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Real analytic Eisenstein series for the Jacobi group

Tsuneo Arakawa

§ 0. Introduction.

0.1. In their monograph [E-Z], Eichler-Zagier defined
holomolphic Eisenstein series for the Jacobi group, studied basic
properties of them and in particular obtained significant expressions
for the Fourier coefficients. The aim of this paper is to study real
analytic Eisenstein series for the Jacobi group which are natural
generalization of holomorphic Eisenstein series of Eichler-Zagier.
Qur goal is to obtain the analytic continuation of the real analytic
Eisenstein series and prove the functional equation. The key to a
proof is to relate the real analytic Eisenstein series for the Jacobi
group with those on the upper half plane associated with theta
multiplier systems of SLZ(Z), and then to make use of a general
theory for real analytic Eisenstein series of sztm) due originally
to Selberg [Se] and to Roelcke [Ro 1, 2] in the case with unitary
multiplier systems. Here we follow Roelcke [Ro 2] and Kubota [Kul}.

To make concrete the functional equation of the real analytic
Eisenstein series for the Jacobi group is of some importance in
further development of spectral theory for the Jacobi group (in this

connection we refer to Berndt [Bel).

c.2. To be more precise, let m be a positive integer and k an



integer. Set k= (k-~1/2)/2. Denote by § the upper half plane. Let I=
SLZ(Z) and rJ denote the Jacobi group:

l'J= {(Mn(lpﬂ)!p)l Mer, a, us p € 7}

with the multiplication law (1.4) in § 1. Denote by ri + the

?
subgroup of FJ consisting of elements ((é ?),(O,u),p) with n, u, p €
Z. For each integer r with PZEO mod 4m and s € C, define a function

¢r,s: #x — € by

2
_ .m{ r°< rz S-x
(0.1) ¢r’s(‘tyz)— e [:1;-2--*——“—1)(1[[!(‘:)) '

where em(a)= exp{2nime). The real analytic Eisenstein series
Ek,m,r((t'z)’s) (rt € 86, 2 € ) of weight k and index m with respect

to FJ is defined as follows:

E]{,m,r((t’Z)’S)
2
= b em (lz't"'zlz- M}x(0r+d)-k¢r S(MT'MJ R
]
? c ri.+\rJ C‘C+d Ct"‘d

where y=(M,{(x,n):p) € FJ with M:(g 3). The Eigsenstein series

Ek o r((-c,z),s) is absolutely convergent for Re{s)> 5/4 and, if k>3
T 3 -
and s is evaluated at s:u,'Ek n r((t,Z),K) coincides with the
? 1
holomorphic Eisenstein series of Eichler-Zagier. Our main result is

that Ek,m.r{{t'Z)'S) are analytically continued to meromorphic
functions of s in the whole complex plane which satisfy a certain
functional equation (see § 3 for the explicit form of the functional
equation). In particular if m is a square free positive integer and k

is even, there exists the unique Eisenstein series Ek m 0({:,2},9)
L 1]

and it satisfies the simple functional equation:



Ek,m,O‘(T'z)'l'S’: @(I-S)Ek'm'o((t,z)'g)
with

—wik/2 _ . _
¢(5)= e xl{/ '22 ZSRI'(ZS—l).g('-lS—Z) . 1+]93/2 2s .

J 2m r(s+x)ri(s-«) ¢t(4s-1) pim 1+p1/2_28

In this paper we discussed only the case of T=SL2(Z) for the sake
of simplicity. However it can be shown that for arbitrary subgroup T
of SLZ(Z) with finite index, certain real analytic Eisenstein series
with respect to the Jacobi group rJ is well-defined, and moreover
that such real analytic Eisenstein series are analytically continued
to meromorphic functions in the whole complex plane which satisfy a

functional equation similar to that in the case of F=SL2(Z)-

The author would like to thank Max-Planck-Institut fur Mathematik

in Bonn for supporting him financially in 1989,

§ 1. Theta multiplier systen

First we recall classical theta series. Denote by § the upper
half plane. Let m be a fixed positive integer throughout the whole
paper and let R denote the Z-module Z/2mZ of residue classes mod
2m. We write em(a) (resp. e{x)) as an abbreviation of exp({2nimg)
(resp. exp(2nix)) for any o € €. Set, for each r € R,

2

op(tziz T e®(cfat Bg) + 22(ar 55)]  (res ze0.
q c Z 4 A
Denote by V the C-vector space of column vectors (xr)reR (xr e C)



indexed by the set R. We define the positive definite hermitian

scalar product (x,y) (x={x_) y={y )reR € V) to be the sum

r’'reRr’ r

p X § .
r € R rr

We line up the theta series er(r,z) as a column vector:

B({t,z)= (Gr(t.z)) e V.

reR

In the sequel we take the branch of 2% {zm0, o € R) with -m<argz <x.

