IRREDUCIBILITY OF THE HILBERT-BLUMENTHAL MODULI
SPACES WITH PARAHORIC LEVEL STRUCTURE

CHIA-FU YU

ABSTRACT. We determine the number of irreducible components of the re-
duction mod p of any Hilbert-Blumenthal moduli space with a parahoric level
structure, where p is unramified in the totally real field.

1. INTRODUCTION

In their 1984 paper [1], Brylinski and Labesse computed the L-factors of Hilbert-
Blumenthal moduli spaces for almost all good places. By that time the arithmetic
minimal compactification was not known. In [2] Chai furnished the desired minimal
compactification by observing that Rapoport’s arithmetic toroidal compactification
[23] plays the crucial role. Thus, the results of Brylinski and Labesse have been
improved for all good places (see [7, p. 137]). A next task is to treat the case
where p is unramified and the level group K, at p is a standard Iwahoric subgroup.
This moduli space is studied in Stamm [28], following the works of Zink [35] and
of Rapoport-Zink [24]. Several local properties on geometry as well as fine global
descriptions of the surface case have been obtained in loc. cit. In this paper we
settle a global problem concerning the irreducibility in this moduli space.

Let p be a fixed rational prime. Let F' be a totally real number field of degree g
and Op the ring of integers. Let n > 3 be a prime-to-p integer. Choose a primitive
n-th root ¢, of unity in Q € C and an embedding Q — @p. Let (L,L™) be a
rank one projective Op-module with a notion of positivity. Let Mg 1+, denote
the moduli space over Z,)[(,] that parametrizes equivalence classes of objects A =
(A,i,t,m) over a locally Noetherian Z ) [¢,]-scheme S, where

e A is an abelian scheme of relative dimension g;

e : Op — Endg(A) is a ring monomorphism;

e i:(L,LT)s — (P(A),P(A)") is a morphism of étale sheaves such that the
induced morphism

(1.1) L®o, A— A
is an isomorphism, where (P(A), P(A)") is the polarization sheaf of A (see

[5]);

e 1 : (Op/nOp)% ~ Aln] is an Op-linear isomorphism such that the pull
back of the Weil pairing e;(y,) is the standard pairing on (Or/nOF)? with
respect to (,, where )¢ is any element in L™ such that |L/OpAg| is prime
to pn.

It is proved in Rapoport [23] and Deligne-Pappas [5] that
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Theorem 1.1 (Rapoport, Deligne-Pappas). The fibers of M p, 1+)n — Spec Z)[Cn)
are geometrically irreducible.

In the paper we consider the Iwahoric level structure M, 1.+ 1y (p),n Over Mg, 1+)
where M, p+), has good reduction at p. The goal is to determine the set
Ho(M L, +),r0(p)n @ F,) of the irreducible components. We write IIo(X) for the
set of irreducible components of a Noetherian scheme X; we only consider the set
IIh(X ® K) of geometrically irreducible components if X is of finite type over a
field K.

Assume that p is unramified in F. Let M, 1+ r,(p),n denote the moduli space
over Z,)[Cn] that parametrizes equivalence classes of objects (4, 14,, H,7), where
e (A,i,t,n)isin Mg p+)n, and
e H C Alp| is a finite flat rank p9 subgroup scheme which is invariant under
the action of Op and maximally isotropic with respect to the Weil pairing
€i(xo) as above.

Write M := M 1+), ® F, and Mryp) = Mr,1+),Top)n © F, through this
paper. We will state our main results concerning the number [IIo(Mrp, )| in the
next section. We describe them together with background and methods. See The-
orem 2.7 and Theorem 5.1 for the precise statement.

The method in this paper is completely different from that used in [32] for the
Siegel moduli spaces. In the previous paper the proof is based on the Faltings-Chai
theorem on the p-adic monodromy for the ordinary locus [7] and a theorem proved
by Ngb and Genestier [16] that the ordinary locus is dense in the parahoric level
moduli spaces. The latter is obtained by analyzing the Kottwitz- Rapoport stratifi-
cation introduced in [12].

For the present situation, the ordinary locus is no longer dense, as has been
pointed out in Stamm [28] in the surface case. Thus Ribet’s p-adic monodromy
result [25] can only conclude the irreducibility for ordinary components. One may
need to establish a similar result of p-adic monodromy for smaller p-adic invari-
ant strata in M, which is not available yet. However, even though we can prove
these p-adic monodromy results, one still cannot conclude the irreducibility for non-
ordinary components using the standard p-adic monodromy argument. The reason
is that the forgetful morphism f : Mp () — M has fibration over smaller strata.
Furthermore, we do not have yet geometric properties for Kottwitz-Rapoport strata
of Mrp,(p) along the direction of work of Ngo-Genestier [16].

To overcome these new difficulties, we stratify the moduli space by a suitable
p-adic invariant:

Mryi) = [ [ Mrow).a-

Then we study the corresponding discrete Hecke orbit problem, namely asking
whether the prime-to-p Hecke correspondences operate transitively on the set ITo(Mrp, (), )-
This discrete Hecke orbit problem, though itself does not have an affirmative an-
swer, can be refined through the computation of the fibers of the stratified morphism
Ja : Mry(p),a — Ma, and is reduced to the discrete Hecke orbit problem for the
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set IIp(M,,) of irreducible components for the base. The former one can be done
using Dieudonné calculus, for which the present computation (see Sections 3 and
4) is largely based on the work [30].

The next crucial ingredient is Chai’s monodromy theorem on Hecke invariant
subvarieties. This is a global method which may be regarded as the counterpart
of the p-adic monodromy method. Its original form for Siegel moduli spaces is
developed by Chai [4]. Chai’s method works for all modular variety of PEL-type,
with the modification where the reductive group in the Shimura input data should
be replaced by the simply-connected cover of its derived group [4, p. 291]. We
supply the proof due to Chai in Section 6 for the reader’s convenience. This ingre-
dient enables us to confirm the irreducibility in the non-supersingular contribution
(components those are not supersingular). To treat the remaining supersingular
contribution, the tool is essentially the result that the Tamagawa number is one
for semi-simple, simply-connected algebraic groups [11]. The present cases heavily
rely on the computations for the geometric mass formula in [33], which is based on
a work [26] of Shimura.

The paper is organized as follows. In Section 2 we describe the main theorems
and provide the methods and ingredients. In Section 3 we give the proofs of the
theorems. In Section 4 we treat the supersingular contribution. To make the
exposition clean and more accessible, we assume p inert in F' in these sections.
In Sections 5 we show how to establish the analogous results in the unramified
situation from the inert case. Section 6 provides a proof of Chai’s result on Hecke
invariant subvarieties. We attempt to write this as an independent section so that
the reader can read this section alone together with Chai’s well written paper [4].

