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ABSTRACT. We prove that (pn)(m) /GL n+1 is stable birationally isomorphie to KdJ

where d = (m, n + 1) and Kd = (gld X gld)/GLd. We prove that (lFn)(m) /GL n +1 is
rational for n = 2, m = 7.

§O. Let IPn be n-dimensional projective space and (pn)(m) be nlth synlmetric
degree of IP n . The group GLn +1 acts canonically on the space (IP n )(m). Consider
the rational factor (IPn )(m) /GL n+1 • Recall that if a linear algebraic group acts
rationallyon an irreducible algebraic variety X, then the rational factor X / G and
the rational dominant morphislll

1T": X -+ X/G

are defined uniquely up to abirational isomorphislu. We have 1T"* (C( X / G)) ­
C(X)G.

Here are some known facts about the variety (IPn)(m) /GL n+1 .

1) Evidently, (rn)(m) /GL n+1 is a point for n 2:: rn - 2.
2) There is the birational isomorphislu

(association, see [1]).
3)(1P1)(m) /GL z is rational for all m (see [2], [3], [4])
4)(rZ)(5) /GL3 is rational by CastehlUovo'S theorem.
In this article we prove the following facts.

Theorem 0.1. (IP2 )(7) /GLa is rational.

Theorem 0.2. Let d be the greatest common divider 0/ the numbers m and n. + l.
Suppose n < rn - 2, then (rn)(m) /GL n+ 1 is stable birationally isomorphie to IC d •

Recall that irredicihle algehraie varieties X and Y are called stahle birationally
isomorphie iff X X Cnl is birationally isomorphie to Y X Cn2 for some nl, nz. The
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definition of /Cd is as folIows. Let GLd : gld X gld he the direct product of two
adjoint representations of the group GLd • Set

The varieties /Cd appear' in Inany questions of algebra and algebraic geometry
[5]. Evidently, /Cl and /C2 are rational. D.Formanek proved rationality cf IC 3 and
/C4 [6], [7]. L.Le Bruyn and Ch.Bessenrodt proved stahle rationality of IC5 and /C7

[8]. P.I(atsylo and A.Schofield proved that if /Cd l and /Cd 2 are stahle rational, dl

and d2 ar'e coprime, then IC dld2 is stahle rational [9], [10]. This iInplies that if d
divide 420, then /Cd is stahle rational.

Corollary 0.3. Suppose the greater common divider 0/ the numbers 7n and n + 1
divides 420) then (IP n )(m) /GL n+l is stable rational.

As far as the author knows rationality of (IP n )(m) /GL n+1 is known in the follow­
Ing cases.

(1) n ~ m - 2 (see 1)).
(2) m - n = 3 01' n = 1 (see 2), 3)).

It follows froln Theoreill 0.1 and 2) that (pn)(m) /GLn+l is rational in the cases

(1) n = 2, 7n = 7; n = 3, 7n = 7.

§1. We prove Theoreln 0.1 in this section.
Let el, e2, e3 be the standard basis in C3 and let Xl, X2, X3 be the dual basis in

(;l*. The group SL3 acts canonically in the space saC3 0 SbC3*, a, b ~ 0. The
linear mapping

is SL 3 - mapping. The representation of the group S L3 in the space V (a, b) = !(e1'ß
is irreducible. Set V(a,O) = safC3, "V(O,b) = SbC3*.

There is abirational SL3-isonlorphisill

where PV(I, 2) is the projectivisation of the linear space 11(1,2) [11]. Therefore,

'l/Jl : V(a, b) x V(a', b') ---+ V(a + (L' + 1, b + b' - 2),

,"" 8r 8r'
(1', r ) t-r L..J Sgn(a)eq(l) 8 . 8 .

J'I7(2) Xo-(3)
o-E S 3

Therefore, we have to prove that PF(1, 2)/SL3 is rational.
Note that PV(2, 1)/SL3 is rational [12].
Set

for b, b' ~ 1. It is easy to see that 'l/Jl is bilinear SL3-Inapping.
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Set
v = V(l, 2) x [11 (0,2) ffi F(l, 0)] x V(l, 0).

