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Zariski pairs oi' index 19

aud
the lVlordell-vVeil groups of extremal elliptic 1(3 surfaces

Enrique ART.AL BARTOL0 1 and Hiro-o TOI(UNAGA

Introduction
Let <p : E --+ pI be a semi-stable elliptic K3 surface with Cl section so; <p is called

"extremaC' if<p has exactly 6 singular fibers 11 , ... ,16, In their paper [ivIP2], rvliranda and
Persson give a complete list for the configurations of In tibers for semi-stable elliptic K3
surfaces; and show that there are 112 extrenlal cases. In [rvIP3], they go on to study the
lVlordell-\'Veil group, l\lH!(E), for the 112 cases, and show that l\lIIV(E) is determined
by the configurations of In fibers, namely, a six-tuple [nIl"" n6] for 95 of the 112 cases.
There remain 17 cases with potential ambiguity. IvIiranda and Persson give all possible
cases for kll'V(E) , hut they do not give any single exalnple of two extremal semi-stable
K3 surfaces, EI and [2, such that

(i) they have the same Illunerical data for the six-tnple [nIl"" n6], and
(ii) 1\fT'V(Ed ?I- Alltl/ (&2)'
Our first purpose of this note is to give two slIch exarnples of Cl and C2. \,Ve construct

EI and &2 in a rather classical way, namely, Cl Illethod 01' dou ble sextics. Consider sextics
BI and B2 as below, and we shall construct Cl alld C'2 as double coverings of p2 branched
along BI and B 2 , respectively.

Example 1.
(i) B· = C(i) + C(i) ('i J' = 1 2) where Gf~i) 'He nodal cubics' C(i) and C(i) meet at

1 1 2", ] <. '1 2

only one point Pi, and

(ii) PI is an inflection point for both cf1) anel eil), while ])2 is lleither inflection point
of Cf2) nor cy),

Example 2.
(i) Bi = ci i

) + C~i) + C:~i), (i = 1,2, j = 1,2,3) wherc C?) are curves of degree j

(C~i) are nodal cubics aud C~i) are smooth conics). Let,]1; be t.he. noclal points. Then
we have:

1 Partially supported by CAICYT PB94-02!Jl
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- c~i} and C~i) Ineet at onl.y olle point TJ~:1 i=- p~;

- C~i) and Cfi) IHeet at only Olle point pL 1= p\;
- C~i) and C~i} Ineet transversally at two points.
It is clear that:

- These points are ordinary double points of Bi,

- P~3 are not infiection points of C~i) anel

- p13 are inflection points of C~i).

(ii) Let Li be thc tangent line of C~i) at P~3' It is easy LO see froln the group structure

of C~i) \ {p;} that the other intersection point rA of Li and C~i) is also an infiection point.

Then BI is determined by qj = P~3 and B2 is detennined by q~ 1= P~3'

\Ve shall show that these two pairs of sextics do exist in §1. Let f: : EI ---+ p2
(i = 1: 2) be double coverings branched along Bi (i = 1,2), respectively.

Let /-Li : Ei ---+ EI (i = 1: 2) be the canonical resolutions of EI (i = 1,2). \Ve have a
cOlnmutative diagrarn as follows:

where q,i is a succession of blowing-ups such that thc illduced double covering fi is finite.
Then we have the following:

Theorem O.la. For Example 1, both [1 allel [2 are [{3 surfaces with extremal
elliptic librations, 'Pi : [i ---+ pi (i = 1, 2) such that

(i) both 'PI and 'P:z have singular tibers, I t8 , 12J 4111 anel
(ii) l'1vV(Ed ~ Z/3Z; 1\11IV(E2 ) ~ {O}.

Theorem O.lb. For Excunple 2: botll EI allel E2 are !{3 sllrfaces with extrcmal
elliptic librations: <Pi ; Ei ---+ pI (i = 1, 2) sllch that

0) both 'Pt and 'P'2 have singular tibers: l L'2, 16J 21'2: 211, allel

(ii) 111lV(Er) ~ Z/6Z; AIHl(E2 ) ~ Z/2Z.

