ON THE BIRATIONAL GEOMETRY OF $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$

P. KATSYLO

Independent University of Moscow
P.O.Box 230

Moscow 117463
Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26

D-53225 Bonn
Russia

Germany

ON THE BIRATIONAL GEOMETRY OF $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$.

P.Katsylo

December 20, 1994

Abstract

We prove that $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$ is stable birationally isomorphic to \mathcal{K}_{d}, where $d=(m, n+1)$ and $\mathcal{K}_{d}=\left(g l_{d} \times g l_{d}\right) / G L_{d}$. We prove that $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$ is rational for $n=2, m=7$.

§0. Let \mathbb{P}^{n} be n-dimensional projective space and $\left(\mathbb{P}^{n}\right)^{(m)}$ be m th symmetric degree of \mathbb{P}^{n}. The group $G L_{n+1}$ acts canonically on the space $\left(\mathbb{P}^{n}\right)^{(m)}$. Consider the rational factor $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$. Recall that if a linear algebraic group acts rationally on an irreducible algebraic variety X, then the rational factor X / G and the rational dominant morphism

$$
\pi: X \longrightarrow X / G
$$

are defined uniquely up to a birational isomorphism. We have $\pi^{*}(\mathbb{C}(X / G))=$ $\mathbb{C}(X)^{G}$.

Here are some known facts about the variety $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$.

1) Evidently, $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$ is a point for $n \geq m-2$.
2) There is the birational isomorphism

$$
\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1} \approx\left(\mathbb{P}^{m-n-2}\right)^{(m)} / G L_{m-n-1}
$$

(association, see [1]).
$3)\left(\mathbb{P}^{1}\right)^{(m)} / G L_{2}$ is rational for all m (see [2], [3], [4])
4) $\left(\mathbb{P}^{2}\right)^{(5)} / G L_{3}$ is rational by Castelnuovo's theorem.

In this article we prove the following facts.
Theorem 0.1. $\left(\mathbb{P}^{2}\right)^{(7)} / G L_{3}$ is rational.
Theorem 0.2. Let d be the greatest common divider of the numbers m and $n+1$. Suppose $n<m-2$, then $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$ is stable birationally isomorphic to \mathcal{K}_{d}.

Recall that irredicible algebraic varieties X and Y are called stable birationally isomorphic iff $X \times \mathbb{C}^{n_{1}}$ is birationally isomorphic to $Y \times \mathbb{C}^{n_{2}}$ for some n_{1}, n_{2}. The

[^0]definition of \mathcal{K}_{d} is as follows. Let $G L_{d}: g l_{d} \times g l_{d}$ be the direct product of two adjoint representations of the group $G L_{d}$. Set
$$
\mathcal{K}_{d}=\left(g l_{d} \times g l_{d}\right) / G L_{d}
$$

The varieties \mathcal{K}_{d} appear in many questions of algebra and algebraic geometry [5]. Evidently, \mathcal{K}_{1} and \mathcal{K}_{2} are rational. D.Formanek proved rationality of \mathcal{K}_{3} and \mathcal{K}_{4} [6], [7]. L.Le Bruyn and Ch.Bessenrodt proved stable rationality of \mathcal{K}_{5} and \mathcal{K}_{7} [8]. P.Katsylo and A.Schofield proved that if $\mathcal{K}_{d_{1}}$ and $\mathcal{K}_{d_{2}}$ are stable rational, d_{1} and d_{2} are coprime, then $\mathcal{K}_{d_{1} d_{2}}$ is stable rational [9], [10]. This implies that if d divide 420 , then \mathcal{K}_{d} is stable rational.
Corollary 0.3. Suppose the greater common divider of the numbers m and $n+1$ divides 420 , then $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$ is stable rational.

As far as the author knows rationality of $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$ is known in the following cases.
(1) $n \geq m-2($ see 1$))$.
(2) $m-n=3$ or $n=1$ (see 2), 3)).

