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1. Introduction

The ground-breaking papers of Andersén and Lempert ([1], [2]) established remark-
able properties of the automorphism group of Cn (n ≥ 2) which imply, in particular,
that any local holomorphic phase flow on a Runge domain Ω in Cn can be approximated
by global holomorphic automorphisms of C

n (for an exact statement see Theorem 2.1
in [5]).

The next step in the development of the Andersén-Lempert theory was made by
Varolin who extended it from Euclidean spaces to a wider class of algebraic complex
manifolds. He realized also that following density property is crucial for this theory.

1.1. Definition. A complex manifold X has the density property if in the compact-
open topology the Lie algebra Liehol(X) generated by globally integrable holomorphic

vector fields on X is dense in the Lie algebra VFhol(X) of all holomorphic vector fields
on X. An affine algebraic manifold has the algebraic density property if the Lie algebra

Liealg(X) generated by globally integrable algebraic vector fields on it coincides with
the Lie algebra VFalg(X) of all algebraic vector fields on it (clearly the algebraic density
property implies the density property).

In this terminology the main observation of the Andersén-Lempert theory says that
Cn (n ≥ 2) has the algebraic density property. Varolin and Toth ([14], [12], [13])
established the density property for some manifolds including semi-simple complex Lie
groups and some homogenous spaces of semi-simple Lie groups. Their proof relies
heavily on representation theory and does not for example lead to an answer in the
case of other linear algebraic groups.

In this paper we suggest new effective criteria for the density property. This enables
us to give a trivial proof of the original Andersén-Lempert result and to establish
(almost free of charge) the algebraic density property for all linear algebraic groups
different from tori or C+. Actually this approach allows to handle a more delicate
algebraic volume-density property, but we omit this fact here since our aim is to give
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a short presentation of this remarkable approach. Instead we tackle another open
question (asked among others by F. Forstnerič): the density of algebraic vector fields
on Euclidean space vanishing on a codimension 2 subvariety.

We would like to thank D. Akhiezer for inspiring discussions and consultations.

2. The Andersén-Lempert observation.

Our method requires two ingredients. The first one is a homogeneity property re-
flected in the following.

2.1. Definition. Let X be an algebraic manifold and x0 ∈ X. A finite subset M of

the tangent space Tx0
X is called a generating set if

(1) the group of algebraic automorphisms G acts transitively on X, and
(2) the image of M under the action of the isotropy group Gx0

generate the whole

space Tx0
X.

The manifold X will be called tangentially semi-homogeneous if it admits a gener-
ating set consisting of one vector.

Theorem 1. Let X be an algebraic manifold with algebra of regular functions C[X],
and L be a submodule of the C[X]-module of all vector fields such that L ⊂ Liealg(X).

Suppose that the fiber of L over some x0 ∈ X contains a generating set. Then X has
the algebraic density property.

Proof. Treat TX and L as a coherent sheaf and its subsheaf. The action of α ∈ Aut X
maps L onto another coherent subsheaf Lα of TX. The sum of such subsheaves with
α running over Aut X is a coherent subsheaf E of TX. Let m be the maximal ideal

for x0. Then condition (2) from Definition 2.1 implies that E/mE coincides with Tx0
X,

and condition (1) implies that this is true for every point in X. Thus E = TX ([8],
Chapter II, exercise 5.8). Clearly, all global sections of E are in Lie(X) which concludes

the proof.
�

The proof of the following corollary reflects the second ingredient of our method.

2.2. Corollary. (The main observation of the Andersén-Lempert theory) For n ≥ 2
the space Cn has the algebraic density property.

Proof. Let x1, . . . , xn be a coordinate system on Cn and δi = ∂/∂xi be the partial de-
rivative, i.e. Ker δi is the ring of polynomials independent of xi. Hence the polynomial
ring C[n] is generated as a vector space by elements of Ker δ1 · Ker δ2. Note also that

for fi ∈ Ker δi the algebraic vector fields fiδi and xifiδi are globally integrable. Then
the field

[f1δ1, x1f2δ2] − [x1f1δ1, f2δ2] = f1f2δ2

belongs to Liealg(X) since x1f2 ∈ Ker δ2. Thus Liealg(X) contains all algebraic fields

proportional to δ2. Since C
n is clearly tangentially semi-homogeneous Theorem 1

implies the desired conclusion. �
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One can formalize this argument as follows.