2. STATEMENTS AND METHODS

2.1.  We keep the notation as in the previous section. Let k be an algebraically
closed field of characteristic p. We will assume in Sections 2-4 that p is inert in F.
Write f : Mrp, () — M the forgetful morphism; it is a proper surjective morphism.

Introduce the alpha stratification as in [8] and [30, Section 3] and decompose the
moduli spaces into strata

M=][Ma and  fo: Mryp)e — Ma.

It is proved in Goren and Oort [8] that each stratum M, is smooth, quasi-affine,
of pure dimension g — |a|, and that the Zariski closure of M, in M is smooth and

m@ = Ug'<a My

We recall the alpha type associated to objects in M(k). Let W := W(k) be
the ring of Witt vectors over k and o the absolute Frobenius map on W. Put
0 :=0pr ®Z, and let J := Hom(O, W) = {0;} be the set of embeddings, arranged
in a way that oo; = 0441 for i € Z/gZ. Let A = (A,1) be an abelian O p-variety
over k. and let M be the associated covariant Dieudonné O-module. The alpha
type of A is defined to be

a(A) = a(M) := (ai)icz/gz, Where a; := dimy(M/(F, VM),
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Here (M/(F,V)M)* denotes the o;-component of the k-vector space M/(F,V)M.

If A is a point in M(k), then a(A) is an element in {0,1}’. For each a € {0,1},
let M, denote the stratum of M consisting of points with alpha type a. It is
known [8] that every alpha stratum M, is non-empty. Let A := {0,1}’ be the set
of possible alpha types. The partial order on A is given by ¢’ < a if and only if
a; > a; for all i € Z/gZ. In [30, Section 2] an alpha type a = (a;); € A is called
generic if a;a;41 = 0 for all 4 € Z/gZ. This notion was first introduced by Goren
and Oort [8] in which it is called spaced. It is proved in [30, Section 6] that the
alpha type of any maximal point of a Newton stratum of M is generic.

In this paper we prove

Theorem 2.1. We have dim My (.. = g if and only if a is of generic type.

Let Ag™ C A denote the set of generic alpha types. Denote by 7(a) C Z/g¢Z,
for a = (a;) € A, the subset consisting of elements ¢ such that a; = 1. The subset
7(a) is called the alpha index corresponding to a. Write 7(a) = {n1,...n,} with
0<n; <ngr1 <gand put ngr1 = g+ ny. Define the function w : A — Z by

2 if 7(a) = 0;
H?:l(nj+1 —n; —1) otherwise.

(2.1) w(a) = w(r(a)) = {

It is clear that w(a) > 0 if and only if @ € A",

Theorem 2.2. Let a be a generic alpha type.

(1) For any point x € M, (k), the fiber f~1(x) has w(a) irreducible components
of dimension |a|.

(2) The subscheme Mr ). has w(a)|llo(My)| irreducible components of di-
mension g.

Since the moduli space My, ) is equi-dimensional of dimension g [28, Theorem
1, p. 407], we have obtained

(2.2) Mo(Mry)l = Y w(a)|To(My)].
aE€Agen
The next step to consider the /-adic Hecke correspondences operating on the set
ITH(M,) of irreducible components, where ¢ # p is a prime.
For any non-negative integer m > 0, let H, ,, be the moduli space over Fp that
parametrizes equivalence classes of objects (4; = (A;,1;,15,7;),7 = 1,2,3; 91, p2)
as the diagram

Al P1 AS P2 AQ;
where
e A, and A, are objects in M, and A4 is a g-dimensional abelian O p-variety
with a class of polarizations and a symplectic level-n structure as defined
in Section 1 but the condition (1.1) is not required;
e the morphisms ¢; and s are Op-linear isogenies of degree ¢™ such that
wiij =13 and @;.n3 =n; for j =1,2.
Let Hy := Upm>0H¢,m- An f-adic Hecke correspondence is given by an irreducible
component H of H, together with natural projections pr; and pry,. A subset Z
of M is called ¢-adic Hecke invariant if pry(pry*(Z)) C Z for any f-adic Hecke
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correspondence (H, pry, pry). If Z is an £-adic Hecke invariant, locally closed subset
of M, then the f-adic Hecke correspondences induce correspondences on the set
I1y(Z) of irreducible components. We call IIy(Z) ¢-adic Hecke transitive if the
¢-adic Hecke correspondences operate transitively on IIp(Z). The discrete Hecke
problem for any ¢-adic Hecke invariant subscheme Z is asking whether I1y(Z) is
{-adic Hecke transitive.

Theorem 2.3 (Chai). Let Z be an (-adic Hecke invariant subscheme of M. If the
set Ilo(Z) is £-adic Hecke transitive and maximal points of Z are not supersingular,
then Z is irreducible.

Notice that the formulation of Theorem 2.3 does not require our assumption on
p and the statement of Theorem 2.3 remains valid without this assumption (see
Section 6).

The following result is due to Goren and Oort [8, Corollary 4.2.4]

Theorem 2.4. For any alpha type a, the set Ilo(M,) is L-adic Hecke transitive.

An alpha stratum M, is called supersingular if all of its maximal points are
supersingular. This is equivalent to that any point of M, is supersingular, that
is, the stratum M, is contained in the supersingular locus. Call an alpha type a
supersingular if the corresponding stratum M, is so. It follows from Theorems 2.3
and 2.4 that

Corollary 2.5. Any non-supersingular stratum M, is irreducible.

2.2. It remains to treat the supersingular contribution in (2.2). For a generic al-
pha type a, it is known that M, is supersingular if and only if g = 2k is even and
la| = k (see [8, Introduction]). They correspond to alpha types a = (1,0,...,1,0)
and a = (0,1,...,0,1). We actually describe all supersingular strata M,, not just
for generic ones. This is slightly more than what we need.

Choose and fix a non-zero element \g in Lt so that (|[L/OpXo|,np) = 1. Let
x be any point in Mz, r+),(C). One associates a skew-Hermitian Op-module
Hy(A4(C),Z) to (Az,iz(No),tz). The isomorphism class of the skew-Hermitian
Op-module Hy(A;(C),Z) only depends on the moduli space My, 1+, which we
write (Vz, (,),¢). Let G be the automorphism group scheme over Z associated to
the skew-Hermitian Op-module (Vz, (,),t), and I'(n) be the kernel of the reduction
map G(Z) — G(Z/nZ). One has the complex uniformization

ML, +)n(C) ~T'(n)\G(R)/SO2(R)?.

