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Conicallimit set and Poincare exponent for iterations of rational functions

by
Feliks Przytycki 1

Abstract. We contribute to the dictionary bctween action of Kleinian groups and
iteration of rational functions on the Riemann sphcrc. We elefine the Poincare exponent
8(/, z) = inf{a : P(z, a) :::; O} where P(z,o:) := linl sUPn-)oo ~ log L::/n(x)=z I(In)' (x) 1-°.
We prove that 8(/, z) and P(z, a) do not depend on z, provieled z is non-exceptional. P
plays the role of pressure, we prove that it coincides with Denker-UrbaIlski's pressure if
a < 8(/). Various notions of "conical liInit set" are considered. They all have Hausdorff
diInensioll equal to 8(f) equal to the hyperbolic diInensioll of .1 ulia set and equal to the
exponent of some conformal Patterson-Sullivan Ineasures. In an Appendix we discuss also
notions of" conicalliInit set" introduced recently by Urba6ski and by Minsky anel Lyubich.

INTRODUCTION.

For every Kleinian group G with Ac(G) the conicallirnit set, 8(G) thc Poincare expo­
nent, a(G) the infimlull of exponents of confonnallncasures anel HD standing for Hausdorff
dimension it holds

HD(Ac(G)) = 8(G) = a(G) (0.1)

and Pattcrson construction gives confonnal llleasurcs of exponent equal precisely 8(G).
This is apart of a beautiful theory tinking these notions, see [Pa]' [SI], [BJ] (also [N]).

In iterations of rational functions confonnal measures were introduced by D. Sullivan
[82] anel a general theory of conformal measures developped by M. Denker anel M. Urba6ski
in [DU!] anel [DU2]. In [DU2] the dynamical dimension of Julia set J = J(f) for a rational
function / is was introduced anel defined as follows

HDhyp(.J) = sup{HD(J.L) : J.L is an ergodic I - invariant measure
of positive Lyapunov exponent}

(0.2)

where HD(J.L) is the infilnum of Hausdorff dirnensions of sets of full measure /-1-. The notation
HDhyp abbreviates hyperbolic dimension which is supreillum of Hausdor'ff dimensions of
isolated hyperbolic subsets of J, the notion introdllced by M. Shishikura [Shi]. Actually
the both din1ensions coincide [PUbook]. (X is callcd isolated if cvcry trajectory Ij (x) in a
sufficiently small neighbourhood of X fiust be containcd in X. Corllpact X c J is called
hyperbolic if there exists n > 0 such that I(fn)' I > 1.)

1 Supported by Polish KBN Grant 2 P301 01307 and Max-Planck-Institut für Mathe­
111atik in Bonn.
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The main theorenl of [DU2]+[P2] (see also Appendix 2) asserts that

HDhyp(.J) = a(f). (0.3)

wherc o:(f) is the infimum of cxponents of eonformallIlcasnrcs for f. Moreover a eonfonnal
measure for which this infiInuIll is attained is construetecl in [DU2], but not by thc Pat­
terson proeedure. Reeall that J-l is called a-eonfornlal for f (or eonformal with exponent
a) if for every Borel set E E J on whieh f is injeetive lL(f(E)) = JE If'lodJ-l.

Meanwhile adefinition of a "eonieal Julia set" whosc Hausdorff ditnension would be
equal to HDhyp(J), also a definition, analogons to o(G), of the Poincare exponent and an
equality similar to (0.1) were Inissing. In this paper we try to fill this gap.

SECTION 1. Basic concepts.

Definition 1.1. For each rational function f cvcry z E (f: and cvcry a > 0 eonsider
the fo11owing Poincare sequence:

P(z, a, n):= L I(fn)'(x)l-O
jn(x)=z

We call a = o(f, z) thc Poincare exponent with respect to z if a is thc smallest number
sueh that lim suPn-t 00 ~ log P (z, a, n) ::; O. If this lilns11p is positive for every 0:' we set
8(f, z) = 00.

Notice that 8(f, z) > O. Indced P(z, a, n) 2: deg(j)Tl(sup 1/'l)-no henee
~ log P(z, 0:', n) 2: log eleg(f) - Cl log(sup If'l) hence 6(/, z) 2: log deg(f)/ log(sup If'I)·

Notice also that the sIna11est a in thc Definition 1.1 exists. This is an easy excrcise
also using sup If'l < 00 (see Prop. A2.2.).

The Main Theorem of the paper (Scction 3) says that 6(f, z) as a funetion of
z is constant and attains its Ininimum evcrywherc cxccpt a "thin" set E (of Hausdorff
dimension 0). We call this constant thc Poincare exponent and denote by 8(f). Before we
prove this Main Theorem we just write

8(f) = inf 8(f, z).
z

(1.1)

One can define Pressure P(z, a) = P(/, -0: log 11'1, z) as EIn sUPn-too ~ log P(z, 0', n).
So 8(/, z) is the nünirnal zero of P(z, a) as a function of Q. P(z, a) sinülarly to 8(f, z) is
eonstant independent of z cxcept z E E whcre it is not sIllaller. Denote this constant by
P(a). Clcarly P(z, a) anel P(a) are continuous.

In fact for 0 ::; a < o(f), P(a) coincides with pressure defined in [DU2] and also with
sup hJJ,(f) - a I log If'ldj.L wherc supremunl is taken over a11 probability ergodie f-invariant
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rneasures (01' only measurcs with positive Lyapllnov exponent), h
'
J,(f) is the entropy. So

on the dornain 0 ::; a ::; 0, P(a) is monotone elecreasing anel convex. We explain these
facts concerning pressure in Appendix 2. They a.re not ncedcd in thc main course of the
paper but they are interesting because they generalize Variational Principle [W] to the
case -log 1/'1 has singularities of value 00.