2.3. Definition. Let δ1 and δ2 be commuting algebraic vector fields on an affine alge-

braic manifold X such that δ1 is a locally nilpotent derivation on its algebra of regular
functions C[X], and δ2 is either also locally nilpotent or semi-simple (i.e δi generates
an algebraic action of Hi on X where H1 ' C+ and H2 is either C+ or C∗). We say

that δ1 and δ2 are compatible if
(1) the induced (H1 × H2)-action is not degenerate (i.e., its general orbits are two-

dimensional), and

(2) the vector space Span(Ker δ1 ·Ker δ2) generated by elements from Ker δ1 ·Ker δ2

contains a nonzero ideal in C[X].

Theorem 2. Let X be a smooth affine algebraic manifold with finitely many pairs
of two compatible vector fields {δk

1 , δ
k
2}

m
k=1 such that for some point x0 ∈ X vectors

{δk
2 (x0)}

m
k=1 form a generating set. Then X has the algebraic density property.

Proof. Let δ1 and δ2 be one of our pairs. Since they commute, δ1 is a locally nilpotent
derivation on the affine domain Ker δ2. It is not identically zero since otherwise the

(H1 × H2)-action is degenerate. Thus one can choose an element a of degree 1 with
respect to δ1 in Ker δ2, i.e. b = δ1(a) ∈ Ker δ1 \ 0. Let fi ∈ Ker δi. Then [af1δ1, f2δ2]−
[f1δ1, af2δ2] = −bf1f2δ2. The last vector field is from Liealg(X) and since δ1 and δ2 are

compatible, condition (2) from Definition 2.3 implies that sums of such vector fields
include every vector field of form Iδ2 where I is a nonzero ideal in C[X]. Applying this

argument to all compatible pairs we se that Liealg(X) contains all linear combinations of
δk
2 with coefficients in some nonzero ideal J ⊂ C[X]. Since under a small perturbation

of x0 the set {δk
2(x0)}

m
k=1 remains a generating set we can suppose that x0 does not

belong to the zero locus of J . Hence by Theorem 1 X has the algebraic density
property. �

2.4. Remark. If X is tangentially semi-homogenous and furthermore any non-zero
tangent vector (at any point) is a generating set, then Theorem 2 implies that for the
algebraic density property a single pair of compatible vector fields is enough.

2.5. Corollary. Let X1 and X2 be algebraic manifolds such that each Xi admits a finite
number of integrable algebraic vector fields {δk

i }
mi

k=1 whose values at some point xi ∈ Xi

form a generating set and, furthermore, in the case of X1 these vector fields are locally
nilpotent. Then X1 × X2 has the algebraic density property.

Proof. Note that δk
1 and δj

2 generate compatible integrable vector fields on X1 × X2

which we denote by the same symbols. Applying isotropy groups one can suppose that
{δk

i (xi)} is a basis of Txi
Xi. In order to show that the set of vectors M = {0× δk

2(x2)}

form a generating set in Tx1×x2
(X1 × X2) we need the following fact that is obvious in

a local coordinate system.
Claim. Let X be a complex manifold and let ν be a vector field on X. Suppose that

f is a holomorphic function from Ker ν and x0 ∈ f−1(0). Then phase flow induced by
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the vector field fν generates a linear action on the tangent space Tx0
X given by the

formula w → w + df(w)ν(x0) where df is the differential and w ∈ Tx0
X. In particular,

the span of the orbit of w under this phase flow contains vector df(w)ν(x0).

