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Zariski pairs of index 19
and
the Mordell-Weil groups of extremal elliptic K3 surfaces

Enrique ARTAL BARTOLO! and Hiro-o TOKUNAGA

Introduction

Let ¢ : £ — P! be a semi-stable elliptic K3 surface with a section so; ¢ is called
“ertremal” if @ has exactly 6 singular fibers /,,...,J5. In their paper [MP2], Miranda and
Persson give a complete list for the configurations of I, fibers for semi-stable elliptic K3
surfaces; and show that there are 112 extremal cases. In [MP3], they go on to study the
Mordell-Weil group, MW (&), for the 112 cases, and show that MW (&) is determined
by the configurations of I, fibers, namely, a six-tuple [n, ..., ng} for 95 of the 112 cases.
There remain 17 cases with potential ambiguity. Miranda and Persson give all possible
cases for MW (&), but they do not give any single example of two extremal semi-stable
K3 surfaces, £ and &,, such that

(i} they have the same numerical data for the six-tuple [nq, ..., ng], and

(il) MW(E)) & MW (&,).

Our first purpose of this note is to give two such examples of £, and £;. We construct
&1 and &, in a rather classical way, namely, a method of double sextics. Consider sextics
B and B, as below, and we shall construct £ and &, as double coverings of P? branched
along By and By, respectively.

Example 1. :

(i) B; = c 4 C;Ei), (i,7 = 1,2) where C'J(i) are nodal cubics; Cgi) and C$) meet at
only one point p;, and

(i1) p1 is an inflection point for both Cf” and 0.51’: while py is neither inflection point
of C{z) nor Céz).

Example 2.

(i) B; = Cfi) + Ogi) + C;Si), (i =1,2, 5 = 1,2,3) where C;i) are curves of degree j
(C’;(f) are nodal cubics and C’éi) are smooth conics). Let p} be the nodal points. Then
we have:
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- ¢ and C$? meet at only one point Dby # Dy

- ¢ and C'Ei) meet at only one point pt, # pi;

- CE“ and C:(,i) meet transversally at two points.

It is clear that:

- These points are ordinary double points of B;,

~ phy are not inflection points of C{” and

- p!, are inflection points of Céi).

(i1} Let L; be the tangent line of cl? at Phy. It is easy to see from the group structure

of C{Y \ {pi} that the other intersection point ¢4 of L; and C{” is also an inflection point.
Then B is determined by ¢j = pi; and By is determined by ¢3 # p3,.

We shall show that these two pairs of sextics do exist in §1. Let f/ : & — P?
(i = 1, 2) be double coverings branched along B; (i = 1,2), respectively.

Let u; : & — & (1 = 1,2) be the canonical resolutions of £/ (i = 1,2). We have a
commutative diagram as follows:

o
fil 1 fi
P2 & %,

where ¢; is a succession of blowing-ups such that the induced double covering f; is finite.
Then we have the following:

Theorem 0.1a. For Example 1, both &, and &, are K3 surfaces with extremal
elliptic fibrations, @; : & — P! (i = 1,2) such that

(i) both @, and ¢, have singular fibers, Ig, I, 41, and

(if) MW (&) & Z2/3Z; MW (&) =2 {0}.

Theorem 0.1b. For Example 2, both & and &, are K3 surfaces with extremal
elliptic fibrations, ¢; : & = P' (i = 1,2) such that

(i) both ¢, and ¢, have singular fibers, 1o, Is, 21,, 21, and

(ii) MW (&) =2 Z/6Z; MW (&) = Z/2Z.

Our second purpose is to consider a geometric application of Theorems 0.1a and b.
In fact, we shall apply them to construct Galois coverings branched along B, and B, as
follows:



Theorem 0.2. Let (B,, B,) be a pair of sextics in either Example 1 or Example 2.
Let £ and & be elliptic K3 surfaces as above. Then there exists a Galois covering of
P? branched along B; with the third symmerric group as its Galois group, if and only
if MW (&;) has a 3-torsion element.