Theorem 2.6. Let M, be a supersingular stratum.
(1) If g is odd, then M, consists of all superspecial points and
—~119
(23 M) = [6@) s T0] | | er-1- 7 - )
(2) If g is even and |a| = g, then M, consists of all superspecial points and

(2.49) M) = [6(@):T] - | |0 4 )
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(3) If g is even and |a| # g, then any irreducible component of M, is isomorphic
to (PY)9-1al and

—119
2:5) Mo(My)] = [6(@): )] | | o1

Let Ag™ C A8™ denote the subset of supersingular generic alpha types. If g is
odd, then AE™ is empty; if a € AE™, then w(a) = 1. By Corollary 2.2, Theorem 2.6
(3) and (2.2), we get

Theorem 2.7. Notation as before. Assume that p is inert in F'. Then
(S ag wl@)] +2G(Z) D)) [F]°-Cr(-1) if g is even;
> acasen W(a) if g is odd.

The following is an elementary combinatorial result.

ImmMm@ﬂ={

Lemma 2.8. For any subset 7 of Z/gZ, let w(t) be as in (2.1). One has

> w(r) =29

TCZL/gZ

Using this fact, we rephrase Theorem 2.7 as below.

Theorem 2.9. Assume that p is inert in F'. Then

260 MM =2+ 3 (6@ rw)[F] -1},

en
a€AL

See a formula for [IIo(Mr(p))| when p is unramified in Section 5.

3. PROOF OF THEOREMS 2.1 AND 2.2

3.1. Let f: Mpyp) — M be the forgetful morphism, and let z = (A,44,t4,74)
be a point in M, (k). Choose a separable Op-linear polarization Ay = i4(Ao) on A.
Each point in f~!(x) is given by an Op-invariant finite subgroup scheme H of A
of rank p? which is maximally isotropic with respect to the Weil pairing ey ,. Then
there is an Op-linear polarization Ap, necessarily separable, on B := A/H such that
the pull back 7*Ap is equal to pAs. Denote by M*(A) the classical contravariant
Dieudonné module of A. We have an O-invariant Dieudonné submodule M *(B) of
M*(A) such that
M*(A)/M*(B) =2 k@ @k, and (,)r-a)=p(, )m(B)-

Note that M*(A) is canonically isomorphic to the dual M (A)? of the covariant

Dieudonné module M(A). We also know that a(M(A)!) = a(M(A)) (see [30,

Lemma 8.1]). Put My := M*(A) and let 7 := 7(a) be corresponding alpha index as
in Section 2. Let X, be the space of Dieudonné O-submodules M of Mg such that

My/M =2k &k

We regard &, as a scheme over k with reduced structure. For any point M in &,
it is clear that the pairing (, ) is trivial on My/M. Therefore we have a polarized
abelian Op-variety B = (B, Ap,tp) and an Op-linear isogeny 7 : A — B such that
™A = pAa and M*(B) = M. This establishes
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Lemma 3.1. There is an (non-canonical) isomorphism &, : f~1(2)rea = Xy, where
FH@)rea is the reduced subscheme underlying the fiber f=1(x).

Lemma 3.2. The scheme X, is isomorphic to the subscheme of (P1)9 = {([s; :
ti])icz gz} defined by the equations t;_15; =0 fori T and t;_1t; =0 fori € 7.

PROOF. A point in X, (k) is represented by a k-subspace M of My := My/pMy
such that F(M) c M, V(M) c M, and dim M =1 for each i € Z/gZ. Hence it
is a closed subscheme of (P1)9. Choose a basis {X;, Y;} for My [30, Proposition 4.2]
such that

FX, = X; ifi &7 Y, — pY;, ifidr;
Y +pe;X; ifier; pX; ifier

where ¢; are some elements of W (k) for ¢ € 7. (There should be no confusion on our
notation for the Frobenius map and the totally real field.) Let P = ([s; : t;]); be a
point in (P1)9(k) and write M p for the k-subspace of Mg generated by s;Y; +t; X;
for i € Z/gZ. We have

X, i ¢gT

F Si— }/i— +tz— Xi— =
(si-1¥ica 1Xi-1) {tflm icT.

From the closed condition FM p C M p we get the equations
(31) ti—18; =0 for ¢ ¢ T, and t;_1t; =0 for i € 7.

From the closed condition VM p C M p we get the same equations as above. This
finishes the computation. i

3.2. Examples. (1) If ¢ = 0, then X consists of two points: ([1:0],[1:0],...,[1:
0]) and ([0:1],[0:1],...,[0:1]).

(2)Ifa=(1,0,1,0,0), then X, is defined by the equations t4t¢, tos1, t1te, tass, t3sa.
There are four irreducible components:

P! x[0:1x[1:0x[1:0]x[1:0], [1:0]x[1:0]xP*x[0:1]x][0:1],
[1:0]xP' x[1:0]x P! x[0:1], [1:0]x P! x[1:0]x[1:0]xP

Notice that for maximally dimensional components, every P! is placed at a position
i where a; = 0.
(3)Ifa=(1,0,1,1,1,0), then X is defined by the equations tstg, tos1, t1ta, tats, tats, t4Ss.
There are one 3-dimensional component [1 : 0] x P! x [0: 1] x P! x [0 : 1] x P,
and four 2-dimensional components

P'x[0:1]x[1:0]xP"x[1:0]x[1:0], [1:0xP'x[1:0]x[1:0xP!x[0:1],
[1:0] x[1:0] x P x[1:0]x P x[0:1], [1:0] x[1:0] xP*x[1:0]x[L:0]xP.
Proposition 3.3.

(1) We have dim X, < |a|. Furthermore, dim X, = |a| if and only if a € A8,

(2) For a € A%, the scheme X, has w(a) irreducible components of dimension
[ap
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PrROOF. We may assume that |a| > 0, as the case a = 0 is treated in Example 3.2
(1). Since the defining equations are either s; = 0 or t; = 0, any irreducible
component of X, is of the form X = Hiez/gz X;, where

X;=[1:0], [0:1], or P

If i & 7, then we have t;_1s; = 0. This tells us that there are at least g — |a| zeros
for s; or t; in the components [s; : t;] fori € Tori—1¢& 7. So X; = P! for at most
|a| numbers of 4. This shows that dim X, < |a|.

If a ¢ A" then one can choose i such that i —1 €7, i€ Tandi+ 1€ 7. It
follows from the equation ¢;t;11 = 0 that there are at least g — |a|] + 1 zeros for s;
or t; in the components [s; : t;] for i € Z/gZ. Thus, dim X; < |a|. Suppose that
a € A% Put s; = 1 for all i € Z/gZ, then the defining equations become ¢;_1 = 0
for i & 7. Thus, dim X, = |a|. This proves the statement (1).