For M ¢ SLz(R), we define the standard automorphic factor J(M,t} by

J(M,t)= ct+d with M=(g 3), t € 6.

Moreover, for any real number u, we define the cocycle au(A,B)

as in [Fi, Definition 1.3.1]:

o (A,B)= e{uw(A,B)) with

a

2nw(A,B)= argJ(A,Bxt)+argJ(B,t)-argJ(AB, 1),

where argz is taken so that -n<argz<nx. The number w(A,B) is
independent of the choice of t and takes the values 0, x1. The theta

series er(t,z) satisfies the well-known theta transformation formula:

o

[*] ')
(1.1)  e(M(t,z))= e“‘(ccz Jaoofume,z) m=(2 5 e st

~+d :
where M(t,z)z(ﬂt, ), and where U{M) is a certain unitary matrix
ct+d
of size 2m with respect to the scalar product ( , ). We set
x(M)= U{M), the complex conjugate of U(M).

Via the transformation formula (1.1}, x(M) satisfiegs the following

property as a multiplier system,



{(1.2) x(MlMZ): al/z(MI,Mz)x(Ml)x(Mz) for any Ml’ Mz € SLZ(I).

For each r € R, we denote by e. the column vector of V whose {-th

component (£ € R) is one or zero according as {=r or not. Then

{er}reR forms an orthonormal basis of V. Let L denote the matrix of
size 2m characterized by Ler: e_. for any r € R. Since ®&(t,z)=
z 0_(t,z)e_, it is easy to see from (1.1) that
r r
r € R
1 2
(1.3) x(-1,)= e®i/2y

We note here that the theta multiplier system x of SLZ(I) doeg not

satisfy the condition a) of Definition 1.3.4 of [Fi].

Denote by G’= ((M,(x,n),p)| M € SLy(R), i, u, p € R) the Jacobi

group of degree one. For two elements gj=(Mj"*j’“j)ij) {j=1,2) of

GJ, the multiplication 3182 is given by

' m
{1.4) 3132: (MIMZ' ().lrl-ll)Mz"'(lzyuz) :pl+pz+(11su1)l‘12 (“l:] ).

The Jacobi group GJ acts on the product space gxC in the following
manner; for g=(M,{x,u),p) € GJ and (t,z) € 8xC,
glt,z)= ﬁnt, Ziatha J with M being (2 3) € SL,(R).
ct+d
Let k be a fixed integer. For any function ¢: §xC — € and

J
g=(Mr(ll.ﬂ’|p) € G, we set

2
(¢l p&)(T,2)= Em(p+lgt+2lz+lu— C(z+*;+“’ )(ct+d)”k¢(g(t,z)).
! ctt

Then,

J
{1.5) {ﬁlk,mgl)lk,mgz;. 4"1{,[113132 for any gll gz e G,



We recall the definition of Jacobi forms. For simplicity we assume

that = SLZ(Z). We set

e (M, o) .p)l MeET: 2, us p e},

which is a discrete subgroup of GJ. A holomorphic function é(<t,z) on
$xC 1is said to be a Jacobi form of weight k and index m with respect

to rJ, if ¢ satisfies the following two conditions:
(i) . #| = ¢ for an € rJ
. k,m? y v .
(ii) The function ¢(<t,z) has-a Fourier expansion of the form:

#lt,z)= T c{n,r)e(ng+rz)
n,r € 7

with c¢c(n,r)=0 unless 4mn—r220.

We denote by Jk m(r) the space of Jacobi forms of weight k and index

m with respect to FJ. Set, for simplicity,

(1.6) g:%@— %).

We define an automorphic factor jy(<t)= jy(t,x) (M € SL,o(R)) by
(1.7) Jy(t)= exp(2ix-argd(M,t)).

Then this automorphic factor has the property

(1-8) JA(Bf)jB(t)z GZK(AsB)jAB(T) (A, B € SLZ(]R))-
Let mk_l/ztr,x) be the space consisting of V-valued functions f on
& which satisfy the following two conditions:

(i) (Im(<x)) *f(x) is holomorphic on § and also at the cusp =.

(ii) f(Mx)= x(M)jM(t)f(t) for all M e T.



