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Abstract. We contribute to the dictionary between action of Kleinian groups and
iteration of rational functions on the Riemann sphere. We define the Poincaré exponent
§(f,2) = inf{a : P(2,e) < 0} where P(z,c) := limsup,,_,, + log 2 o (o= [(F) ()7
We prove that §(f, 2) and P(z, ) do not depend on z, provided z is non-exceptional. P
plays the role of pressure, we prove that it coincides with Denker-Urbaiski’s pressure if
a < 6(f). Various notions of ”conical limit set” are considered. They all have Hausdorff
dimension equal to é(f) equal to the hyperbolic dimension of Julia set and equal to the
exponent of some conformal Patterson-Sullivan measures. In an Appendix we discuss also
notions of ”conical limit set” introduced recently by Urbaiiski and by Minsky and Lyubich.

INTRODUCTION.

For every Kleinian group G with A.(G) the conical limit set, §(G) the Poincaré expo-
nent, a(G) the infimum of exponents of conformal measures and HD standing for Hausdorff
dimension it holds

HD(A(G)) = 6(G) = a(G) (0.1)

and Patterson construction gives conformal measures of exponent equal precisely 6(G).
This is a part of a beautiful theory linking these notions, see [Pa], [S1], [BJ] (also [N]).

In iterations of rational functions conformal measures were introduced by D. Sullivan
[S2] and a general theory of conformal measures developped by M. Denker and M. Urbanski
in [DU1] and [DU2}. In [DU2] the dynamical dimension of Julia set J = J(f) for a rational
function f is was introduced and defined as follows

HDypyp(J) = sup{HD(g) : iz is an ergodic f — invariant measure
of positive Lyapunov exponent}
(0.2)

where HD(p) is the infimum of Hausdorff dimensions of sets of full measure z. The notation
HDy,y, abbreviates hyperbolic dimension which is supremum of Hausdorff dimensions of
isolated hyperbolic subsets of J, the notion introduced by M. Shishikura [Shi]. Actually
the both dimensions coincide [PUbook]. (X is called isolated if every trajectory f7(z) in a
sufficiently small neighbourhood of X must be contained in X. Compact X C J is called
hyperbolic if there exists n > 0 such that |(f*)'| > 1.)

1 Supported by Polish KBN Grant 2 P301 01307 and Max-Planck-Institut fiir Mathe-
matik in Bonn.



The main theorem of [DU2]-+[P2] (see also Appendix 2) asserts that
HDyyp(J) = a(f). (0.3)

where a(f) is the infimum of exponents of conformal measures for f. Moreover a conformal
measure for which this infimum is attained is constructed in [DU2], but not by the Pat-
terson procedure. Recall that p is called a-conformal for f (or conformal with exponent
«) if for every Borel set E € J on which f is injective u(f(E)) = [g |f'|*dw.

Meanwhile a definition of a "conical Julia set” whose Hausdorff dimension would be
equal to HDyyp(J), also a definition, analogous to 6(G), of the Poincaré exponent and an
equality similar to (0.1) were missing. In this paper we try to fill this gap.

SECTION 1. Basic concepts.

Definition 1.1. For each rational function f every z € @ and every a > 0 consider
the following Poincaré sequence:

P(zan) = S 1 (@)
fr(x)=2

We call @ = §(f,2) the Poincaré ezxponent with respect to z if « is the smallest number
such that limsup,,_, ., 2 log P(z,a,n) < 0. If this limsup is positive for every o we set

6(f, 2) = c0.

Notice that §(f,2) > 0. Indeed P(z,a,n) > deg(f)*(sup|f'|)~"* hence
Llog P(z,0,n) > log deg(f) — alog(sup ]} hence 8(/, ) > log deg(f)/ log(sup |f']).
Notice also that the smallest « in the Definition 1.1 exists. This is an easy exercise
also using sup |f'| < co (see Prop. A2.2.).

The Main Theorem of the paper (Section 3) says that §(f,z) as a function of
z is constant and attains its minimum everywhere except a “thin” set E (of Hausdorff
dimension 0). We call this constant the Poincaré exponent and denote by d(f). Before we
prove this Main Theorem we just write

5(f) :ilgfé(f,z). (1.1)

One can define Pressure P(z,a) = P(f, —alog|f'|, z) as limsup,,_,, = log P(z, o, n).
So &(f, 2) is the minimal zero of P(z, @) as a function of . P(z, @) similarly to 6(f, z) is
constant independent of z except z € E where it is not smaller. Denote this constant by
P(c). Clearly P(z,«) and P(e) are continuous.

In fact for 0 < a < 8(f), P(«) coincides with pressure defined in [DU2} and also with
sup h,(f) — a [ log|f'|du where supremum is taken over all probability ergodic f-invariant
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measures (or only measures with positive Lyapunov exponent), h,(f) is the entropy. So
on the domain 0 < a < 4§, P(a) is monotone decreasing and convex. We explain these
facts concerning pressure in Appendix 2. They are not needed in the main course of the
paper but they are interesting because they generalize Variational Principle [W] to the
case — log | f’| has singularities of value co.

Definition 1.2. For each rational function f and every nonexceptional z (say, not a
superattracting periodic point for f) for every K > 0 write

A(fyz, K):={z €@ :3z; € f~™(2),n; 5 00,i=1,2,...,
(Vi) the properties (i) and (ii) hold }
where

(i) [(F™) (@)l > (1 + Ky

(ii) dist(z, ;) < K|(f™) (=)™,

(dist is the Riemann distance). Write

Ae(f,2) = | Aclf, 2, K).