(2) Let @ € A" and X = [[;c7,,7 Xi be an irreducible component of X;. Write
7 ={n1,...,n,}. First notice that

i) If X;, = P! for some n; <ip < njy1, then X; = [0: 1] for ip < i < njq1,
and X; = [1:0] for n; <i <ip or iy <i=mnj41.
It follows that

(ii) There is at most one i € Z in each interval [nj,n;4+1] such that X; = P
(iii) If X; = P! for some i € 7, then dim X < |a|.

If dim X = |a|, then X;, = P! for one i; in each interval n; < i; < njy;. Con-
versely, choose i; in each interval n; < i; < nj;1. Then there is unique irreducible
component X such that X; = P! for each j; this follows from (i). There are
[I;(nj+1 —mn; —1) such choices. Thus, the scheme X has w(a) irreducible compo-
nents of dimension |a|. W

Theorem 2.1 follows from Lemma 3.1 and Proposition 3.3 (1).

3.3. Proof of Theorem 2.2. Part (1) follows from Lemma 3.1 and Proposi-
tion 3.3 (2). We prove the statement (2). We prove that irreducible components of
X give rise to well-defined closed subvariety in My ;) .- Notice two isomorphisms
between f~!(z);eq and X, are differed by an automorphism 3 of M, which sends
each factor of (P!)¢ to itself. If X = [[, X; is an irreducible component of X,
then 3(X); is equal to P! whenever X; = P!. By property (i) in the proof of
Proposition 3.3, we have showed that 3(X) = X. Therefore,

M = {y € Mryp)al€ro)(y) € X }

is a well-defined closed subvariety of Mr () o- One has Mr ) o = UxMx as a
union of components; any irreducible component of Mr () 4 is contained in Mx
for one X. The morphism f, : Mx — M, is proper and surjective with fibers
isomorphic to X. Thus, IIo(Mx) ~ Ij(M,) and dimn Mx = dim M, + dim X.
From this and Proposition 3.3 (2) the statement (2) then follows. B

3.4. Proof of Lemma 2.8. If [g¢| = j > 0, then w(a) is the number of ways
replacing a zero by 2 in a on each interval [nj,nj11]. In other words, 3°, _; w(a)
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is the number of ways of choosing 2j positions from Z/gZ and filling them with 1

2j

Zw(g)=2+22<29j> =29,

a€A 7>0

and 2 alternatively. This gives >, _; w(a) =2 (g) Thus

This completes the proof. N

4. SUPERSINGULAR CONTRIBUTION

Keep the notation and the assumption of p as before.

4.1. Let xop = Ay = (Ao, Ao, to,M0) be a superspecial (not necessarily separably)
polarized abelian O p-variety over k of dimension g with symplectic level-n structure
with respect to {,. Let M, = (Mo, (,),¢) be its covariant Dieudonné module with
additional structures. As M is superspecial, the alpha type a of M, has the form

(e1 +e2,2—(e1+ea),e1+ea, ...)

for some integers eq, es with 0 < e; < eg < 1; see [31, Section 2]. When g is odd,
it satisfies an additional condition e; + ez = 1. We say that M, is of superspecial
type (e1,e2) if its alpha type is as above.

Let G, denote the automorphism group scheme over Spec Z associated to (Ag, Ao, to)
; for any commutative ring R, its group of R-points is

Gao(R) = {0 € (Endo, (Ao) ® R)*;¢'¢ = 1},

where the map ¢ — ¢’ is the Rosati involution induced by Ag.
Let A, denote the set of isomorphism classes of polarized abelian O p-varieties
A= (A4, 1,n) with level-n structure (w.r.t. ¢,) over k such that (c.f. (2.4) of [33])
(i) the Dieudonné module M (A) is isomorphic to M(A,), compatible with
OF ® Zy-actions and quasi-polarizations, and
(ii) the Tate module T¢(A) is isomorphic to Ty(4,), compatible with Op ® Z-
actions and the Weil pairings, for all ¢ # p.
The condition (i) implies that A is superspecial and dim A = g. Let K,, be the
kernel of the reduction map G, (Z) — G4,(Z/nZ). There is a natural isomorphism

(41) Arg,n = Grg (@)\Gro (Af)/Kn;

see [30, Theorem 10.5] and [33, Theorem 2.1 and Subsection 4.6]. It is proved in
[33, Theorem 3.7 and Subsection 4.6] that

. —-119
(1.2 ol = [Go(@): 101 | 5| (-1
where
1 g is even and e; = eo,
(4.3) cp=4.p?+1 gisevenand e < ey,

p? —1 gisodd,

and (e1, ea) is the superspecial type of M.
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If Ty(4y) ~ (V ®Z,(,),t) (Subsection 2.2) for all £ # p, then it is easy to see
= [G(Z) : T'(n)]. In this case, the formula (4.2) becomes

-1

(1.4 Aol = (6@ T)] | G| o1

where ¢, is as above.

4.2. If g is odd, then it follows from [8, Theorem 5.4.11] that M, is supersingular
if and only if |a| = g, that is, M, consists of all superspecial points in M. By the
formula (4.4), we get the equation (2.3).

If g is even, then it follows from [8, Theorem 5.4.11] that M, is supersingular if
and only if ¢ < (1,0,...,1,0) or @ < (0,1,...,0,1). If |a| = g, then M, consists of
all superspecial points in M. By the formula (4.4), we get the equation (2.4). This
proves the statements (1) and (2) of Theorem 2.6.

4.3. Suppose g = 2k is even and |a| # ¢g. Put g5 := (1,0,...,1,0). We may
assume that ¢ < g, due to symmetry. Let M) be the moduli space over Fp
of g-dimensional separably polarized abelian O p-varieties with a symplectic level-
n structure with respect to (,. We may identify the moduli space M with an
irreducible component of M® by choosing an suitable element Ao € L*; see [33,
Proposition 4.1].

Choose any point A, in M, (k). Let M, be the covariant Dieudonné module
of Ay. Let N := (F,V)My, a Dieudonné O-submodule with the induced quasi-
polarization. Then there is a tuple B = (B, Ap,tp,np) and an Op-linear isogeny
¢ : B — A, of a p-power degree, compatible with additional structures, such that
M(B) =N C M,.

One easily computes that N has alpha type (0,2,...,0,2). Then one can find a
basis {X;,Y;} for N [30, Lemma 4.4] such that

FX;,=—pYiy1, FY,=pX;y1, ifiiseven,

(45) FX1 = —Yiy1, F}/z = Xi+1, if 7 is odd.

Let N_; := (F,V)~1N; it is spanned by elements
1 1 )
—Xoi, —Y2, Xoiy1, Yoi41, 1=0,--- k-1
p p

We have N_; /N 2 k*® 08 k*® - - k* ® 0 as O @z, k-modules. Let X be the space
of Dieudonné O-modules M such that

NCMCN_;, M/N2k®s0kd-- k0.