An immediate consequence of Theorem 0.2 is

Corollary 0.3.
7 (P*\ By) # m(P*\ By)

Corollary 0.3 also follows from computation of the Alexander polynomial of B;,
(i =1,2) as follows:

Theorem 0.4. Let A; be the Alexander polynomial of By, i = 1,2. Then, both in
Example 1 and in Example 2, A, =t* +t? + 1 and A, = 1.

Note that in both examples, the pair (B,, B;) has the same combinatorics. Hence
Theorem 0.3 shows that the pair (B, By) is a Zariski pair for each case (see [A] for
definition of a Zariski pair).

For a sextic, C, with only simple singularities, we define the index i(C), of C to be
the sum of all the subindices of all its singularities =, (v, € {a,d,e}) (See [P]). It is
known that 0 < #(C) < 19; and we call a sextic maximizing if (C) = 19.

In Example 1 both of B; (¢ = 1,2) have the set of singularities 2a; + ¢y7; in Example
2. both of B; (i = 1,2} have the set of singularities 3a, + a5 + a;;,. Hence each pair of
our examples is a Zariski pair of index 19, i.e., a Zariski pair for maximizing sextics.
In [A], [D], [T2], [T3] and [Z], we can find some examples for Zariski pairs, but there is
no example of a Zariski pair for maximizing sextics. Hence our examples are essentially”
new. It is, however, still unknown whether a Zariski pair for irreducible maximizing
sextics exists or not. It will be interesting to find such a example.

Remark. Corollary 0.3 also follows from direct computations for 7, (P*\ B;) (i =
1,2) in the case of Example 1. In fact, the first author tignres out that = (P \ B,) is
isomorphic to Z*Z/3Z (* means free product) while 7, (P\ B,) is isomorphic to Zx Z/3Z
(Their computations are not easy, though). In this article, however, we pay an attention
to give a geometric application of the Mordell-Weil group of an elliptic surface, which
has been an arithmetic object so far. This mnakes our result more interesting.
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Notations and Conventions.

Throughout this article, the ground field will always be the complex number field
C.
C(X) := the rational function field of X.
Let X be a normal variety, and let ¥ be a smooth variety. Let 7 : X — Y be a finite
morphism from X to Y. We define the branch locus, A(X/Y), of f as follows:

A(X/Y) = {y € Y]i(r™\()) < degr}.

An 83 covering always means a Galois covering having the third symmetric group,
Ss, as it Galois group.

Let 7 : X = Y be an 83 covering of Y. Morphisms, 8 and f,, and the variety
D(X/Y) always mean those defined in §3.

Let S be a finite double covering of a smooth projective surface . The “canonical
resolution” of S always means the resolution given by Horikawa in [H].

For singular fibers of an elliptic surface, we use the notation of Kodaira {K].

For a singular fiber of type I, we shall label its irreducible components in the same
way as in (K|, p. 566. Namely, letting F* denote a singular fiber of type I, over a point,
we have

F=@0+@1+"'+@b_1,

where ©;0, = ©,80; = - = 0,19 = 1. In particular, ©; denotes the irreducible
component of F' meeting sp, where sy is a fixed section of the elliptic surface.

For the configuration of singular fibers, we shall use the same notations as those in
[M-P2].

Let Dy, Dy be divisors.

D ~ Das: linear equivalence of divisors.

Dy = D,: algebraic equivalence of divisors.

D ~Q D,: Q-algebraic equivalence of divisors.

For singularities of a plane curve, we shall use the same notation as in [P].



§1 Preliminaries
1. Two sextics B, and Bs
We shall give explicit examples for the pairs of B, and B; in Introduction.

Example 1. We shall start with B;.

B,: Consider a pencil of cubics generated by a nodal cubic and a triple line which
is tangent at an inflection point of the given nodal cubic. The general element of this
pencil is a smooth cubic and two generic elements intersect at a cominon inflection point
pr with intersection number 9. We have exactly two nodal cubics Cfl) and Cgl) in such
a pencil. We give explicit equations as follows:

eV Z(XP+vH) + X =0,

and 57
0 —?{Z(X2 +¥YH 4+ X%+ 728 =0.

Here [\ : Y : Z] denotes a homogeneous coordinate of P*. Consider sextic curve defined
by the equation

. 27 s . » .
(205 + V) 4+ X { =2+ + X%+ 2] =0

Then we can easily check that this sextic gives an example for B;.