Dur second purpose is to consider a geoInetric application of Theorems O.la allel b.
In fact~ we shall apply thein to construct Galois cov(~rings brancheel along BI and B'2 as
foliows:
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Theorem 0.2. Let (B[: B2 ) be (] pair of sextics in eitllcr EXaI11ple 1 or Exalnplc 2.
Let EI and E2 be elliptic !{3 surfaces as aboH~. Thell there exists (-l Galois co\rering oE
p2 bra,nclled along Bi wich tlJe third sYI1Hnetric grOllIJ (/s its Galois grOl1p, iE a,nd onl,Y
iE 111Hl(Ei ) has (l 3-torsioll elelnent.

An imnlecliate consequence of Theorenl 0.2 is

Corollary 0.3.

Corollary 0.3 also follows from eOInputation of the Alexancler polynomial of Bi,
Ci = 1: 2) as follows:

Theorem 0.4. Let.6.i be the Alexandel' polynonJial oE Bi, 'i = 1: 2. Then, both in
Exalnple 1 and in Example 2, .6. 1 = t4 + t2 + 1 and ,6,2 = l.

Note that in both exaInples: the pair (BI: B2 ) hus the same cOInbinatorics. Hence
Theorem 0.3 shows that thc pair (BI: B2 ) is a Zariski pair for each case (see (A] for
definition of a Zariski pair).

For a sextic: C, with onl)' simple singularities: we define the index i(C): of C to be
the sum of all the subindices of all its singularities :1:n (xn E {a: d: e}) (See [PD. It is
known that 0 :::; 'i(C) :s 19; anel we call a sextic ffi<cöInizing if i(C) = 19.

In Example 1 both of Bi (i = 11 2) have the set of singularities 2al + aI7; in Example
2: both of Bi Ci = 1,2) have the set of singularities 3aj + as + (Zll. Hence eaeh pair of
our examples is a Zariski pair of index 19: 'l. e.: a Zariski pair for Inaximizing sextics.
In [A], [0], [T2], [T3] anel (Z], we ean find SOBle exarnples for Zariski pairs, but there is
no example of a Zariski pair for maximizing sextics. HCIlce our eXaInples are essentially·
new. It is~ however 1 still nnknown whether a Zariski pair for irreducible maximizing
sextics exists or not. It will be interesting to find such a cxaInple.

Remark. Corollary 0.3 also fo11ow5 froIll direct COlllplltations for 7fdP2 \ Bi) (i =
1: 2) in the case of Exarllple 1. In fact, the first <lnthor figures out that 7fdP \ Bd is
isomorphie to Z*Z/3Z (* Illeans free prodllct) while 7fj (P\B2 ) is isoIllorphic to Z x Z/3Z
(Their computations are not casy: though). In this article 1 however: we pay an attention
to give a geoInetrie application of the Ivlordell- \Veil group of an elliptic surface, whieh
has been an arithmetic objeet so far. This rnakes our rcsllit Illore interesting.
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Notations and Conventions.

Throughout this article: the groulld field will always be the complex number field
C.

C(..-Y) := the rational function field of )(.
Let ..:\ be anormal variety: and let Y be a SIllo0th variety. Let 7r : )( --r 1,T be a finite

nl0rphism from .I\. to Y. \Ve define the branch locus: iJ.(.Y/l/~): of f as follow5:

An 53 covering always means a Galois covering having the third s.ymmetric group,
53, as it Galois group.

Let 7r : )( -t 1/~ be an 5.3 covering of Y. iVlorphisIns, ßl and ß2, and the variety
D(..-Y/Y") always mean those clefined in §3.

Let S be a finite double covering of a sInooth projcctive surface ~. The "canonical
resolution)) of S always means the resolution given by Horikawa in (H].

For singular tibers of an elliptic surface: we use thc notation of Kodaira (Kl.
For a singular fiber of type I b, we shall label its ineducible components in the same

way as in (K], p. 566. Namely, letting F denote a singular fiber of type Ib over a point,
we have

F = 8 0 + 8 1 + ... + eb- I ,

whefe 8 08 1 = e 18 2 = ... = eb-IeO = 1. In particular, 8 0 denotes the irreducible
component of F meeting So, where So is a fixed 8ectiOIl of the elliptic surface.