It is clear that X = (P1)k.
Let A denote the set of isomorphism classes of objects B’ = (B’, X', /,n’) (with
respect to () such that (cf. Subsection 4.1)
e the Dieudonné module M (B’) is isomorphic to M (B), compatible with
additional structures, and
e the Tate module T;(B') is isomorphic to T;(B), compatible with additional
structures, for all ¢ # p.

Proposition 4.1. There is an isomorphism pr : ngA X — ﬂ%,
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ProoF. We write the map set-theoretically first. For any member £ € A and
any point z € Xg(k) := X(k), we have M(B;) = N C M,. Then one gets a
point A, together with a polarized Op-linear isogeny ¢ : By — A, of p-power
degree such that M(A,) = M. Define pr(M,) := A,. Then one can show that it
gives a bijective map from [].., Xe(k) onto My, (k). To see this map comes from
a morphism of schemes, we need to construct a moduli space with a prescribed
isogeny type a priori, and show that this map agrees with the natural projection.
Since the construction is lengthy and is the same as [30, Lemma 9.1], we refer
the reader to loc. cit. and omit the details here. Finally using the tangent space
calculation, we prove that the morphism pr is étale and particularly separable; see
the computation in Lemma 9.2 of [30]. Thus the morphism pr is isomorphism and
the proof is complete. i

By the formula (4.4), we get
Lemma 4.2. [A| = [G(Z) : T(n)] [F]’ ¢r(—1).

Denote by My, ¢ the irreducible component corresponding to ¢ and write pr :
X — Mg, e Let Mz4¢ C My, ¢ be the closed subscheme consisting of points
with alpha type < a.

Lemma 4.3. The scheme M<gy ¢ is isomorphic to (P1)9~lal

ProOF. For a point P = ([z¢ : yol, [T2 : ya], -, [Tak—2 : yox_2]) € (P1(k))X, the
representing Dieudonné module is given by

21 1
Mp =N+ < JUQi];XQi + 2/211—?5/21 >i=0,- k—1s

where Tg;, y2; are any liftings of x2;,y2; in W, respectively.
We compute the defining equations for M<, ¢ on an affine open subset. Let
Voi = fzi%Xzi + %Yzi, then
Mp =< Xai, Vai, Xoi11, Yois1 >izo, k-1, and Mp T =< Xo; 11, Yoi1 >
One computes that

. . J— J— J— -1 —
((F,V)Mp)*™ ( mod pMF*") =< Xoip1 — 25,V 2141, —Xois1 +a8, Yo >

Therefore, ag;+1(Mp) =1 if and only if xgj = Toi10.
Let 7 = 7(a) C Z/gZ. We have showed that the subscheme M<q ¢ of Mg, ¢ =

(PY)% = {(29,--- ,72)} defined by the equations x?il = xj4 for all odd j € 7,
and thus it is isomorphic to (P)?~14/. This completes the proof. R

By Proposition 4.1 and Lemmas 4.2 and 4.3, the statement (3) of Theorem 2.6
is proved.

5. UNRAMIFIED SETTING

In this section we only assume that p is unramified in F.
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5.1. Let
0:=0r®Zy,, IJ:=Hom(O,W), A:={0, 1}J

be the same as in Section 2. Let P be the set of primes of O lying over p. For
v € P, let O, be the completion of Op at v, f, its residue degree, J,, := Hom(O,,, W)
and A, := {0,1}’*. One has

O:@'DGPO’LM va:g7

veEP

I=][9 % ~2%/f,Z andA=]]A,.
veP veP
An alpha type a = (a,) € A is called generic if every component a, is generic;
it is called supersingular if the associated alpha stratum M, is supersingular.
Let A& C A be the subset of generic alpha types, and A" C A#" the subset
of supersingular alpha types. The set A" is empty if and only if f, is odd for
some v.

Theorem 5.1. For any alpha type a, the set I1o(M,) is ¢-adic Hecke transitive.

This is essentially due to Goren and Oort (cf. [8, Corollary 4.2.4]). We pro-
vide suitable details to fit the present situation: p is unramified and the objects
(A, A\ t,m) that M parametrizes may not be principally polarized abelian Op-
varieties.

Proposition 5.2.
(1) Every alpha stratum M, is non-empty.
(2) Every alpha stratum M, is quasi-affine.
(3) The non-ordinary locus of M is proper.
(4) The Zariski closure Mg of each stratum Mg in M is smooth.
(5) The set My of superspecial points is {-adic Hecke transitive.

Proor. (1) It is easy to construct a superspecial point in M. Indeed, one con-
structs a separably polarized superspecial abelian O p-variety, then one chooses a
point within its prime-to-p isogeny class so that it lies in M. Then one constructs
a deformation of this point so that the generic point has the given alpha type a.
Such a construction is a local problem, and it reduces to inert cases. This proves
the statement (1)

(2) This is a global property; it does not follow directly from the result of inert
cases. One can slightly modify the proof in loc. cit to make it work. Alternatively,
consider the forgetful morphism b : M — Ay 4, ® F,, for some positive integer d
with (d,p) = 1. Then the image b(M,) is contained in an Ekedahl-Oort stratum
S, of Ay an®@F,. Since S, is quasi-affine [18], the image b(M,) is also quasi-affine.
Since the morphism b is finite, the stratum M, is quasi-affine.

(3) This follows from the semi-stable reduction theorem for abelian varieties due
to Grothendieck [9].

(4) This is a local property, and hence follows directly from the results of inert
cases.

(5) Let 2o = (Ao, Ao, to,M0) be a superspecial point in M. Define Ay, Ggy,
K, as in Subsection 4.1. Note that any point in M satisfies the conditions (i) and



HILBERT-BLUMENTHAL MODULI SPACES 13

(ii) in Subsection 4.1 (see [30, Lemma 4.3]). Therefore, we have A, , = My and
have the double coset description

(5.1) Mo = G (Q\Gay (Ag)/ K

as (4.1). By the strong approximation [21, Theorem 7.12, p. 427], the natural
map Gz (Qr) — Gz (Q)\Gay(Ar)/ K, is surjective. This shows that the ¢-adic
Hecke orbit H¢(A,) is equal to Mg, and hence that the action of (-adic Hecke
correspondences on the set My is transitive. 0

5.2. Proof of Theorem 5.1. Using (1), (2) and (3) of Proposition 5.2, one shows
that the closure of any irreducible component W of M, contains a point in M.
By Proposition 5.2 (4), any point in My is contained in W for a unique irreducible
component W of M,. This shows that there is a surjective ¢-adic Hecke equivalent
map

7 MQ — HQ(MQ) = Ho(./\/lg).
By Proposition 5.2 (5), the set IIj(M,) is ¢-adic Hecke transitive. B
An immediate consequence of Theorems 2.3 and 5.1 is the following
Corollary 5.3. Any non-supersingular stratum M, is irreducible.
5.3. Let a = (a,), € A be a supersingular alpha type. If f, is odd, then |a,| = f,.
If f, is even, then either g, < (1,0,...,1,0) or a, = (0,1,...,0,1). Define
Py :={velP|f,isodd}
Py(a) := {v € P| f, is even and |a,| = f, }
P3(a) ;== {v € P| f, is even and |a,| < fu }

Theorem 5.4. Let a € A be a supersingular alpha type. Then any irreducible
component of M, is isomorphic to (P1)971al and

119
(.2 o) = [6(@): )] | 5| e T e
veP
where
plv—1 ifvePy;
(5.3) ey = pl+1 ifvePy(a);
1 if v e Ps(a).