Applying this claim for ν = δj
1 we see that the orbit of M under the isotropy group

of x1 × x2 contains all vectors of form δj
1(x1)× δk

2 (x2). Thus M is a generating set and
we are done by Theorem 2.

�

2.6. Remark. The reason why we use the locally nilpotent δj
1 in the above proof as

ν and not (the possibly semi-simple) δj
2 is the following: The vector field fδj

2 with

f ∈ Ker δj
2 may not generate an algebraic action while fδj

1 with f ∈ Ker δj
1 always

generates an algebraic action. It is worth mentioning if one wants to prove density
property instead of algebraic density property the use of δj

2 is permissible.

2.7. Example. (1) Let X = Ck×(C∗)l with k ≥ 1 and k+l ≥ 2. Then X has algebraic
density property by Corollary 2.5.

(2) If G is a semi-simple group then it is tangentially semi-homogeneous since the

adjoint action of G generates an irreducible representation on the tangent space g at
the identity e (in particular, any nonzero vector in TeG is a generating set). Let X
be SLn(C) with n ≥ 3, i.e. X is tangentially semi-homogeneous. Then every x ∈ X

is a matrix (ckj) with determinant 1. Set δi, i = 1, 2 by formulas δi(cij) = cnj and
δi(ckj) = 0 for k 6= i. These associated C+-actions are commutative and free. Note

that constants and functions depending on ckj, k 6= i only are in Ker δi. Therefore,
condition (2) of Definition 2.3 holds and, in fact δ1 and δ2 are compatible. Thus
SLn(C) has the algebraic density property when n ≥ 3.

3. Density of Affine Algebraic Groups Different from Tori or C+.

Notation. In this section a group H1 is isomorphic to C+ and H2 is isomorphic
either to C+ or C

∗. Suppose that there is a non-degenerate algebraic action of H1×H2

on an affine algebraic manifold X. That is, Hi generate an algebraic vector field δi on X.
Recall, that the algebraic quotient Xi = X//Hi is a normal quasi-affine variety [Wi03].
Let ρi : X → Xi be the quotient morphism. Set ρ = (ρ1, ρ2) : X → Y := X1 × X2

and Z equal to the closure of ρ(X) in Y . For any quasi-affine algebraic variety T we
denote by C[T ] its algebra of regular functions and G below will be a linear algebraic
group whose action on algebraic varieties will be always algebraic.

We start with a geometric reformulation of condition (2) in Definition 2.3.

3.1. Lemma. In the notation as before δ1 and δ2 are compatible iff ρ is a birational

morphism into Z and W := Z \ ρ(X) is of a codimension at least 2 in Z.

Proof. Every nonzero element of Span(Ker δ1 · Ker δ2) is of the form g ◦ ρ where g ∈
C[Z] = C[Y ]|Z. Thus Span(Ker δ1 · Ker δ2) coincides with the subalgebra ρ∗(C[Z]) ⊂

C[X] which does not separate points of ρ−1(z) for any z ∈ Z. Hence if ρ : X → Z is
not birational ρ∗(C[Z]) cannot contain a nonzero ideal of C[X], i.e. δ1 and δ2 are not
compatible.
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Assume now that W contains a divisor D in Z. There is a rational function f on Z
so that it has poles on D and nowhere else. In particular, f ◦ ρ is regular on X. On
the other hand for n sufficiently large and g as before gfn has poles on D and cannot

be a regular function on Z. Thus (gfn) ◦ ρ /∈ Span(Ker δ1 · Ker δ2) and the last vector
space cannot contain a nonzero ideal in this case.