It follows from Theorem 0.1 and 2) that $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$ is rational in the cases
(1) $n=2, m=7 ; n=3, m=7$.
§1. We prove Theorem 0.1 in this section.
Let e_{1}, e_{2}, e_{3} be the standard basis in \mathbb{C}^{3} and let x_{1}, x_{2}, x_{3} be the dual basis in $\mathbb{C}^{3 *}$. The group $S L_{3}$ acts canonically in the space $S^{a} \mathbb{C}^{3} \otimes S^{b} \mathbb{C}^{3 *}, a, b \geq 0$. The linear mapping

$$
\Delta=\sum \frac{\partial}{\partial e_{i}} \otimes \frac{\partial}{\partial x_{i}}: S^{a} \mathbb{C}^{3} \otimes S^{b} \mathbb{C}^{3 *} \longrightarrow S^{a-1} \mathbb{C}^{3} \otimes S^{b-1} \mathbb{C}^{3 *}
$$

is $S L_{3}$-mapping. The representation of the group $S L_{3}$ in the space $V(a, b)=K e r \Delta$ is irreducible. Set $V(a, 0)=S^{a} \mathbb{C}^{3}, V(0, b)=S^{b} \mathbb{C}^{3 *}$.

There is a birational $S L_{3}$-isomorphism

$$
\phi: P V(1,2) \longrightarrow\left(\mathbb{P}^{2}\right)^{(7)}
$$

where $P V(1,2)$ is the projectivisation of the linear space $V(1,2)[11]$. Therefore,

$$
\left(\mathbb{P}^{2}\right)^{(7)} / G L_{3} \approx\left(\mathbb{P}^{2}\right)^{(7)} / S L_{3} \approx P V(1,2) / S L_{3}
$$

Therefore, we have to prove that $P V(1,2) / S L_{3}$ is rational.
Note that $P V(2,1) / S L_{3}$ is rational [12].
Set

$$
\begin{aligned}
\psi_{1}: V(a, b) & \times V\left(a^{\prime}, b^{\prime}\right) \longrightarrow V\left(a+a^{\prime}+1, b+b^{\prime}-2\right), \\
\left(r, r^{\prime}\right) & \mapsto \sum_{\sigma \in S_{3}} S g n(\sigma) e_{\sigma(1)} \frac{\partial r}{\partial x_{\sigma(2)}} \frac{\partial r^{\prime}}{\partial x_{\sigma(3)}}
\end{aligned}
$$

for $b, b^{\prime} \geq 1$. It is easy to see that ψ_{1} is bilinear $S L_{3}$-mapping.

Set

$$
V=V(1,2) \times[V(0,2) \oplus V(1,0)] \times V(1,0)
$$

The group $S L_{3}$ acts canonically in the space V. Define the following linear representation of the torus $\mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*}$ in the space V :

$$
\left(t_{1}, t_{2}, t_{3}\right) \cdot\left(f, g^{\prime}+g^{\prime \prime}, h\right)=\left(t_{1} f, t_{2}\left(g^{\prime}+g^{\prime \prime}\right), t_{3} h\right)
$$

The actions of the groups $S L_{3}$ and $\mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*}$ in the space V commute. Set

$$
\begin{gathered}
\phi: V(1,2) \times[V(0,2) \oplus V(1,0)] \longrightarrow V(1,1), \\
\left(f, g^{\prime}+g^{\prime \prime}\right) \mapsto \Delta\left(\psi_{1}\left(f, g^{\prime}\right)\right)+\Delta\left(f g^{\prime \prime}\right), \\
\gamma: V(1,2) \times V(1,0) \longrightarrow V(1,0), \\
\left(f, g^{\prime \prime}\right) \mapsto \Delta^{2}\left(f g^{\prime \prime 2}\right), \\
X=\left\{\left(f, g^{\prime}+g^{\prime \prime}, h\right) \in V(1,2) \times[V(0,2) \oplus V(1,0)] \times V(1,0)\right. \\
\left.\mid \phi\left(f, g^{\prime}+g^{\prime \prime}\right)=0, h \wedge \gamma\left(f, g^{\prime \prime}\right)=0\right\} .
\end{gathered}
$$