Each Jacobi form ¢(x,z) € Jk m(r) has the unique expression as a
’
linear combination of theta series:

(1.9) ¢(t,2z)= (Im(x)) ¢ =
c

fole)e(t,2z) (see [E-Z, p.58, (5)1).
r

R
Then the collection f:(fr)reR of fr’s becomes an automorphic form of
mk_l/z(r,x) by the transformation formula (1.1). As is shown in

[E-Z, Theorem 5.1], the space Jk,m(r) of Jacobi forms is isomorphic

to mk_llzir,x) via the correspondence

¢ — f=2(f ) er

§ 2. Real analytic Eisenstsein series with theta multiplier

sestem

In § 2, § 3, we assume that k is an integer (not necessarily
positive). Let k be the number given by (1.6). We first note that the

following identity for the theta multiplier system x given in § 1
(2.1) X(M1M2)= OZK(MI’MZ)X(MI)X(MZ) for er M2 € SLz(Z)

is immediately verified by (1.2). Let F=SL2(Z) and let T _ be the

subgroup of I' generated by (3 %) and —12. It is easy to see from

the theta transformation formula (1.1) that

2

1 n -r’'n
(2.2) x(( JJe - e )e for any r € R.
01 r ( 4m r

(2)

Denote by R the subset of R consigting of r mod 2m with

(2)

r=-r mod 2m. Immediately, R ={0 mod 2m, m mod 2m}. Set, for each

r € R,



(e +(—1)ke y/2 ve. T € R(z)

r -r
W= »
(e +(-D)¥e_y//2 ... r e r-r'?
and
k (2)
X (er_(-’l) e__r)/z e r GR
W=
9
te.-(-1)fe__1//2 ... rer-r(?,
Then,
(2.3) b= (-D% and vz (-1 WF for any r e R
’ r- r r- r Y .
Let RnUll denote the subset of R given by
RnUll = {r € R| r250 mod 4m}.
. . . . null .
Now we define the Eisenstein series Er(t,s) (r € R ) associated

with the theta multiplier system x, following Roelcke {Ro 2, § 10].

Set, for each r € RnUll,

(2.4) E.(t,8)= I 3y o) " HIm (1)) Sx o T hu

M e r_\r s

The well-definedncss of the V-valued function E_ (t,8) is easily

verified by (2.1), (2.2), (2.3), (1,3), (1.7) and (1.8). The

Eisenstein series Er(r.s) is absolutely convergent for Re{(s)>1l, and

behaves like an automorphic form of mkul/z(r,x). Namely,
(2.5) E.(Mt,s)= x(M)jy(x)E_ (x,s) for all M e T.

Since wr=(-1)kw_r, we get, immediately,

(2.6) E_(t,8)= (-1 E__(t,s) (r ¢ RPULL),



Now we discuss the Fourier expansion of Er(t,s) in a manner similar

to [Rol, p.301}, [Ro2, p.294, Lemma 10.2].

b 4
LEMMA 2.1. Let r € R™V. rpen, (Ep(t,8),w,)=0 for any Pp € R.

Proof. We get, by (1.3), (1.7); (2.3) and (2.5),

(Bplxi9) )= (g (DE(518),x(-15) ")

. - . * *
(eanxEr(t,s),e Ju/szp).-. (Er(t,S),—wp>v

which completes the proof of the assertion. q.e.d.

There exists a subset R of R with the propcrty

R= R‘z) UR U (-R} {disjoint union),

~

where -R= (-r| r € R}. We pick up such a subset R and fix it once and

for all, If k is even (resp. odd), then, w,. (r € R u R(Z)). w: (r € R)

(2)y,

~ b 4 ~
(resp. W (r € R), W (r e RUR form an orthonormal basis of V.

According to Lemma 2.1, the Eisenstein serics Er(t,s) has an

expression as a linear combination of wp's :

E (x,s)= z .
r 4 c

P RuR‘z) gp(tgs)w

p

with certain functions gp(t,s) (p e Ru R(z)). We note that if k is

odd, then wp:O for p € R(z). Set, for each p € R,

2
8p= <-p~"/4m>,

where <x> for x € R denotes the real number with x-<x> € Z and

0£<x><1. We define the subsets Rk and REUll of R as follows:



[ R u R(z) «ve if k is even,
R, = ~
k B ... if k is odd,
and

null_ null

Rk = Rk Nn R .

Then the formula (2.5) for M:[é ?) {(n € Z) and (2.2) imply that
(2.7) Srp(t+n,s)= e(Bpn)grp(t,s) for any p € Ry.

By virtue of the identity (2.6), we need the Eisenstein series

Er(r,s) only for r € REUll. We see easily from (2.7) that, if p €

Rk-REUll, then grp(r,s) has the Fourier expansion of the form:

@D

grplTi8)= X App,n(nsslel(n+s ) k) (t=E+ip) .

n=--o

Moreover if p € REUll, then the following Fourier expansion holds:

BrplTi8)= up(n,s) + nf_m Uep,nfnrs)e(ng) (t=g+in),

n=0
where the constant term urp(n,s) is given by the integral

1

fo (B_(t,s),w )dE.