K>0

Finally define the conical limit set

Ac(F) =) Aelf, 2)

We do not know how A.(f, 2) depends on z. We conclude only a posteriori that except
for z € F its dimension is constant equal to 6(f). Therefore we think that the following
concept is of interest:

Definition 1.3.

Acw(f, 2z, K):={z €@ :3Ix; € f™ (z),m; = 00,i=1,2,...,
(Vi) the properties(i) and (iii) hold }
where

(iii) lim sup 1 log(dist(z, =) - |(f™) (=:)]) < 0.

=00 £

As before we write

Acw f}z) U Acw(faz I{)

K>0

Of course Aew(f,2) D Ac(f, z). In Scction 3. we prove that Acw(f, 2) does not depend
of z except z € E. We write then A, (f) and call this the weak conical limit set. We show
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in Section 3. that for every z which has a backward trajectory omitting Crit, the set of
points where f' is zero, Acw(f) C Acw(/f, 2).
Notice that already (i) implies that for every z, Acw(f,2) C J(f).

Remark finally that if two points 21, z; belong to a connected open set U which is
disjoint with O(Crit) := |5, f/™(Crit(f)) then by bounded distortion for all branches of
/™™ on a connected open set with closure in U containing z; and 2z; we have A.(f,z) =
Ac(f, z2) and the Poincaré exponents also coincide. This is the case for 21, 2; belonging to
the same Fatou component, in particular for the basin A,, of oo for f a polynomial. So
for polynomials one can define Ac(f) == Ac(f,2), 2 € Aw.

It is casy to see that (iii} is equivalent to z being non-deep for the filled-in Julia set,
the notion introduced by C. McMullen [McM].

In the next section two more concepts of the limit set will appear in a natural way
in relation to application of the Pesin Theory. We call them regular and tree conical and
denote Areg(f) and Ayc(f) respectively. In the case of polynomials we define also radial
conical which is equivalent to tree conical (in the case the basin of 0o is simply-connected).
We will have

Areg(f) C Awe(f) C Ac(f) C Acw(f)

and all these sets have the same Hausdorff dimension.

SECTION 2. Equalities of dimensions and exponents.
Theorem 2.1. For every 2
HD(Ac(f, 2)) < HD(Acw(f, 2)) < 6(/,2)
So HD(A.(f)) < 6(/).

Proof. By the condition (iii)

Az K)c (V) U Brmy)'™)

>0 N20 fr(y)=z,n>N

where 7(n,y) := [(f*)'(y)|~. By the definition of §(f, z) and the condition (i) for every
a > §(f,2) the series ). 7(n,y)* is convergent, even exponentially fast with n, where
summing is over all pairs (n,y) with 7(n,y) < (1+K~1)~" Hence Y., m(n,y)*1~%) < oo
for € > 0 small enough. So Hausdorff measure Hy(Acw(f, 2z, K)) = 0.

(This is similar to the Kleinian groups case. The discs B(y, Kr(n,y)) or

B(y,r(n,y)!7¢) correspond to "shadows”.) &

7,y

Theorem 2.2. HDy,y,(J) < HD(Ac(f)).



Proof. This Theorem follows from the following property true for every f-invariant
ergodic probability measure p on J with characteristic Lyapunov exponent x,.(f) =
[log|f'|de > 0 and p-a.c. z, (see [PUbook]):

There exists 7 > 0 and a sequence of integers n; — oo such that limsup,_, ., n;/5 < 2,
each f™ is injective on the component B of f~"(B(f™i(z),n)) which contains z, has
distortion bounded by 2 (i.e. (¥1,y2 € BN (wl/I(f™) (1) < 2) and |(f™)'(z)] >
exp(n;xu(£)/2). (2.1)

For every z there exists ¢ > 0 depending only on n and z such that for every w € J
we have f*(B(w,7)) 3 z. So for every z as above we find z; € B} such that f?+t(z;) = 2
and |(f7)(z;)|7" 2 dist(z, 2;)/2n. So [(f™7")(x;)|~! = dist(z, z;)/(2nsup |(F*)']), i.e.
condition (ii) holds. Condition (i) also holds, with, say, 14+ K~! = exp(x/2). We conclude
that p-a.e.  belongs to A.(f), which by the definition of HDyy, proves the Theorem &

The proof above and the definition (0.2) justify the following
Definition 2.3. z € € is called regular if it satisfies the property (2.1) with a number
x > 0 (we need not link x to any measure). We denote the set of regular points by Areg(f).

We immediately obtain Aceg(f) C Ac(f) and HDypyp (J) < HD(Areg(f))-
(Remark that if the property limsupn;/j < 2 is omitted in (1.2) then the inclusion
above still holds. We need this property later, to obtain Areg(f) C Awc(f)-)

Recall that our aim is to prove

a(f) = HDnyp(J) = HD(Ac(S)) = 6(f)- (2.2)

To this end it is left only to prove
Theorem 2.4. For every a-conformal measure ;1 there exists z such that §(f, 2) < c.