Note that $S L_{3} \cdot X=X,\left(\mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*}\right) \cdot X=X$. Set

$$
\begin{gathered}
f_{0}=3 e_{2} x_{1} x_{3}-2 e_{1} x_{1} x_{2}+6 e_{3} x_{3} x_{2}-2 e_{2} x_{2}^{2} \\
g_{0}^{\prime}=x_{1} x_{3}-x_{2}^{2} \\
g_{0}^{\prime \prime}=2 e_{2} \\
h_{0}=\gamma\left(f_{0}, g_{0}^{\prime \prime}\right)=-32 e_{2}
\end{gathered}
$$

It can easily be checked that

$$
\begin{gather*}
\left(f_{0}, g_{0}^{\prime}+g_{0}^{\prime \prime}, h_{0}\right) \in X \\
\operatorname{dim} \operatorname{ker} \phi\left(f_{0}, \cdot\right)=1 \\
\operatorname{dim} \operatorname{ker} \phi\left(\cdot, g_{0}^{\prime}+g_{0}^{\prime \prime}\right)=7 \tag{1.1}\\
\operatorname{dim}\left(\operatorname{ker} \phi\left(\cdot, g_{0}^{\prime}+g_{0}^{\prime \prime}\right) \cap \operatorname{ker} \gamma\left(\cdot, g_{0}^{\prime \prime}\right)\right)=4
\end{gather*}
$$

Let X_{0} be the (unique) irreducible component of the subvariety X such that ($f_{0}, g_{0}^{\prime}+$ $\left.g_{0}^{\prime \prime}, h_{0}\right) \in X_{0}$. We have: $S L_{3} \cdot X_{0}=X_{0},\left(\mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*}\right) \cdot X_{0}=X_{0}$.

Consider the restriction p_{1} of the canonical projection

$$
V(1,2) \times[V(0,2) \oplus V(1,0)] \times V(1,0) \longrightarrow V(1,2)
$$

on the subvariety X_{0}. It follows from (1.1) that a fiber of general position of the morphism p_{1} is $\{1\} \times \mathbb{C}^{*} \times \mathbb{C}^{*}$-orbit. Therefore,

$$
\begin{equation*}
X_{0} /\left(S L_{3} \times\left(\mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*}\right)\right) \simeq P V(1,2) / S L_{3} \tag{1.2}
\end{equation*}
$$

Consider the restriction p_{2} of the canonical projection

$$
V(1,2) \times[V(0,2) \oplus V(1,0)] \times V(1,0) \longrightarrow[V(0,2) \oplus V(1,0)] \times V(1,0)
$$

on the subvariety X_{0}. It follows from (1.1) that $p_{1}\left(p_{2}^{-1}\left(g^{\prime}+g^{\prime \prime}, h\right)\right)$ is 5 -dimensional linear subspace in $V(1,2)$ for a point $\left(g^{\prime}+g^{\prime \prime}, h\right) \in[V(0,2) \oplus V(1,0)] \times V(1,0)$ in general position. Therefore,
$\left.(1.3) X_{0} /\left(S L_{3} \times \mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*}\right)\right) \simeq([V(0,2) \oplus V(1,0)] \times V(1,0)) /\left(S L_{3} \times \mathbb{C}^{*} \times \mathbb{C}^{*}\right) \times \mathbb{C}^{4}$
(see [4, Lemma 2.1]).
Note that $([V(0,2) \oplus V(1,0)] \times V(1,0)) /\left(S L_{3} \times \mathbb{C}^{*} \times \mathbb{C}^{*}\right)$ is unirational, 2dimensional and hence rational by Castelnuovo's theorem. It follows now from (1.2) and (1.3) that $P V(1,2) / S L_{3}$ is rational.
$\S 2$. We prove Theorem 0.2 in this section.
Consider the regular action

$$
\begin{equation*}
G L_{n+1}:\left(\mathbb{P}^{n}\right)^{(m)} \tag{2.1}
\end{equation*}
$$

We can assume that stabilizer of general position of the action (2.1) coinsides with the kernel of this action. Indeed, suppose $n<m-2$, then a stabilizer of general position of the action (2.1) does not coinside with the kernel of this action iff $n=1, m=4$. But Theorem 0.2 is evident in the case $n=1, m=4$.