P

For r, p € R, let S denote the Kronecker symbol. Thus using the

p
definition (2.4) of Er(t,s), we have, in a usual manner,

_ s Y -1 s
urp(n.S)— 5rp” + (C?E)=1 (wr,x(M)wp) I_m Jy(e) “(Im(Mc))~dg
¢>0, d mod ¢
(r, p € R and Re(s)>1),

where in the summation ¢ runs over all positive integers and d runs

over the residue classes mod ¢ with {(c,d)=z=1, and where, for integers



¢, d with (c,d)=1, M:(g g) is chosen so that M € I'. An elementary

calculation shows that the integral on the right hand side of the
above equality is equal to
l1-s 22-23

(2.8) .o T Ky(;s) with y{x;s)= nr(es-1)
c?s r(s+x)T{s-«)

Thus we obtain

PROPOSITION 2.2. Let v € R§Ull. Then the Eisenstein serieas

Er(t.S) has the following ezpraession:
E (t,8)= T (5. nS+nl™S + X
plTi8)= Spp?t *N Ppp(s)w QeplTr8)¥

P
p € R;{mll P € R

P
(t=£+in, Re(s)>1),

where each qrp(t.S) (p € Rk) has the Fourier ezpansion of the form

null

Z . Arp,nl®r8)el(n+g)8) ... p € Ry-Ry

qrp(ty3)=

T null

nf—m, nz=0 qrp'n(n,S}e(ng) cvr» P € Rk .
Horeover, the functiom ¢rp(s) (r, p € Rﬁull) is given as Follows:

-mixk (w_,x(M)w_)
¢rp(8): e Tk (vig) ® r P (Re(5)51)
(ec,d)=1 Czs

c>0, d mod c

whare, for coprime integers c, d, M:(ﬁ 3) ts chosen so that M € I'.

null

The functions (s) (r, p € Ry }) play an important role to

‘prp
describe the functional equation of the Eisenstein series Er(t,s).

null

Denote by tQ the cardinality of the set Rk . We set



d(s)= (¢rp(s’)r p € Rnull !
! k

which is a matrix of size t_ whose (r,p)-component is ¢rp(s}.

null

PROPOSITION 2.3, Let r, p € Ry . Then, (8)= ¢@__(s5).

In another word, t¢(§)= P(s).

Proof. For M:(g g) € SLZ(R), we write c¢{M) for the entry c. Let

F: be the subgroup of I' generated by (é %). Denote by B+(r) the
subset of I' consisting of M € ' with c¢c(M)>0. The set B+(r) is bi-
invariant under the left and right multiplication of elements of r:.

Denote by r:\B+(r)/r: a complete set of representatives of the

double cosets of B+(r) by r:. Accoding to Proposition 2.2, ¢rp(s)
has a slightly modified expression:
I (w_,x(M)w_)
Prpls)= e Try(k3s) = - —P
+
Mer\etry/rl c?®
The set F:\B+(F)/r: and c{(M) are invariant under the
correspondence M — ML, e get x(M)—lzx(M—l), since azk(M,M—I)zl
({Fi, p.18, (1.3.6)]1). Thus we have
— i (w ,x(M)_lwr)
(2.9) Ppp(8) = e Xy(kis) I E ”
Mer\sT(ryrt c(M)“®
. (W yx{-M)w_)
= ™ ¥(x58) £ P 2
+
Mer\s" (ry/rl c(u)?s
Since c¢(M)>0, ¢, (M,-1,)=-1. Moreover by (2.3), x(-1,)w = -e2T ¥y
M2kt T2 * : ' 2’ 7r r



for any r ¢ REUll. Thus we see immediately from the sccond equality

(s) = ¢ _. (38). q.e.d.

of (2.9) that ¢rp or

Let ¥ be a usual fundamental domain of F=SL2(Z) in § given by
F= {x=2+in € C| -1/2<e<1/2, x|l and £20 on |t|=1}.

Let xK denote the space of measurable functions f: § — V

satisfying the following two conditions:
i) f(Mr)= x(M)jy(c)f(x) for any M € I,
2
i) #£0%= [ (£(0),flx))delo) < +e,
F

where dae(x)-= n-zd&dn. For two elements f, g of X, the scalar

product (f,g) is defined by

(f,g)= f? (f(t),g(x))dolt).

Then xm forms a Hilbert space with respect to the scalar product

(f,2). Now we describe the Maass-Selberg relation for Er(r,s). Take a
positive number Y sufficiently large. Set

?Y= {r € | Im(x)>Y) and Fy= ?-gY,

We define a compact form Eﬁ(t,s) of Er(t,si as follows. Set
. Y
v Er(t,s}-ur(n,s) oo if T € &,
Er(t,8)=
Er(t’S) L if T E ng

where urin,s) is the constant term of the Fourier expansion of

Er(t,s):



s 1-s
u.{n,s)=n + n z o (s)w_.
v null FP P
P € Rk

We extend Ei(t,S) to the whole upper half plane § by putting

Y
Er

{Mt,s)= x(M}jM(t)Ei(t,S) for any M €e I and v € ¥%.