Definition 1.2. For each rational function f anel every nonexceptional z (say, not a
superattracting pcriodic point for f) for evcry !( > 0 write

Ac(f, z, K) := {x E rE : ::lxi E f-ni (Z), ni --+ 00, i = 1,2, ... ,
(Vi) the propertics (i) and (ii) hold}

where

(i)

(ii)

(clist is the Riemann distance). Writc

Ac(f, z):= U Ac(f, z, j{).

K>O

Finally define the conical limit set

z

We do not know how Ac (/, z) depends on z. We conc1ucle only a postenori that except
for z E E its dimension is constant equal to o(f). Therefore we think that the following
concept is of intercst:

Definition 1.3.

Acw(f, z, K) := {x E ce : ::lxi E f-ni (z), Tti --+ 00, i = 1,2, ... ,
(Vi) the properties(i) and (iii) hold}

wherc

(iii)

As before we writc

linl sup ~ log(dist(x, Xi) . I(fUi)' (:Ci) I) ::; O.
i-too ni

Acw(f, z):= U Acw(f, z, I{).
K>O

Of course Acw(f, z) ~ Ac(f, z). In Scction 3. we provc that Acw(f, z) does not dcpcnd
of z except z E E. We write then Acw(f) anel call this the weak conicallimit set. We show
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in Section 3. that for every z which has a backward trajcctory onütting Crit, thc set of
points whcre I' is zero, Acw(/) C Acw(f, z).

Notice that already (i) iUlplies that for cvery z, Acw(/, z) C .1(f).

Remark finally that if two points Zl, Z2 belong to a connected open set U which is
disjoint with O(Crit) := U~=l fn(Crit(f)) then by bounded distortion for all branches of
f-n on a connected open set with closure in U containing z] anel Z2 we have Ac(f, Zl) =
Ac(/, Z2) and the Poincare exponents also coinciele. This is the case for Zll Z2 belanging to
the same Fatou component, in particular for the basin A oo of 00 for f a polynomial. So
for polynomials one can define Ac(f) := Ac(f, z), z E A oo .

It is easy 1.0 sec that (iii) is equivalent to :r beillg non-deep for the filled-in Julia set,
the notion introduced by C. McMullen [McM].

In the next section two lllore conccpts of thc linüt set will appeal' in a natural way
in relation 1.0 application of the Pesin Theory. We call them regular and tree conical and
denote Arcg(f) and Atc(f) respectively. In the ease of polynoIllials we define also radial
conical which is equivalent 1.0 tree conical (in thc ease the basin of 00 is simply-connected).
We will have

Areg (f) C Atc (f) c Ac (f) c Acw (I)

and all these sets have the saIlle Hausdorff dilllcnsion.

SECTION 2. Equalities of dimensions and exponents.

Theorem 2.1. For every z

HD(Ac(f, z)) :::; HD(Acw(/, z)) :::; 8(f, z)

So HD(Ac(f)) :::; 8(/)·

Proof. By the condition (iii)

Acw(f, z, K) c nn U B(y, r(n,y)l-!.:)
!.:>o N20 Jn(y}=z,n>N

where r(n, y) := l(fn)'(y)I- 1 . By thc definition of 8(f, z) anel tbc condition (i) for every
Q' > 8(/, z) the series L:n,y r(n, y)fr is convcrgent , evcn cxponentially fast with n, where

sllmming is over all pairs (n, y) with r(n, y) ::; (1 +K- 1)-u. Hence L:n,y r(n, y)o(l-!.:) < 00

for c > 0 slnall enough. So Hausdorff measure Ho:(Acw(f, z, K)) = O.
(This is sinülar to the Kleinian groups case. The discs B(Yl J{r(n, V)) 01'

B(y, r(n, y)l-f:) corresponel to "shadows".) ...

Theorem 2.2. HDhyp(J) :::; HD(Ac(f)).
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Proof. This TheorcIn follows from the following property true for every f-invariant
ergodie probability measure }L on J with characteristic Lyapunov exponent x,.,,(f) =
flog If'JdJ.L > 0 anel lL-a.C. x, (see [PUbook)):

Therc exists 1] > 0 anel a sequence of integcrs nj ---t 00 slIch that Ern SUPj-too nj / j ::; 2,
each fnj is injective on thc component B'· of j-nj (B(fn j (X), 1])) which contains X, has
distortion bounded by2 (Le. (VYt,Y2 E Bj)I(!Hj)'(vdl/l(fnj )'(Y2)1::; 2) and ](fnj )'(x)l2:
exp(njx~(f)/2). (2.1)

For cvery z thcre cxists t > 0 depending only on 'I} and z such that for every w E J
we have ft(B(w, 1])) 3 z. So for every x as above we find Xj E Bj such that ftlj+t(xj) = Z

and l(ftlj)'(xj)I- 1 2: dist(x,xj)/2r,. So l(ftlj+t)'(;l:j)I- 1 2: dist(x,xj)/(21]supl(f t )'I), Le.
condition (ii) holds. Condition (i) also holds, with, say, 1 +K- 1 = cxp(X/2). We conclude
that J-L-a.c. x belongs to Ac(f), which by the definition of HDhyp proves the Theorem ...

The proof above anel thc definition (0.2) justify thc following
Definition 2.3. x E (t is callcd regular if it satisfics the propcrty (2.1) with a number

X > 0 (we need not link X to any llleasure). Wc denote thc set of regular points by Areg(f).

We inlmediately obtain Areg(f) C Ac(f) and I-IDhyp(J) ::; HD(Areg(f)).
(Relnark that if the property HIn sup nj / j ::; 2 is onütted in (1.2) then the inclusion

above still holds. We necd this property later , to obtain Areg(f) C Atc(j).)

Recall that our ainl is to prove

a(!) = HDhyp(J) = HD(Ac(f)) = 8(/). (2.2)

To this end it is left only to prove
Theorem 2.4. For cvery a-confonnal Incasurc /L thcre exists z such that 8(f, z) ::; a.