For the configuration of singular tibers: W(~ shall llse the Si:llne notations as th08e in
(lvl-P2].

Let D 1, D 2 be divisors.
D t rv D 2 : linear equivalence of divisors.
D t ~ D 2 : algebraic equivalence of divisors.
D t ~Q D 2 : Q-algebraic equivalencc of divisors.

For singularities of a plane curve, \\'e shall 1tse tlte smne notation as in (PJ.



§1 Preliminaries

1. Two 8cxtics BI anel B2

\Ve shall give explieit exaIuples for the pairs of BI allel B2 in Introeluction.

Example 1. \~Te shall start with BI.
BI: Consider a peneil of eubies generated by a Iloclal C11 bie anel a tri pIe line whieh

is tangent at an inficetioll point of the gi'leu Iloclal CII bic. Thc general element of this
peneil is a s11100th cllbie auel two generic eleInents interseet at. a cOlluuon infleetion point
PI with interseetion Ilumber 9. \Ne have exactly t\VO lloclal cubics eil) anel e~l) in such
a pencil. \Ve give explicit equations as fo11o\\'s:

anel

C~l) : _ 2: {Z(X2 + Y') + X 3} + Z3 = O.
Here [.Y : Y : Z] denotes a homogeneous coordinate of p 2

• Consider sextic curve defined
by the equation

Then we can easily check that this sextie gives an exmnple for BI

B2 : Let e~ anel e~ be cllbics c1efined by t.he equations as follows:

and
e~ : Z(.X: Z - 1"2) - .y21" = O.

Consicler a peneil of cubics A = {,\oC~ + /\ I e~} [\ ...\. 1 pI. Thc general eleInent is a smooth
,(J. I E

eubic and two gencric eleInents intersect at Olle point jJ2 = [0 : 0 : 1] with interseetion
number 9; P2 is not an inHcetion point für any cubic in the peneil. Besides e~, there are
exactly three nodal cubies in the peneil, for [/\0 : /\ d= [1 : 3], [1 : 3j.L], [1 : 3J.L- L], where

j.L = exp(2/TA/3).
ThcIl: take twü elements, ern anel e~2): of A as folIows:
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and
C~2) : Y(A" Z - Y~) - ~y3 + 3/t{ Z(.\ Z - y 2 ) - .\"~Y} = O.

Then: straightforward calculation shows that, (i) Cl~:2) (rcsp. C~2)) has anode at [1 : 2 : 5]
(resp. [tt2 : 2 : 5ttJ): ancI neither C~2) nor C~:2) has an inHeetion point at ])2. lvloreover:

as A has only one base point ])2, ])2 is the ollly interseetion point of C~2) and C~2). Now
consider a sextic definecI by thc equation

{),~{-YZ - y 2) _ .y~l + 3{ ZCX Z _ y2) _ .y2y} }

X {Y(..-Y Z - y2) - X"3 + :3tt{ Z(..-YZ - },~2) - .y2y} } = 0

Then: this sextic gives an exaInple for B2 .

Example 2. \Ve can take curves with equations below:

C~I) : y2 + (2..-\ + Z)(.Y + Z) = 0

anel
C~2) : 43..-\2 - y2 - 64Z2 + 6J-3~Y}'P - 48..-\ Z - 48V-3}7Z = O.

Note that P~3 is [-4 : -4J-3 : 1].

2. Elliptic fibrations on Ci (i = 1,2)

Let EI anel C2 be K3 surfaces clefinecl in Introduction. \Ve shall show that Ei (i = 1: 2)
have elliptic fibrations described in TheoreIns O.la anel O.lb.

\-Ve shall start \vith Example 1. Let BI and B2 be the sextics in Example 1. Choose"
a nade, qi, on C~i). Then, for cach qi, lines throllgh fji incluce an clliptic fibration on Ei.
Following to Persson [FL we call these fibratiolls the standard fibra.tions centered at qi

Ci = 1: 2) ,and clenote theIn by 'Pi : Ei --+ pI (i = 1. 2). Note that 'Pi has a section, sbi),
cletennined by C~i).