Proof. Write O,,(Crit) := [J;..,(Crit). We have p(0,,(Crit)) = 0, otherwise p(Crit) =
0. Notice that for every n > 0

/ P(z,,n)dp(2) < 1. (2.3)
J\O, (Crit)

We obtain this by cutting a neighbourhood of .J into a finite number of topological discs of
boundaries of measure ;2 equal 0 containing O, (Crit). We consider all the branches of f="
on each such disc U. For each such branch g we have by the definition of conformal measure
n(g(U)) = [, 1(f™)|7*dp. Finally we sum these equalities up over all the branches and
U’s. (Notice that we cannot assert the equality in (2.3) because of possible atoms of u at
critical points.)

For every € > 0 and n by (2.3)

w{z: P(z,a,n) > expne} < exp —ne.
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So for p-a.e. z we have limsup,,_, % log P(z,,n) < e. Hence there exists z (even p-a.e.)
such that limsup,,_, o, = log P(z,,n) < 0. Hence §(f) < a by (1.1), the definition of &(f).
L )

Remark 2.5. The proof of (2.2) is over in the general case. However in the case where
f is a polynomial for example (or more generally if there exists a completely invariant basin
of attraction to a sink, (for very non-polynomial examples see [P4]), one wants to consider
8(f, 2) for z in the basin, whereas z produced in the above proof belongs to J. We succeeded
due to our ad hoc definition (1.1), but if we want to consider only z in the basin, the Main
Theorem in the next section becomes crucial.

Remark 2.6. The results of this Section rely on the equality (0.4), namely on the
quite sophisticated Denker and Urbanski construction of a conformal measure with the
exponent &« = HDy,yp(J). Now a posteriori due to 6(f,z) = HDyy,,(J) we obtain such a
measure below, just by modifying slightly the Patterson-Sullivan construction. Unfortu-
nately without any additional assumptions on f we do not know where this measure is
supported. We cannot even exclude the possibility that this is supported in a Siegel disc
SifzeS.

Fix z and write § = §(f, z). Assume 6 < oo. We construct two sequences of positive
numbers @o(n) and ¢(n) for n = 0,1,2,... such that lim,, o @ (n)/u(n +1) = 1 for
v=0,1, (.Do(ﬂ.) < (,01(71) and

Zcpo(n)P(z,(S, n) < 00, Zcpl(n)P(z,é, n) = oo.

Set, for example

@o(n) = ( max P(z,8,5)) a7,
71=0,...,n

or(n) = ( max P(2,6,5)".

wo(n)/wo(n + 1) = 1 because P(z,4,n) does not converge to 0 exponentially fast. Other-
wise, if there existed € > 0 such that P(z,d,n) < exp —en then for 0 < e; < elogsup | f'| the
sequence P(z,d —gy,n) < sup |f'|)** P(z,d,n) would also converges to 0, hence  —&; > 4,
a contradiction. Similarly there is no sequence P(z,4d,n;) diverging exponentially fast.
Otherwise P(z,6 + &,n;) > P(2,6,n;)(sup |f'])7" also diverges exponentially fast for ¢
small enough. (See also Prop. A2.2.)

Set pi(n) = tp1(n) + (1 — t)po(n). For every t < 1 we have by our construction

P(t) = pu(n)P(z,6,n) < oo,

For ¢t < 1 set
pe=_ > Dylem)(f™)17")/P().
nofrly)=z
where D, is the Dirac delta measure at y. Finally define 2 as a weak™* limit of y;, as ¢t 7 L.
As P(1) = oo the measure p is §-conformal.



We end this Section with the promised definition of Ay the set of tree conical limit
points. Recall first, [P3] or [PUZ], that all points of [ J,,vo f~"(2) can be organized in a
geometric coding tree. Briefly: we define a graph 7 by joining z to its f-preimages with
curves v, ..., 7%, next consider all the curves f~"(v;). These curves are the edges of T,
whereas the points of | J,,5, f~"(2) are the vertices. Each sequence of symbols 8 = Sy, 1, ...
for 1 < B < d = degf corresponds to a line of an infinite sequence of edges and vertices in
T, we call this an infinite branch and denote by b(5). Now we are in the position to write:

Definition 2.7. z is tree conical limit point iff there exists a branch b() converging
to z and a sequence of vertices z; € b(f) such that z; and integers n; satisfy (i), (ii) (from
the definition of A¢).

Now recall that the main theorem of [P3], Theorem B, implies that if
limy, 00 SUP, T, diamy — 0 where 7, is the set of all the edges of the n-th generation
(ie. in f7" (Ui, 4 v7)} then for every p an f-invariant measure of positive Lyapunov
exponent, u-a.e. z is tree conical. (Formally [P3, Th.B| gives only the accessibility along
b(B), verifying (i), (ii) needs looking in the Proof.) This concerns in fact all the points
satisfying (2.1). Thus

Areg(f) - Atc(f)'

In the case f is a polynomial and 2 € A, we can replace b{a) by an external ray v
and write z; € r in Definition 2.7. This concerns simply connected Ao, as well as non
simply-connected, see [P3, Section 3}.

SECTION 3. On the independence of § and A of z.

We rely on the following combinatorial

Lemma 3.1 . There exists C > 0 such that for every set W of n > 0 points
in@ and 1/2 > r > 0, for every 21,22 € @\ B(W,r) there exists a sequence of discs
By = B{(q1,p1), ---, B = B{qg, px) such that for every j =1,...,k each 2B; := B(qg;,2p;)
is disjoint with W, 2; € By, 25 € By, U?:l B; is connected and else

k< Cvnylogl/r if n>logl/r
k<Clogl/r if n<logl/r.