Proof. Write On(Crit) :== U7=1(Crit). Wc have J-L(On(Crit)) == 0, otherwise J-L(Crit) ==
00. Notice that for cvery n 2: 0

( F(z, a, n)d/L(z) ::; 1.
} J\On (Crit)

(2.3)

We obtain this by cutting a ncighbourhood of .J into a finite nUInber of topological discs of
boundaries of measure J.L cqual 0 containing Otl(Crit). We consider all thc branches of j-n
on each such disc U. For each such brauch 9 we have by thc definition of conformal Ineasurc
J-L(g(U)) == Iu !(ftl)'l-ad/L. Finally wc sum these equalities up over all the brauches anel
U's. (Notice that wc cannot assert the equality in (2.3) because of possible atoms of lL at
critical points.)

For cvery c > 0 and n by (2.3)

}L{ Z : P(z, a, n) 2: exp 1U} ::; exp -ne.
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So for J-.L-a.e. z we have lim SUPn~oo ~ log P(z, a, n) :::; e. Heilce there exists z (even tL-a.e.)
such that lim Sl1Pn~oo ~ log P(z, a, n) :::; O. Hence 0(f) ::; a by (1.1), thc definition of 0(f).

'"
Remark 2.5. Thc proof of (2.2) is over in thc general case. Howevcr in the case where

f is a polynomial for cxarnple (or more generally if there exists a cornplctely invariant basin
of attraction to a sink, (for very non-polynornial cxaIllples see (P4]), one wants to consider
0(/, z) for z in the basin, whereas z produceel in thc above proofbelongs to J. We suecceded
due to our ad hoc definition (1.1), but if we want to consider only z in the basin, the Main
Theorem in thc next scction becomes crucial.

Remark 2.6. Thc results of this Section rely Oll the equality (0.4), namelyon the
quite sophisticated Denker and Urbanski eonstruction of a confonnal measure with the
exponent a = HDhyp(J). Now aposteriori due to 0(/, z) = HDhyp(J) we obtain such a
measure below, just by modifying slightly thc Pattcrson-Sullivan construction. Unfortu­
nately without any additional assumptions on 1 we do not know whcre this Ineasure is
supported. We cannot even exclude the possibility that this is supportcd in a Siegel disc
S if z E S.

Fix z anel write 0 = 8(/, z). Assume 8 < 00. Wc construet two sequences of positive
numbers tpo(n) anel tpl(n) for n = 0,1,2, ... such that linln~oo tpv(n)/tpv(n + 1) = 1 for
v = 0,1, tpo(n)::; cpl(n) anel

L tpo(n)P(z, 6", 11,) < 00, L tpl (n)P(z, 0, n) = 00.

n H

Set for exaInple
tpo(n) = (. max P(z,o,j))-l. n-2 ,

J=O, ... ,n

cP 1 (n) = (. Incuc P (z, 0, j) )- 1 .
J=O, ... ,n

tpO(n)/tpo(n + 1) -t 1 because P(z, 0, n) eIoes not converge to 0 exponentially fast. Other­
wise, if there existed e > 0 such that P(z, 0, n) < exp -en then for 0 < Cl < clog sup If'l thc
sequenee P(z,o -Cl, 71.) :::; sup If'[)n~lp(z,0, 11,) would also convcrgcs to 0, hence 0 -Cl :2: 0,
a contradiction. Sitnilarly therc is no sequellce P(z, 0, ni) diverging cxponentially fast.
Otherwise P(z,8 + c, nd ~ P(z, 0, nd (sup Il'D-niE: also eIivergcs cxponentially fast for €

sInall enough. (Sec also Prop. A2.2.)
Set tpt(n) = ttpl (n) + (1 - t)cpo(n). For cvery t < 1 wc havc by our eonstruction

P(t) := L tpt(n)P(z, 6", n) < 00,

n

For t < 1 set
ILt = L L Dy(tpf,(n)l(fH),I-O)/P(t).

n ,n (y)=z

whcre D y is the Dirae delta lueasure at y. Finally define JL as a weak* liIuit of Mt as t /' 1.
As P(l) = 00 the Incasure M is o-eonfonnal.
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We end this Section with the promised definition of Atc the set of tree conicallimit
points. Rcca11 first, [P3] 01' [PUZ], that a11 points of Un>O f-n (z) can be organizcd in a
geometrie coding tree. Briefly: we define a graph T by joining z to its j-preimages with
curves ,1, ... , '"'(d, next consider all the curves j-n ('"'(j). These curvcs are the edges of T,
whereas the points of Un>O f-n (z) are the vertices. Each sequence of symbols ß = ßo, ßll ...
for 1 ::; ß ::; d = degf corresponds to a line of an infinite sequence of edges and vertices in
T, we call this an infinite branch anel denote by b(ß). Now we are in the position to write:

Definition 2.7. x is tree conicallimit point iff therc exists a branch b(ß) convcrging
to x and a sequence of vertices Xi E b(ß) such that :J:i and integcrs ni satisfy (i), (ii) (fr01l1
the definition of Ac).

Now recall that the lnain theoreln of [P3J, Theorenl B, irnplies that if
limn -+oo sUP-YET

n
dialll'"'( --+ 0 where Tn is the set of all thc eelges of the n-th generation

(i.e. in f-n (Uj=l,,, .,cl '"'(j)) then for every IL an f-invariant measurc of positive Lyapunov
exponent, J-L-a.e. x is tree conical. (Foru1ally [P3, Th.B] gives only the accessibility along
b(ß), verifying (i), (ii) nccds looking in the Proof.) This concerns in fact all the points
satisfying (2.1). Thus

In the casc f is a polynonüal and Z E A oo we tan rcplacc b(a) by an external ,ay r
and write Xi E r in Definition 2.7. This concerns silnply connccted Aoo as weil as non
simply-connected, sec [P3, Section 3].

SECTION 3. On the independence of 6 and A of z.