The group S L 3 acts canonically in the space V. Define thc following linear repre­
sentation of the torus C* x C* x C* in the space 11 :

The actions of the groups SL3 and C* x C* x C* in the space 11 comInute. Set

c/J : V (1, 2) x [11 (0, 2) ffi 11 (1, 0)] ---+ F (1, 1),

(I, g' + g") M 6.(1/;1 (I, g')) + 6.(fg"),

, : V (1, 2) x V (1, 0) ---+ 11(1, 0) ,

(/,g") M 6.Z(fg"z),

X = {(f, g' + g", h) E 11 (1,2) x [V(O, 2) ffi V(I, 0)] x 11 (1,0)

I c/J(!, g' + g") = 0, h 1\ ,(!, g") = O}.

Note that SL3 • X = ){, (C* x C* x C*) . ){ = ){. Set

!o = 3eZ x 1X3 - 2e1 Xl Xz + 6e3 x 3 xZ - 2ezx~,
I Z

90 = XI X 3 - xz ,

" 2go = ez,

17. 0 = ,(fo, g~) = - 32ez.

It can easily be checked that

(1.1 )

(fa, gh + g~, ho) E X,

dimker<j>(!o,') = 1,

dimker <j>(., gh + g~) = 7,

diln(kercjJ(·,gh + g~) n ker'(',g~)) = 4.

Let X o be the (unique) irreducible component of the subvariety X such that (fo, gh+
g3,ho) E X o. We have: SL3 . X o = X o, (C* x C* x C*) ...Yo = ..Yo.

Consider the restriction PI of the canollical projection

11 (1, 2) x [V (0, 2) ffi V (1, 0)] x V (1, 0) ---+ V (1, 2).

on the subvariety X 0 . It follows froln (1.1) that a fiber of general posi tion of the
morphism PI is {I} x C* x ([*-orbit. Therefore,

(1.2) X O/(SL 3 X (C* X C* x C*)) ~ PV(I,2)/SL3 •

Consider the restriction pz of the canonical projection

11 (1, 2) X pi(0, 2) ffi V (1, 0)] x V (1, 0) ---+ [V (0, 2) EB V (1, 0)] X 11(1, 0).
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(2.2)

on the subvariety Xo. It follows from (1.1) that PI (p;;l (g' +g", h)) is 5-dirnensional
linear subspace in ·V(1,2) for a point (g' + g",h) E [11 (0,2) EB 11 (1,0)] x 11 (1,0) in
general position. Therefore,

(1.3) Xo/(5L3 xC· xC· xC·)) ~ ([V(O, 2)EBV(l, 0)] x V(1, 0))/(5L3 xC· xC·) xC

(see [4, Lemnla 2.1]).
Note that ([V(O,2) EB 11 (1,0)] x V(1,0))/(SL3 x C· X C·) is unirational, 2­

dimensional and hence rational by Castelnuovo's theorem. It follows now from
(1.2) anel (1.3) that PV(l, 2)/SL3 is rational.

§2. Vve prove Theorem 0.2 in this section.
Consider the regular action

(2.1) GLn+1 : (IP n )(m)

vVe cau assume that stabilizer of general position of the action (2.1) coinsides with
the kernel of this action. Indeed, suppose n < m - 2, then a stabilizer of general
position of the action (2.1) does not coinside with the kernel of this action iff
n = 1, m = 4. But Theoreln 0.2 is evident in the case 11, = 1, 1n = 4.