Suppose now that ρ : X → Z is birational and W is of codimension at least 2 in

Z. If Z is normal then any regular function on ρ(X) extends to Z by the Hartogs
theorem. This implies that the image of the defining ideal of the closure W̄ of W in

Z under the homomorphism ρ∗ is an ideal in C[X]. In the general case any regular
function on ρ(X) extends as a regular function to a normalization Z0 of Z, i.e. we
have a homomorphism ρ∗

0 : C[Z0] → C[X]. Choose a divisor E0 ⊂ Z0 for which the

restriction of the normalization morphism ν : Z0 → Z to Z0 \ E0 is an embedding
and ν−1(W̄ ) ⊂ E0. Then ρ∗

0 sends any nonzero ideal J0 ⊂ C[Z0] that is contained in
the defining ideal of E0, into a nonzero ideal of C[X]. Treat C[Z] ' ν∗(C[Z]) as a

subalgebra of C[Z0]. Since ν is finite C[Z0] is generated over C[Z] by a finite number
of functions of form fi/gi, i = 1, 2, . . . , n where fi and gi are regular on Z. Consider

the intersection J ⊂ C[Z] of the defining ideal of E = ν(E0) and the principal ideal
generated by

∏n

i=1 gi. By construction J0 = JC[Z0] ⊂ C[Z]. Hence ρ∗(C[Z]) contains
a nonzero ideal of C[X] and, therefore, δ1 and δ2 are compatible.

�

3.2. Lemma. Let X, Hi, Xi, and ρi be as in the beginning of this section and Γ be a

finite group acting on X so that this action preserves the subrings C[X1] and C[X2],
i.e. Γ acts on X1 and on X2. Suppose that X ′ = X//Γ is normal, X ′

i = Xi//Γ, and
that ρ′

i : X ′ → X ′
i is the dominant morphism induced by ρi. In particular, we treat

C[X ′
i] as a subalgebra of C[X ′]. Let Span(C[X1] · C[X2]) contain a nonzero ideal of

C[X]. Then Span(C[X ′
i] · C[X ′

2]) contains a nonzero ideal of C[X ′].

Proof. Set ρ′ = (ρ′
1, ρ

′
2) : X ′ → Y ′ := X ′

1×X ′
2 and Z ′ equal to the closure of ρ′(X ′) in Y ′.

There is a natural action of the group Γ×Γ on Y = X ×X such that Y ′ = Y//(Γ×Γ).
In particular, q◦ρ = ρ′◦p where p : X → X ′ and q : Y → Y ′ are the quotient morphisms

of the actions of Γ and Γ × Γ respectively. Thus Z ′ = q(Z) and ρ′(X ′) = q(ρ(X)). By
Lemma 3.1 ρ : X → Z is birational and Z \ ρ(X) is of codimension at least 2 in Z.
Since q is finite Z ′ \ ρ′(X ′) is of codimension at least 2 in Z ′. Thus it suffices to prove

that ρ′ : X ′ → Z ′ is birational.
For points x1, x2 ∈ X we set x′

i = p(xi), yi = ρ(xi) = (ρ1(xi), ρ2(xi)), and y′
i =

q(yi) = ρ′(x′
i). Assume that ρ′ is not birational, i.e. there are a general point x1 and

and a point x2 6= x1 such that y′
1 = y′

2 but x′
1 6= x′

2 (i.e. x1 and x2 do not belong to
the same orbit of Γ on X). The last equality implies that y1 and y2 are in the same

orbit of the (Γ × Γ)-action on Y , i.e. there α1, α2 ∈ Γ such that α1(ρ1(x1)) = ρ1(x2)
and α2(ρ2(x1)) = ρ2(x2). Note that αk(ρj(xi)) = ρj(αk(xi)) since by construction the
Γ-actions commute with the morphisms ρj. Thus replacing x1 by α2(x1) and α1 by
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α1 ◦ α−1
2 we have equalities

ρ1(α(x1)) = ρ1(x2) and ρ2(x1) = ρ2(x2).

Since H1 ' C+ acts on X2 and ρ2(x1) ∈ X2 is a general point we see that H1-orbit
O of the fiber F = ρ−1

2 (ρ2(x1)) is isomorphic to F × H1 and x1, x2, and α(x1) are in
O. Any element of Γ sends O into a similar orbit because Γ-actions commute with ρi.

