The curve Ej on S arose from blowing up the point pj in the plane.

).

Put rp = r and let Ll""'Lr be the lines passing through pj with

weights nl,...,nr .
Put Ej = E and mj = m . Then
-1 -1 d
EE = -1 and w “(E)wm (E) = - =2

For the Euler-Poincaré characteristic we get

x
e(w-lE) = §(2 -r)y + 2 &/
m n,
i=1 i
Thus
r
-1 a, 2 1
prop(m E) = 5(- o i§§i +x - 2)

. - 1 -
if x = 1 a and y = 1

This checks (14) , see the definition of the linear form Pj(x,y) in 2.

Thus prop(ﬂ-lE) vanishes if and only if

(15) r-2.

N
+
it 1N
S
n

174

Hbfer gives a complete list of the (m; nl,...,nr) with m > 1 ;

n, 3=n2 2 +...2n_ 2> 2 satisfying (15) . Let Nr be the number of

= "y ==

the solutions for given «r .,
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We have

r 3 4 5 6 7 8

Nr 87 |27 j150 18 3 1

Included are the 11 cases with constant ni (see (7)).

10. Consider the complete quadrilateral as in 3.a). We have to blow

up the four triple points to get the surface S . It is a Del Pezzo surface

on which we have 10 exceptional curves L ,...,L6,E

1 re++,E, . But the

1 4

configuration of these 10 curves on S is very symmetric. In this special
case, the Li and Ej do not play seperate roles. We can index the 10
curves by the 10 subsets of {0,1,2,3,4} of cardinality 2 , in such

a way that two curves intersect if and only if their indexing subsets are

disjoint. We denote the 10 curves by E (with i,j € {0,1,2,3,4} ) .

i}
We see that the configuration of our 10 curves admits s5 as symmetry group.
We can choose EI’EZ’EB'E4 as E01’802’E03’E04 . The weights ni,mj are
now denoted by n1j s in particular noj = mj .
We have
-1 d 2 1 1 1
prop(m Ey,) = = (-5 - = - — - — +1)
o1 o1 Tor "2z P2a 34

Therefore, to find surfaces Y whose universal cover is the ball we have

to look at weights nij satisfying

(16) 2_.,.1___.,,1__.,,_1__:1

o1 P2z By M3y

and all permutations of (16) . We must have nij'i 2 . Up to permutation
there are 7 solutions, the 4 solutions mentioned in 4. and 3 others. The
table in [DM] has 27 cases due to the fact that ramified covers Y of the
pPlane are admitted which are related to ball quotients for groups T which

do not operate freely or are not cocompact and have cusps. Hdfer's theory
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includes these cases for the complete quadrilateral and for all other
arrangements. Refinements of Yau's theorem due to Miyaoka [Mi3] and

R. Kobayashi [Ko] are needed.

If, in the case of the complete quadrilateral,

L = 1 '- u -
n.. ™Y
ij

4
and 2 u, = 2
=0
then (16) and permutations hold. This is the notation of [DM] .

The affine space 2"1 = 2 corresponds to our 4-dimensional nullspace

of the quadratic form Prop(x,y) .

11, The ramified covers of the plane with respect to the complete
quadrilateral correspond to the theory of the hypergeometric differential
equation dating back to E. Picard (see [DM] ). The question arises whether
such differential equations whose monodromy gives our coverings exist also
for other arrangements. This difficult question has been successfully treated

by Masaaki Yoshida in two papers ( [Yo1l] , [¥o2] ).

The work of Holzapfel on Picard modular surfaces (see for example (Bo1]

and the references given there) has many connections with this paper.



[E]

(DM]

[Hi1]

[Hi2]

(B8]

[H01]

[xal

[ko]

- 17 -

REFERENCES

Enoki, I.: A proof of the proporticnality :principle for

submanifolds, private communication.

Deligne, P.,and Mostow, G.D.: Monodromy of hypergeometric
functions and non-lattice integral monodromy, preprint

IHES/M/82/46, July 1983.

Hirzebruch, F.: Automorphe Formen und der Satz von Riemann-
Roch, Symp. Intern. Top. Alg. 1956, p. 129 - 144, Universidad

de México 1958.

Birzebruch, F.: Arrangements of lines and algebraic surfaces,
Progress in Mathematics Vol. 36, p. 113 - 140, Birkhéuser

Boston 1983.

Hdfer, Th.: Ballquotienten als verzweigte Uberlagerungen

algebraischer Fliachen, Dissertation, Bonn (in preperation)

Holzapfel, R.-P.: Arithmetic curves on ball quotient
surfaces , Ann. Glob. Analysis and Geometry 1, No. 2,

21 - 90 (1983).

Kato, Mi.: On the existence of finite principal uniformizations
of CP2 along weighted line configurations, Mem. Fac. Sc. Kyushu

University, Ser. A Math. 38, 127 - 131 (1984).

Kobayashi, R.: Einstein-Kaehler V-metrics on open algebraic

surfaces, Abstract, Preprint, Tohoku University, 1984.



[Mit]

[Mi2]

[Mi3)

(y]

[Yo1]

[Yo2]

Miyaoka, Y¥.: On the Chern numbers of surfaces of general

type, Inv. Math. 42, 225 - 237 (1977).

Miyaoka, Y.: On algebraic surfaces with positive index,
Progress in Mathematics Vol. 39, p. 281 - 301, Birkhiuser

Boston 1983.

Miyaoka, Y.: The maximal number of quotient singularities on
surfaces with given numerical invariants, Math. Ann. 268,

159 - 171 (1984).

Yan, S.-T.: Calabi's conjecture and some new results in algebrai

geometry, Proc. Nat. Acad. Sci. USA 74, 1798 - 1799 (1977).

Yoshida, Ma.: Orbifold-uniformizing differential equations,

Math. Ann. 267, 125 - 142 (1984).

Yoéhida, Ma.: Orbifold-uniformizing differential equations II

preprint 1984.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 

