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Abstract

We extend to the eigenvalues of the hypersurface Spinc Dirac operator well known
lower and upper bounds. Examples of limiting cases are then given. Futhermore,
we prove a correspondence between the existence of a Spinc Killing spinor on
homogeneous 3-dimensional manifolds E∗(κ, τ) with 4-dimensional isometry group
and isometric immersions of E∗(κ, τ) into the complex space form M4(c) of constant
holomorphic sectional curvature 4c, for some c ∈ R∗. As applications, we show
the non-existence of totally umbilic surfaces in E∗(κ, τ) and we give necessary and
sufficient geometric conditions to immerse a 3-dimensional Sasaki manifold into
M4(c).

Key words. Spinc structures, isometric immersions, spectrum of the Dirac operator,
parallel and Killing spinors, manifolds with boundary and boundary conditions,
Sasaki and Kähler manifolds.

1 Introduction

It is well known that the spectrum of the Dirac operator on hypersurfaces of a Spin
manifold detects informations on the geometry of such manifolds and their hypersur-
faces ([3, 4, 5, 16, 18, 19]). For example, O. Hijazi, S. Montiel and X. Zhang [16]
proved that on the compact boundary Mn of a Riemannian Spin manifold Zn+1 of
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dimension n+ 1 and with nonnegative scalar curvature, the first positive eigenvalue λ1

of the Dirac operator satisfies

λ1 ≥
n

2
inf
M
H, (1)

whereH denotes the mean curvature ofM , assumed to be nonnegative. Equality holds
if and only if H is constant and every eigenspinor associated with λ1 is the restriction
to M of a parallel spinor on Z (and so Z is Ricci-flat). As application of the limiting
case, they gave an elementary proof of the famous Alexandrov theorem [16]: the only
compact embedded hypersurface in Rn+1 of constant mean curvature is the sphere Sn
of dimension n.

Assume now that Mn is a closed hypersurface of Zn+1. Evaluating the Rayleigh
quotient applied to a parallel or Killing spinor field coming from Z , C. Bär [5] derived
an upper bound for the eigenvalues of the Dirac operator on M by using the min-max
principle. More precisely, there are at least µ eigenvalues λ1, · · · , λµ of the Dirac
operator on M satisfying

λ2
j ≤ n2α2 +

n2

4 vol(M)

∫
M

H2dv, (2)

where vol(M) is the volume of M , dv is the volume form of the manifold M , α is the
Killing number (α = 0 if the ambient spinor field is parallel) and µ is the dimension
of the space of parallel or Killing spinors. Moreover, it is easy to check that when
α = 0, equality holds in (2) if equality holds in (1).

Recently, Spinc geometry became a field of active research with the advent of
Seiberg-Witten theory [22, 35, 31]. Applications of the Seiberg-Witten theory to
4-dimensional geometry and topology are already notorious ([9, 24, 25, 13]). From
an intrinsic point of view, Spin, almost complex, complex, Kähler, Sasaki and some
classes of CR manifolds have a canonical Spinc structure. The complex projective
space CPm is always Spinc but not Spin if m is even. Nowadays, and from the extrin-
sic point of vue, it seems that it is more natural to work with Spinc structures rather
than Spin structures. Indeed, O. Hijazi, S. Montiel and F. Urbano [20] constructed on
Kähler-Einstein manifolds with positive scalar curvature, Spinc structures carrying
Kählerian Killing spinors. The restriction of these spinors to minimal Lagrangian
submanifolds provides topological and geometric restrictions on these submanifolds.
In [30, 29], and via Spinc spinors, the authors gave an elementary proof for a Lawson
type correspondence between constant mean curvature surfaces of 3-dimensional
homogeneous manifolds with 4-dimensional isometry group. We point out that,
using Spin spinors, we cannot prove this Lawson type correspondence. Moreover,
they characterized isometric immersions of a 3-dimensional almost contact metric
manifold M into the complex space form by the existence of a Spinc structure on M
carrying a special spinor called a generalized Killing spinor.
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In the first part of this paper and using the Spinc Reilly inequality, we extend
the lower bound (1) to the first positive eigenvalue of the Dirac operator defined
on the compact boundary of a Spinc manifold. Examples of the limiting case are
then given where the equality case cannot occur if we consider the Spin Dirac
operator on these examples. Also, by restriction of parallel and Killing Spinc spinors,
we extend the upper bound (2) to the eigenvalues of the Dirac operator defined on
a closed hypersurface of Spinc manifolds. Examples of the limiting case are also given.

In the second part, we study Spinc structures on 3-dimensional homogeneous
manifolds E∗(κ, τ) with 4-dimensional isometry group. It is well known that the
only complete simply connected Spinc manifolds admitting real Killing spinor other
than the Spin manifolds are the non-Einstein Sasakian manifolds endowed with their
canonical or anti-canonical Spinc structure [27]. Since E∗(κ, τ) are non-Einstein
Sasakian manifolds [7], the canonical and the anti-canonical Spinc structure carry
real Killing spinors. In [30], the authors proved that this canonical (resp. this
anti-canonical) Spinc structure on E(κ, τ) is the lift of the canonical (resp. the
anti-canonical) Spinc structure on M2(κ) via the submersion E(κ, τ) −→ M2(κ),
where M2(κ) denotes the simply connected 2-dimensional manifold with constant
curvature κ . Moreover, they proved that the Killing constant of the real Killing spinor
field is equal to τ

2
. Here, we reprove the existence of a Killing spinor for the canonical

and the anti-canonical Spinc structure. This proof is based on the existence of an
isometric embedding of E∗(κ, τ) into the complex projective space or the complex
hyperbolic space (see Proposition 4.1). Conversely, from the existence of a Killing
spinor on E∗(κ, τ), we prove the existence of an isometric immersion of E∗(κ, τ) into
the complex space form M4(c) of constant holomorphic sectional curvature 4c, for
some c ∈ R∗ (see Proposition 4.2). Since every non-Einstein Sasaki manifold has a
Spinc structure with Killing spinors, it is natural to ask if this last result remains true
for any 3-dimensional Sasaki manifold. Indeed, every simply connected non-Einstein
Sasaki manifold can be immersed into M4(c) for some c ∈ R∗, providing that the
scalar curvature is constant (see Theorem 4.3). Finally, we make use of the existence
of Killing spinors on E∗(κ, τ) to calculate some eigenvalues of Berger spheres
endowed with differents Spinc structures. By restriction of this Killing spinor to any
surface of E∗(κ, τ), we give a Spinc proof for the non-existence of totally umbilic
surfaces in E∗(κ, τ) (see Theorem 4.4) proved already by R. Souam and E. Toubiana
[32].