Consider the linear algebraic group $G L_{n+1} \times G L_{m}$ and the linear representation

$$
\begin{gather*}
G L_{n+1} \times G L_{m}: \mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \\
(g, s) \cdot A=g A s^{-1} \tag{2.2}
\end{gather*}
$$

(we interpret $\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}$ as a linear space of matrices of size $(n+1) \times m$). Let T be the subgroup of diagonal matrices of the group $G L_{m}$ and $N(T)$ be the normalizer of the torus T in the group $G L_{m}$. We have: $N(T) / T \simeq S_{m}$. Consider the restriction

$$
\begin{equation*}
G L_{n+1} \times N(T): \mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \tag{2.3}
\end{equation*}
$$

of the linear representation (2.2) on the subgroup $G L_{n+1} \times N(T) \subset G L_{n+1} \times G L_{m}$ and the restriction

$$
\begin{equation*}
\{1\} \times N(T): \mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \tag{2.4}
\end{equation*}
$$

of the linear representation (2.3) on the subgroup $\{1\} \times N(T) \subset G L_{n+1} \times N(T)$. Consider the algebraic variety $\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /(\{1\} \times N(T))$ and the canonical rational action

$$
\begin{equation*}
G L_{n+1}:\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /(\{1\} \times N(T)) \tag{2.5}
\end{equation*}
$$

We have the birational isomorphisms of the algebraic varieties:

$$
\begin{gather*}
\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /(\{1\} \times N(T)) \\
\approx\left(\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /(\{1\} \times T)\right) /((\{1\} \times N(T)) /(\{1\} \times T)) \tag{2.6}\\
\approx(\underbrace{P \mathbb{C}^{n+1} \times \cdots \times P \mathbb{C}^{n+1}}_{m \text { times }}) / S_{m} \approx\left(\mathbb{P}^{n}\right)^{(m)}
\end{gather*}
$$

Rational action (2.5) correspond to rational action (2.1) under the isomorphisms (2.6). The first corollary of this fact is the birational isomorphism

$$
\begin{gather*}
\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1} \approx\left(\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /(\{1\} \times N(T))\right) / G L_{n+1} \\
\quad \approx\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /\left(G L_{n+1} \times N(T)\right) \tag{2.7}
\end{gather*}
$$

The second corollary of this fact is that stabilizer of general position of the action (2.5) coinsides with the kernel of this action. This implies the following fact.

Lemma 2.1. Stabilizer of the general position of the action (2.3) coinsides with the kernel of this action.

Consider the adjoint representation $G L_{m}: g l_{m}$. Let η be linear subspace of $g l_{m}$ of diagonal matrices and η^{\prime} be the open subspace of η of diagonal matrices with distant diagonal elements. Note that η^{\prime} is $\left(G L_{m}, N(T)\right)$-section of the variety $g l_{m}$. Consider the linear representation

$$
\begin{align*}
G L_{n+1} \times G L_{m} & : \mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \times g l_{m} \\
(g, s) \cdot(A, B) & =\left(g A s^{-1}, s B s^{-1}\right) \tag{2.8}
\end{align*}
$$

Set

$$
R^{\prime}=\left\{(A, B) \in \mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \times g l_{m} \mid B \in \eta^{\prime}\right\}
$$

It follows from previous considerations that R^{\prime} is $\left(G L_{n+1} \times G L_{m}, G L_{n+1} \times N(T)\right)$ section of the variety $\mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \times g l_{m}$. Thus

$$
\begin{gather*}
\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \times g l_{m}\right) /\left(G L_{n+1} \times G L_{m}\right) \approx R^{\prime} /\left(G L_{n+1} \times N(T)\right) \tag{2.9}\\
\\
\approx R /\left(G L_{n+1} \times N(T)\right)
\end{gather*}
$$

where $R=\overline{R^{\prime}}=\mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \times \eta$. Stabilizer of general position of the action (2.3) coinsides with the kernel of this action (Lemma 2.1). It is obvious that the kernel of the action (2.3) acts trivially on η. By Noname Lemma we have the birational isomorphism

$$
\begin{equation*}
R /\left(G L_{n+1} \times N(T)\right) \approx\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /\left(G L_{n+1} \times N(T)\right) \times \eta \tag{2.10}
\end{equation*}
$$

It follows from (2.7), (2.9), and (2.10) that $\left(\mathbb{P}^{n}\right)^{(m)} / G L_{n+1}$ stable birationally isomorphic to $\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /\left(G L_{n+1} \times G L_{m}\right)$. Let us prove that $\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m}\right) /\left(G L_{n+1} \times\right.$ $G L_{m}$) stable birationaly isomorphic to \mathcal{K}_{d}, where $d=(n+1, m)$.