Lemma 1.1. Let 'Piqi be the line joining Pi i1nd (ji. Tllen lpiQi lneets Bi at two
distinct point other th;Ul Pi anel qi.

Proof. Suppose that lpiqi is tangent to Bi at a smooth point or passes through the
other Hode. In the fonner ca..c;e: rpi has singular fibers: JE) aud 1:2; this is iInpossiblc by
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[SI); TheoreIll 1.1 and ranklVS(Ei ) ::; 20. In the latter: i?i has a singular fiber: 120 ; this
is also iIllpossible by the same reaSOIlS as the fOflner.

Corüllary 1.2. For cac11 i: tpi 11as singular fibel's~ f 18 anel 12.

Proposition 1.3. Tlw singular fibers of tpi Ci. = 1: 2) are lu~" 12 , 411 •

Prüof. It is enough to show that tpi has BO sillgular fiber of type 11: but this does
not occur by Proposition 3.4 in [rvlPl].

Remark 1.4. For Y'I, Persson proved Proposition 1.3 in [PJ.

\,Ve shall next consider &i (i = 1,2) for ExaIIlple 2. Choose the node C~i), and
consider the standard tibration centered at thc node.

Lemma 1.5. Let Ip;p~3 be the line joining p~ allel ]J~3' Then Ip&p~3 does not pass

througll ci i
) n C~i) .

Praof. 5 uppose that Ip&p~3 passes through ci i) nC~ i). Thell <Pi has singular fi bers 114 J

16 , anel 12 ; this is again iInpossible by the S1:Ulle reason as in Proof of Lemma 1.1.

Thus the configuration of the singular tibers of tpi is either I t2 , 16 , 212J 211 or 112 : 16 ,

212 , I I, but the latter case does not occur by Proposition 3.4 in [iVIPl].

§2 Proof of Theorems O.la and O.lb.

Let Y'i : Ei --+ pt Ci = 1,2) be the elliptic tibration as in ~i1. \V(~ shall elenote thc
~vIordell-\Veilgroup for Y'i : Ei --+ pI by 1\1Hl(Ed. \Ve shall first prove Theorem O.lb.

In [1\'IP3], lviiranela and Persson shows that l\Il+"(&d ~ Z/3Z. Hence it is enough to
prove thc following:

Lemma 2.1. 1\11'11(E2 ) ~ {O}.

Proof. Suppose that 11IH1(E2 ) ~ {O}. Then, by Proposition 1.3 and Lemma 3 in
[ivIP3L 1\lH'(E2) ~ Z/3Z. Let s be a 3-toI'sion sec:tion in 1\Il'V(&2)' Let (,) denote
8hioda:s pairing in [82]. Then we have (8,8) = 0 by [52]. Hence: by the formula (2.5)
in [p/13] and Theorem 1.3 [82], we rnay assuIlle that .':i bits er; at the / 18 fiber and 8 0 at
the 12 fiber. Then, by looking iuto the c:anonical resolutioIl, we can show that f~fL2(s)
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is an inflectional tangent line at ]J2 for both Cf2) allel C~2). This contradicts to our
assumption.

Next we shall prove Theorelll O.lb. Let [I and [,2 be the elliptic K3 surfaces for
the sexbcs in Exaulple 2. Both of them have singular fibcrs 11'2 and 16 ; anel we sha11
label irreducible COlnponents of them ep2) allel e~G): i being thc labeling introduced in
Notations and Conventioll.

Lemma 2.2. J11vV(cd has a 3-torsion.

PTOOf. The tangent Ene at P~3 gives rise to two seetions s+ anel s-; s+ is transformed
to s- by thc covering transformation. By our construction, we Inay assume that 8+
meets sil2

) at the h2 fiber, e~6) at the 16fiber, auel 8 0at othcr singular fibers (we
take the opposite orientation of the labeling for the irreducible component if necessary).
Then we have (s, s) = 0 by Theormn 8.6, [82]. Hencc, by LelnnuL 8.2 and Theorem 8.4
in [52], this implies

.) 4 1 t 1

s~1) + 2F - :: L ie~12) - ;- 2::)12 - ne~12)
3 i=l .3 i=5

2 3 1 5-- I: i8~6) + - 2:(6 - i)8~6)
3 i=1 3 i=4

Hence, by Theorem 1.3 [82], s+ is a 3-torsion.