2 Preliminaries

In this section, we briefly introduce basic notions concerning the Dirac operator on
Spinc manifolds (with or without boundary) and their hypersurfaces. Details can be
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found in [10], [26], [23], [15] and [5].

The Dirac operator on Spinc manifolds. We consider an oriented Riemannian
manifold (Mn, g) of dimension n with or without boundary and denote by SOM the
SOn-principal bundle over M of positively oriented orthonormal frames. A Spinc

structure of M is is given by an S1-principal bundle (S1M,π,M) of some Hermitian
line bundle L and a Spincn-principal bundle (SpincM,π,M) which is a 2-fold covering
of the SOn × S1-principal bundle SOM ×M S1M compatible with the group covering

0 −→ Z2 −→ Spincn = Spinn ×Z2 S1 −→ SOn × S1 −→ 0.

The bundle L is called the auxiliary line bundle associated with the Spinc structure. If
A : T (S1M) −→ iR is a connection 1-form on S1M , its (imaginary-valued) curvature
will be denoted by FA, whereas we shall define a real 2-form Ω on S1M by FA = iΩ.
We know that Ω can be viewed as a real valued 2-form on M [10, 21]. In this case, iΩ
is the curvature form of the auxiliary line bundle L [10, 21].

Let ΣM := SpincM ×ρn Σn be the associated spinor bundle where Σn = C2[
n
2 ]

and ρn : Spincn −→ End(Σn) the complex spinor representation [10, 23, 29]. A
section of ΣM will be called a spinor field. This complex vector bundle is naturally
endowed with a Clifford multiplication, denoted by “·”, · : Cl(TM) −→ End(ΣM)
which is a fiber preserving algebra morphism and with a natural Hermitian scalar
product < ., . > compatible with this Clifford multiplication [26, 10, 15]. If n is even,
ΣM = Σ+M ⊕ Σ−M can be decomposed into positive and negative spinors by the
action of the complex volume element [10, 26, 15, 29]. If such data are given, one can
canonically define a covariant derivative ∇ on ΣM given, for all X ∈ Γ(TM), by
[10, 23, 15, 29]:

∇Xψ = X(ψ) +
1

4

n∑
j=1

ej · ∇Xej · ψ +
i

2
A(s∗(X))ψ, (3)

where the second ∇ is the Levi-Civita connection on M , ψ = [b̃× s, σ] is a locally
defined spinor field, b = (e1, · · · , en) is a local oriented orthonormal tangent frame,
s : U −→ S1M is a local section of S1M , b̃× s is the lift of the local section b × s :
U −→ SOM×M S1M to the 2-fold covering andX(ψ) = [b̃× s,X(σ)]. For any other
connection A′ on S1M , there exists a real 1-form α on M such that A′

= A+ iα [10].
If we endow the S1-principal fiber bundle S1M with the connection A′ , there exists on
ΣM a covariant derivative∇′ given by

∇′

Xψ = ∇Xψ +
i

2
α(X)ψ, (4)

for all X ∈ Γ(TM) and ψ ∈ Γ(ΣM). Moreover, the curvature 2-form of A′ is given
by FA′ = FA + idα. But FA (resp. FA′ ) can be viewed as an imaginary 2-form on
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M denoted by iΩ (resp. iΩ′). Thus, iΩ (resp. iΩ′
) is the curvature of the auxiliary

line bundle associated with the S1-principal fiber bundle S1M endowed with the
connection A (resp. A′) and we have iΩ′

= iΩ + idα.

The Dirac operator, acting on Γ(ΣM), is a first order elliptic operator locally
given by D =

∑n
j=1 ej · ∇ej , where {ej}j=1,···,n is any orthonormal local basis tangent

to M . An important tool when examining the Dirac operator on Spinc manifolds is the
Schrödinger-Lichnerowicz formula [10, 23]:

D2 = ∇∗∇+
1

4
S IdΓ(ΣM) +

i

2
Ω·, (5)

where S is the scalar curvature of M , ∇∗ is the adjoint of ∇ with respect to the L2-
scalar product and Ω· is the extension of the Clifford multiplication to differential
forms. The Ricci identity is given, for all X ∈ Γ(TM), by

n∑
j=1

ej · R(ej, X)ψ =
1

2
Ric(X) · ψ − i

2
(XyΩ) · ψ, (6)

for any spinor field ψ. Here Ric (resp. R) denotes the Ricci tensor of M (resp. the
Spinc curvature associated with the connection∇) and y the interior product.

A Spin structure can be seen as a Spinc structure with trivial auxiliary line
bundle L endowed with the trivial connection. Every almost complex manifold
(M2m, g, J) of complex dimension m has a canonical Spinc structure. In fact, the
complexified cotangent bundle T ∗M ⊗ C = Λ1,0M ⊕ Λ0,1M decomposes into the
±i-eigenbundles of the complex linear extension of the complex structure. Thus, the
spinor bundle of the canonical Spinc structure is given by

ΣM = Λ0,∗M = ⊕mr=0Λ0,rM,

where Λ0,rM = Λr(Λ0,1M) is the bundle of r-forms of type (0, 1). The auxiliary line
bundle of this canonical Spinc structure is given by L = (KM)−1 = Λm(Λ0,1M),
where KM is the canonical bundle of M [10, 26, 29]. Let n be the Kähler form
defined by the complex structure J , i.e. n(X, Y ) = g(X, JY ) for all vector fields
X, Y ∈ Γ(TM). The auxiliary line bundle L = (KM)−1 has a canonical holomorphic
connection induced from the Levi-Civita connection whose curvature form is given by
iΩ = iρ, where ρ is the Ricci 2-form given by ρ(X, Y ) = Ric(X, JY ). For any other
Spinc structure the spinorial bundle can be written as [10, 20]:

ΣM = Λ0,∗M ⊗ L,

where L2 = KM⊗L and L is the auxiliary bundle associated with this Spinc structure.
In this case, the 2-form n can be considered as an endomorphism of ΣM via Clifford
multiplication and we have the well-known orthogonal splitting ΣM = ⊕mr=0ΣrM,
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where ΣrM denotes the eigensubbundle corresponding to the eigenvalue i(m − 2r)

of n, with complex rank
(m
k

)
. The bundle ΣrM correspond to Λ0,rM ⊗ L. For

the canonical Spinc structure, the subbundle Σ0M is trivial. Hence and when M is
a Kähler manifold, this Spinc structure admits parallel spinors (constant functions)
lying in Σ0M [27]. Of course, we can define another Spinc structure for which the
spinor bundle is given by Λ∗,0M = ⊕mr=0Λr(T ∗1,0M) and the auxiliary line bundle by
KM . This Spinc structure will be called the anti-canonical Spinc structure.

Spinc hypersurfaces and the Gauss formula. Let (Mn, g) be an n-dimensional
oriented hypersurface isometrically immersed in a Riemannian Spinc manifold
(Zn+1, gZ). The hypersurface M inherts a Spinc structure from that on Z , and we
have [26, 5, 29, 28]: {

ΣZ|M ' ΣM if n is even,
Σ+Z|M ' ΣM if n is odd.

Moreover Clifford multiplication by a vector field X , tangent to M , is given by

X • ϕ = (X · ν · ψ)|M ,

where ψ ∈ Γ(ΣZ) (or ψ ∈ Γ(Σ+Z) if n is odd), ϕ is the restriction of ψ to M , “·” is
the Clifford multiplication on Z , “•” that on M and ν is the unit normal vector. When
n is odd, we can also get Σ−Z|M ' ΣM . In this case, the Clifford multiplication by
a vector field X tangent to M is given by X • ϕ = −(X · ν · ψ)|M and we have
ΣZ|M ' ΣM ⊕ ΣM . The connection 1-form defined on the restricted S1-principal
bundle (S1M =: S1Z |M , π,M), is given by

A = AZ|M : T (S1M) = T (S1Z)|M −→ iR.

Then the curvature 2-form iΩ on the S1-principal bundle S1M is given by iΩ = iΩZ|M ,
which can be viewed as an imaginary 2-form on M and hence as the curvature form
of the line bundle L, the restriction of the line bundle LZ to M . We denote by ∇Z the
spinorial Levi-Civita connection on ΣZ and by ∇ that on ΣM . For all X ∈ Γ(TM)
and for every spinor field ψ ∈ Γ(ΣZ) (or ψ ∈ Γ(Σ+Z) if n is odd), we consider
ϕ = ψ|M and we get the following Spinc Gauss formula [26, 5, 28]:

(∇ZXψ)|M = ∇Xϕ+
1

2
II(X) • ϕ, (7)

where II denotes the Weingarten map with respect to ν. Moreover, Let DZ and D be
the Dirac operators on Z and M , after denoting by the same symbol any spinor and
it’s restriction to M , we have

D̃ϕ =
n

2
Hϕ− ν ·DZϕ−∇Zν ϕ, (8)
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D̃(ν · ϕ) = −ν · D̃ϕ, (9)

where H = 1
n
tr(II) denotes the mean curvature and D̃ = D if n is even and

D̃ = D ⊕ (−D) if n is odd.

Homogeneous 3-dimensional manifolds with 4-dimensional isometry group.
We denote a 3-dimensional homogeneous manifold with 4-dimensional isometry
group by E(κ, τ), κ − 4τ 2 6= 0. It is a Riemannian fibration over a simply connected
2-dimensional manifold M2(κ) with constant curvature κ and such that the fibers are
geodesic. We denote by τ the bundle curvature, which measures the default of the
fibration to be a Riemannian product. Precisely, we denote by ξ a unit vertical vector
field, that is tangent to the fibers. If τ 6= 0, the vector field ξ is a Killing field and
satisfies for all vector field X ,

∇Xξ = τX ∧ ξ,

where ∇ is the Levi-Civita connection and ∧ is the exterior product. In this case
E(κ, τ) is denoted by E∗(κ, τ). When τ vanishes, we get a product manifold M2(κ)×
R. If τ 6= 0, these manifolds are of three types: They have the isometry group of the
Berger spheres if κ > 0, of the Heisenberg group Nil3 if κ = 0 or of ˜PSL2(R) if κ < 0.
Note that if τ = 0, then ξ = ∂

∂t
is the unit vector field giving the orientation of R in the

product M2(κ) × R. The manifold E∗(κ, τ) admits a local direct orthonormal frame
{e1, e2, e3} with e3 = ξ, and such that the Christoffel symbols Γkij = 〈∇eiej, ek〉 are
given by 

Γ3
12 = Γ1

23 = −Γ3
21 = −Γ2

13 = τ,

Γ1
32 = −Γ2

31 = τ − κ
2τ
,

Γiii = Γiij = Γiji = Γjii = 0, ∀ i, j ∈ {1, 2, 3}.

(10)

We call {e1, e2, e3 = ξ} the canonical frame of E∗(κ, τ). Except the Berger spheres
and with R3, H3, S3 and the solvable group Sol3, the manifolds E(κ, τ) define the
geometry of Thurston. The authors [30] proved that there exists on E∗(κ, τ) a Spinc

structure (the canonical Spinc structure) carrying a Killing spinor field ψ of Killing
constant τ

2
, i.e., a spinor field ψ satisfying

∇Xψ =
τ

2
X · ψ,

for all X ∈ Γ(TE∗(κ, τ)). Moreover, ξ ·ψ = iψ and the curvature of the auxiliary line
bundle is given by

iΩ(e1, e2) = i(κ− 4τ 2) and iΩ(ek, ej) = 0, (11)
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elsewhere in the canonical frame {e1, e2, ξ}. There exists also another Spinc structure
(the anti-canonical Spinc structure) carrying a Killing spinor field ψ of Killing constant
τ
2

such that ξ · ψ = −iψ and the curvature of the auxiliary line bundle is given by

iΩ(e1, e2) = −i(κ− 4τ 2) and iΩ(ek, ej) = 0, (12)

elsewhere in the canonical frame {e1, e2, ξ}.