Hence α1(O) = O and we have an action of the finite cyclic group generated by α on
O. It commutes with the morphism ρ2|O : O → H1. Thus this cyclic group acts on

H1 ' C+. Since the only finite group on C that commutes with translations is a trivial
one, we see that the orbit of x1 under this action is contained in the fiber of ρ2. That
is, ρ2(α(x1)) = ρ2(x1) = ρ2(x2). Since x1 is general we can suppose that x1 and x2

are in a dense open subset of X on which ρ is an embedding. Therefore, α(x1) = x2

contrary to the assumption that x1 and x2 are not in the same orbit of Γ. Thus ρ′ is
birational.

�

3.3. Proposition. Let G act on an affine algebraic manifold X so that Z := X//G is

affine (which is always true when G is reductive) and the quotient morphism ρ : X → Z
is a principal algebraic G-bundle. Let H1 × H2 be an algebraic subgroup of G and the
action of Hi on G generated by left multiplication correspond to a derivation δ0

i on

B = C[G] such that δ0
1 and δ0

2 are compatible. Suppose that the induced Hi-actions on
X correspond to derivations δi on C[X]. Then δ1 and δ2 are compatible.

Proof. It suffices to check condition (2) in Definition 2.3 since condition (1) is obvious.
Note that the kernels of δ1 and δ2 contain C[Z]. Let I0 ⊂ B be the largest ideal
contained in Span(Ker δ0

1 · Ker δ0
2) and F ⊂ G be its zero locus. In particular Ik ⊂

Span(Ker δ0
1 · Ker δ0

2) for some k ≥ 1 where I ⊂ B is the defining ideal of F . The
analogue of F in each fiber ρ−1(z) ' G is determined independently of the trivialization

since I0 is the largest ideal contained in Span(Ker δ0
1 ·Ker δ0

2). Thus there is a subvariety
F of X such that F ∩ ρ−1(z) plays the role of this F in ρ−1(z) ' G for every z ∈ Z
(i.e. ρ|F : F → Z is a locally trivial F -fibration). Let J ⊂ A be the defining ideal of

F . Show that Jk ⊂ Span(Ker δ1 · Ker δ2).
Choose a finite covering {Ui} of Z such that for Vi = ρ−1(Ui) and Fi = F ∩ Vi

pair (V,Fi) is isomorphic to (Ui × G, Ui × F ) over Ui. Hence one can see that the

localization of Span(Ker δ1 ·Ker δ2) to Vi contains the k-th power L ' C[Ui]⊗ Ik of the
defining ideal of Fi in Ci = C[Vi] ' C[Ui] ⊗ B. We can suppose that Ui = Z \ f−1

i (0)

where fi is a regular function on Z. Thus for every a ∈ Jk there exists ki > 0 such
that af ki

i is in Span(Ker δ1 · Ker δ2). By Hilbert’s Nullstellensatz there are regular
functions gi on Z such that

∑
i f

ki

i gi ≡ 1. Since gi is in the kernel of δ1 we see that

a ∈ Span(Ker δ1 · Ker δ2) which concludes the proof.
�

Theorem 3. Let G be a linear algebraic group whose connected component is different
from a torus or C+. Then G has the algebraic density property.
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Proof. Since all components of G are isomorphic as varieties we can suppose that G is
connected. Recall that the unipotent radical R of G is an algebraic subgroup of G ([4],
p. 183). By Mostow’s theorem [11] (see also [4], p. 181) G contains a (Levi) maximal

closed reductive algebraic subgroup L (which is, in particular, affine) such that G is the
semi-direct product of L and R, i.e. G is isomorphic as affine variety to the product
R × L. In case L is trivial G = R ' Cn, n ≥ 2 and we are done by Corollary 2.2. In

the case of both R and L being nontrivial we are done by Corollary 2.5 with R playing
the role of X1 and L of X2.