Lemma 2.3. 1111'F(E2 ) has IlO 3-torsion.

Pl'oof. Suppose that 1111'V(E2 ) has a 3-torsion, allcllet s denote the 3-torsion seebaD.
Then, by the formula (2.5) in [1\'13], the equalit.y (8,8) = 0, anel Theorem 1.3 [82], we'

can deduce that s Ineets 8\12) at the In fiber alld e~G) at the 16 fiber. Then f~f-l2(s) is
CL tangent line at P~3; anel it passes through PT:~' This contradicts to our choice for P~3'

Hence I11Hl(C2) has no 3-torsion.

By [lvIP2] Proposition 4.4, both of J11Hl(E;) 0 = 1,2) have CL 2-torsion. Hence we
have TheorelTI 0.1 b.

§3 51 coverings
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In this sectiOll~ we shall give abrief sumnwry Oll S{ coverings. Für details, see [Tl].
\Ve shall start with the definition 01' an 5 a covering.

Definition 3.1. Let Y he a slnooth projecr,ire rariet,r. A. normal varietYJ )(, "rith Cl

finite 1l10rpllislll 'Tr : )( ---t Y is calJed a11 53 corcring oi' Y iE tllC rational functioll Held,
C(.Y): of _Y is a Galois extension of C(Y) lunring the r.lJird s,rmnletric groupJ as its
Galois group.

Let 53 = (a, Tla2 = T3 = (aT)2 = 1) J Let C(..yt be thc invariant subfield of C(..Y)
by T. As C(XY is a quadratic extension of C(Y): the C(...YY-normalization of Y is a
double covering. \Ve denote it by D(..Y/Y) alld its covcring morphisrn by ßl' Also, ...Y
is a cyclic tripie covering of D(){/Y), anel ,8'2 denotes thc coverillg morphisnl from )( to
D(.Y/Yl By their definition, 7r = ßl 0 ß2' \Vith these notations, we have the following
proposition:

Proposition 3.2. Let f : Z ---t Y be a Sl1100th finite double cOllering of a smootll

projective "a.rietr }r. Let a be tbe involution detennined by tbe co\rering transformation
of f. Let D 1, D 2 , alld D 3 be effective divisors Oll Z. SU[Jpose tlwt

(a) D 1 is reduced alld Iloll-empt'y; D 1 and a-' D 1 lunre IlO corrllnon component: and

(b) D 1 + 3D2 rv a* D 1 + 3D3 .

Tllen tllere exists an S:l cOllering, ..Y, of Y such that (i) D(...Y/Y) = Z, alld (ii)
D 1 + a* D 1 is tlle branch locus of ß2.

For a proof, see [Tl).

\Ve also have the following proposition saying that the "inverse;; of Proposition 3.2
holds.

Proposition 3.3. Let 7f : )( ---t Y be än 5:1 coverillg rlnd let adenote tlle involution
on D(...Y/Y) coming [roIn thc covering transformation of ßI. SlIppose tllat D(...Y/Y) is
smooch. Then tllere exist three effecti\'"e divisors D 1: D2 anel D.1 011 D(..Y/Y) such that

(i) D 1 is redllced; D 1 and a* D 1 have 110 COlnmOll C01l1pOnent,

(ii) D1 + 3D2 rv a* D1 + 3D;{J Hlld

(iii) D 1 + a* D 1 is r.he branch locus of ,B2 .

For a prooe see [Tl].

9



Corollary 3.4. Let 7r : 5 --+ ~ he an S:~ cOFcring oE a SIllOOth projective slIrface
I:~ i]Ilcl let D be an irrcclucible conlpollent 0[/31(6.(8/D(S/"f,))). IE we d~llote x byany
intersection point oE D i-llld ~(D(S /'2:.) /'I). Then thc illtersection multiplicity at x is
> 2.

Praaj. This is ilumediate from Proposition 3.3.