We rcly on the following cOlnbinatorial
Lemma 3.1 . There exists C > 0 such that for every set W of n 2: 0 points

in lt and 1/2 > r > 0, for every zll Z2 E (f; \ B(vV, T) there cxists a sequence of discs
BI = B(ql' Pdl ... ,Bk = B(qk' Pk) such that for evcry j = 1, ... , k each 2Bj := B(qj, 2pj)

is disjoint with W, Zl E B lJ Z2 E Bk, U~=l Bj is connectcd anel else

k::;Cv'11Vlog1/r if n2:log1/1'

k~Clog1/1' if n<log1/T.

Remark 3.2 Another fonnulation is to 1".cplace the ntunber k of discs by the number
of squares in tbc Whitney covcring [Stein] (Our proof is in this spirit).

Notice that k is often lnnch larger than dh(ZI' Z2) the distance in the hyperbolic lnetric
dh on tt \ W (sllppose #W 2: 3). If Z2 is fixed and thc Ellelidcan distance of Zl to W is r
very elose to 0, then k is of order log 1/r whereas dh (ZlJ Z2) is of order log log 1/1'.

Proof of Lemma 3.1. See Appendix 1.
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Theorem 3.1. Thcre exists E c (t of Hausdorff diInension °such that for every
ZI, Z2 E(t\E and cvery a it holels P(a) := P(ZI' a) = P(Z2, a) anel8:= 8(/, zd = 8(j, Z2)'
Moreover for every zEit it holels P(a) ::s; P(z, 0:) anel 8 ::s; 8(1, z).

Proof. For evcry 11, ~ 1 set Tu = cxp -vn. Set. bu = B(fn(Grit), T n ) E' =
nN Uu>N bn anel finally E = E' U O(Crit), wherc O(Crit) = Uj:l j.i (Grit).

HD(E) = °because L:~=1 r~ < 00 for every C > 0 anel Crit is finite. Consieler now
arbitrary ZI, Z2 E (t \ E. Then there exists N such that for every 11, > N, Z',1 ~ bn for
v = 1,2. Let a = uünV =I,2,j=I, ... ,Ndist(jj(Crit), zv). Fix an arbitrary 11, > N large enough
that r = rn < a. Set W = Uj =I,.",u jj (Grit). We apply now Lmnma 3.1. anel consider the
eliscs BI, ... , Bk·

We can assume that thc diameters of B j are slualler than a constant "', dcpeneling
only on I, so that for all the coulponcnts of f-U(2B j ) thc dialuetcrs of thc cOlnplements
in (t are larger than a constant (for this it is sufficient to have H, sInaller than thc minimal
distancc between each two elistinct points of a perioelic orbit of period at least 3). This
influenccs the constant C in Lelnma 3.1. We conclucle that there exists a constant .6. > 0
(not elepencling on 11,) such that the elistortion o[ all the branches of j-n on each B1 is
bouneled by .6..

Thus, for every 0: > 0, using Lelnma 3.1, the case 11, ~ log 1/1',

hence Hrn suPn-too ~ log P(ZI, a, n) = HIn sUPn -+ oo ~ log P(ZI, 0:, n), hence
P(ZI, a) = P(Z2l a) anel 8(ZI) = 8(Z2)' The first part of the proof is over.

Consieler now an arbitrary ZEit \ O(Crit). Thc following holels, see [Pl,Lelnlna 3]:

vo < Cl < 1 3C > 0, C2 > ° VO < C < C2 Vrn > 0 thc set j-m(z) contains
at least the number C(degf)El m of (m, c)-scparatcd points. (Recall that x, y are called
(1n, c)-separatcel if IlH},Xj=O, ... ,m elist(/1 (x), /1 (y)) ~ c.)

Fix now cl = 3/4 anel suppose that rn is sIllall enough that 2Lm r n < C2, where
L = sup 1/'1. To be concrcte we set

(3.1)

We shall calculate how large r11, need be that / -m ( {z}) rt. U;=l B (/j (Grit) , rn ). It is
sufficient to have

C(degj)3m/4 > n~(Crit). (3.2)

Incleeel if two distinct points x, 11 E j-m(z) are in thc salne disc B(fi(c), rn ) for c E Grit,
then their /j, j ::s; ffi, inlagcs are not l110re than L trl 2rn apart, so x and y are not (m, c2)­
separatecl.

Observe finally that 1n elefined in (3.1) satisfics (3.2) if 11, is large enough.
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So we have found y E j-m(Z) \ Uj=l B(fj (Crit), Tn ). Fix Z2 E lt \ E. For an arbitrary
E > 0 if 11, is large cnough P(y, a, n) 2:: (exp -ne)P(z2, (t, n) by the first part of thc proof.
So

P(z, a, n + rn) 2:: L -m(exp -ne)P(z2, a, n) 2:: (ex}) -2ne)P(zz, a, n).

Again using (3.1) that rn grows much slower than n wc obtain P(Z2, a) ~ P(z, a) and
o(z) 2:: 0(Z2)' The TheoreIll is proved. ...

Theorem 3.2. Thcre exists E c tt of Hausdorff diulension 0 such that for every
Zl, Z2 E (f \ E

Acw(f) := Acw(f, zd = Acw(f, Z2)

and for every z E mwhich ha..c; a backward trajcctory ornitting Crit, Awc(f, z) ~ Acw(f).

Proof. We set E the same as in Proof of Theol'eln 3.1. Let x E Acw (!, Zl, K) and Xi

be a sequence of fni-preilllages of ZI convergillg to x satis(ying (i) and (iii) in the definition
of Acw . For each 11, largc enough there is a 1-to-l correspondence between /-I(Zl) and
j-n(Z2)' Nalnely each brauch of f-n in a neighbourhood of Zl extends along the chain
BI, ... , Bk (see Proof of Theorelll 3.1) to Z2. SO let :r:i corresponds to x~ E i-ni (Z2)' We
obtain for ni large enough

if K is large cnough. Wc obtain also the growth of ]dist(:J:i, x~)(fni),(xD] slower than every
exponential as ni ---7 00. So

lirl1suplog(dist(x,xD 'l(fni)'(:r;~)I) ~
i-too

~ liln sup log (dist(x, :Ci) . I(fUi)' (:l;~) 1) ~ O.
i-too

For an arbitrary z which has a backward trajcctory T omitting Crit we find Zl E T

such that Zl t/:. O(Crit) and next for every 11, wc find y E j-m(Zl) as in Proof of Theorem
3.1. (i.e. not too clo~to Uj~=l jj(Crit)). Wc can have additionally l(fm)'(y)1 2:: 1 because
lnost of points in j-m(zd satisfy this, see for exalnple [FLM]. So we can repeat the above
estiInates, using rn/n ---7 O. ...