By: Let C] and Cj be cubics defined by the equations as follows:
Cl Y(XZ-YH-X*"=0,

and
Cy:Z(XZ-Y?*)— XY =0.
Consider a pencil of cubics A = {AC] +’\1Cé}[\n;,\1]eP' . The general element is a smooth

cubic and two generic elements intersect at oune point p; = [0 : 0 : 1] with intersection
number 9; p, is not an inflection point for any cubic in the pencil. Besides C}, there are
exactly three nodal cubics in the pencil, for [Ny : A\ = [1: 3],{1: 3u],[1: 3u~"], where
w = exp(2m/—1/3).

Then, take two clements, C’f” and ng): of A as follows:

CH L Y(XZ - YY)~ X4 3{Z(XZ - YH) - X*Y) =0,



and

C® Y(XZ-YH) - X +3{Z(XZ -V?) - X2V} =0,
Then, straightforward calculation shows that (i) C’fzj (resp. C.g?)) has anode at [1: 2 : 5]
(resp. [u? : 2 : 5py]), and neither C{Q) nor C.f)z) has an inflection point at po. Moreover,

as A has only one base point ps, po is the only intersection point of C’§2) and 052’. Now

consider a sextic defined by the equation
{Y(xz-v%)-x* + 3{2(XZ-Y?) - X"V}}
x {V(XZ-Y?) - X +30{Z(XZ - V") - X*V}} =0

Then, this sextic gives an example for B,.

Example 2. We can take curves with equations below:

cW=c.z=0 cP=c V'Z-X¥X+2)=0,

CV Y+ (X +Z) (X +2)=0

and
C® 43X — v2 — 6422 + 6V —3XY — 48X Z — 48/ —3YZ = 0.

Note that p2, is [-4: —4y/=3: 1].

2. Elliptic fibrations on & (i1 =1,2)

Let £; and &; be K3 surfaces defined in Introduction. We shall show that &; (i = 1, 2)
have elliptic fibrations described in Theorems 0.1a and 0.1b.
We shall start with Example 1. Let B; and B be the sextics in Example 1. Choose
a node, ¢;, on Cl(‘). Then, for each g;, lines through ¢; induce an elliptic fibration on &;.
Following to Persson [P], we call these fibrations the standard fibrations centered at g;
(4 =1,2), and denote them by ¢; : & — P! (i = 1.2). Note that ; has a section, S(()‘),
. (i)
determined by C|".

Lemma 1.1. Let [, be the line joining p; and ¢;. Then l,, meets B; at two
distinct point other than p; and g;.

Proof. Suppose that 1, is tangent to B; at a smooth point or passes through the
other node. In the former case, ¢; has singular fibers, [,y and I,; this is impossible by
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[S1], Theorem 1.1 and rankNS(&;) < 20. In the latter, ¢o; has a singular fiber, Iyg; this
is also unpossible by the same reasons as the former. :

Corollary 1.2. For each 1, @; has singular fibers, I1g and I5.

Proposition 1.3. The singular fibers of ; (i = 1,2} are g, I3, 41;.

Proof. It is enough to show that ¢; has no siingular fiber of type 77, but this does
not occur by Proposition 3.4 in [MP1].

Remark 1.4. For ¢,, Persson proved Proposition 1.3 in [P].

We shall next consider & (i = 1,2) for Example 2. Choose the node C;Si), and
consider the standard fibration centered at the node.

Lemma 1.5. Let [,;,: be the line joining py and pby. Then Lyipi, does not pass
through C{i) N Céi).

Proof. Suppose that 1 passes through Cl(i) OC._Ei). Then ¢; has singular fibers 734,
Ig, and [; this is again impossible by the same reason as in Proof of LLemma 1.1.

Thus the configuration of the singular fibers of ¢; is either 1)y, Ig, 215, 21, or 11, I,
2[5, II, but the latter case does not occur by Proposition 3.4 in {MP1].

§2 Proof of Theorems 0.1a and 0.1b.

Let @; : & — P! (i = 1,2) be the elliptic fibration as in §1. We shall denote the
Mordell-Weil group for ; : & — P' by M1/ (E;). We shall first prove Theorem 0.1b.