PrOOF. Define g = (a9,)» € A by

(1,0,...,1,0) if v € P3(a);
Qg = .
’ otherwise.

We may assume that a < a,, due to symmetry. Choose any point 4; in Mg, (k).
Let M be the covariant Dieudonné module of A4,. Define N = &N, C My = @My,
the Dieudonné O-submodule with the induced quasi-polarization by
N {(F, V)Mo, if v e Ps(a);

v T

Mo, otherwise.

Then there is a tuple B = (B, Ap,tp,np) and an Op-linear isogeny ¢ : B — A,
of p-power degree, compatible with additional structures, such that M (B) = N C
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My. Let X = Hvepg(g) X,, where X, is defined as X in Subsection 4.3. One has
X, ~ (P')f*/2. Define the set A for B as in Subsection 4.3. By Proposition 4.1 we
have an isomorphism [[cc, X ~ M, . Let £ € A and Mg, ¢ =~ (P)971%] be the
corresponding component. By Lemma 4.3, we show that ﬂgﬁ ﬂgwg o~ (Pl)g_‘ﬂ‘.
Therefore, we have

(5.4) My(My) =~ Tp(Myg, ) ~ A.

The alpha type of the factor N, is (0,2,...,0,2) if v € P3(a) and (1,1,...)
otherwise. Hence N, has superspecial type (e1,e2) = (0,0) if v € P3(a) and
(e1,e2) = (0,1) otherwise (Subsection 4.1). By the mass formula [33, Theorem
3.7 and Subsection 4.6] (cf. (4.4)), we get

A= (6@ st | 5| a0 [Len

veP
where ¢, is as above. This completes the proof. |l

5.4. Define the function w’ : A — R by
(5.5) w'(a) = {[G(Z) ()] []7Cr(=1) if a € AK™

where w(a,) is the function as in (2.1). It is clear that w'(a) # 0 if and only if
a € Ag". Tt is rather unclear but indeed a fact that w'(a) € Z>¢ (by (5.7)).

[T,ep wia,) otherwise,

Theorem 5.5. Notation as above. We have

(5.6) o (Mry@)l = Y w'(a),

EEAgen

PROOF. Suppose that g is a non-supersingular generic alpha type. It follows from
local computation in Section 3 and Corollary 5.3 that Mrp, ) , has w'(a) irreducible
components of dimension g.

Suppose that a is a supersingular generic alpha type. Every fiber of the map
fa has one irreducible component of dimension |a| (Section 3). Thus, Mp, (). has
[IIp(M,)] irreducible components of dimension g. It follows from Theorem 5.4 that

(5.7) o (Mry(p),a)| = [Ho(Ma)| = w'(a).
This completes the proof. R

We can rephrase Theorem 5.5 by an elementary combinatorial result (Lemma 2.8)
as follows

Theorem 5.6. We have
(5.8) Mo(Mpyp) =27+ > (w'(a) - 1),

ac A"
Remark 5.7.

(1) The connection of supersingular strata with class numbers and special zeta
values becomes a standard fact now. If the moduli space Mr(,) contains supersin-
gular irreducible components, then it is expect that the special zeta value (z(—1)
occurs in the formula for [TIo(Mp,(,))|. However, the number of irreducible com-
ponents of a supersingular stratum is also related to p in general. It is indeed
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unexpected that the number of supersingular irreducible components of Mr ()
turns out to be independent of p. As a result, the number [ITo(Mrp, )| of irre-
ducible components is independent of p. We do not know any direct proof of this
fact without knowing the explicit formula (5.8).

(2) The p-adic invariant stratification used in this paper is nothing but the
Ekedahl-Oort stratification (see [18] and [8]). It is natural to consider this p-adic
invariant stratification for studying moduli spaces with parahoric level structure.
Indeed a parahoric level structure on an object A with a prescribed PEL-structure
is a flag of finite flat subgroup schemes of A[p] that satisfy certain conditions. This
structure only depends on the isomorphism class of A[p], but not on A. Therefore,
built on the framework of Moonen [13, 14] and Wedhorn [29], we can go a bit
further on the irreducibility problem for a PEL-type moduli space Mg, with level
structure of type K, in the case where the defining group Gg, is unramified and
K, C G(Qp) is a parahoric subgroup. Thanks to the works loc. cit., we have a
group theoretic description of the set EO(G, 1) of Ekedahl-Oort types, and the
dimension of any Ekedahl-Oort stratum.

It may not be a very good strategy to analyze p-adic invariants in Mg, through
the forgetful morphism f : Mg, — M, where M is the smooth moduli space with
minimal level at p. The Hilbert-Blumenthal cases are a few cases that this method
can be worked out explicitly. Nevertheless, it is still interesting to know the subset
EO(G, u, K;,) C EO(G, i) consisting of elements ¢ such that f~'(S,) contains a
maximal point of M, where S, is the Ekedahl-Oort stratum in M associated to
. And whether there is a group-theoretic meaning of this subset EO(G, u, K).

(3) The irreducibility problem for the moduli spaces Mg, with parahoric level
structure is, as suggested by this work, related to the same problem for Ekedahl-
Oort strata in M, which is of interest in its own right. It seems plausible to expect
that in any irreducible component of M, (i) any non-basic Ekedahl-Oort stratum is
irreducible, and (ii) the number of irreducible components of a basic Ekedahl-Oort
stratum is a single class number.

For Siegel moduli spaces, the statement (i) is confirmed in Ekedahl and van der
Geer [6], and the statement (ii) is confirmed in Harashita [10].

For Hilbert-Blumenthal moduli spaces, the statement (i) is essentially due to
Goren and Oort [8] and Chai [4] (Corollary 5.3), and the statement (ii) is confirmed
by Theorem 5.4 (5.4).