Appendix 1. Proof of Lemma 3.1.

We can assullle Zl = -1, Z2 = 1 in (C. Ncxt change the coordinates on the union of
the triangles Li 1 with the verticcs -1, i, -i anel Li 2 with thc vCl'tices 1, i, -i by a map cI>
to thc strip T := {O ::; ~(z) ~ I} as follows: First elefonll Li 1 to Li~ the dOlnaill between
the straight rays froln -1 through i and -i, and the are (colltailling 0) of the circle with
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origin at -1 anel radius 1. Next map ß~ to T n {~z ::; O} by z H ~ + ~ log(z + 1). On ß2
write ep = So cI> 0 S-1 wherc S is thc symuletry with respect to the imaginary axis.

Thc Proof of the LeInllU\ rednces IlOW to a construct.ioll of a "chain of squares" in T Le.
a family of squares with a srnallcst possible nUInber of clClnents, not intersecting <I>(W),
whieh union joins thc interval ~z = -m to Wz = 'In for 771 = 210g l/r, with every two
adjacent squares in thc chain of a cornparable size. We shall llse certain tryadic squares,
see below.

We ean aSSUIl1C 2711, = 3l
, n = 3t for certain non-negative even intcgers l, t. Writc

W' = cI>(W). We cau adjust our coustruction by changing <I> slightly so that no ~z, ~z for
z E W' is rational tryaclic.

Define inductively a sequence of horizontal strips

whcre Ta = T, such that Tj +1 C T j and ~(W' n Tj ) ::; 3t - j for cvery j. In particular
W' nTt+1 = 0.

Call every interval in [-rn, n~] of the fonn [b . 3-1] , (b + 1) . 3-U] for an integer band
non-negative integer v, tryadie 01' v-tryadic. For every v-tryaclic I clenote by K(I) the
square I x Tu. These are thc squares we shall llse to construct our chain.

For every v-tryadic I wc define

r.p(I) := inf{j ~ 0 : W' n Tj n PRz E I} = 0}.

We shall definc now by induction certain farnilics of tryadic intervals. Let I a consists
of three (t + l)-tryadic intervals with lllaxiInal possiblc cp.

Suppose that a falnily Lj is already definecland it consists of (t+l-j)-tryadic intervals.
Suppose #Lj = 3j +1 . Suppose also that j < t + 1 anel 2j - t < l. The first inequality
means that K(I) 's for I E Lj arc not yet of the side 1 (thc Inaxinul.1 possible size). The
latter meaus that 3-(t+l-j) 3j +1 < 3l Le. 'Lj cloes not covcr yet the whole (-m, m].

Wc construct I j +1 :

Every I E Lj is contained in a (t - j)-tryadic 1. VVe denote the sct of such intervals j
by IJ+l and inchlde in I j +1 . If I is not adjacent to -n~ 01' 171 01' is not amiddie interval of

j we inchlde also in I j +1 the (t - j)-tryadic interval adjaccnt to I. We have up to now in
I j+1 a falnily IJ+l of at Inost 2· 3j +1 eleInents. COInplcte it to Lj+l so that #Lj+l = 3j +2

by (t - j)-tryadic intervals with rnaxirnal possible valucs of cp.

For every j write Ljd for the family of all the (t + 1- j)-tryadie intervals in U{i : I E

Lj} \ U{I E Lj}
We include in our chain of squares joining ~z = -m to ~z = m a11 the squares K(I)

for
I EX:= Io U U1j~l U U(Xj \XJ)

j j

The unions are over j = 1, ... (l + t)/2 if (l + 1.)/2 :::; t + 1 Lc. l :::; t + 2, in particular
log l/r < n. In this case 'L covers (-m, m]. The lll11nber of squares in the chain is bounded

by l:Y:~)/2 3j +2 :::; ConstJ111vn: as asserted in the Lenuna.

10



In the case l > t + 2 the union is over j = 1, ... , t, + 1 anel [-rn, m] is not yet covered
by the intervals in I. Fortunately all the points of {,V' lic over I E I, so we just add to
the chain an appropriate fanüly of unit squares (O-tryadic). The total nlunber of squares
in the chain does not exceed 2m + Const 11, 2:: Const log 1/7' as asserted in the Lemlna.

We end the Proof by checking that all our squares are indeecl disjoint frOll W'. By
induction we prove that for every j anel interval I with interior not intersecting UIj we
have cp(I) ::; t - j. In particular for I E I j +1 \ I}+l we have K(I) n W' = 0. This will end
the Proof, by thc definition of I.

For j = 0, outside U{I E I a} we have cp ::; t - 1 which is cven better than demancled.
So the salne estiInate is sllfficient outside U{I EIl}' Ta build 'Lz we added to I~ at least
nine (t - l)-tryadic intervals, so we have exhausted all for which cp > t - 2.

In general: Ta build I j we added to 'LI at least 3i nlllllber of (t + 1 - j)-tryadic
intervals, so among thcm all for which cp > t - .1. ...

Appendix 2. Pressure.