In [MP3), Miranda and Persson shows that AW (&) = Z/3Z. Hence it is enough to
prove the following:

Lemma 2.1. MW (&) = {0}.

Proof. Suppose that MW (E,) % {0}. Then, by Proposition 1.3 and Lemma 3 in
IMP3], MW(&) = Z/3Z. Let s be a 3-torsion section in MW (&,;). Let (,) denote
Shioda’s pairing in [S2]. Then we have (s,s) = 0 by [S2]. Hence, by the formula (2.5)
in [M3] and Theorem 1.3 {S2], we may assume that s hits ©4 ai the I3 fiber and 4 at.
the I, fiber. Then, by looking into the canonical resolution, we can show that fJus(s)
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is an inflectional tangent line at p, for both C{Q) and ng). This contradicts to our
assumption.

Next, we shall prove Theorem 0.1b. Let & and &, be the elliptic K3 surfaces for
the sextics in Example 2. Both of them have singular fibers I}, and Is; and we shall
label irreducible components of them @fm) and @EG), ¢ being the labeling introduced in
Notations and Convention.

Lemma 2.2. MW(&,) has a 3-torsion.

Proof. The tangent line at pj, gives rise to two sections s¥ and s7; s is transformed
to s~ by the covering transformation. By our construction, we may assume that st
meets (:)ﬂm) at the [y, fiber, @gs) at the g fiber, and ©y at other singular fibers (we
take the opposite orientation of the labeling for the irreducible component if necessary).
Then we have (s, s) = 0 by Theorem 8.6, [S2]. Hence, by Lemma 8.2 and Theorem 8.4
in [S2], this implies

2 4 , 1 tl
st omg s 2F -2 el - 2y (12— el
i=1 = i=5
2 ¢ (6) 1 (6)
—3 210"+ 33 (6-10)6;
i=1 i=4

Hence, by Theorem 1.3 [S2], s* is a 3-torsion.

Lemma 2.3. MW (&) has no 3-torsion.

Proof. Suppose that MW(&;) has a 3-torsion, and let s denote the 3-torsion section.
Then, by the formula (2.5) in [M3], the equality (s,s) = 0, and Theorem 1.3 [S2], we"
can deduce that s meets ©'? at the I, fiber and O at the I; fiber. Then fiua(s) is
a tangent line at pl,; and it passes through p?,. This contradicts to our choice for p?,.
Hence MW (£,) has no 3-torsion.

By [MP2] Proposition 4.4, both of MW (&;) (i = 1,2) have a 2-torsion. Hence we
have Theorem 0.1b.

§3 S3 coverings



In this section, we shall give a brief summary on Sy cov (‘I'lIl&,H For details, see [T1].
Ve shall start with the definition of an &3 covering.

Definition 3.1. Let Y be a smooth projective variety. 4 normal variety, X, with a
finite morphism 7™ : X' — Y is called an 83 covering of Y if the rational function field,
C(X), of X is a Galois extension of C(Y") having the third symmetric group, as its
Galois group.

Let S3 = (o, 7j0” =73 = (67)? = 1), Let C(X)" be the invariant subfield of C(X)
by 7. As C(X)" is a quadratic extension of C(Y'), the C{X ) -normalization of ¥ is a
double covering. We denote it by D(X/Y") and its covering morphism by £;. Also, X
is a cyclic triple covering of D(X/Y), and 8, denotes the covering morphism from X to
D(X/Y). By their definition, # = 3; o ;. With these notations, we have the following
proposition:

Proposition 3.2. Let f : Z — Y be a smooth finite double covering of a smooth
projective variety Y. Let o be the involution determined by the covering transformation
of f. Let Dy, Dy, and D3 be effective divisors on Z. Suppose that

(a) Dy is reduced and non-empty; D\ and o™ D, have no common component, and

(b) D1 +3D2 ~ O'*D1 +3D3

Then there exists an Sz covering, X, of Y such that (i) D(X/Y) = Z, and (ii)
D) +0* D, is the branch locus of 3.

For a proof, see [T1].