Thus it remains to cope with reductive groups G. Let Z ' (C∗)n denote the center
of G and S its semisimple part. First we suppose that Z is nontrivial. The case when
G is isomorphic as group to the direct product S × Z can be handled as above by

Corollary 2.5 with S playing the role of X1 and Z of X2. In particular we have a finite
set of pairs of compatible vector fields {δk

1 , δ
k
2} as in Theorem 2. Furthermore one can

suppose that the fields δk
1 correspond to one parameter subgroups of S isomorphic to

C+ and δk
2 to one parameter subgroups of Z isomorphic to C∗. In the general case G

is the factor group of S ×Z by a finite (central) normal subgroup Γ. Since Γ is central

the fields δk
1 , δk

2 induce integrable vector fields δ̃k
1 , δ̃k

2 on G while δ̃k
2(x0) is a generating

set for some x0 ∈ G. By Lemma 3.2 the pairs {δ̃k
1 , δ̃

k
2} are compatible and the density

property for G follows again from Theorem 2.
Thus we are left with the case when G is semisimple. If G is not simple it is

isomorphic to the factor group of a product of two semisimple groups S1 × S2 by a
finite (central) subgroup Γ and this case can be handled exactly as before.

Now it remains to consider simple G. In the case of G ' SL2(C) or G ' PSL2(C)

we just refer to [12] or [10].
If the Dynkin diagram of G contains at least three nodes then two of them are not

connected by an edge which implies that the sl2-subalgebras of the Lie algebra of G

corresponding to these roots commute (e.g., see Serre’s relations on p. 337 in [6]). Thus
G contains two SL2(C) that commute and have only the identical element in common.
The existence of two compatible vector fields δ1 and δ2 on SL2(C) × SL2(C) implies

by Proposition 3.3 their existence on G. Since a semi-simple Lie group is tangentially
semi-homogenous (see Example 2.7) the algebraic density property for G follows again

from Theorem 2.
Since we already excluded the case of G ' SL2(C) or G ' PSL2(C) it remains to

consider the Dynkin diagrams with two nodes, i.e. it is either (A2), or (B2)'(C2),

or (G2). In the case of (A2) S ' SL3(C) and we saw already that this groups has
a pair of compatible free C+-actions (see Example 2.7). In the case of (B2) or (G2)
the consideration of the root systems (e.g., [6], p. 332) shows that S has again two

SL2(C)-subgroups that commute and have only the identical element in common. We
are done. �
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4. Codimension 2 Case.

Notation. In this section X will be a closed affine algebraic subvariety of Cn whose
codimension n − k is at least 2, and Z = Cn \ X. By I we denote the defining ideal
of X in C[n]. For any affine algebraic variety Y its algebra of regular functions will be
denoted by C[Y ] and AVFL(Cn) will be the Lie algebra of algebraic vector fields on C

n

whose coordinate functions are contained in an ideal L ⊂ C[n].

4.1. Lemma. In this notation Z is tangentially semi-homogeneous.

Proof. By a theorem of Gromov [7] and Winkelmann [15] Z is homogenous. More
precisely, consider a general linear projection p : Cn → H ' Cn−1 and a nonzero

constant vector field ν such that p∗(ν) = 0. Then p(X) is a subvariety of codimension
at least 1 in H. For every regular function h on H that vanishes on p(X) the vector
field hν generates a C+-action on Z. Changing H we get a transitive action.

Consider a general point z ∈ Z whose projection z0 ∈ H is not in p(X). Suppose
that h has a simple zero at z0. By the Claim in the proof of Corollary 2.5 the C+-
action generated by hν acts on TzZ by the formula w → w + dh(w)ν(w) where dh is

the differential of h and w ∈ TzZ. Since ν may be chosen as a general constant vector
field on Cn we see that G induces an irreducible representation on TzZ which implies

tangential semi-homogeneity.
�

Theorem 4. There is an ideal L ⊂ C[n] whose radical is I such that Liealg(Z) contains

AVFL(Cn).