Proposition A2.1. P(a) 2:: logelegf - Ci logsup If'l·

Proposition A2.2. P(z, a) and P(a) are continuous functions of a.
Proof. IfP(z,a) < 00 then for cvery Cl> 0 olle lIas P(z,a,n)::; cxpn(P(z,a)+cd

for 11, large enough. Hencc for y E j-n(z) OllC has l(jll)'(y)1 2:: exp -n(P(z, a) + cd. One
has also I(fn)' (y) J ::; sup If' In. So for 11, large anel lei::; co

P(z, a, 11,) exp( -canD(cl' z, a)) ::; P(z, a + c, 11,) ::; P(z, a, 11,) (exp conD(cl, z, a)),

where D(cl,Ca) := Inax(P(z,a) + cl,logsuplf'I). We conelude that !P(z,a + c) ­
P(z, a) I ::; coD(O, z, a) anel jP(a + c) - P(a) I ::; coD(a), where D(a) = infz D(O, z, a) . ...

Recall now the definition of pressure by Denker anel Urballski [DU2]:
Definition A2.3. Let V be an open set in J such that V ::> (CritnJ). Defiue K(V) :=

J \ Un>O f-n(V). As j((V) n Crit = 0 we can consielcr the standard topological pressure
P(11K(v), -a log 11'1) for the lnap fIK(v) anel the real continuous flluction -(t log 1/'1 on
the compact set K(V), see [W]. Define fina,lly

PDu(a) = sup P(fIK(v), -0: log 11'1)
v

suprcmunl over all V considcred above.

Two other definitions are of intercst:
Definition A2.4. Hyperbolic pressure

Phyp(a) := sup P(jlx, -a log 11']),
x
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suprcmUlll takcn ovcr all isolated hyperbolic subsets of J.

Definition A2.5. Hyperbolic variational pressur'c

Phypvar(a) := sup h~(f) - a I' log If'ldtL,
11. •

supremuIll takcn ovcr all ergodie f-invariant Ineasllres of positive Lyapunov exponent, Le.
XJl.(f) = Jlog If'ldtL > O.

Definition A2.6. Variational pressure

supremum taken over all ergodic f-invariant Ineasures Oll J.

Theorem A2. 7. Für evcry 0 ~ a < 6

Sketch of Proof. (It basically repeats [DU2] and Section 2.)
1. We prove (Va) P(a) 2: Phypvar(a): For evcry IL a..'1 in thc definition of Phypvar for

every € > 0 arbitrarily slnall anel n large enollgh, one constructs an (n, e)-separated set Sn
such that L:yEs

n
I(fn)' (y) 1-0: 2:: exp n (h,J. (J) - a Jlog ll'jdtl - e). (This is Katok's con­

struction, see for examplc [PUbook].) One can aSSlllllC also that 2.1 holels (for a sequence
of n's) anel repIace y E Sn by y E f-n-t(z) as in Proof of Theorelll 2.2.

2. Phypvar(a) = Phyp(a): The 2: inequality follows [rom Variational Principle, see [W],
and the obvious fact that every probability J-invariant lneasure on a hyperbolic set X has
positive Lyapunov exponent. The opposite inequality results frolll Katok's construction
(the sets Sn above are in fact constructcd in respective hyperbolic sets).

3. If Pnu(a) > 0 then Phypvar(a) 2: PDu(a): For every c > 0 Olle can find, by
Variational Principle, an ergoelic J-invariant tL on K(1f ) such that hJl.(/) - a flog lJ'ldtL >
P(flK(v), -a log 1/'1) - c. For e slnall enough the latter expression is positive and
flog If'ldtL 2: 0 by [P2] or [DU2, Cor. 4.2]. Hence h'l(f) and therefore .r log If'ldrL are
strictly positive, sec [R].

4. IfPvar(a) > 0, then Pvar(a) = Phypvar(a): Indeed, as in 3. if h,J. (f)-a.r log If'ldp, >
Pvar{a) - ethen for € slnall enough this is positive. As .r log IJ'ldlL 2:: 0, by [P2J, we obtain
hlJ..(J) and thereforc Jlog If'ldJ-L strictly positive. Hence Phypvar(a) 2:: Pvar(a) - € for every
€ > O.

5. We prove that for every 0 ::; a < 6(j) there cxists a sequence of decreasing Vn 's such
that P(fIK(Vn ), -a log 11'1) > 0 anellillln -.+ oo P(JIK(Vn ) 1 -a log 11'1) 2:: P(a). In particular
Pnu(a) > 0 and PDu(a) 2: P(a):

Take Vn of the fornl Uj>o j-j ("Vn ) where l%l is a union of sIuall discs B(xc , Tn ) for
a distinguished point Xc in tue w-limit set for each c E Crit n .J. One can choose Xc so
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that therc exists C > 0 such that for every J' 2:: 0, I(f j)' (xc) I 2: C, [P2] . Hence, [DU2,
Lelnma 5.4], for Tu ~ 0 therc exists a sequence of lneasures Jln on K(Vn ) with Jacobians
Jac/~n (I) = An lf'1° for 1 ~ An ~ expP(fIK(Vn)l -a log If'l) on K(Vn) \ aVn (By .Jacobian
we unelerstanel a function F on the dOlnain of f, herc on !((V), such that for every Borel
E on which f is injective IL(j(E)) = JE Fd,L.) Morcover for evcry E E aVn on which 1 is
injective

(A2.1)

A weak* liInit Jl = linln -4000 ILn has Jacobian satisfying

(A2.2)

(One uses here the fact that lL has 00 atoms at f(x c), bccause linl inf An ;::: 1 anel
2: j l(fj)'(xc)IO = 00. Such atOl1lS would cause troubles with an estinlate of Jacobian, see

[DU2], because aVn accUlllulate at Xc anel we have only an inequality in (A2.1) resulting
with an incquality for E = {xc},)

We have used here P(fIK(vn ), -a log If'l) > O. If it were not true, we would find
an ~ a such that 1/11. > P(fIK(Vn ), -an log lf'l) > 0 anel the above construction would
give a ß-conformal lneasure with exponent ß ::; a. Then however, by (2.2) (Th. 2.4),
0(/) ~ ß ~ a < 8(f), contradiction.