§4 Proof of Theorem 0.2

Let EI aud G2 be as before, and h : Ei --+ ~i (i = 1,2) the induced double covering
as in Iutroduction. Suppose that an 53 covering 'Tri : Si --+ p 2 branched along Bi exists.

Claim. ß~i) : D{SdP'2) -+ p2 is brancbecl along Bi.

Praaf of Claim. Since deg ß~i) = 2, deg ~(D(SdP2)/p2)) is even. Heuce Claim
follows in the case of Exaluple 1. In the case of Exalnple 2, deg ~(D(Si/p2)/p2))

C~i): C~i) U C~i) 1 01' Bi; but the first two cases do not occur by Corollary 3.4.

Heuce ß~i) : D(Si/P '1.) --+ p'1. coincides with GI ---+ p'2. Thus we have the following
commutative diagram:

". t- Ei f!.- §.
....... 1 I

t qi t lli t
p2

ß(')

D{SdP'2)
0.\')

Si,~ f=-

where Si denotes the C(Sd-normalization of EI. As ßl is brancheel along B il and the
Galois group is 53, ß2 is branchecl at most at Sillg(D(SdP '2)). Also, since the local

fundamental group of an Al singularity is Z/2Z~ ß~i) is not branched at Al singularities
of EI. Hence 6(SdEi) is contained in the exceptional set of the A l7 singularity for
Example 1 and those of the' All and As sinß'lllarities. Therefore t1(SdL.i) consists of

irreducible components of the 118 fiber not Ineeting s~i) in the case of Example 1, while
it consists of those of the 112 and 16 fibers not Ineeting s~i) in the case of Example 2.
Thus~ by Proposition 3.3~ we have the following proposition:

Proposition 4.1. S'llppose that an 5.1 cOFering 'Tri : Si -'t p'2 brRnched along Bi
exists. Then there are three effective divisors D t : D2 anel D?, on Gi enjoying the following
properties:

(i) D I is reduced; D t ilIld a;D 1 have IlO cOlnlnOll r;oIllponent: wllere (7i denotes the

10



covering transformation detennined by fi'
(ii) Every irreducible cOIllponent oE D 1 s;-ltisfies the Eollowing:"
Für EX8111ple 1, it is an irredllcible COIJ1]Jolwnt u[ the excc]Jtional set oE tl1e Al7

singularity on EI.
For ExaInple 2, it is a11 irredl1cible cOll1poncnt o[ ehe exeeptional sets oE the All a.nd

A 5 singularitics on EI.
(iii) D1 + 3D2 rv er~D 1 + 3D3 .

(iv) D 1 + eriD 1 is the brandl locus o[ gi.

Conversely, by Proposition 3.1 and the observation as above: we have the following:

Proposition 4.2. Let D 1, D2 and D3 be three eHectil'e di"visors on Ei as Eollows:
(i) D 1 is reduced; D 1 i:lnd eri D 1 havc 110 COllH1l011 COlllpOncnt, where eri denotes the

covering transformation determined by fi.
(ii) Every irreducible C0111pOnent oE D 1 satisfies ehe Following:
For Example 1, it is an irrcducible cOlnpollcnt oF the exceptional set of the ..417

singularity on Er
For Example 2, it is an irreducible cOIllponent of the exceptiona.l sets oE the All alld

.415 singulari ties on EI.
(iii) D 1 + 3D2 rv err D 1 + 3D3 .

Then there exists an 53 covering ofp2 branched along Bi,

Now we shall go Oll to prove Theorem 0.2.

Proposition 4.3. IE there exists an 53 covcring oE p2 branched along Bi, then
.AIH1(Ei ) has a 3-torsioll.

Proof. Suppose that such a covering 7r : S ---+ p 2 exists. Then: by Claim, D(S/p2) ="
EI. Heuce there exist three divisors, D 1, Dz aud D.3, satisfying the four conditiolls in
Proposition 4.2. By the sarne argulnent in 34 elainl in [Tl], we can show that l\lHl(Ei )

has a 3-torsion element.

Now we shall next prove the converse oi' Proposition 4.3, by whieh we have TheoreIn
0.2,

Proposition 4.4. IE l'lHl(Ed llas a 3-torsioll, tlwre exists All 53 covering of p2
hranched along Bi.