Remark 3.2 Another formulation is to replace the number & of discs by the number
of squares in the Whitney covering [Stein] (Our proof is in this spirit).

Notice that k is often much larger than d),(z1, 22) the distance in the hyperbolic metric
dp, on @\ W (suppose #W > 3). If z; is fixed and the Euclidean distance of 21 to W is r
very close to 0, then k is of order log 1/r whereas dy(z1, 22) is of order loglog1/r.

Proof of Lemma 3.1. See Appendix 1.



Theorem 3.1. There exists £ C
21,23 €T\ E and every e it holds P(a) :
Moreover for every z € € it holds P(«)

@ of Hausdorff dimension 0 such that for every
= P(z1, @) = P22, ) and & := 6(f, 21) = 6(f, z2).
< P(z,a) and § < 6(f, 2).

Proof. For every n > 1 set 7, = exp—+/n. Set b, = B(f*(Crit),r,) FE' =
Nn Upsn bn and finally £ = E' U O(Crit), where O(Crit) = |J;Z, £ (Crit).

HD(E) = 0 because y ., 75 < oo for every € > 0 and Crit is finite. Consider now
arbitrary z1,z2 € @ \ E. Then there exists N such that for every n > N, z, ¢ b, for
v=1,2. Let a = min,—y 2 j=1,. ndist(f7(Crit), z,). Fix an arbitrary n > N large enough
that 7 =rp <a. Set W=1J,_, , f7(Crit). We apply now Lemma 3.1. and consider the
discs By, ..., By.

We can assume that the diameters of B, are smaller than a constant &, depending
only on f, so that for all the components of f~"(25;) the diameters of the complements
in @ are larger than a constant (for this it is sufficient to have x smaller than the minimal
distance between cach two distinct points of a periodic orbit of period at least 3). This
influences the constant C in Lemma 3.1. We conclude that there exists a constant A > 0
(not depending on n) such that the distortion of all the branches of f~" on each Bj; is
bounded by A.

Thus, for every o > 0, using Lemma 3.1, the case n > log1/r,

P(Zlaa,n)/P(Zz,a,n) < Ak < Aan"‘/"

hence limsup,,_, o, & log P(z1, o, n) = limsup,,_, . +log P(2y, o, n), hence

P(z1, ) = P(22,) and 6(21) = 8(22). The first part of the proof is over.
Consider now an arbitrary z € € \ O(Crit). The following holds, see [P1,Lemma 3]:

VO <ep <1 3C > 0,60 >0 VO < e <eg VYm >0 the set f~™(2) contains
at least the number C(degf)*'™ of (m,e)-separated points. (Recall that z,y are called
(m, e)-separated if max;—g . dist(f7(z), f/(y)) > e.)

Fix now e¢; = 3/4 and suppose that m is small cnough that 2L™r, < €,, where
L = sup|f’|. To be concrete we set

= log(ea/2rn)/log L = log(e,/2)/ log L + n*/3/ log L (3.1)

We shall calculate how large m need be that f~"({z}) ¢ Ui, B(f7(Crit),rs). It is
sufficient to have

C(degf)3™/* > nf(Crit). (3.2)

Indeed if two distinct points z,y € f~™(2) are in the same disc B(f*(c),r,) for ¢ € Crit,
then their f7,j < m, images are not more than L™2r, apart, so £ and y are not (m,eq)-
separated.

Observe finally that m defined in (3.1) satisfies (3.2) if n is large enough.
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So we have found y € f~™(2) \U?=1 B(f7(Crit), r,). Fix 2, €@\ E. For an arbitrary
€ > 0 if n is large enough P(y, ,n) > (exp —ne)P(z;, o, n) by the first part of the proof.
So

P(z,a,n+m) > L™™(exp —ne)P(zz, ¢, n) > (exp —2ne) P(zg, a, ).

Again using (3.1) that m grows much slower than n we obtain P(z9, @) < P(2,a) and
d(2) > 6(22). The Theorem is proved. s

Theorem 3.2. There exists £ C @ of Hausdorff dimension 0 such that for every
21,20 €d \ E
Acw(.f) = Acw(fa 21) = ACw(f: 22)

and for every z € € which has a backward trajectory omitting Crit, Ayc(f,2) D Acw(f)-

Proof. We set E the same as in Proof of Theorem 3.1. Let © € Agw(f, 21, K) and z;
be a sequence of f™i-preimages of z; converging to z satisfying (i) and (iii) in the definition
of Acw. For each m large enough there is a 1-to-1 correspondence between f~'(z;) and
f7™(z2). Namely each branch of f~" in a neighbourhood of z; extends along the chain
By, ..., By, (see Proof of Theorem 3.1) to 25. So let z; corresponds to z € f~™(25). We
obtain for n; large enough

o] 2 (1= @K™ hence J(£%)' (@)l 2 (14 (35) 7

if K is large enough. We obtain also the growth of |dist(x;, z1)(f™)(z})| slower than every
exponential as n; = co. So

lim sup log (dist(z, z}) - [(f™)'(«})]) <

i— o0
< limsup log(dist(:c,:zi) Y (w5)1) < 0.
1i—00

So x € Acw ([, 22, 3K).