Then, Ei(r,s) is an element of xn'

PROPOSITION 2.4 (Maass-Selberg relation). Lat r, q € REUll and

take Y sufficiently large. If Re(s), Re(s’)>1, then,

s-38

-s+5"?
Y Y N =y Y _ Yy~ S
(2.10)  (Bp( ,8),Bq( 187 ))= 00 (3)——m - gpq(s)———
! s+s’-1 =1y y—8S-3"+1
+ I E— (51. Y - = ¢I‘ (s)e (s’)Y )
s+35'-1 q c Rnull P Pq
P k
Proof. First assume that Re(s)>Re(s’)>1. By the definition of
a compact form, the scalar product (Ei( ,s),E:( ,5')) becomes the
sum of the following three integrals Il’ 12 and 13:

I,z "y (B.(t,5),E (t,5"))dalt),
Y

12: PY (Er(tgs)—ur(nrs)vK<T’S'>)d‘°(t)’

I,= ¥ v (Bptmis)-u(a,s),-ug(a,s’))daelc).

Immediately, 13=0. By a usual calculation with the use of (2.5}, we

get



I,= b n®(w _,E_(1,8'))doe(<),
1" M e rr IM LA D '

Fy
I,= X 2%(w_,E_(t,s'))dael<)
2° M € r\(r-r_) Jmz¥ r'7q
1-s
- z ?r (S)f n (w,,E (€,s"))dal(T).
P Y p'Tq
p & RE“ll F

We may take the set (t=&+inp € 6| -1/2<&<l1/2, 0<{pxY)} as

v MF - ?Y.
M e Ir_\T
Therefore using the Fourier expansion of Eq(t,s') {Proposition 2.2),
we get
Y =1

I 4T, Io (8pqP + ¢qr(5')-ns_s ) gﬁ

r -8 s’ ) 1-s
- + .

b2 Cull ®py(8) n (6Fqn ¢Q](s Y -n

p € Rku Y

)

s 5

Thus with the help of Propositio 2.3, the relation (2.10) holds under
the condition Re(s)>Re{s'}>1. By the analytic continuation as
functions of s, the relation (2.10) holds also for Re{(s), Re(s')>1l.

q.e.d.

As is explained in [Ro, p.293), it can be shown that by means of
Selberg [Se] the Eisenstein series Er(t,s) and also &(s) have
analytic continuations to meromorphic functions in the whole s-plane.
Then we may follow Roelcke [Ro2] and prove the functional equations of
Er(r,s) and ¢({s) likewise {([Ro2, Satz 10.1, 10.2, 10.3 and 10.41).

Or equivalently, we may proceed similarly as in Kubota's boolk f[Ku]l.



We can prove in a manner similar to [Ku, Ch.III, IV] that &¢(s) and
then Er(t,si are analytically continued to holomorphic functions of
s in the region Re(s)21/2 except on the interval (1/2,11, and

moreover that the Maass-Selberg relation in Proposition 2.4 holds if

Re(s), Re(s’)z21/2. In the relation (2.10) taking the limit of s —s
1/2+it, s’ — 1/2+it (t € R, t=0) with the condition Re(s),
Re(s’)>1/2 being kept, we see that

z CrplS)oga(8)= 8y

null

on the line s= 1 +it (t e R, t=0},
2
P € Rk

q

since the left hand side of (2.10) is bounded. In another word,

(2.11) P(s)d({s)= 1, on Re(s)=1/2, szl/2.

(- -]
Thus by virtue of the reflection principle, &(s3) is analytically

continued to a meromorphic function in the whole s-plane satisfying

the functional equation

¢(s)db{l-5)= 1t

We line up the Eisenstein series Er(r,s) as follows:
E({t,s)= (¢vvy, E_(Tty8),...)
r null’
reRk
which is a 2mxt matrix. We consider the difference

(2.12) E.(%,8) - z P

null T4
q € Rk

(E)Eq(t,s} on the line Rels)=1/2.

The constant term of the Fourier expansion of {(2.12) is identically
zero by Proposition 2.2 and (2.11), Using a procedure similar to that

in Theorem 4,1.2 of [Ku], we see that the difference (2.12) is also



identically zero. Thus,

E(<t,5)= E(t,s) ®(3).

Therefore again by the reflection principle, each Er(t,s) (r € R§UI1)

is analytically continued to a meromorphic function in the whole s-

plane satisfying the functional equation
- t
E('C’].-S)— E('CyS) tb(l—s).