11



Prao/. By Theorell1S O.la and b, there i5 HO 3-torsion in 1\11V(&2)' Hence we shall
prove Proposition 4.3 when i. = 1. By Proposition 4.2, it is enollgh to show that thc
three effective divisors D 1: D2 and D3 on [[ satisfyillg the tondi tions (i) J (ii) and (iii)

exist. \Ve shall first cOllsider the case of Exalnple 1. Let s be the torresponding section

Of,4?1 : EI -+ pI. Theu, by [32J and [ivI3L we have

17

S ~ '/1) + ')F '""' ("" e"""'Q ""0 - - L- A-i i,
i=1

where

{
~i. (1:::; i :::; G)

(ti = 15-i (7:::; i :::; 17)
::\

8~l) is thc section as in §1, and F is a dass of a fiber. As 8 18 - i = at8i and EI is simpl,)'
connectcd, we can rewrite this relation as follo\vs:

38 ~ 3S~1) + 6F + (8 1 + a;82 + 8" + 0-;85 + 8 7 + a~88)

-a~(81 + a~82 + 8 4 + a;85 + 8 7 + a~88)

-3(a~e2 + 384 + 2a~85 + 3a;88

8\ + 8 2 + 283 + a~8.1 + a~84

+385 + 486 + 2a~86 + 2a;87

487 + 388 + 389 ),

Put

Dt = 8 1 + a;S2 + 8.1 + a;Ss + 8 7 + a~88

D2 S~l) + 2F

D:l ,'; + a~8 2 + 38'l + 2a; Gö + :3a~8 8

8 1 + 8 2 + 28::\ + a;S:J + a~e"

+385 + 48G + 2a~efl + 2a~87

+487 + 388 + :389 .

Then these three divisors satisfy the desired three conditions.
In the case of Example 2, we can sinülarly show that there exist three divisors with

thc desired properties. In fact, they are as folIows:
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e (12) + *8(12) + e(l:n + *o(L~) + 8(0) +' *8(6)
1 (j 2 ,I a \7:) 1 (J 2

861) + 2F
. + 8(12) + 8(12) + ')8(l2) + 38(12)

8 1 2 -:l '-l

+28~12) + (j·8~12) + (J·8,~12) + a*8,\12) + 2a*8~12)

+8l6) + e~6) + e~6) + a* 8~G) .

(12) (12) (6) (C) (t2)
Note that 8 12- i = a*8 i auel 8 6- i = a"'8i !; allel 8 i Ci f:. 6) anel 8 i Ci f:.

3) are irreducible cOIuponents 01' the exceptional sets 01' the All and A s singularities:
respectively.

§5 Proof of Theorem 0.4

\Ve refer to Libgober [L] anel Degtyarev [DJ 1'01' thc original definition and properties
of the Alexander polynoIuial 01' Cl. plane projective curve. As it is shown in these papers:
the Alexander polynomial of a curve C 01' degree r1 can be computed as fo11ows:

Let f(x: y, z) = 0 be the equation 01' C. Let S be thc hypersllrface in p3 defined by
the equation f(x, y, z) = td anel let p : S --t p2 be thc restrictiou to S 01' the projection
in x, y, z. This map is a d-folel cyc1ic covering outside Cl; the luonodroIny 01' this covering
is generated by the lnap T : S -7 S defined by llluitiplying the coordinate t by e2i7t/ d .

Let a : S -7 S be aresolution 01' S. Then we have in a natural way a smooth cyc1ic
covering T : S -7 p2 with a 1l1onodroIny transformation T : S -t .) (8 is well-elefined up
to birational transformations).

Definition 5.1. Tbc Alexander polynolllial.6.c o[G is the characteristic polynomial
oE the linear autonlorpllisln T~ : H 1(S; C) -t H 1(8; C).