6. (-ADIC MONODROMY OF HECKE INVARIANT SUBVARIETIES

The goal of this section is to provide a proof of a theorem of Chai on Hecke
invariant subvarieties for Hilbert-Blumenthal moduli spaces on which Theorem 5.6
relies. We follow the proof in Chai [4] where the Siegel case is proved. There is no
novelty on the proof here and this is purely expository; the author is responsible
for any inaccuracies and mistakes. We write this as an independent section; some
setup and notation may be repeated and slightly modified.

6.1. Let F be a totally real number field of degree g and O be the ring of
integers in F. Let V be a 2-dimensional vector space over F and ¢ : V x V — Q
be a Q-bilinear non-degenerate alternating form such that ¥ (ax,y) = ¥ (x, ay) for



16 CHIA-FU YU

all z,y € V and a € F. Let p be a fixed rational prime, not necessarily unramified
in F. We choose and fix an Op-lattice Vz C V so that Vz ® Z,, is self-dual with
respect to 1. We choose a projective system of primitive prime-to-p-th roots of unity
¢ = (Cm)(m,p)=1 C Q C C. We also fix an embedding Q — Q. For any prime-to-p
integer m > 1 and any connected Z,)[(n]-scheme S, the choice ¢ determines an
isomorphism ¢, : Z/mZ = fim (S), or equivalently, a 71 (S, §)-invariant (1+mZP))*
orbit of isomorphisms C,, : Z®) — Z®)(1)g, where Z®) = iz Zy and 5 is a
geometric point of S.

Let G be the automorphism group scheme over Z associated to the pair (Vz,);
for any commutative ring R, the group of R-valued points is

(6.1) G(R) :={g € GLo,(Vz®z R); ¥(g9(z),9(y)) = ¥(x,y), Yo,y € Vz Rz R}.

Let n > 3 be a prime-to-p positive integer and ¢ be a prime with (¢,pn) = 1
and (¢,disc(v)) = 1, where disc(¢) is the discriminant of ¢ on Vz. Let m > 0 be
a non-negative integer. Let U,sm be the kernel of the reduction map G(Z(p)) —
G(Z®) /™ 7®)); this is an open compact subgroup of G(Z®)).

Let D = (F,V, 4, Vz, () be alist of data as above. Denote by Mp p¢m the moduli
space over Z) [(nem] that parametrizes equivalence classes of objects (A, A, ¢, [1])s
over a connected locally Noetherian Z,)[(,¢m]-scheme S, where

e (A, \) is a p-principally polarlzed abelian scheme over S of relative dimen-
sion g,
t : O — Endg(A) is a ring monomorphism such that A o c(a) = ¢(a)t o A
for all @ € Op, and

e [1] is a w1 (S, §)-invariant U, ¢m-orbit of Op-linear isomorphisms

(6.2) n: Ve Z® S TP (A = [] T
p'#p
such that

(6:3)  ex(n(@),n(y)) = Guem ($(,y)) (mod (1+mZP)*), Va,y e Vzo LW,

where ey is the Weil pairing induced by the polarization A and 5 is a geo-
metric point of S.

We write [1]u,, . for [] in order to specify the level. Let Mpm := Mp om @F,
be the reduction modulo p of the moduli scheme Mp ,m. We have a natural
morphism 7y, ms : M, pm: — Maypem, for m < m/, which sends (A4, A, ¢,[n]u  ,) to

nem’
(A, N o, m)- Let My, := (Mypem)m>0 be the tower of this projective system.

Let (X, A, t,7) — M,, be the universal family. The cover M,,ym over M,, repre-
sents the étale sheaf

(6.4) P = Lsom g, (V2 /0™ Vz,9), (X[€™], ex) 5 Com)

of Op-linear symplectic level-¢™ structures with respect to (ym. Thisis a G(Z/¢(™Z)-
torsor. Let T be a geometric point in M,. Choose an Op-linear isomorphism
y:V®Zy ~ Ty(X;) that is compatible with the polarizations with respect to (.
This amounts to choose a geometric point in M,, over the point . The action

of the geometric fundamental group m1(M,,,Z) on the system of fibers (Xz[¢™])m,
gives rise to the monodromy representation

(65) PMy, £+ T1 (M nHy ) - AutOF (TZ(Xf)a 6)\)
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and to the monodromy representation (using the same notation), through the choice
of y,

(6.6) Pt : T (M, ) — G(Zo).
Lemma 6.1. The map pm,, ¢ @S surjective.

PrROOF. It is well-known that Mp ,em(C) ~ T'(n™)\G(R)/SO(2,R)?, where
D(nd™) := ker G(Z) — G(Z/nl™Z). Tt follows that the geometric generic fiber
Mp pem @ Q is connected. It follows from the arithmetic toroidal compactifica-
tion constructed in Rapoport [23] that the geometric special fiber M m is also

connected. The connectedness of M,, confirms the surjectivity of paq,.e. B

6.2. The action of G(Z;) on M, extends uniquely a continuous action of G(Qy).
Descending from Mvn to M., elements of G(Qy) induce algebraic correspondences
on M,,, known as the ¢-adic Hecke correspondences on M,,. More precisely, to each
g € G(Qq) we associate an f-adic Hecke correspondence (Hg, pry, pry) as follows.
Extending isomorphisms 7 to isomorphisms

0V e A(fp) —y® (A) == T(p)(A) ® Agcp)’

we see the class [n]y, gives rise to a class []y, in Isom(V ® A;p), V) (A))/U,
and [n]y, is determined by [7']y,. The right translation pg : (A, A, ¢, [ ]u,) —
(A, N 0, [ glg-10,,4) gives rise an isomorphism py : M, ~ My-1y, 4. Let Uy, 4 :=
Un,Ng~'U,g and H, be the étale cover of M., corresponding to the subgroup U, 4 C
U,. Let pry be the natural projection H, — M, and pry := pg_1 opr: Hy — M,
be the composition of the isomorphism p;l with the natural projection pr: H, —
Mg-1y, 4 This defines an f-adic Hecke correspondence (Hgy, pry,pry). For two /-
adic Hecke correspondences Hgy, = (Hg,,p11,p12) and Hg, = (Hg,, P21, P22), one
defines the composition Hg, o Hy, by

(ng © Hgl 7p17p2)7
where Hg, 0 Hgy 1= Mg, Xpra. Mo .pa1 Has P1 18 the composition Hy, o H,, — Hyy 23
M, and ps is the composition Hy, o Hy, — Hy, 22 M,. A correspondence
(H,pry, pry) generated by correspondences of the form H, is also called an ¢-adic
Hecke correspondence.