Furthermore using a little more precise argument (for instance [Ro2,
Satz 10.3, 10.4]1), we obtain the following main result for the

Eisensteln series.

PROPOSITION 2.5. The Eisenstein series E_.{(t,8) and each mrp(S)
(r, p € RE“ll) have the analytic continuations to meromorphic
Functions of s in the whole complex plane which are holomorphic in the
region Re(s)21/2 except on the imterval (1/2,1]1. Each E_(<t,s) has
only simple poles on this interval, and has a pole at sge (1/2,1]1, (f
and only Lf ¢,.(s) so doas. Then E(t,s) and ¢(s) satisfy the

functional equations

E(t,1-s)= E(t,s) ®(1-s)  and  o(s)®(1-s)= 1 .
@<
null
Moreover, Er(t,s) (r e Rk ) are C-Llinearly (ndependent.
§ 3. Real analytic Eisenstein series for the Jacobi group

The aim of this section is to obtain the analytic continuations
and the functional equations for the real analytic Eisenstein series

of the Jacobi group with the help of those of the real analytic



Eisenstein series Er(t,s).
For each integer r with rZEO mod 4m and s € , let ¢ s(t,z) be
t

the function given by (0.1) in the introduction. Let ri + be the
H

subgroup of rJ defined by

r = {(((1) ?J:(Ovﬂ)’ﬂ.)l n, u, p € Z}.

w, +

Following Eichler-Zagier ([E-2Z, p.25, (8)]1), we define the real

analytic Eisenstein series Ek m r((t,z),s) for the Jacobi group by
? H

(3.1) Ek'm’ritt,Z).s)= pX 5 5 (¢r,sik’m?)(t,2) ({t,z) € BxC).
v er, \r

The well-definedness of Ek n r((-c,z),s) follows from the property
14 ]

(1.5) and the fact that

J
¢r,s‘k,m?1' ®r,s for any v, € P, 4

The Eisenstein series Ek m r((t,z),s) has the following expression

1 ]
(3.2) B o pl(Ti2),8)= I T I, F(Im(Me)) TR,

gl y + q € Z
M e TI\T
2 2
for ) 2o 2 - 22 ),
2m 2m’ crt+d ct+d

where, for M e I', M:(g 3). We see easily from this expression that

({ty2),8) is absolutely convergent for Re(s)>5/4 and depends

only on r mod 2m. Therefore for each r € RnU1l, we can define

Ek,m,r

Ek - r((t,z),s) by {3.1). The following properties are an immediate
1] ]

consequence of the definition (3.1):

1) (B o (0 ),8) e pv)(x2)= By oo ((t,2),8)  for all y e 1Y,



ii) If k>3 and s is evaluated at s=x, then, {(c,2),k)

Ek,m,r
coincides with the holomorphic Eisenstein series of Eichler-Zagier.

The important fact on the Eisenstein series is that E ciltez),8)
’ y
is connected with the Eisenstein series Er(t,s) in § 2 via the

correspondence (1.9). For each r ¢ R, let ¢€_. be the symbol given by

T
[ 2 N - R(z)
€ =
r v 2 « an r 6 R_R(Z)c
PROPOSITION 3.1. Let r € R™'. Then,
E ((v,2),8)= e n ¥ -YE_(t,s)8(T,2)
k,m,r 4 ! r r' ! ' ‘
Proof. By (3.2), and then using the transformation formula
(1.1), we have
k S-x.m cz2
E ((t,2),8)= T J(M,© " F(Im(ie)) S T*e™ (222 g (M(x,2))
kqmyr 4 M ¢ r:\r C't""d r
-~k s—-k_m —cz2 k
0 T, o) T (Im(Me) 137%™ (222 J(e +(-1)e_0(M(T,2)))
M e r \r ct+d
= I J(M, 0 T 2 (1n(Me) ) SR B T (et (-1 Fe_ et 2),
M e r_\T
from which the assertion of the proposition follows. q.e.d.

We line up E {((z,z),8) as a column vector of t_-components:

k,m,r
t

((‘Crz)ss)) null GCm.

E ((t,2),8)=
k,m reRk

(Ek,m,r

Set



o' (s)= Ko(s)K ',

null

where K is a matrix of size t whose {(r,p)-component (r, p € Rk

)

is equal to €_8

X b § .
rSrp Then the (r,p)-component ¢rp(s) of ¢ (s) is

{s).

. -1
given by Grep wrp

The following theorem easily follows from Propositions 2.5 and 3.1.

THEOREM 3.2. For each r € RnUll, thae Eisenstein series

Ek'm'r((t,Z).s) is analytically continued to a meromorphic functiom (n
the whole s-plane. [t (s holomorphic in the region Re(s3)zl1/2 except
on the interval (1/2,1] and has only simple poles on this interval.