3 Lower and upper bounds for the eigenvalues of the
hypersurface Dirac operator

We will extend the lower bound (1) and the upper bound (2) to the eigenvalues of the
hypersurface Spinc Dirac operator D̃. Examples of the limiting cases are then given.

3.1 Lower bounds for the eigenvalues of the hypersurface Dirac
operator

We assume that the manifold Zn+1 is a Spinc manifold having a compact domain D
with compact boundary M = ∂D. Using suitable boundary conditions for the Dirac
operator DZ , we extend the lower bound (1) to the first positive eigenvalue of the ex-
trinsic hypersurface Dirac operator D̃ onM endowed with the induced Spinc structure.

Since M is compact, the Dirac operator D̃ has a discrete spectrum and we de-
note by π+ : Γ(ΣM) −→ Γ(ΣM) the projection onto the subspace of Γ(ΣM)

spanned by eigenspinors corresponding to the nonnegative eigenvalues of D̃. This
projection provides an Atiyah-Patodi-Singer type boundary conditions for the Dirac
operator DZ of the domain D. It has been proved that this is a global self-adjoint
elliptic condition [17, 16].

It is not difficult to extend the Spin Reilly inequality (see [17], [16], [18], [19])
to Spinc manifolds. Indeed, for all spinor fields ψ ∈ Γ(ΣD), we have∫

∂D

(
< D̃ϕ, ϕ > −n

2
H|ϕ|2

)
ds ≥

∫
D

(1

4
SZ |ψ|2 + <

i

2
ΩZ · ψ, ψ >

− n

n+ 1
|DZψ|2

)
dv, (13)

where dv (resp. ds) is the Riemannian volume form of D (resp. ∂D). Moreover equality
occurs if and only if the spinor field ψ is a twistor-spinor, i.e., if and only if it satisfies
PZψ = 0, where PZ is the twistor operator acting on ΣZ locally given, for all X ∈
Γ(TZ), by PZXψ = ∇ZXψ + 1

n+1
X ·DZψ. Now, we can state the main theorem of this

section:
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Theorem 3.1 Let Zn+1 be a Riemannian Spinc manifold such that the operator
S + 2iΩ· is nonnegative. We consider Mn a compact hypersurface with nonnegative
mean curvature H and bounding a compact domain D in Z . Then, the first positive
eigenvalue λ1 of D̃ satisfies

λ1 >
n

2
inf
M
H. (14)

Equality holds if and only if H is constant and the eigenspace corresponding to λ1

consists of the restrictions to M of parallel spinors on the domain D.

Proof. Let ϕ is an eigenspinor on M corresponding to the first positive eigenvalue
λ1 > 0 of D̃, i.e., D̃ϕ = λ1ϕ and π+ϕ = ϕ. The following boundary problem has a
unique solution (see [17], [16], [18] and [19]){

DZψ = 0 on D
π+ψ = π+ϕ = ϕ on M = ∂D.

From the Reilly inequality (13), we get∫
M

(λ1 −
n

2
H)|ψ|2ds ≥

∫
D
(
1

4
SZ |ψ|2 +

i

2
< ΩZ · ψ, ψ >)dv ≥ 0,

which implies (14). If the equality case holds in (14), then ψ is a harmonic spinor and
a twistor spinor, hence parallel. Since π+ψ = ϕ along the boundary, ψ is a non-trivial
parallel spinor and λ1 = n

2
H . Futhermore, since ψ is parallel, we deduce by (8) that

D̃ϕ = n
2
Hϕ. Hence we have ϕ = π+ψ = ψ. Conversely if H is constant, the fact that

the restriction to M of a parallel spinor on D is an eigenspinor with eigenvalue n
2
H is

a direct consequence of (8).

Examples 3.1 A complete simply connected Riemannian Spinc manifold Zn+1 carry-
ing a parallel spinor field is isometric to the Riemannian product of a simply connected
Kähler manifold Zn1

1 of complex dimension m1 (n1 = 2m1) and a simply connected
Spin manifold Zn2

2 of dimension n2 (n+ 1 = n1 + n2) carrying a parallel spinor and
the Spinc structure of Z is the product of the canonical Spinc structure of Z1 and the
Spin structure of Z2 [27]. Moreover, if we assume that Z1 is Einstein, then

iΩZ(X, Y ) = iρZ1(X1, Y1) = iRicZ1(X1, JY1) = i
SZ

1

n1

n (X1, Y1), (15)

for every X = X1 + X2, Y = Y1 + Y2 ∈ Γ(TZ) and where J denotes the complex
structure on Z1. Moreover, if the Einstein manifold Z1 is of positive scalar curvature,
we have, for any spinor field ψ ∈ Γ(ΣZ),

SZ |ψ|2 + 2i < Ω · ψ, ψ > = SZ1|ψ|2 +
i

m1

SZ1 < n · ψ, ψ >

= SZ1

m1∑
r=0

(1− m1 − 2r

m1

)|ψr|2 = SZ1

m1∑
r=0

2r

m1

|ψr|2 ≥ 0.