A subset Z of M,, is called (-adic Hecke invariant if pry(pry*(Z)) C Z for
any (-adic Hecke correspondence (H,pr,pry). If Z is an f-adic Hecke invariant,
locally closed subvariety of M,,, then the ¢-adic Hecke correspondences induce
correspondences on the set I (Z) of geometrically irreducible components. We say
that Ty(Z) is £-adic Hecke transitive if the ¢-adic Hecke correspondences operate
transitively on IIp(Z), that is, for any two maximal points 71,72 of Z there is an
¢-Hecke Hecke correspondence (H,pry, pry) so that 72 € pry(pry*(n1)). Let k be
an algebraically closed field of characteristic p. For a geometric point z € M, (k),
denote by He(z) the ¢-adic Hecke orbit of x; this is the set of points generated by
{-adic correspondences starting from x.

Lemma 6.2.
(1) For any point x € My (k), the corresponding abelian variety A, is supersin-
gular if and only if the £-adic Hecke orbit He(x) of x is finite.
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(2) Any closed L-adic Hecke invariant subscheme Z of M,, contains a supersin-
gular point.

PRrROOF. (1) This is Lemma 7 in Chai [3]. (2) This is Proposition 6 in Chai [3].
6.3. Put Gy := G ® Q (Subsection 6.1). One has

Gz = HG)\, G)\ = ReSFx/Qe SL27F)\ .
Ale

Let pry : G¢ — Gy be the projection map. Let Z be a smooth locally closed
subscheme of M,, that is f-adic Hecke invariant. Let Z° be a connected component
of Z, and 1 be the generic point of Z°. Let

pzog: Wl(ZO,ﬁ) — G(Z)

be the associated f-adic monodromy representation, and pzo y := pry o pzo ¢ be its
projection at .

Lemma 6.3.

(1) If the image Im pzo 5 is finite for one A|(, then the image Im pzo y is finite
for all \|¢.

(2) The abelian variety A,, is not supersingular if and only if the image Im p zo
is infinite for all \|¢.

PROOF. (1) Let Z§ be a scheme over F, such that Z° = Z§ ®F,, and let 19 be the
generic point of ZJ. Replacing by a finite surjective cover of Z{ (thus of Z°), we
may assume that End’(A4;) = End’(4,,) := End(4,,) ® Q and that Im po 5 = 1
whenever it is finite. Write the Tate module V¢(Aj;) =[], Vi into the decompo-
sition with respect to the action of F, and let py : Gal(k(7o)/k(no)) — Aut(Vy) be
associated A-adic Galois representation. Let Ey be the F)-subalgebra of Endg, (Vi)
generated by the image px(Gal(k(7jp)/k(no)). By a theorem of Zarhin on endomor-
phisms of abelian varieties over function fields [34], the subalgebra E is semi-simple
and the endomorphism algebra End%(A) @ F is isomorphic to the commutant of
Ey in Endp, (V). If Im pzo , = 1 for some A, then py factors through the quotient
Gal(F,/F,), and thus F) is commutative. In this case, dimp, End%(A) ® Fy is
2 or 4, and the same that dimp End%(A) is 2 or 4. This shows that the abelian
variety Ay, is of CM-type. By a theorem of Grothendieck on CM abelian varieties
in characteristic p ([15, p. 220] and [17, Theorem 1.1]), A,,, is isogenous to, over a
finite extension of k(1g), an abelian variety that is defined over a finite field. This
shows the image Im pzo , is finite. Therefore, Im pzo y is finite for all A|(.

(2) It is proved in [4, Corollary 3.5] that A, is not supersingular if and only if
the image Im pzo ; is infinite. The statement then follows from (1). B

Lemma 6.4. Let H be a connected normal subgroup of an algebraic group G1 X
-+ X G, over a field of characteristic zero, where G; is a connected simple algebraic
group. Then H is of the form Hy x --- x H, with H; is {1} or G;.

PROOF. See Section 9.4 in [27]. B

Lemma 6.5. Notation as in Subsection 6.3, if the abelian variety A, is not super-
singular, then the image Im pzo ¢ is an open subgroup of G(Zj).
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PRrROOF. Replacing Z by the orbit of the component Z° under all ¢-adic Hecke
correspondences, we may assume that the set mo(Z) of connected components is
¢-adic Hecke transitive. Put M := Impzo, and let H be the neutral component
of the algebraic envelope of M. It is proved in [4, Proposition 4.1] that M is open
in H(Qy) and H is a connected normal subgroup of Gy. By Lemma 6.4, the group
H has the form [[,,, Hx with Hx = {1} or G\. Since A, is not supersingular, it
follows from Lemma 6.3 that H = G. This completes the proof. N

Lemma 6.6. Let G be a connected simply-connected semi-simple algebraic group
over a local field K such that each simple factor of G is K-isotropic. Then G(K)
has no proper subgroup of finite index.

PRrROOF. This follows immediately from the affirmative solution to the Kneser-Tits
problem for K proved by Platonov for characteristic zero cases and by Prasad and
Raghunathan for arbitrary characteristic cases (see [20] and [22]).

Theorem 6.7 (Chai). Let Z be an ¢-adic Hecke invariant, smooth locally closed
subscheme of M,. Let 71 be a geometric generic point of an irreducible compo-
nent Z° of Z. Suppose that the abelian variety Ay corresponding to the point 7j is
not supersingular, and that the set mo(Z) of connected components is (-adic Hecke
transitive. Then the monodromy representation

pPzog: Wl(ZO,ﬁ) — G(Z)

is surjective and Z is irreducible.

PrROOF. Let Z° and Z be the preimage in Mvn of the subschemes Z° and Z,
respectively, under the morphism 7 : Mvn — M,,. Let Y be a connected component
of Z° and M be the image Im p 700 The group Aut(Y/Z") of deck transformations
is equal to M. Since the group G(Z,) acts transitively on the fiber 7= 1(z) for
any x € Z and G(Qy) acts transitively on the set mo(Z), the group G(Qy) acts

transitively on the set mo(Z). This gives a homeomorphism (see [4, Lemma 2.8])

Q\G(QE) :> WO(Z)a g g[Y]7

where @ is the stabilizer of the class [Y] (in mo(Z)). Clearly @ N G(Z¢) = M and
we have M\G(Z;) ~ m(Z°). It follows from Lemma 6.5 that m(Z%) = M\G(Z,)

is finite. Write Z = [[;_, Z; as a disjoint union of connected components. Since
G(Qy) acts transitively on 7o(Z) and mo(Z?) is finite, each my(Z;) is finite. We have
#10(Z) < 00 = #Q\G(Q) < 0 = Q = G(Qy) (Lemma 6.6) = M = G(Zy).
This shows the connectedness of Z and hence that of Z. This completes the proof.

|
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