X
The Ffunctions Ek,m((t,Z):S) and ¢ (s) satisfy the functional equations

B m((%12),1-8)= @ (1-5)B _((x,2),8) and @ (s)® (l1-s)= 1,

[=:]

null

({(t,z),8) (r € Ry

Horeover, Ek ) are C-Llinearly independent.

@, I

Now we calculate the "constant term"” of the Fourier expansion

({t,2),8)= z c {n;s)e(ng+qz) (r € RnU11, T=£+in),

Ek,m,r n,q € Z n,q

where the "constant term" means the partial sum

z c (n;s)e{nk+qz).
n,q € Z, 4mn=q2 n,q

For the caluculation we follow the method of Eichler-Zagier [E-Z,
ch.I, § 21.
We divide the sum on the right side of the identity (3.2) in two

parts according as c¢=0 or c=0. Thus using the identity

2 2 2
Mt + 2X _Z2 _ ez _ _ (z-X/ec) , aX (M:(g 3) € SL,(R), c=0),
cttd cttd t+d/c c “

x?2

- 20 -



we have

(3.3) By m, el (0:2),8)= EL((x,2),8) + EZ((x,2),8)
with \
EL((t,2),8)= 2 %(0, (v, 2)+(-1)%__(<,2)),
2 5-K
(3.4) E ((t,2z),s)= T b 4 - x
e, &)=l qa €2 (opsq)ljcrea)?ie—x)

(z—(q+r/2m)/0)2 a
em[-

+ —(q+r/2m)2],
tt+d/c c

where, for coprime integers ¢, d (c=0), an integer a is chosen so

that ad=1 mod c¢. We introduce the infinite series F{((t,z),s):

1 2
F({t,z),s8)= z elIl - (—m—)p
P.q € Z 't+p|2(S“K)(t+p)]( T+D

which is absolutely convergent for Re(s)>3/4. The function F({(x,z),s)
coincides with Fk m(t,z) of [E-Z, p.19] if s=x. Replacing q by ai-cq'’
?

(q’ € Z, x mod c) on the right hand side of (3.4), we get

@ S—K
(3.5) EZ((t,2),8)= I I z N
c=1l dmod ¢ A mod c c2s+1/2

{d,c)=1

[em( %(A+r/2m)2)p((t+ % ,Z- %(A+r/2m)),3)

+ (—1)kem( %(x—r/Zm)z)F((t+ % yZ- élx~r/2m)).s)]

The function F{{(t,z),s) is periodic in t and z with period 1 and

has the Fourier expansion of the form

- 21 -



(3.6) F((x,z),s)= Z Yn g(n:8le(ng+qz)  (z=k+in € &, 2z € C)
n,q € Z '

with

k17208 %) o (_mz2/r-ne-qz)dxde (z=x+iy).

¥ (nys)= T
n,q ! J.IRJ‘IR
Integrating first with respect to x, we get

Yn,q(m8)= Im (v/2im) 1/ 27072080 e (g2 /4m-nE)dE.

Changing the variable with & — p&, we have

1-2s 2
-0 _ X AN L —B—K, n_sy-5+K q- _ '
Y, qfm )T T exp(- X nq®) Im (g+1)757%(g-1) e[(4m n)ng)de
Since we have the integral formula
I (g+i) 57K (g-i) 5FKqp= e"xinv(n;s) (for y(x;s), see (2.8)),
R

the Fourier coefficient ng q(-c,s) with 4mn=q2 is given as follows:
’

1-2s

(3.7) Vh,q(mi8)= 3:55--e'“ik’2y<u;s)exp(— X na®)  (amnza®).

For coprime integers ¢, d (c=0) and integers r, q with rzaqzso mod 4m,
set
G(r,q;c,d)= = em[ E(A+r/2m)2— 2(a+r/2m)+ —93; J,
A mod c c cm dcm
where an integer a is chosen so that ad=l1 mod ¢. The well-definedness
of G{r,q;c,d) is easily checked. In an elementary manner,

G(r,q;c,d)= z em( %(q/2m—a(1+r/2m))2+ §S(A+r/2m)—ab(x+r/2m)2],
1 mod ¢

where a, b are chosen so that (2 3) € I'. Since rzsngo mod 4m, we have
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(3.8) G(r,q;c,d)= z em( %((q—ar)/Zm—aA)z)
a2 mod ¢

We see from (3.8) that G(r,q;c,d) depends on r mod 2m and q mod 2m.
According to (3.5), (3.6) and (3.7), the "constant term" of the
Fourier expansion of EE{(t,z),s) is given explicitly by

(3.9) X

/2m

z ( (s)+(-»)k ( ))-em( 2 + 42 )
q € Z, 9220 mod 4m ¥rq ¥orq'® Zﬂf m )

where ¢rq{s) (r, q € Z mod 2m with 2sq250 mod 4m) is the Dirichlet

series defined by

© G{r,q;c,d)
({3.10) ¢rq(s): pX h3 -
c=1 d mod c C25+1/2
{(d,c)=1

Moreover we see immediately from (3.8) that

¥ (s)= ¢ {s).