We also have the following proposition sayving that the “inverse” of Proposition 3.2
holds. '

Proposition 3.3. Let 7: X' = Y be an Sy covering and let o denote the involution
on D(X/Y) coming from the covering transformation of f3;. Suppose that D(X/Y) is
smooth. Then there exist three effective divisors Dy, Dy and Dy on D(X/Y") such that

(i) D, is reduced; D, and ¢* D, have no common component,

(Jl) D+ 3Dy ~0c*Dy + 3Dy, and

(ii1)) Dy + o* D, Is the branch locus of f,.

For a proof, see [T1].



Corollary 3.4. Let 7 : S — ¥ be an Sy covering of a smooth projective surface
T, and let D be an irreducible component of 3,(A(S/D(S/X))). If we denote = by any
intersection point of D and A(D(S/L)/L). Then the intersection multiplicity at z is
> 2.

Proof. This is immediate from Proposition 3.3.

84 Proof of Theorem 0.2

Let £ and & be as before, and f; : & = I; ( = 1,2) the induced double covering
as in Introduction. Suppose that an S; covering 7; : S; — P? branched along B; exists.

Claim. 8" : D(S;/P?*) — P? is branched along B;.

Proof of Claim. Since deg 8\ = 2, deg A(D(S:/P?)/P?)) is even. Hence Claim
follows in the case of Example 1. In the case of Example 2, deg A(D(S;/P%)/P?Y)) =
Cg'}, C'f‘) U C§'), or B;; but the first two cases do not occur by Corollary 3.4.

Hence 8\ : D(S;/P?) — P? coincides with £ — P*. Thus we have the following

commutative diagram:

5, & & &S

bai Uy A

2 8 2y A

P° & D(S5;/P°) & S,
where S; denotes the C(S;)-normalization of /. As g, is branched along B;, and the
Galois group is S3, B is branched at most at Sing(D(S;/P?)). Also, since the local
fundamental group of an A, singularity is Z/2Z, ﬁé” is not branched at A, singularities
of &. Hence A(S;/E;) is contained in the exceptional set of the A7 singularity for
Example 1 and those of the A;; and Ag singularities. Therefore A(S;/Z;) consists of
irreducible components of the I3 fiber not meeting s((f) in the case of Example 1, while
it consists of those of the o and I fibers not meeting s‘()i) in the case of Example 2.
Thus, by Proposition 3.3, we have the following proposition:

Proposition 4.1. Suppose that an Sy covering m; : S; — P*? branched along B;
exists. Then there are three effective divisors Dy, Dy and D3 on &; enjoving the following
properties: '

(i) Dy is reduced; Dy and o; D, have no common component, where o; denotes the
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covering transformation determined by f;.

(ii) Every irreducible component of Dy satisfies the following:

For Example 1, it is an irreducible component of the exceptional set of the A7
singularity on &].

For Example 2, it is an irreducible component of the exceptional sets of the Ay, and
As singularities on &

(]H) Dy + 3Dy ~ O'fDl + 3D,.

(iv) Dy + o} Dy is the branch locus of g;.

Conversely, by Proposition 3.1 and the observation as above, we have the following:

Proposition 4.2. Let Dy, D, and D3 be three effective divisors on &; as follows:

(i) Dy is reduced; D, and o} D; have no common component, where o; denotes the
covering transformation determined by f;.

(ii) Every irreducible component of D, satisfies the following:

For Example 1, it is an irreducible component of the exceptional set of the A7
singularity on E!.

For Example 2, it is an irreducible component of the exceptional sets of the A,; and
Ay singularities on &,

(IH) D1 + 3D2 ~ O'IDl + 3D3

Then there exists an S covering of P? branched along B;.

Now we shall go on to prove Theorem 0.2.

Proposition 4.3. If there exists an Sy covering of P* branched along B;, then
MW(&;) has a 3-torsion.

Proof. Suppose that such a covering 7 : S — P* exists. Then, by Claim, D(S/P?) =
&]. Hence there exist three divisors, Dy, I); and Dj;, satistying the four conditions in

Proposition 4.2. By the same argument in §4 Claim in [T1], we can show that MWV (&;)
has a 3-torsion element.

Now we shall next prove the converse of Proposition 4.3, by which we have Theorem
0.2.

Proposition 4.4. If MW (&;) has a 3-torsion, there exists an Sy covering of P*
branched along B;.