9



Finally, the first positive eigenvalue of the Dirac operator D̃ of any compact hypersur-
face with nonnegative constant mean curvature H and bounding a compact domain
D in Z = Z1 × Z2 satisfies the equality case in (14) for the restricted Spinc struc-
ture. Next, we will give some explicit examples. The Alexandrov theorem for S2

+ × R
says that the only embedded compact surface with constant mean curvature H > 0 in
Z = Z1×Z2 = S2

+×R is the standard rotational sphere described in [1, 2, 8]. Hence,
the first positive eigenvalue of the Dirac operator D̃ on the rotational sphere satisfies
the equality case in (14). We consider the complex projective space CPm (Z2 = {∅})
endowed with the Einstein Fubini-Study metric and the canonical Spinc structure. The
first positive eigenvalue of the Dirac operator D̃ of any compact hypersurface M with
nonnegative constant mean curvature H and bounding a compact domain D in CPm

satisfies the equality case in (14). Compact embedded hypersurfaces in CPm are ex-
amples of manifolds viewed as a boundary of some enclosed domain in CPm. As an
example, we know that there exists an isometric embedding of E∗(κ, τ) into M4(κ

4
−τ 2)

of constant mean curvature H = κ−16τ2

12τ
[34]. Here M4(κ

4
− τ 2) denotes the complex

space form of constant holomorphic sectional curvature κ− 4τ 2. We choose κ > 16τ 2

and τ > 0, then H is positive. In this case, E∗(κ, τ) are Berger spheres (compact) and
M4 is the complex projective space CP 2 of constant holomorphic sectional curvature
κ−4τ 2 > 0. The canonical Spinc structure on M4 carries a parallel spinor and hence
the equality case in (14) is satisfied for the first positive eigenvalue of D̃ defined on
Berger spheres. Finally, we recall that S2

+ × R and CPm (when m is odd), have also
a unique Spin structure. Hence, Inequality (14) holds for the first positive eigenvalue
of the Spin Dirac operator D̃ defined on the rotational sphere or on any compact em-
bedded hypersurface in CPm (when m is odd). But, equality cannot occur since this
unique Spin structure on S2

+ × R and on CPm does not carry a parallel spinor.

3.2 Upper bounds for the eigenvalues of the Dirac operator

A spinor field ψ on a Riemannian Spinc manifold Zn+1 is called a real Killing spinor
with Killing constant α ∈ R if

∇ZXψ = α X · ψ, (16)

for all X ∈ Γ(TZ). When α = 0, the spinor field ψ is a parallel spinor. We define

µ = µ(Z, α) := dimC{ψ, ψ is a Killing spinor on Z with Killing constant α}

Theorem 3.2 Let M be an n-dimensional closed oriented hypersurface isometrically
immersed in a Riemannian Spinc manifold Z . We endow M with the induced Spinc

structure. For any α ∈ R, there are at least µ(Z, α) eigenvalues λ1, . . . , λµ of the
Dirac operator D̃ on M satisfying

λ2
j ≤ n2α2 +

n2

4vol(M)

∫
M

H2dv, (17)
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where H denotes the mean curvature of M . If equality holds, then H is constant.

Proof. First, note that the set of Killing spinors with Killing constant α is a vector
space. Moreover, linearly independent Killing spinors are linearly independent at every
point, the space of restrictions of Killing spinors on Z to M , i.e.,

{ψ|M , ψ is a spinor on Z satisfying∇ZXψ = α X · ψ, ∀X ∈ Γ(TZ)}

is also µ-dimensional. Now let ψ be a Killing spinor onZ with Killing constant α ∈ R.
Killing spinors have constant length so we can assume that |ψ| ≡ 1. By definition, we
have DZψ = −(n + 1)α ψ, and hence using (8) we get D̃ϕ = nα ν · ϕ + n

2
Hϕ.

We denote by (., .) = Re
∫
M
< ., , > the real part of the L2-scalar product. Now, we

compute the Rayleigh quotient of D̃2

(D̃2ψ, ψ)

(ψ, ψ)
=

(D̃ψ, D̃ψ)

vol(M)
=

(nα ν · ψ + n
2
Hψ, nα ν · ψ + n

2
Hψ)

vol(M)
= n2α2+

n2

4

∫
M
H2

vol(M)
,

i.e., the Rayleigh quotient of D̃2 is bounded by n2α2 + n2

4

∫
M H2

vol(M)
on a µ-dimensional

space of spinors onM . Hence, the Min-Max principle implies the assertion. If equality
holds, then the restriction toM of every Killing spinor ψ of Killing constant α satisfies
D̃2ϕ = λ2

1ϕ. But, it is known that [11]

D̃2ϕ = D̂2ϕ+
n

2
dH · ν · ϕ+

n2H2

4
ϕ, (18)

where D̂ is the Dirac-Witten operator given by D̂ =
∑n

j=1 ej · ∇Zej . Hence, using that
D̂ψ = −nαψ and (18), we get

λ2
1ϕ = n2α2ϕ+

n

2
dH · ν · ϕ+

n2

4
H2ϕ.

Considering the real part of the scalar product of the last equality by ϕ implies that
λ2

1 = n2α2 + n2H2

4
. Hence, H is constant.

Examples 3.2 Simply connected complete Riemannian Spinc manifolds carrying
parallel spinors were described in Examples 3.1. The only Spinc structures on an
irreducible Kähler not Ricci-flat manifold Z which carry parallel spinors are the
canonical and the anti-canonical one. In both cases, µ(Z, 0) = 1 [27]. Hence,
Inequality (17) holds for the first eigenvalue of the Dirac operator D̃ defined on
any compact Riemannian hypersurface endowed with the restricted Spinc structure.
The complex projective space CPm or the complex hyperbolic space CHm with the
Fubini-Study metric are examples of irreducible Kähler not Ricci-flat manifolds. By
(8), the first eigenvalue of the Dirac operator D̃ defined on any CMC (constant mean
curvature) compact Riemannian hypersurface endowed with the restricted Spinc
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structure, satisfies the equality case in (17). Berger spheres are examples of CMC
compact hypersurfaces of CP 2 or CH2 (see Examples 3.1 and Section 4). By (8),
the first eigenvalue λ1 of the Dirac operator D̃ = DM of any compact Riemannian
hypersurface of S2 ×R or H2 ×R satisfies the equality case in (17) if we assume that
H is constant. Rotational spheres are CMC compact Riemannian hypersurfaces of
S2 ×R and H2 ×R. For H2 ×R and if H > 1

2
, rotational constant mean curvature H

spheres are described in [1, 2, 8].