For an arbitrary 2 which has a backward trajectory 7 omitting Crit we find z; € 7
such that z; ¢ O(Crit) and next for every n we find y € f~™(z;) as in Proof of Theorem
1

3.1. (i.e. not too closdto U;=1 f7(Crit)). We can have additionally [(f™)'(y)| > 1 because

most of points in f~™(z;) satisfy this, see for example [FLM]. So we can repeat the above
estimates, using m/n — 0. &

Appendix 1. Proof of Lemma 3.1.

We can assume z; = —1,2; = 1 in @. Next change the coordinates on the union of
the triangles A, with the vertices —1,%, — and A, with the vertices 1,4, —¢ by a map ®
to the strip T := {0 < §(z) < 1} as follows: First deform A; to A} the domain between
the straight rays from —1 through ¢ and —i, and the arc (containing 0) of the circle with
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origin at -1 and radius 1. Next map A} to TN {Rz <0} by 2 £ + Zlog(z+1). On A,
write ® = S o ® 0 .S! where S is the symmetry with respect to the imaginary axis.

The Proof of the Lemma reduces now to a construction of a ”chain of squares” in 7" i.e.
a family of squares with a smallest possible nuimnber of elements, not intersecting ®(W),
which union joins the interval 2 = —m to Rz = m for m = 2log1/r, with every two
adjacent squares in the chain of a comparable size. We shall use certain tryadic squares,
see below.

We can assume 21 = 3',n = 3¢ for certain non-negative even integers {,¢. Write
W' = ®(W). We can adjust our construction by changing @ slightly so that no Rz, 3z for
z € W' is rational tryadic.

Define inductively a sequence of horizontal strips

T;j={z:0; 377 < Sz < (a; +1)-377}

where Ty = T, such that Ty41 C T and §(W’' N T;) < 3'7 for every j. In particular
W’ n Tt+1 - 0

Call every interval in [—m,m] of the form [b-37",(b+ 1) - 37"] for an integer b and
non-negative integer v, tryadic or v-tryadic. For every w-tryadic I denote by K(I) the
square I x T,,. These arc the squares we shall use to construct our chain.

For every v-tryadic I we define

eI):=inf{j>0: W nT;Nn{Rze I} =0}

We shall define now by induction certain families of tryadic intervals. Let Zy consists
of three (f +- 1)-tryadic intervals with maximal possible .

Suppose that a family Z; is already defined and it consists of (t+1—j)-tryadic intervals.
Suppose #I; = 3741, Suppose also that j < t-+1 and 2j —t < . The first inequality
means that K(I)’s for I € Z; are not yet of the side 1 (the maximal possible size). The
latter means that 3~(t+1-9)35+1 < 3! j.e. T; does not cover yet the whole [—m,m).

We construct Z;.;:

Every I € Z; is contained in a (f — j)-tryadic I. We denote the set of such intervals J
by I}_H and include in Z;.;. If I is not adjacent to —m or m or is not a middle interval of

I we include also in Z;4, the (¢ — j)-tryadic interval adjacent to I. We have up to now in

T; 11 afamily Z2, , of at most 2-37+! clements. Complete it to Z;, so that #7;,, = 3712
i+ 7+l . it i+

by (¢ — j)-tryadic intervals with maximal possible values of .

For every j write 2 for the family of all the (¢ +1 — j)-tryadic intervals in U{f:Ie¢

L} \UU € Z;}

We include in our chain of squares joining Rz = —m to Rz = m all the squares K (I)

for
IeT:=T,u| T, ul JIZ;\ 1))
3 j
. The unions are over j = 1,.. (I +t)/2if (I+¢)/2 <t+1ie [ <t+ 2 in particular
log 1/r < n. In this case T covers [—m, m]. The number of squares in the chain is bounded

by Zg_z:(;:)/z 3712 < Const/my/n as asserted in the Lemma.
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In the case [ >t + 2 the union is over j = 1,...,¢ + 1 and [—n,m] is not yet covered
by the intervals in Z. Fortunately all the points of W' lic over I € Z, so we just add to
the chain an appropriate family of unit squares (0-tryadic). The total number of squares
in the chain does not exceed 2m + Const n > Const log 1/r as asserted in the Lemma.

We end the Proof by checking that all our squares are indeed disjoint from W’'. By
induction we prove that for every j and interval I with interior not intersecting |JZ; we
have (1) <t —j. In particular for I € Zj;1 \ I}, we have K(I)NW' = @. This will end
the Proof, by the definition of Z.

For j =0, outside | J{I € Zp} we have ¢ <t — 1 which is even better than demanded.
So the same estimate is sufficient outside | J{I € Z;}. To build Z, we added to Z2 at least
nine (¢ — 1)-tryadic intervals, so we have exhausted all for which ¢ > ¢ — 2.

In general: To build Z; we added to IJ‘? at least 37 number of (¢ + 1 — j)-tryadic
intervals, so among them all for which ¢ >t — j. L

Appendix 2. Pressure.
Proposition A2.1. P(«) > logdegf — alogsup |f']. &

Proposition A2.2. P(z,a) and P(a) are continuous functions of a.