11



Proof. By Theorems 0.1a and b, there is no 3-torsion in MW (&;). Hence we shall
prove Proposition 4.3 when ¢ = 1. By Proposition 4.2, it is enough to show that the
three effective divisors Dy, D; and Dj on &, satisfving the conditions (i), (ii) and (iii)
exist. We shall first consider the case of Example 1. Let s be the corresponding section
of ¢, : & — P'. Then, by [S2] and [M3], we have

17
S Q:Q Sgl) +2F — Z ;0

=1

where
[ % (1<i<®)
ai_{ B (7<4<17)
s((]l) is the section as in §1, and F' is a class of a fiber. As O@3_; = 07©; and &, is simply

connected, we can rewrite this relation as follows:

35 ~ 3s) 4+ 6F + (O + 070, + Oy + 0705 + O; + 07O5)
—07(0) + 0102 + O4 + 0[O + O7 + 0]Os)
—3(070; + 36, + 20705 + 307 0q
& + Oy +20;3 + 0703 + 0104
1305 + 405 + 20705 + 2070,

407 + 304 + 30).

Put

Dy = 04002+ 0,+0]0; +07+ 00
Dy = s§)42F

§+ 0109 + 30y + 2070; + 3070

O, + 09+ 203+0;0; +0,6,

+305 + 404 + 20106 + 20[07

+407 4+ 305 + 30,

)
I

Then these three divisors satisfy the desired three conditions.
In the case of Example 2, we can similarly show that there exist three divisors with
the desired properties. In fact, they are as follows:

12



D, = ol el 1ol ol + o + ;rel
D, = .sgl)%-?F
D, = s+0{"+ 6(“ 2 430l
+204? 4 50" 4 4 @“2) + o 04" 4 2070
+0 + 0l + 0 + 5 0,

Note that 612 . = 00" and ey, = o0 and " (i # 6) and ©; (1 #
3) are irreducible components of the exceptional sets of the A;; and Ag singularities,
respectively.

§5 Proof of Theorem 0.4

We refer to Libgober [L] and Degtyarev [D] for the original definition and properties
of the Alexander polynomial of a plane projective curve. As it is shown in these papers,
the Alexander polynomial of a curve C of degree d can be computed as follows:

Let f(z,y,2) = 0 be the equation of C. Let S be the hypersurface in P? defined by
the equation f(z,v,2) = t¢ and let p: § — P* be the restriction to S of the projection
in z,y, z. This map is a d-fold cyclic covering outside C'; the monodromy of this covering
is generated by the map 7 : S — S defined by multlplnng the coordinate ¢ by e*7/¢.

Let o : S — S be a resolution of S. Then we have in a natural way a smooth cyclic
covering 7 : S — P? with a monodromy transformation 7 : § — S (S is well-defined up
to birational transformations).

Definition 5.1. The 4dlexander polynomial A¢ of C' is the characteristic polynomial
of the linear automorphism 7* : H(S; C) — H'(S; C).

We find in [A] an explicit method to compute the eigenspaces of 7% in terms of
the position of the singularities of C' with respect to curves of given degree. We recall
it in order to compute the Alexander polynomials of the exatnples with the notations
introduced above. [t is clear that all eigenvalues of 77 are d**-roots of unity. ‘Let us fix
ke€{0,1,...,d—1}. Let us denote Hy the 7'-cigenspace of H'(S; C) for e**7/4 Then,

dim H, = dim Coker(ay) + dim Coker(ay_y)

where ’
o HU POk =3) = 3 Op /Tpka
peSing(c)

13



and ay is defined as follows:

Choose a line which does not intersect Sing(C) and suppose that it is Z = 0. Then
HYP* O(k — 3)) is identified with the polynomials in X, Y of degree < d. For such a
polvnomial take the classes modulo the given ideals of their germs at p, p € Sing(C).
We recall the definition of 7, x 4:

Let o : M — P?% be an embedded resolution of C at p. We have

o'(C)=C + > myE;,

i=1

where C is the strict transform of C and Ey, ..., E, are the exceptional components of
0. Let w be a 2-meromorphic form on P; which is holomorphic and non-vanishing near
p. Let x; be the multiplicity of E; in o*w. It means that

.
oc'w=K+ Z ki i,
i=1
where K is a divisor in M whose support is disjoint from o~'(p). Then 7, x4 is the ideal
of germs h € OPp such that for each ¢ = 1,..., the multiplicity of E; in the (local)
divisor o*(h) is greater or equal than

+ km;
K 7|

Examples of J,+¢. We are going how to compute these ideals for some double
points with given local analytic coordinates. We fix d = 6. Let p € C an ag_-
singular point. Let us take analytic coordinates such that the equation of C near p is
flz,y) =2 -y =0.