Finally as in Proof ofThcorem 2.4, using (A2.2), wc find z for which P(z, a) ~ Pnu(a).

Corollary A2.8. P(a) i8 a strictly elccreasing, convex function on 0 ~ Cl' ~ 8(f).
Proaf. This is so for the affine function h'l(f) - o:.r log 1/'IdiL for each IL of positive

Lyapunov exponent, so Sllprcmum over Jl'S, nanlely Phypvnr(O:) is lnonotone decreasing,
convex. As this attains 0 at o(f) the convexity inlplies this is strictly clecreasing. ...

Appendix 3. Same praperties of Ac, Acw and ather definitions of "conical" .

After distributing the first version of this paper I was asked about a relation between
the definitions of "conical linüt set" in the reccnt preprints [LM], [U2], [DMNU] anel my
definitions. In [U2] and [DMNU] x is callecl conical if there exists 1] > 0 anel a sequence
of integers nj --+ 00 such that each fnj is injective on ConlPxf-nj (B(fn j (x), 1])) (Colnpx
lneans the component containing x). We denote the set of points 1l conical" in this sense
by Au(f).

Of course Au(f) ~ Areg(f).
Suppose that f has no critical points in J hut the set P of periodic parabolic points

(fk(p) = p, (fk)' (p) is a root of unity) is non-clnpty. Thcn J = Au (f) U Un>O f-n(p)
anel Au (f) n Un>O f-n (P) = (/). This is siInilar to thc geonletrically finite Kleinian groups
case, see [Maskit~ VI.C.3]. This was in fact a lllotivation für the definition of Au (I) in [U2]
Unfortunately this is not so for Acw :



Proposition A3.1 For each f with no critical points in .J, with P i= (/) there exist
points which are neither in Un>O f-n(p) nor in Acw(j).

Proof. Considcr a finite Markov partition of .J, attribute thc symbol 0 to all its cells
whosc closures contain a pcrioelic parabolic point p, anel attribute other symbols to other
cells. For each x E J choose a sequence aj(x) of synlbols so that each is attributed to a cell
whose closure contains fj (x). We prove that if linln-too ~{O ::; j < n : aj(x) = O} In = 1,
then x ~ Acw(f, z).

Indeed, suppose 11 = Xi satisfies (i), (iii) for n = n'i and z ~ .J. From dist(x, y) ::; An for
a constant 0 < A < 1 it follows that for n large enough distfn(x), ftl(y)) ::; ßtldist(x, V),
where B ~ 1 as n ---+ 00 (because [I' [ ~ 1 ncar P). Thercfore elist(fn (x), z) ---+ 0, what
contradicts z ~ J. If z E J \ P we find its neighbourhood U in iJ: disjoint from O(Crit).
Then for every z' E V, where clV CU, the fulfiIenlcnt 0 f (i) and (iii) for Zl is equivalent to
the fulfilment of (i), (iii) for Z, by uniformly bOllnded elistortion for all branches of f-n on
V. One can take Zl t/:. J, thus reducing the casc z E .J \ P to the previous case. Finally the
case z E P reduces to considering of its f-prehnages in .J \ P. (Anothcr way to conclude
the proof for z E J is to observe that .J n E = 0 for E cxceptional defined in Proof of
Th.3.1. anel to apply Th.3.2.) ..

Wc conclude that Au (f) ct Acw (f)·

Clearly the sets Au(f), Ac(f, z) anel Acw(f, z) are forwa.rd invariant.

For our A's also thc backward invariance hold:
Proposition A3.2. For every rational fand cvery non-exceptional z (in the sense of

Theorenl 3.1) f-l(A c) = Ac and f-l(A cw ) = Ar,w.
Proof. Suppose x = f(x ' ) E Ac(f, z). ASSlllne :,,' E Crit(f), as for Xl non-critical

Xl E Ac(f, z) follows imnleeliately. Let Xi be points approxinlating x according to Definition
1.2. Then a.s z ~ E therc exists a branch of j-Ui on B(z, exp(-j1i"i)) nlapping z to Xi, for
ni large enough. So by boundcd distortion dist(x,:Ci) ~ Const[(f u i)'(xi)I- 1 exp(-j1i"i).
Hence, for x~ thc f-preiInage of Xi, near x', we obtain

so for x' (i) holds with x~, ni + 1 for i large enough (allel llCW K). v is here the multiplicity
of f at x'.

Thc property (ii) for x' follows imillediately fronl [j' (xD 1-1 ~ 2:i~~S:';~~i
Thc proof for Acw is siInilar. ..

The following rational l11aps are of interest, sec [PR.];
Definition A3.3. f is called topological Collcl-Eckm.ann if thcre exist M, N,1] > 0

such that for evcry :.r; E .J

:lnj ---+ 00, nj ::; N j, such that each fUj has degree at most M

on ComPxf-nj B(fUj (x), 1]).
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Proposition A3.4. For every rational f, evcry x E J(/), for which there exist
M, N, Tl > 0 such that (A3.1) is satisfied, is conical, i.c. :r, E Ac(f, z) for every z ~ O(Crit).
In particulaI' if / is topological Collet-Eckmann then .J(f) = Ac (/).

Proof. It follows from the proof of [PR, Prop.3.1] that there exist 0 < ~ < 1,17 > 0
and a sequence of integers nj -t 00 such that for each Wj := COInp:r;f- Uj (B(fUj (x),1]))
we have

diamWj ::; EUj. (A3.2)

By [M] we can also assumc, taking 1] snlall enough, that all fk(Wj ), k = 0,1, ... , nj have
small diaIneters.

([PR, Prop.3.1] asserts that (A3.2) holels for aU n. Here however we cannot do the
first step of the 1l telescope" construction, exccpt for 11 gooel" n 's.)