Proof. If P(z,«) < oo then for every g1 > 0 onc has P(z, o, n) < expn(P(z,a)+e€1)
for n large enough. Hence for y € f~"(z) one has |(f*)'(y)| > exp —n(P(z,«) +€,). One
has also {(f™) (y)| < sup|f’|*. So for n large and |e| < &g

P(z,c,n) exp(—eonD(e1, z, a)) < P(z,a+¢€,n) < Pz, a,n)(expeonD(ey, 2, @),

where D(e1,(, ) = max(P(z, &) + €1, logsup |f'|). We conclude that |P(z,a + €) —
P(z,a)| < e0D(0, z,) and |P(a +¢€) — P(a)| < egD(x), where D(a) = inf, D(0, 2, ). &

Recall now the definition of pressure by Denker and Urbaiski [DU2]:

Definition A2.3. Let V be an open sct in J such that V' O (CritNJ). Define K(V) :=
J\U,s0 f7*(V). As K(V)N Crit = § we can consider the standard topological pressure
P(flk(vy, —alog|f’|) for the map f|g vy and the real continuous function —clog|f’| on
the compact set K(V), sce [W]. Define finally

Poy(e) = Sup P(flx vy, —alog|f'])
supremum over all V considered above.

Two other definitions arc of interest:
Definition A2.4. Hyperbolic pressure

Phyp(ax) := sup P(flx,—clog!f']),
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supremum taken over all isolated hyperbolic subsets of J.

Definition A2.5. Hyperbolic variational pressure

phypva.r(a) = sup h.u(f) -« / log If’|dp,,

i

supremum taken over all ergodic f-invariant measures of positive Lyapunov exponent, i.e.
Xu(f) = [log|f'ldp > 0.

Definition A2.6. Varational pressure

Pyar(@) :==sup hy,(f) — a/log|f’|d,u,
m

supremum taken over all ergodic f-invariant measures on .J.
Theorem A2.7. Forevery 0 < <4

'P(O.’) = Pvar(a) = pll?pvar(ﬂ) = 'le,(a) = ’PDU(Q)'

Sketch of Proof. (It basically repeats [DU2] and Section 2.)

1. We prove (Vo) P(e) > Puypvar(@): For every p as in the definition of Ppypyar for
every € > 0 arbitrarily small and n large enough, one constructs an (n, €)-separated set Sy,
such that 3° o [(f")'()|7* 2 expn{h,(f) — a flog|f'|dn — €). (This is Katok’s con-
struction, see for example [PUbook].) One can assume also that 2.1 holds (for a sequence
of n’s) and replace y € S, by y € f~"7!(z) as in Proof of Theorem 2.2.

2. Phypvar (@) = Phyp(a): The > inequality follows from Variational Principle, see [W],
and the obvious fact that every probability f-invariant measure on a hyperbolic set X has
positive Lyapunov exponent. The opposite inequality results from Katok’s construction
(the sets S,, above are in fact constructed in respective hyperbolic sets).

3. If Ppula) > 0 then Prypvar(a) > Ppulw): For every € > 0 one can find, by
Variational Principle, an ergodic f-invariant p on K(V) such that h,(f) —c [log|f'|dp >
P(flkvy, —alog|f'|) — €. For e small enough the latter expression is positive and
[log|f'|di > 0 by {P2] or [DU2, Cor. 4.2]. Hence h,(f) and therefore flog|f’|dp are
strictly positive, see [R].

4. If Pyar (@) > 0, then Pyar(c) = Phypvar(@): Indeed, asin 3. if h,(f)—a [log|f'|dp >
Puyar(@) — € then for € small enough this is positive. As [ log|f’|dp > 0, by [P2], we obtain
hu(f) and therefore [log|f’|du strictly positive. Hence Pyypyar(ct) > Pyar(a) — € for every
e>0.

5. We prove that for every 0 < a < §(f) there exists a sequence of decreasing V,,’s such
that P(flx(v.y, —log |£']) > 0 and limy_ye0 P(fk (v, —2log| f']) > P(a). In particular
Pou(c) > 0 and Ppy(a) > Pla):

Take V,, of the form Uj>0 f‘j(f/n) where 17,, is a union of small discs B{z.,r,) for
a distinguished point z. in the w-limit set for each ¢ € Crit N .J. Onc can choose z. so
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that there exists C > 0 such that for every j > 0, |(f7)(z.)| > C, [P2]. Hence, [DU2,
Lemma 5.4], for 7, \, 0 there exists a sequence of measures yu,, on K(V,,) with Jacobians
Jac,,, () = Al f']* for 1 < X, < expP(flk(v,), —aeloglf'l) on K(V,) \ 8V}, (By Jacobian
we understand a function F on the domain of f, here on K(V), such that for every Borel
E on which f is injective u(f(E)) = [g Fdp.) Moreover for every E € &V, on which f is
injective

fn(E) > /\,,/E\f'l“du,,. (A2.1)

A weak* limit g = lim,, o 4 has Jacobian satisfying

Jac,(f) < (exp Ppu(a))| S|~ (A2.2)

(One uses here the fact that p has no atoms at f(z.), because liminf A,, > 1 and
225 1(f7) ()|* = co. Such atoms would cause troubles with an estimate of Jacobian, see

[DU2], because 8V, accumulate at . and we have only an inequality in (A2.1) resulting
with an incquality for £ = {z.}.)

We have used here P(f|k(v,), —alog|f’|) > 0. If it were not true, we would find
an < « such that 1/n > P(flk(v,), —anlog|f’]) > 0 and the above construction would
give a S-conformal measure with exponent § < «. Then however, by (2.2) (Th. 2.4),
0(f) < B < a < §(f), contradiction.

Finally as in Proof of Theorem 2.4, using (A2.2), we find z for which P(z, a) < Ppu(«).
s :

Corollary A2.8. P(a) is a strictly decreasing, convex function on 0 < o < 6(f).