Let us take ¢ as above. Then

G'(C)Zé-!-QZ'iE;, ki =14, t=1,...,"r

=1

One can choose local coordinates (z;,y;) near a smooth point of F; such that y; = 0
is the local equation of E; and o(z;, 1:) = (2,9}, v;). These local equations allow us to
compute the multiplicity of E; in the divisor o*(h), h € Op . Let h € C{z,y} and
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k=0,1,....5; then h € J,x6 if and only if for all « = 1,...,» the germ A{z;y},¥;) is in
the ideal of C{z;, y;} generated by y?"'“: where: ’

The only cases where the cokernels may be non trivial are & = 4,5. We will drop
the other cases.

Case 1. p is an ordinary double point, i.e., r = 1.

The powers n; obtained are equal to 0. It follows that OP,p = Jpke and the
quotient is trivial, for & = 4,5.

Case 2. p is of type as, i.e., r = 3 (this case has been made in [A]).

For k& = 4, J, 46 is the maximal ideal M of OP.,,- For k = 5, J,546 is the ideal
generated by (z,y?) = (z) + M~

Case 3. pis of type a,, i.e., r =6.

For k = 4, J,46 is the ideal generated by (z,y”) = (z) + M% For k =5, Tp56 is
the ideal generated by (z,y') = (x) + M*

Case 4. p is of type ay7, i.e.,, r = 9.

This case has been made in [A]. For k =4, 7,46 is the ideal generated by (z,y*) =
(z) + M3, For k =5, J,5 is the ideal generated by (z,¢°) = () + M°.

We must compute the cokernel of oy, for & = 4,5. It is clear that it is enough to
compute the kernel and apply linear algebra. For each p € Sing(C), let us denote

apy : H'(P*, Ok = 3)) = Op ,/ Topa
the p-coordinate of «y. [t is easily seen that

Kercy, = Keray, 1.

mpESillg(C)

Let P, the projective space of Keragp. It is in a natural way the space of curves of
degree & — 3 which verify the conditions imposed by the ideal J, 6. Then

Py P,

= ﬁpESing(c)

is the projective space of Kercy.



Proposition 5.2. Let C be a reduced curve of degree 6, let p € Sing(C) a double
point of type az.—y. Ifr > 1, denote by L (resp. @) the tangent line to C at p (resp.
the conic having maximal contact). Then

(i) If r = 1, P, is the space of curves of degree I — 3.

(i1) If r = 3 and the intersection number of C and L at p is greater than 4, then
Q = 2L, P,, is the space of lines passing through p and P,s is the space of conics
tangent to C at p.

(iii) If r = 6 and the intersection number of C and L at p is equal to 4, then @ # 2L,
P,. = {L} and P, is the pencil of conics generated by ) and 2L.

(iv) If r = 9 and the intersection number of C and L at p is equal to 8, then () = 2L,
P,.={L} and P,5 = {2L}.

(v} If r = 9 and the intersection number of C' and L at p is equal to 4, then Q) # 2L,
P, and P, 5 are empty sets.

Proof. The result in (i) is trivial.

Consider now (ii). We begin with £ = 4. We have seen that J,5¢ is the maximal
ideal in the local ring of p in P*. Then the quotient is C and Q4 is the evaluation of
the polynomials at p. Then, P, is the space of lines passing by p.

For ¥ = 5, it follows from the next observation: Let z',3' be another analytical
system of coordinates, such that z' is also tangent to C at p. Then Jp56 = (z) + M2
Let us suppose that p={0:0: 1] and L is A" = 0. We apply this property to X, and
we get J,56 = (X, Y?).