Proof. Suppose that x1, . . . , xn is a coordinate system, pi : Cn → Cn−1 is a projection

to the coordinate hyperplane Hi = {xi = 0}, and hi is a nonzero function on Hi that
vanishes on pi(X). Set δi = ∂/∂xi and choose fi ∈ Ker δi. Then fihiδi is a globally

integrable algebraic vector field on C
n that vanishes on X, i.e. it generates a C+-action

on Z. Then
[f1h1δ1, x1f2h2δ2] − [x1f1h1δ1, f2h2δ2] = f1f2h1h2δ2

belongs to Liealg(Z). Since Ker δ1 · Ker δ2 generates the ring of polynomials C[n] as a
vector space we see that Liealg(Z) contains all algebraic fields proportional to δ2 with

coordinate functions in the principal ideal generated by h1h2. Since one can perturb x2

(as a linear function) Liealg(Z) contains all algebraic vector fields whose coordinates are
in some (non-zero) ideal L. Since Z is homogenous arguing as in the proof of Theorem

1 one can suppose that the radical of L is I.
�

Though Theorem 4 does not give the algebraic density of the Lie algebra of algebraic
vector fields vanishing on X it implies already a strong approximation result generaliz-
ing the Andersén-Lempert theorem. We omit its proof since it repeats the arguments
in [5] with minor modifications.
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Theorem 5. Let X be an algebraic subvariety of C
n of codimension at least 2 and Ω

be an open set in Cn (n ≥ 2). Let Φ : [0, 1] × Ω be a map of class C2 such that for
every t ∈ [0, 1] the map Φt : Ω → Cn is injective and holomorphic. Assume that each

domain Φt(Ω) is Runge in Cn and does not intersect X. If Φ0 can be approximated on
Ω by holomorphic automorphisms of Cn fixing X, then for every t ∈ [0, 1] the map Φt

can be approximated on Ω by holomorphic automorphisms of Cn fixing X.

The following is a stronger version of a result of Buzzard and Hubbard [3] answering
a question by Siu.

4.2. Corollary. Any point z in the complement of an algebraic subset X of Cn of
codimension at least 2 has a neighborhood U in Cn \ X which is biholomorphic to Cn

(such U is called a Fatou-Bieberbach domain).

Proof. Choose Ω to be a ball around z not intersecting X. Let Φt contract this ball
radially towards z. The resulting automorphism approximating Φ1 from Theorem 5

will have an attracting fixed point near z and z will be contained in the basin of
attraction. This basin is a Fatou-Bieberbach domain and does not intersect X since
the automorphism fixes X. �

However, let us be accurate and establish the algebraic density for algebraic vector
fields vanishing on X under an additional assumption.

4.3. Convention. We suppose further in this section that the dimension of the Zariski

tangent space TxX is at most n − 1 for every point x ∈ X.

4.4. Lemma. Lie algebra Liealg(Z) contains AVFI2(Cn).

Proof. It suffices to show that for every point o ∈ Cn there exists a Zariski neighbor-
hood V and a submodule MV from Liealg(C

n) ∩ AVFI2(Cn) such that its localization
to V coincides with the localization of AVFI2(Cn) to V . Indeed, because of quasi-

compactness we can find a finite number of such open sets Vi that covers Cn. Hence
the coherent sheaves generated by AVFI2(Cn) and

∑
i MVi

coincide locally which im-

plies that they have the same global sections over affine varieties by Serre’s theorem B.
In fact, it suffices to show that the localization of MV to V contains all fields from the
localization of AVFI2(Cn) to V that are proportional to some general constant vector

field δ which is our aim now. By Theorem 4 it is also enough to consider o ∈ X only
and we are going to construct the desired neighborhood V of o as follows.

Claim. For any point o ∈ X, l ≥ max(k+1, dimToX), and a general linear projection

p : Cn → H ' Cl one can choose a projection p0 : Cn → H0 ' Cl−1 for which
(i) p0 = % ◦ p where % : H → H0 is a general linear projection, and

(ii) there exists h ∈ C[H0] ' C
[l−1] ' %∗(C[l−1]) ⊂ C

[l] such that h does not vanish
at p0(o) and p|X\(h◦p)−1(0) : X \ (h ◦ p)−1(0) → p(X) \ h−1(0) is an isomorphism.