Proof. This is so for the affine function %, (f) — « [log|f'|ds for each p of positive
Lyapunov exponent, so supremum over p's, namely Ppynvar(cr) is monotone decreasing,
convex. As this attains 0 at §(f) the convexity implies this is strictly decreasing. &

Appendix 3. Some properties of A., A;y and other definitions of ”conical”.

After distributing the first version of this paper I was asked about a relation between
the definitions of ”conical limit set” in the recent preprints [LM], [U2], [DMNU} and my
definitions. In [U2] and [DMNU] z is called conical if there exists 7 > 0 and a sequence
of integers n; — oo such that each f" is injective on Comp, f~™ (B(f™ (z),n}) (Comp,
means the component containing z). We denote the sct of points ”conical” in this sense
by Au(f).

Of course Ay(f) D Areg(f).

Suppose that f has no critical points in .JJ but the set P of periodic parabolic points
(f*(p) = p, (f*Y(p) is a root of unity) is non-cmpty. Then J = Ay(f) UU, 5o f(P)
and Ay(f) N, o f~"(P) = 9. This is similar to the geometrically finite Kleinian groups
case, see [Maskit, VI.C.3]. This was in fact a motivation for the definition of Ay(f) in [U2]
Unfortunately this is not so for Acy:
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Proposition A3.1 For each f with no critical points in .J, with P # @ there exist
points which are neither in (J,,5 f~"(P) nor in Acy (/).

Proof. Consider a finite Markov partition of .J, attribute the symbol 0 to all its cells
whose closures contain a periodic parabolic point p, and attribute other symbols to other
cells. For each z € J choose a sequence a;(z) of symbols so that each is attributed to a cell
whose closure contains f7(z). We prove that if lim, o {0 < j < n:aj(z) =0}/n =1,
then z ¢ Acw (7, 2).

Indeed, suppose y = z; satisfies (1), (iil) for n = n; and z ¢ J. From dist(z,y) < A™ for
a constant 0 < A < 1 it follows that for n large enough distf*(z), f*(y)) < B™dist(z, y),
where B N\, 1 as n — oo (because |f’| &~ 1 ncar P). Therefore dist(f"(z), z) — 0, what
contradicts z ¢ J. If z € J\ P we find its neighbourhood U in @ disjoint from O(Crit).
Then for every 2’ € V, where clV C U, the fulfilement of (i) and (iii) for 2’ is equivalent to
the fulfilment of (i), (iii) for z, by uniformly bounded distortion for all branches of f~" on
V. One can take 2’ ¢ J, thus reducing the case z € J\ P to the previous case. Finally the
case z € P reduces to considering of its f-preimages in J \ P. (Another way to conclude
the proof for z € J is to observe that J N E = § for E exceptional defined in Proof of
Th.3.1. and to apply Th.3.2.) '

We conclude that Ay{f) ¢ Acw(f)-
Clearly the sets Ay(f), Ac(f, 2) and Acw(f, 2) are forward invariant.

For our A’s also the backward invariance hold:

Proposition A3.2. For every rational f and every non-exceptional z (in the sense of
Theorem 3.1) f71(A:) = A, and f~ (Agw) = Acw.

Proof. Suppose z = f(z') € A(f,2). Assume ' € Crit(f), as for ' non-critical
z’' € A(f, z) follows immediately. Let z; be points approximating « according to Definition
1.2. Then as z ¢ F there exists a branch of f~" on B(z, exp(—,/n;)) mapping z to z;, for
n; large enough. So by bounded distortion dist(z, ;) > Const|(f™)' ()}~ exp(—/T).
Hence, for =} the f-preimage of z;, near z’, we obtain

|(F5FY (#0)] 7 < Const(1 4+ K1)~ 1/™ exp((1— 1/v)y/na)

so for z' (i) holds with z},n; +1 for ¢ large enough (and new K). v is here the multiplicity
of f at z’.

The property (ii) for z’ follows immediately from |f'(z})|~! > %ﬁ’ﬁ%
The proof for A, is similar. L

The following rational maps are of interest, see [PR]:
Definition A3.3. f is called topological Collet-Eckmann if there exist M, N,n > 0

such that for every z € J

In; — oo,n; < Nj, such that each f™ has degree at most M

on Comp, f7" B(f™(z),7). (43.1)

14



Proposition A3.4. For every rational f, cvery z € J(f), for which there exist
M, N,7n > 0 such that (A3.1) is satisfied, 1s conical, i.e. © € A¢ (f z) for every z ¢ O(Crit).
In particular if f is topological Collet- Eckm(mn then J(f) = ).

Proof. It follows from the proof of [PR, Prop.3.1] that there exist 0 < £ < 1,7 > 0
and a sequence of integers n; — oo such that for each W; := Comp, f~™ (B(f"(x},n))
we have

diamW; < €%, (A3.2)

By [M] we can also assume, taking 7 small cnough, that all f*(W;),k = 0,1,...,n; have
small diameters.

([PR, Prop.3.1] asserts that (A3.2) holds for all n. Here however we cannot do the
first step of the "telescope” construction, except for "good” n's.)