Let us consider ay, 5. We can choose 1, X, Y, X? XY, Y? as a base in the source and
the classes of 1 and Y as a base in the target. It follows that X, X2, XY generate the
kernel, and we get the result.

Consider now (iii). We proceed for k = 4 as in the case k = 5 for (ii).

Let us consider now & = 5. We fix p and L as above and let us suppose that the
maximal contact conic @ is X — Y? = 0 (in affine coordinates X,Y"); it is possible
because it cannot be 2L. We recall that (Q - C), > 10 because maximal contact implies
that Q passes through (at least) five infinitely near points of C at p, which are double
points, and we apply Noether’s formula for the intersection number. Let us take also
analytical coordinates =,y such that the local equation of C at p is 2° — y'2 = 0. We
deduce that:

z= (X =Y, (X, V) + oY (Y), w(0,0)#0, u(0)#£0 aecC
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and
y = Yus(X,Y) + BN u,(X), u(0,0) #0, 6(0)#0, 8€C, b>1.

It is easily seen that such a coordinate change exists if we replace the term aY?® ... by
aY?®. .., a > 1. The fact that L is tangent to C nmplies that ¢ > 2 (replace X = 0 in
the series 2?2 — y'? = 0; the order should be equal to four). The fact about @ implies
that a > 10 (replace X = ¥? in the series 2° — y'2 = 0; the order should > 10).

Then, (z,y") = (&) + M* = (X = V%) + M* = (X = Y2 V). Let us take now ayps.
It is easily seen that the kernel is generated by X' — Y2 and X*? and we get the result.

We prove in the same way the results of (iv) and (v) for a;7 (see [A] for details).
Q.E.D.

Proof of Theorem 0.4, Fxample 1. The singular points of By and By are a;7+2a;. Let
us denote p; the ayz-singular point. It is clear that P, » = P(B;), & = 4,5. Applying
Proposition 5.2(iv), we get that P,(B)) and Ps(B,) have exactly one point each one.
Then,

dim Kereyy(By) = dim Keras (B,) = 1.

By Proposition 5.2(v), we get that P,(By) = P;(B,) = 0. Then,
dim Keray(B2) = dim Kercwg(B;) = 0.

In both cases, cy {resp. as) is a linear map between spaces of dimension 3 (resp. 6).
Then the dimension of the cokernel equals the dimension of the kernel.
We get Ay =#' 4+t +1and Ay =1. Q.E.D.

Proof of Theorem 0.4, Example 2.
The singular points of By and B, are a;; + as -+ 3¢,. If we take again the notations
in the introduction pi, is the as-point of B; and ph, is the a;;-point. It is clear that

Pi(B:) =Pui « NP 1, k=45
We begin with k£ = 4; by Proposition 5.2(ii) and (iii), P,(3;) is the space of lines tangent
to B; at ph, and passing through pi,. By the definition of the pair (B, Ba), we get that

P.(3,) has exactly one point and P,(Bs) = (). Then,

dimKeray(By) =1 dimKeray(B,) = 0.



We apply again Proposition 5.2(ii) and (iii) for £ = 5. Take the equations for B, and

B, defined in §1. Let L be the tangent line to B; at p,; their equations are:
LW:X+Z=0 P58 +/3Y+8Z=0.

It is clear that the conic with maximal contact is C. The tangent line to B; at p(l':,.) is

CI('), whose equation is Z = 0 in both cases.

Then P5(B;) is the set of conics in the pencil generated by Céi) and 2L%) which are
tangent to sz) at piy. For ¢ = 1, the conic in the pencil passing through p!; is exactly
2L which is virtually tangent to C". Then P5(B;) has exactly one point..

For i = 2, the conic in the pencil passing through p?, has equation

13X? + V=3XY ~ 28X7Z — 20V/-3YZ — 322* = 0.
This conic is not tangent to CEZ). We find P;(B,) = §. Then,
dimKeras(By) =1, dimKeras(B;) = 0.

As in Example 1, ey (resp. «s) is a linear map between spaces of dimension 3 (resp.
6). Then the dimension of the cokernel equals the dimension of the kernel.

We get A =t +t2+1and Ay, =1. QED.
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