Since p is general the condition on l implies that p is a local isomorphism in a

neighborhood of o and, furthermore, since % is also general then by Bertini’s theorem
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p−1
0 (p0(o)) contains only smooth points of X except, may be, for o, i.e. p is a local

isomorphism in a neighborhood of each of these points which implies the Claim.
From now on let l = n − 1. Choose a general coordinate system x̄ = (x1, . . . , xn) on

Cn such that p(x̄) = (x2, . . . , xn) and p0(x̄) = (x3, . . . , xn), i.e. h = h(x3, . . . , xn). Set
V = Cn \ h−1(0).

Since p(X) ∩ V ' X ∩ V we have x1 = r/hs where r is a polynomial in x2, . . . , xn

and s ≥ 0. Set νi = ∂/∂xi for i 6= 2, and ν2 = hs∂/∂x2 + (∂r/∂x2)∂/∂x1. Then each
νi is a locally nilpotent derivation and Ker ν1 contains the defining ideal Ip of p(X) in

C[H] ' C
[n−1] ' p∗(C[n−1]) ⊂ C

[n]. Furthermore, for ξ = hsx1 − r we have ξ ∈ Ker ν2,
and ξ (resp. x2) is of degree 1 with respect to ν1 (resp. ν2). This implies that for
f, g ∈ Ip the vector fields that appear in the Lie brackets below are globally integrable

and vanish on X:

[fν1, ξgν1] = hsfgν1, [ξν2, x2ξν1] − [x2ξν2, ξν1] = hsξ2ν1,

and [ξν2, x2fν1] − [x2ξν2, fν1] = hsξfν1.

The defining ideal of X∩V is generated by ξ and elements of Ip. Since h is invertible
on V from the formulas before we see that the localization of Liealg(Z) to V contains

the localization of AVFI2(Cn)ν1. Since ν1 is a general constant field we have the desired
conclusion.

�

Theorem 6. Let X be a closed algebraic subset of Cn of codimension at least 2 such
that the Zariski tangent space TxX has dimension at most n − 1 for any point x ∈ X.

Then C
n \ X has the algebraic density property.

Proof. Similarly to the proof of Lemma 4.4, it suffices to show that for every point

o ∈ C
n there exists a Zariski neighborhood V and a submodule from Liealg(Z) =

Liealg(C
n)∩AVFI(C

n) such that its localization M to V coincides with localization of
AVFI(C

n) to V . By Theorem 4 it is enough to consider o ∈ X and, furthermore, it

suffices to show that this localization M contains all elements of AVFI(C
n) proportional

to some general constant vector field.
Let νi, p, Ip, and ξ have the same meaning as in the proof of Lemma 4.4. Choose ν1

as this constant vector field. Since I is generated by ξ and Ip one needs to show that all
fields of the form µ = (ξg0 +

∑
gifi)ν1 are contained in M where g0, gi are regular on

V and fi ∈ Ip. Since p yields an isomorphism between p(X) ∩ V and X ∩ V there are

functions e0, ei that do not depend on x1 and such that e0|X = g0|X and ei|X = gi|X .
Then µ = (ξe0 +

∑
eifi)ν1 + aν1 where a belongs to the localization of I2 to V (e.g.

a = ξ(g0 − e0) +
∑

(gi − ei)fi). Since the first summand in the last formula for µ is
globally integrable we have the desired conclusion from Lemma 4.4.

�
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4.5. Remark. (1) The authors believe that the condition dim TxX ≤ n−1 in Theorem
6 is essential. As a potential counterexample one may try to take X equal to polynomial
curve in C3 with one singular point whose Zariski tangent space is 3-dimensional.

(2) In view of Theorem 6 the assumptions of Theorem 5 can be weakened in case
of dim TxX ≤ n − 1 to the following extend: The assumption Φt(Ω) ∩ X = ∅ can be
replaced by Φt fixes Φt(Ω) ∩ X for all t.
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