The only complete simply connected Spinc manifolds admitting real Killing spinors
other than the Spin manifolds are the non-Einstein Sasakian manifolds endowed with
their canonical or anti-canonical Spinc structure [27]. The manifolds E∗(κ, τ) are
Spinc manifolds carrying a Killing spinor ψ of Killing constant τ

2
. By (8) and (9),

the restriction of ψ to any compact hypersurface gives a spinor field ϕ satisfying
D̃ϕ = Hϕ + τν · ϕ. If H is constant, (D̃)2ϕ = (H2 + τ 2)ϕ. Then, the equality
case in (17) is satisfied. Rotational spheres are examples of compact Riemannian
hypersurfaces of constant mean curvature and immersed into E∗(κ, τ) [1, 2, 8].

4 Spinc structures on E∗(κ, τ ) and applications

In this section, we make use of the existence of a Spinc Killing spinor to immerse
E∗(κ, τ) into complex space forms, to calculate some eigenvalues of the Dirac oper-
ator on Berger spheres and to prove the non-existence of totally umbilic surfaces in
E∗(κ, τ).

4.1 Isometric immersions of E∗(κ, τ) into complex space forms

From the existence of an isometric embedding of E∗(κ, τ) into M4(κ
4
−τ 2), we reprove

that the only Spinc structures on E∗(κ, τ) carrying a Killing spinor are the canonical
and the anti-canonical one. Conversely, the existence of a Spinc Killing spinor allows
to immerse E∗(κ, τ) in M4(κ

4
− τ 2). More generally, we give necessary and sufficient

geometric conditions to immerse any 3-dimensional Sasaki manifold into M2(c) for
some c ∈ R∗.

Proposition 4.1 The only Spinc structures on E∗(κ, τ) carrying a real Killing spinor
are the canonical and the anti-canonical one. Moreover, the Killing constant is given
by τ

2
.

Proof. It is known that there exists an isometric embedding of E∗(κ, τ) into M4(κ
4
−τ 2)

of constant mean curvature H = κ−16τ2

12τ
[34]. Moreover, the second fundamental form

12



is given by

II(X) = −τX − 4τ 2 − κ
τ

gM4(X, ξ)ξ,

for every X ∈ Γ(TE∗(κ, τ)). Here, we recall that the normal vector of the immersion
is given by ν := Jξ and {e1, e2, ξ, ν = Jξ} is a local orthonormal basis tangent to M4

where {e1, e2, ξ} is the canonical frame of E∗(κ, τ). We denote by η the real 1-form
associated with ξ, i.e., η(X) = g(X, ξ) for any X ∈ Γ(TE∗(κ, τ)). The restriction of
the canonical Spinc structure on M4(κ

4
− τ 2) induces a Spinc structure on E∗(κ, τ) and

by the Spinc Gauss formula (7), the restriction of the parallel spinor on M4(κ
4
− τ 2)

induces a spinor field ϕ on E∗(κ, τ) satisfying, for all X ∈ Γ(TE∗(κ, τ)),

∇Xϕ =
τ

2
X • ϕ+

4τ 2 − κ
8τ

η(X)ξ • ϕ.

Moreover, the spinor field ϕ satisfies ξ • ϕ = −iϕ [30, Theorem 3] and the curvature
of the auxiliary line bundle L associated with the induced Spinc structure is given by
[30, Theorem 3]

iΩ(e1, e2) = −6i(
κ

4
− τ 2), and iΩ(ei, ej) = 0, (19)

elsewhere in the basis {e1, e2, ξ}. We deduce that, for all X ∈ Γ(TE∗(κ, τ)),

∇Xϕ =
τ

2
X • ϕ− i4τ

2 − κ
8τ

g(X, ξ)ϕ.

The connection A on the S1-principal fiber bundle S1(E∗(κ, τ)) associated with the in-
duced Spinc structure is the restriction to E∗(κ, τ) of the connection on the S1-principal
fiber bundle S1M4 associated with the canonical Spinc structure on M4(κ

4
− τ 2), i.e.,

the connection A on S1(E∗(κ, τ)) is the restriction to E∗(κ, τ) of the connection on
S1(M4(κ

4
− τ 2)) defined by the Levi-Civita connection. Let α be the real 1-form on

E∗(κ, τ) defined by

α(X) =
4τ 2 − κ

4τ
g(X, ξ),

for any X ∈ Γ(TE∗(κ, τ)). We endow the S1-principal fiber bundle S1(E∗(κ, τ)) with
the connection A′

= A+ iα. From (4), there exists on ΣE∗(κ, τ) a covariant derivative
∇′ such that

∇′

Xϕ = ∇Xϕ+
i

2
α(X)ϕ =

τ

2
X • ϕ,

for all X ∈ Γ(TE∗(κ, τ)). Hence, we obtain a Spinc structure on E∗(κ, τ) carrying a
Killing spinor field and whose S1-principal fiber bundle S1(E∗(κ, τ)) has a connection
given by A′ . Now, we should prove that this Spinc structure is the canonical one or the
anti-canonical one. First, we calculate the curvature iΩ′

= iΩ + idα of A′ . It is easy to
check that ξydα = 0 and dα(e1, e2) = −4τ2−κ

2
. Hence, using (19), we get

Ω
′
(e1, e2) = −(κ− 4τ 2) and ξyΩ

′
= 0.
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The curvature form iΩ
′ is the same as the curvature form associated with the con-

nection on the auxiliary line bundle of the anti-canonical Spinc structure on E∗(κ, τ).
Since E∗(κ, τ) is a simply connected manifold, we deduce that the S1-principal fiber
bundle S1(E∗(κ, τ)) endowed with the connection A

′ is the auxiliary line bundle
of the anti-canonical Spinc structure on E∗(κ, τ). Hence, we have on E∗(κ, τ) two
Spinc structures with the same auxiliary line bundle (the anti-canonical one and
the one obtained by restriction of the canonical one on M4). But, on a Riemannian
manifold M , Spinc structures having the same auxiliary line bundle are parametrized
by H1(M,Z2) [26], which is trivial in our case since E∗(κ, τ) is simply connected.
To get the canonical Spinc structure on E∗(κ, τ), we restrict the anti-canonical Spinc

structure on M4. In this case, ξ • ϕ = iϕ, Ω(e1, e2) = 6(κ
4
− τ 2), ξyΩ = 0 and we

choose the real 1-form α to be α(X) = −4τ2−κ
4τ

g(X, ξ).