-rq r,—q

Thus the expression {(3.9) turns out

- 1ws—xe—nik/2?(n;5) "
(3. ) D> (¢rp(5)+(-1) wr’_p(s)>ep<t.z)-

[ om p € Rnull

Accordingly by (3.3) and (3.11), the "constant term" of the Fourier

expansion of Ek,m,r((t’z)’s’ equals

e—nlk/Zy(

/ 2n

1-5-[. K)D)

2° %o (24 (-1) % _(c,z)) + g x
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-2 k k
Rnull Zep (¢rp(s)+(—1) *r,_p(s))(ﬂp(t,zl+( 1) 9_p(t.Z))-
P € Ry

On the other hand, by Propositions 2.2 and 3.1, the "constant term"

of Ek’m'r((r,z),s) coincides with

2%, (t,2)+ (-1 %e_(x,2))

l1-g-x -1 Ik
+ +(- ,
n T oLl €€ ¢rp(3)(6p(t.z) (-1) e_p(t z))
P € Rk
We note that Bp(t,z)+(-1)k9_p(t,z) (p e RIM) are ¢-linearly

independent. Comparing these two expressions of the "constant term",

we obtain the following.

PROPOSITION 3.3. Lat r, p € Rﬁull. Then,
(s) T By ixie) 2 (v (s)+(-1)k (s))
Prnisi= . (Y s)+(- L T - .
p rp r,-p
J 2m Erep ’
null

COROLLARY 3.4. Let r, p € Rk +» Then,

(W, x(M)w ) -ni/4
> r P - & 2y (s)+-D)Fe . __(s)),
{c,d)=1 CZB J 2m erE rp r,-p
c>0, 4 mod c p

whare M=[2 g) {s chosen so that M € T.

The proof is immediate from Propositions 2.2 and 3.3.

Finally we give an example in which &(s) is explicitly determined.
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We assume that m is a square free positive integer. Then, RHUllz

{0 mod 2m} and hence tw=(1+(—1)k)/2. Therefore we assume that k is
even. In this case there exists the unique Eisenstein series

Ek,m((t,z),s)z Ek,m,o((t’z)’s)' and ¢(s)=¢00(s) is & scalar function.
We get, by (3.8) and (3.10),

1
z z ———e
1 A mod ¢ d mod c c23+1/2
(d,ec)=1

M8

Yoo(s)= e(gmz).

Let u{(n) (n € Z, n>0) be the Mobius function. Using a trick in [E-Z,

P. 20}, we have

@ 1
¥oofs)= £ Z — =z , ulc/a)a
c=1 A mod c cZs+1/2 al(c,ma”)
® 1
= z z z 2 — afc/al)a .
c=1 ajc A mod ¢, ma“=0 mod a CZs+1/2
Thus,
1 @ N(a)
(3.12) ¥ools)= _____.[Bz w_)
£(2s-1/2) =1 a25—1/2
where

N{a)= #{x mod a| mxzso mod al}.

It is easy to see that
{3.13) N{ab)=z N(a)N(b) if (a,b)=1.

Therefore to simplify the summation in (3.12), it suffices to

calculate the local factor

-n(2s8-1/2)

Zp{s)z N(pn)p for each prime integer p.

M8
[en]

n



Then an elementary calculation shows that

1 1-4s
-p
_ — eve if (p,m)=1,
(1_p2 4s)<1_p1/2 23)
{3.14) Z_ (s)=
P 14p372-28
2P ees - 1if plm,
1_p2-4s

By (3.12}, (3.13) and (3.14), we have

t(4s-2) _  1+p>/P7%"

{3.15) &00(5):
t(4s-1) p|m 1+p1/2—23

The following is due to Theorem 3.2, Proposition 3.3 and (3.15).

PROPOSITION 3.5. Let m bas a square free positive intager and k
an even (nteger. Then the Eisenstein serias Ek,m((t’Z)’S) satisfias

the functional squation

Ek’m{(Taz)’l‘S)z ¢(1-S)Ek,m‘(t'3)’s)

with
s 3/2-2s
os)= " Py(xis) £(4s-2) o _1*P .
/n t(4s-1) plm 1+p1/2~23
Remark. In this case the functional equation ®(s)d(l-s)=1 is

eagily verified with the use of the above expression for &¢(s).
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