Consider the linear algebraic group GL n+1 x GLm anel the linear representation

GLn+1 x GL m : Cn+1 0 Cm
,

(g, s) . A = gAs- 1

(we interpret Cn +1 ® C-m as a linear space of matrices of size (n +1) X 171). Let T be
the subgroup of diagonallnatrices of the group GLm and N(T) be the nonnalizer of
the torus T in the group GLm. Vle have: lV(T)/T ~ Sm. Consider the restriction

(2.3) GL n + 1 X lV(T) : Cn + 1
(9 Cm

of the linear representation (2.2) on the subgroup GLn+1 X N(T) C GLn+1 X GLm

and the restriction

(2.4) {1} x N(T) : Cn+1 0 Cm

of the linear representation (2.3) on the subgroup {I} x N(T) c GL n+1 x N(T).
Consider the algebraic variety (cn+ 1 ®Cm

) / ( {1} x f.l (T)) and the canonical rational
action

(2.5)

(2.6)

(2.7)

We have the birational isolllOrphis1l1S of the algebraic varieties:

(Cn+1 0 Cm
)/({1} x lV(T))

~ ((Cn+1 0 Cm
)/({l} x T))/(({l} x i'l(T))/({l} x T))

~ (?Cn +1 x ... X pe;t+1J/ Sm ~ (IPn)(m).
V'

m time~

Rational action (2.5) correspond to rational action (2.1) under the isolll0rphisms
(2.6). The first corollary of this fact is the birational isolnorphism

(IPn)(m) /GL n+1 ~ ((Cn+1 0 Cm)/({l} x l'l(T)))/GL n+1

~ (cn+ 1 0 Cm )/(GLn +1 x N(T))

The second corollary of this fact is that stabilizer of general position of the action
(2.5) coinsides with the kernel of this action. This implies the following fact.
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Lenlma 2.1. Stabilizer 0/ the general position 0/ the action (2.3) coinsides with
the kernel 0/ this action.

(g, s) . (A, B) = (gAs-I, sBs- 1
).

(2.8)

Consider the adjoint representation GLm : glm. Let 1] be linear subspace of glm
of diagonal matrices and 1]' be the open subspace of 1] of diagonal nlatrices with
distant diagonal eleluents. Note that 1]' is (GLm , N (T) )-section of the variety glm •

Consider the linear representation

GLn+1 x GLm : Cn +1 0 Cm x glm,

Set

(2.9)

R' = {(A, B) E C71 +1 0 Cm x glm IB E r/}.

It follows from previous considerations that R' is (GL 71 +1 x GL m , GL n+1 x lV(T))­
section of the variety cn+l 0 cm x glm. Thus

((:n+1 0 em x glm)/(GLn+1 x GLm) ~ R' /(GLn+1 x N(T))

~ R/(GLn+1 x N(T)),

where R. = R' = Cn+1 0 Cm X 1]. Stabilizer of general position of the action (2.3)
coinsides with the kernel of this action (Lemlua 2.1).It is obvious that the kernel
of the action (2.3) acts triviallyon 1]. By Noname Lemlna we have the birational
isomorphism

(2.10) R/(GLn +1 x N(T)) ~ (cn+1 0 Cm )/(GLn +1 x N(T)) x 1J.

It follows froln (2.7), (2.9), anel (2.10) that (IP n
)(m) /GL n+1 stable birationally iso­

lnorphie to ((:n+1 ®Cm )/(GLn+1xGLm ). Let us prove that (cn+10cm )/(GLn+1 x
GL m ) stahle birationaly isolllorphic to ICd, where d = (11. + 1, m).

Consider the linear representation (2.8). It follows froln Lemma 2.1 that stabi­
lizer of general position of the representation (2.8) coinsicles with the kernel of this
representation. It can easily be checked that the kernel of the representation (2.8)
IS

where Ek is the unit luatrix of size k x k. Fix the irnbecling

4> : GLn+1 x GL m 4 GLn+1+m,

(9,8)M(~ n
and let I : GL n+1+m ------+ GL(gln+l+m) be the adjoint representation of the group
GLn+1+m. Consider the representation

, 0 <P : GLn+1 x GLm ------+ GL(gln+l+m)'

Note that the kernel of this representation is H. Therefore, algebraic varieties

(Cn+1 0 em x glm)/(GLn+1 x GLm), gln+l+m/,(4)(CiLn+1 x GLm))

are stahle biratiollally isomorphie (NOllaIlle Lemma). The last renlark in the proof
is that 9 ln+1+m/ I (4>( GL n+1 X GL m)) stable birationaly isomorphic to Je d, where
d = (11. + 1, n1.) (see [13, Lemlna 2.4]).
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