Fix an arbitrary n = nj. We claim that there exists a elisc D C E(fU (x), 1]) of dialneter
at least A1] for a constant A depending only on M such that there cxists y E W n f-U(D)
satisfying

(A3.3)

(A3.5)

anel
dist(x,y):S; A-1 1(fU )'(y)I- 1

. (A3.4)

Indeeel, there exists an integer 0 :s; k :s; NI such that B (fU (x) ,17 it-;.\) \B(jU(x), Tl M~l)
does not contain any critical valuc for fUlw. We choose D an arbitrary disc in the an­
nulus E(IU(x), 1] 3?it-:;?1)) \ B (In (x), 1] 3(;"-;'\))' Denotc W' = COInPxI-u (B(fU (x), 1](3k +
2)/3(M + 1))) and fix y E W' n j-U(D). Let 0 = 1no < 'mI< 711'2 < ... < mM' = n be all
consecutive integers such that f m /. (W') contains a.n f-critical point, except maybe t == 0
and t = M'. (Obscrve that M' :s; M (dcgf) + 1.) Then for every 111,tJ t < M' we have

d · fmt+l (W')
~anl ~ IfTnt+l-mt-I)'(fmt+l(y))I-l

dlaInjm t +1 (W')

anel

(A3.6)

Here ~ means the ratios of thc left and right sieles, and vice versa are bounded by a constant
depending only on M. The former ~ follows frolll bOllndeel distortion, the latter holds
because the distance of fnt t +I (y) from I (Cri t(f) n fm l (W' )) is at least Ctdiamftn t +I (W')
for a constant Ct > O.

COlllbining (A3.5) and (A3.6) over an t wc obtain for a constant A > 0

(A3.7)

The right hanel siele ineqllality together with (A3.2) give (A3.3). The left hand side in­
equality in (A3. 7) gives itnmcdiatcly (A3.4) .

(The above proof is only sketched, apreeise proof neeels ineluction over decreasing t's
to control elistortion and constants Ct . For details see [P5, Proof of L.1.4, (lA)]; though
only the lcft hand siele incquality (A3.7) is proved therc, the technique is the saIne.)
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It is known that there exists k depending only Oll z and on the diameter of D (i.e.
on 11 and M) such that fk(D) 3 z. So for every nj we could choose y with fnj+k(y) = z.

Moreover l(fk)'(fnj(y))1 > Const > 0 (because z ~ O(Crit)). This and (A3.3) give (i) for
nj + k. The upper baund for l/k),1 and (A3.4) give (ii). ..

Notice that this Proposition, (2.2) anel [PR" L.2.2J irnplies for 1 Collet-Eckmann that
HDhyp(J) = HD(J).

(ThllS we have obtained a new proof of apart of [PS, Th.A]. Recall that 1 is called
Collet-Eckluann if for every c E Crit n J, whose forward trajcctory does not mect other
critical points, I(fn)' (I (c)) I grows exponcntially fast. as n -t 00. [PR, L.2.2] says that
Collet-Eckmann implies tapological Collct-Eckinann. )

Notice that, by Proposition A3.4, if 1 is topological Collet-Eckmann with CritnJ =1= 0,
thcn Ac(f) ct Au(f)·

This is so because, by the definition, c ~ Au.

Recall [CJY] that f is callccl semi-hyperbolic if it has no recurrent critical points and
no parabolic periodic points. This dass of Inaps is contained in the dass of topological
Collet-Ecklnann maps. It follows from [Ul] that if f is senli-hyperbolic, then all points in
J cxcept Un~O l-n(Crit) belang to Au(/). So Au(f) is not backward invariant.

M. Lyubich and M. Minsky's conical lirnit set dcfined in [LM], which we denote by
ALM, has a complicatcd definition and we shall not rewrite it here. Instead, let us introduce
thc following notion:

Definition A3.5. We ca11 x E J strong LM-conica[ if thcre cxist 11, M > 0 and
sequences of integers nj -t 00, k i -t 00 such that for cvery nj anel i = 1, ... , i(j) the map
Inj-k i has dcgree bOllndcd by M on COInpxf-(nj-ki)(B(fnj-ki (:c), T,)). Denote the set of
a11 strong LM-conical points by AsLM (f)

One can show that AsLM(f) c ALM(f). By [LM, Prop. 8.8 and L.8.4] if f is semi­
hyperbolic, then ALM(f) = J. It is easy to see that if x satisfies (1) then x is strong
LM-conical. Thus wc obtain ALM (f) = .J for every topological Co11et-EckInann map f.

By thc way we obtain also ALM (f) ::J AsLM (j) ::J Areg (j).

Notice finally that sirnilarly to Acw(f) one has

HD(Au(f)) = HD(ALM(f)) = HDhyp(J) (A3.8)

HD(Au(f)) = HDhyp(J) follows froIn HD(Au(f)) :::; a for every a-conformal mea­
sure, see [U2] and [DMNU] (and from (2.2): a(j) :::; HDhyp(J), Au(f)::J Arcg(f) and
HDhyp(J) ~ HD(Arcg(f)))·

This fo11ows howevcr, as well as the secolld equali ty in (A3. 8), fronl Proposition A3. 7
below.
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Definition A3.6. We say x E ALMl (f) if there exist 1], M > 0 and a sequence of inte­
gers nj ---+ 00 such that each fn} has degree bounded by Mon Cornpxf-n }(B(/n}(x),1})).

Of course ALMl (f) => Au (/) and by [LM, Prop.8.7J ALMl (/) => ALM (/) .

Proposition A3.7. HD(ALMl(f)) ~ a(f). Hente HD(ALMl(f)) = HDhyp(J).

Proof. The inequality follows as in [PI, ProofofTh. AJ frOnl/1.(B(x,Tj)) ~ Const1'j
for x E ALMl (/) for /l. any a-conformal mcasul'c and r j = 1'j (x) ---+ 0 as j ---+ 00. Const
dcpends on M only. The hüter inequality llses boundcd distortion for finite criticality as
[PI, L.1.4J.

Question Is every confonnal measure IL on Ac(f) crgodic? Is 11. unique, provided it
has no atoms at critical points?
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