Consider the linear representation (2.8). It follows from Lemma 2.1 that stabilizer of general position of the representation (2.8) coinsides with the kernel of this representation. It can easily be checked that the kernel of the representation (2.8) is

$$
H=\left\{\left(\lambda E_{n+1}, \mu E_{m}\right) \mid \lambda \mu=1\right\}
$$

where E_{k} is the unit matrix of size $k \times k$. Fix the imbeding

$$
\begin{aligned}
& \phi: G L_{n+1} \times G L_{m} \hookrightarrow G L_{n+1+m}, \\
& (g, s) \mapsto\left(\begin{array}{cc}
g & 0 \\
0 & s
\end{array}\right)
\end{aligned}
$$

and let $\gamma: G L_{n+1+m} \longrightarrow G L\left(g l_{n+1+m}\right)$ be the adjoint representation of the group $G L_{n+1+m}$. Consider the representation

$$
\gamma \circ \phi: G L_{n+1} \times G L_{m} \longrightarrow G L\left(g l_{n+1+m}\right)
$$

Note that the kernel of this representation is H. Therefore, algebraic varieties

$$
\left(\mathbb{C}^{n+1} \otimes \mathbb{C}^{m} \times g l_{m}\right) /\left(G L_{n+1} \times G L_{m}\right), \quad g l_{n+1+m} / \gamma\left(\phi\left(G L_{n+1} \times G L_{m}\right)\right)
$$

are stable birationally isomorphic (Noname Lemma). The last remark in the proof is that $g l_{n+1+m} / \gamma\left(\phi\left(G L_{n+1} \times G L_{m}\right)\right)$ stable birationaly isomorphic to \mathcal{K}_{d}, where $d=(n+1, m)($ see $[13$, Lemma 2.4]).

References

1. I.Dolgachev and D.Ortland, Point set in projective spaces and theta function, Asterisque 165 (1988).
2. P.I.Katsylo, Rationality of the fields of invariants of reducible representations of the group $S L_{2}$, Vestnik Moskov. Univ. 5 (1984), 77-79.
3. P.I.Katsylo, The rationality of moduli spaces of hyperelliptic curves, Math. USSR-Izv. 25 (1984), 45-50.
4. P.I.Katsylo and F.A.Bogomolov, Rationality of some quotient varieties, Math. USSR-Sb. 126 (1985), 584-589.
5. L.Le Bruyn, Some remarks on rational matrix invariants, J. Algebra 118 (1988), 587-493.
6. E.Formanek, The center of the ring of 3×3 generic matrices, Linear and Multilinear Algebra 7 (1979), 203-212.
7. E.Formanek, The center of the ting of 4×4 generic matrices, J. Algebra 62 (1980), 304-319.
8. Ch.Bessenrodt and L.Le Bruyn, Stable rationality of certain $P G L_{n}$-quotients, Invent. Math. 104 (1991), 179-199.
9. A.Schofield, Matrix invariants of composite size, J. Algebra 147 (1992), 345-349.
10. P.I.Katsylo, Stable rationality invariant fields of linear representations of the groups $P S L_{6}$ and $P S L_{12}$, Math. USSR-Zametki. 48 (1990), 49-52.
11. P.I.Katsylo and D.I.Mikhailov, Ternary quartics and 3-dimensional commutative algebras, to appear (1994).
12. T.Maeda, On the invariant field under the action of $S L(3, \mathbb{C})$ with signature $(2,1)$, Ryukyu Math. J. 3 (1990), 7-24.
13. P.I.Katsylo, Birational geometry of moduli varieties of vector bundles over \mathbf{P}^{2}, Math. USSRIzv. 55 (1991), 429-438.

[^0]: The author would like to thanks Max-Planck-Institut für Mathematik (Bonn) for the hospitality and financial support.