Fix an arbitrary n = n;. We claim that there exists a disc D C B(f"(x), n) of diameter
at least An for a constant A depending only on M such that there exists y € W N f~"(D)
satisfying

[(F™) () = A" (A3.3)

and
dist(z,y) < AH(™) ()~ (43.4)

Indeed, there exists an integer 0 < k < M such that B(f"(z), 7]M+1)\B(f"( z), nrf_ﬁ)
does not contain any critical value for f*|w. We choose D an arbitrary disc in the an-

nulus B(f"(m),nﬂ;‘%) \ B(f*(z), 7;331{}_'.11 ). Denote W' = Comp, f~*(B(f™(z),n(3k +
2)/3(M +1))) and fix y € W' N f~™(D). Let 0 = mp < my < mz < ... <mpy+ =n be all
consecutive integers such that f™t(W’) contains an f-critical point, cxcept maybe ¢t = 0
and t = M’. (Observe that M’ < M(degf) + 1.) Then for every m;,t < M’ we have

diam fm™+1 (W)
diam fme+1 (W)

ey (e () (43.5)

and
diam f™ (W)

diam fmet1(W7)
Here =~ means the ratios of the left and right sides, and vice versa are bounded by a constant
depending only on M. The former = follows from bounded distortion, the latter holds
because the distance of f™¢+1(y) from f(Crit(f) N (W) is at least Cydiam f™+H{W')
for a constant C; > 0.
Combining (A3.5) and (A3.6) over all t we obtain for a constant A > 0

= | (™ )™ (A3.6)

A diamW’' < (F*) (y)|"'n < A” diamW’. (A3.7)

The right hand side inequality together with (A3.2) give (A3.3). The left hand side in-
equality in (A3.7) gives immediately (A3.4).

(The above proof is only sketched, a precise proof needs induction over decreasing t’s
to control distortion and constants Cy. For details see [P5, Proof of L.1.4, (1.4)]; though
only the left hand side inequality (A3.7) is proved there, the technique is the same.)
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It is known that there exists k£ depending only on z and on the diameter of D (i.e.
on 7 and M) such that f¥(D) 3 z. So for every n; we could choose y with f*+*(y) = 2.
Moreover [(f*)' (™ (y))| > Const > 0 (because z ¢ O(Crit)). This and (A3.3) give (i) for
n; + k. The upper bound for |f*)’| and (A3.4) give (ii). &

Notice that this Proposition, (2.2) and [PR, L.2.2] implies for f Collet-Eckmann that
HDyyp(J) = HD(J).

(Thus we have obtained a new proof of a part of [P5, Th.A]. Recall that f is called
Collet-Eckmann if for every ¢ € Crit N J, whose forward trajectory does not meet other
critical points, |(f*)(f(c))| grows exponentially fast as n — oco. [PR, L.2.2] says that
Collet-Eckmann implies topological Collet-Eckmann.)

Notice that, by Proposition A3.4, if f is topological Collet-Eckmann with CritNJ # @,

then Ac(f) & Au(f).
This is so because, by the definition, ¢ ¢ Ay.

Recall [CJY] that f is called semi-hyperbolic if it has no recurrent critical points and
no parabolic periodic points. This class of maps is contained in the class of topological
Collet-Eckmann maps. It follows from [U1] that if f is semi-hyperbolic, then all points in
J except U, f~"(Crit) belong to Ay(f). So Ay(f) is not backward invariant.

M. Lyubich and M. Minsky’s conical limit set defined in [LM], which we denote by
ApmM, has a complicated definition and we shall not rewrite it here. Instead, let us introduce
the following notion:

Definition A3.5. We call z € J strong LM-conical if there exist n,M > 0 and
sequences of integers n; — 00, k;j = oo such that for every n; and ¢ = 1, ...,i(j) the map
f™~% has degree bounded by M on Comyp, f~ (% =*)(B(f" =% (x),n)). Denote the set of
all strong LM-conical points by Aspm(f)

One can show that Agum(f) € Aum(f). By [LM, Prop. 8.8 and L.8.4] if f is semi-
hyperbolic, then Apm(f) = J. It is easy to see that if z satisfles (1) then z is strong
LM-conical. Thus we obtain Apm(f) = J for every topological Collet-Eckmann map f.

By the way we obtain also Apm{f) D Aam(f) O Areg(f)-

Notice finally that similarly to Ae(f) one has
HD(Ay(f)) = HD(ALm(f)) = HDuy, (J) (A3.8)
HD(Ay(f)) = HDyyp(J) follows from HD(Ay(f)) < « for every a-conformal mea-
sure, see [U2] and [DMNU] (and from (2.2): off) < HDpnyp(J), Au(f) D Areg(f) and
HDhyp(J) 2 HD(Arcg(f)))

This follows however, as well as the second equality in (A3.8), from Proposition A3.7
below.

16



Definition A3.6. We say z € Apmi(f) if there exist 17, M > 0 and a sequence of inte-
gers n; — oo such that each f™ has degree bounded by M on Comp, f =" (B(f™ (z), n)).

Of course Apmi(f) O Au(f) and by [LM, Prop.8.7] Apmi(f) 2 Aum(f) .
Proposition A3.7. HD(Apmi(f)) < aff). Hence HD(Armi(f)) = HDpyp(J).

Proof. The inequality follows as in [P1, Proof of Th. A] from u(B(x,r;)) > Constr$
for z € Apmi(f) for p any a-conformal measure and r; = r;(z) = 0 as j — co. Const

depends on M only. The latter inequality uses bounded distortion for finite criticality as
[P1, L.1.4].

Question Is every conformal measure jz on A.(f) crgodic? Is i unique, provided it
has no atoms at critical points?
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