Next, we want to prove the converse. Indeed, we have

Proposition 4.2 The manifolds E∗(κ, τ) are isometrically immersed into M4(c) for
some c. Moreover, E∗(κ, τ) are of constant mean curvature and η-umbilic.

Proof. We recall that the 3-dimensional homogeneous manifolds E∗(κ, τ) have a Spinc

structure (the anti-canonical Spinc structure) carrying a Killing spinor field ϕ of Killing
constant τ

2
. Moreover ξ • ϕ = −iϕ and

Ω(e1, e2) = −(κ− 4τ 2) and Ω(ei, ej) = 0, (20)

in the basis {e1, e2, e3 = ξ}. We denote by A the connection on the auxiliary line bun-
dle defining the anti-canonical Spinc structure. Let α be the real 1-form on E∗(κ, τ))
defined by α(X) = −4τ2−κ

4τ
g(X, ξ), for any X ∈ Γ(TE∗(κ, τ)). We endow the S1-

principal fiber bundle S1(E∗(κ, τ)) with the connection A
′

= A + iα. Then, there
exists on ΣE∗(κ, τ) a covariant derivative∇′ such that

∇′

Xϕ =
τ

2
X • ϕ+

i

2
α(X)ϕ

=
τ

2
X • ϕ+

4τ 2 − κ
8τ

η(X)ξ • ϕ, (21)

for all X ∈ Γ(TE∗(κ, τ)). Hence, we obtain a Spinc structure on E∗(κ, τ) carrying a
spinor field ϕ satisfying (21) and whose S1-principal fiber bundle S1(E∗(κ, τ)) has a
connection given by A′ . We calculate the curvature iΩ′

= iΩ + idα of A′ . It is easy to
check that ξydα = 0 and dα(e1, e2) = 4τ2−κ

2
. Hence,

Ω
′
(e1, e2) = −6(

κ

4
− τ 2) and ξyΩ

′
= 0.

Since E∗(κ, τ) are Sasakian, by [30, Theorem 4], we get an isometric immersion
of E∗(κ, τ) into M4(c) for c = κ

4
− τ 2. Moreover, E∗(κ, τ) are of constant mean
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curvature and η-umbilic (see [30]).

More general, we have:

Theorem 4.3 Every simply connected non-Einstein 3-dimensional Sasaki manifold
M3 of constant scalar curvature can be immersed into M4(c) for some c ∈ R∗. More-
over, M is η-umbilic and of constant mean curvature.

Proof. We recall that a Sasaki structure on a 3-dimensional manifold M3 is given by
a Killing vector field ξ of unit length such that the tensors X := ∇ξ and η := g(ξ, ·)
are related by

X2 = −Id + η ⊗ ξ.
We know that a non-Einstein Sasaki manifold has a Spinc structure carrying a Killing
spinor field ϕ of Killing constant β. By rescaling the metric, we can assume that β =
−1

2
. Because the dimension of M is 3, the Killing vector field ξ defining the Sasaki

structure satisfies ξ•ϕ = −iϕ (see [14, Theorem 2.5]). The Ricci tensor onM is given
by

Ric(ej) =
S − 2

2
ej, j = 1, 2 and Ric(ξ) = 2ξ,

where {e1, e2, ξ} denotes a local orthonormal frame ofM . Because we assumed thatM
is non-Einstein, we have S 6= 6 and hence we can find c ∈ R∗ such that S = 8c+6. The
Ricci identity (6) in X = ξ gives that ξyΩ = 0 and by the Schrödinger-Lichnerowicz
formula, it follows that Ω(e1, e2) = 6−S

2
. Let α be the real 1-form on M defined by

α(X) = −cg(X, ξ), for any X ∈ Γ(TM). We endow the S1-principal fiber bundle
S1M with the connectionA′

= A+iα, whereA denotes the connection on S1M whose
curvature form is given by iΩ. From (4), there exists on ΣM a covariant derivative ∇′

such that

∇′

Xϕ = −1

2
X • ϕ− i

2
cg(X, ξ)ϕ.

Now, we calculate the curvature iΩ′
= iΩ+idα ofA′ . It is easy to check that ξydα = 0

and dα(e1, e2) = −2c. Hence,

ξyΩ
′
= 0, Ω

′
(e1, e2) =

6− S
2
− 2c = −6c.

By [30, Theorem 4], M is immersed into M4(c). Additionally, M is η-umbilic and of
constant mean curvature.

4.2 Totally umbilic surfaces in E∗(κ, τ)

By restriction of the Killing spinor of Killing constant τ
2

on E∗(κ, τ) to a surface M2,
the authors characterized isometric immersions into E(κ, τ) by the existence of a Spinc

15



structure carrying a special spinor field [30]. More precisely, consider (M2, g) a Rie-
mannian surface. We denote by E a field of symmetric endomorphisms of TM , with
trace equal to 2H . The vertical vector field can be written as ξ = dF (T ) + fν, where
ν is the unit normal vector to the surface, f is a real function on M and T the tangen-
tial part of ξ. The isometric immersion of (M2, g) into E(κ, τ) with shape operator E,
mean curvature H is characterized by a Spinc structure on M carrying a non-trivial
spinor field ϕ satisfying, for all X ∈ Γ(TM),

∇Xϕ = −1

2
EX • ϕ+ i

τ

2
X • ϕ.

Moreover, the auxiliary bundle has a connection of curvature given, in any local or-
thonormal frame {t1, t2}, by iΩ(t1, t2) = −i(κ − 4τ 2)f = −i(κ − 4τ 2)<ϕ,ϕ>|ϕ|2 . The
vector T is given by

g(T, t1) =< it2 • ϕ,
ϕ

|ϕ|2
> and g(T, t2) = − < it1 • ϕ,

ϕ

|ϕ|2
> .

Here and also by restriction of the Killing spinor, we gave an elementary Spinc proof
of the following result proved by R. Souam and E. Toubiana in [32].

Theorem 4.4 There are no totally umbilic surfaces in E∗(κ, τ).

Proof. Assume that M is a totally umbilical surface in E∗(κ, τ), i.e. E = H Id. Then
d∇E(e1, e2) = (∇t1E)t2 − (∇t2E)t1 = J(dH). The Spinc curvature R on the spinor
field ϕ is given by [30]:

R(t1, t2)ϕ = −1

2
J(dH) • ϕ+ i

H2

2
ϕ+ i

τ 2

2
ϕ.

The Spinc Ricci identity (6) on the surface M implies

t1 • R(t1, t2)ϕ =
1

2
Ric(t2) • ϕ− i

2
(t2yΩ) • ϕ

Hence,

−1

2
t1 • J(dH) • ϕ+

i

2
H2t1 • ϕ+

i

2
τ 2t1 • ϕ =

1

2
Ric(t2) • ϕ+

i

2
Ω(t1, t2)t1 • ϕ

Consider the real part of the scalar product of the last identity by ϕ, we get

g(t1, J(dH)) = Ω(t1, t2) < it1 • ϕ,
ϕ

|ϕ|2
>= −Ω(t1, t2)g(T, t2).

Finally, −g(t2, dH) = (κ− 4τ 2)fg(T, t2). The same holds for t1. Then,

dH = −(κ− 4τ 2)fT,

which gives the contradiction. The last identity is the same obtained by R. Souam and
E. Toubiana in [32].
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4.3 Spectrum of the Spinc Dirac operator on Berger spheres

In this subsection, we apply a method of C. Bär [6, 12] to find explicitly some eigen-
values of the Spinc Dirac operator on Berger spheres, i.e., on E∗(κ, τ) with κ > 0.

Lemma 4.5 Let (Mn, g) be a Riemannian Spinc manifold carrying a Killing spinor
ϕ of Killing number α ∈ R∗. Then, (λk(4) + (n−1

2
)2)k∈N are some eigenvalues of

(D + α
2
Id)2. Here λk(4), k = 0, 1, ... denote the eigenvalue of the Laplacian4.

Proof: We have Dϕ = −nα
2
ϕ. For every f ∈ C∞(M,R), we can easily check that

D2(fϕ) = (
n2

4
− n

2
)fϕ− αD(fϕ) + (4f)ϕ,

Hence, (D + α
2
Id)2(fϕ) = (4f + (n−1

2
)2f)ϕ. Now, if {fk}k∈N denotes a L2-

orthonormal basis of eigenfunctions of4 of M , then for every k ∈ N, we get

(D +
α

2
Id)2(fkϕ) = (λk(4) + (

n− 1

2
)2)fkϕ,

where λk(4) is the eigenvalue of 4 whose eigenfunction is fk. So,
(λk(4) + (n−1

2
)2)k∈N are some eigenvalues of (D + α

2
Id)2.

Spectrum of Berger spheres endowed with the canonical Spinc structure.
We consider Berger spheres with Berger metrics gκ,τ , κ > 0 and τ 6= 0 defined by

g(κ,τ)(X, Y ) =
κ

4

(
g(X, Y ) + (

4τ 2

κ
− 1)g(X, ξ)g(Y, ξ)

)
,

where g is the standard metric on S3 of constant curvature 1. For simplicity, we can
assume that κ = 4 (τ 6= ±1). For any function f , the Laplacian 44,τ with respect to
g4,τ is related to the Laplacian4 with respect to g by [33]

44,τf = 4f − (1− τ−2)ξ(ξ(f)).

It is known that each eigenfunction fk of 4 corresponding to λk(4) = k(2 + k)
(k ∈ N) is also an eigenfunction of44,τ [33] corresponding to

λk(4)− (1− τ−2)(k − 2p)2, 0 ≤ p ≤ [
k

2
].

Moreover, each eigenvalue of44,τ takes the above form. We recall that the eigenspace
of4 corresponding to λk(4) is the restriction to the sphere S3 of the set of harmonic
homogeneous polynomial on R4 of degree k. When we consider Berger spheres en-
dowed with the canonical Spinc structure, we get by Lemma 4.5(

D +
τ

2
Id
)2

(fkϕ) =
[
2 + k(2 + k)− (1− τ−2)(k − 2p)

]
fkϕ,
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where ϕ is the Killing spinor field of Killing constant τ
2
. Hence,

µk,p = −τ
2
±
√

2 + k(2 + k)− (1− τ−2)(k − 2p)

are some eigenvalues of the Dirac operator on Berger spheres with −1 < τ < 1 and
endowed with the canonical Spinc structure.

Spectrum of Berger spheres endowed with the Spinc structure induced from the
canonical one on M4(1 − τ 2). On Berger spheres, we have shown that the Spinc

structure induced from the canonical one on M4(1 − τ 2) carries a spinor field ϕ
satisfying

∇Xϕ =
τ

2
X • ϕ− iτ

2 − 1

2τ
g(X, ξ)ϕ = ∇′

Xϕ− i
τ 2 − 1

2τ
g(X, ξ)ϕ

Then, denoting by D (resp. D′) the Dirac operator associated with the restricted Spinc

structure (resp. with the canonical Spinc structure), we get Dϕ = D
′
ϕ − τ2−1

2τ
ϕ. for

any function f , we have

D(fϕ) = gradf · ϕ+ fDϕ = D
′
(fϕ)− fD′

ϕ+ fDϕ = D
′
(fϕ)− (

τ 2 − 1

2τ
)fϕ.

Hence, we have D(fkϕ) =
(
µk,p − τ2−1

2τ

)
fkϕ and µk,p − τ2−1

2τ
are some eigenvalues

of the Dirac operator on Berger spheres endowed with the Spinc structure induced
from the canonical one on M4(1− τ 2), −1 < τ < 1.
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