\,Ve find in [A] an explicit Inethod to COlnpute the eigenspaces of r* in terms of
the position of the singularities 01' C with respect too cnrves of given degree. Vve recall
it in order to cOlnpute thc Alexander polynonIials of thc exalnples with the notations
introduced nbove. It is deal' that all eigenvalues of T" are rlth-roots 01' unity. 'Let 11S fix
k E {O, 1: ... , d - I}. Let 115 denote Hk the Tt--eigenspacc of Hl (5; C) 1'01' e'2ik1r/d. Then,

diIn Hk = dirn Coker(o:d + dilll Coker(ari-d

where
(Yk: HO(P'2,O(k - 3)) -t L 0p,p/:JP,k,d

/lESiug(G')

13



and ak is defined as follows:
Choose a line ",hieh does not intersect Sing(C) ;llH.l suppose r.hat it is Z = O. Then

HO (p'2; O(k - 3)) is iclentificcl with the polyuOlnials in ~-\: Y of degree :S d. For such a
polynomial take the dasses Incdulo the gi"CIl ideals of t,heir germs at P: P E Sing(C).
\Ve reeall the definition of Jp,k,d:

Let a : 1\1 --+ p'2 be an cillbedded resolution cf C at p. \~Te have

r

a*(C) = C+ L rniEi:
i=l

where C is the strict transform of C anel EI, ... : Er are the exceptional components of
a. Let 'W be a 2-Illermllorphie form on P2 whieh is holmnorphic anel non-vanishing near
p. Let fl,i be the multiplicity of Ei in a*w. It IlleallS that

r

o'*w = J{ + L K,iEi,
i=l

\vhere !{ is a divisor in J.\1 whose support is disjoint frolll 0'-1 (p). Then Jp,k,d is the ideal
of germs h E 0P,p such that for each i = 1: ... , 'I" the IIlUltiplicity of Ei in the (Ioeal)
divisor O'*(h) is greater 01' equal than

[

k1H i]-Ki+ -d- .

Examples of J,J,k,Go \>\Te are going how to eOIllputc these ideals for some double
points with given loeal analytic coordinates. \>\Tc fix cl = 6. Let p E C an a2r-l

singular point. Let HS take analytic coordinates such that thc equation of C near p is.
j(x: y) = x 2 - y2r = O.

Let us take a as above. Then

r

O"(C) = C+ 2L'iEi , K,i = 'I.: '/. = 1, .. ,,'I".

i=l

One cau choose Ioeal coordinates (Xi, 'Yi) Bear a SB100th point of Ei such that Yi = 0
is the 10cal equation of Ei alld O'(xi' Vi) = (:D(UI, Vi)' These 10cal equations allow HS to
eompute the multiplicity 01' Ei in the divisor O'*(h): h E 0P,p' Let h E C{x,y} and

14



k = 0: 1: ... : 5; then 11. E ~),k,6 if and only if for all i = 1: ... : 'I' r,he germ h(.TiV:'Vi) is in
the ideal of C {Xi, 'Ud generated by y;li,k: where:

, ._ [2ik] ._ [i/;:]
lti,k'- Ci - I - :3 -I..

The only cases where the cokernels may be non trivial are /;; = 4: .5. \Ve will drop
the other cases.

Case 1. p is an ordinal'Y double point, i.e.: 'I' = 1.

The powers nl.k obtained are equal to O. It follows that 0P,p = Jp,k,6 anel the
quotient is trivial, for k = 4,5.

Case 2. p is of type as, Le., r = 3 (this case has been rnade in [AJ).

Für k = 4: Jp,4,6 is the Ina.ximal ideal J\/{ of Op ,p' Für k = 5, Jp,S,6 is the ideal

generated by (x, y'2) = (x) + J\I1 2
.

Case 3. p is üf type all , i.e.: 'I' = 6.

For k = 4, Jp,4,6 is the ideal generated by (x: ',1/) = (x) + J\,fl. Für k = 5, Jp,5,6 is
the ideal generatecl by (x, y'l) = (x) + J\I1 4.

Case 4. ]J is of type a17, i.e., T = 9.

This case has been made in [Al. For k = 4: Jp,4,6 is the ideal generated by (x, y3) =
(x) + /\/13. For k = 5, ~),5,6 is the ideal generated by (:/;: y6) = (:c) + J\I1 6.

\Ve Blust compute the cükernel üf ab for k = 4: 5. It is deal' that it is enüugh tü
cOlnpute the kernel anel apply linear algebra. For each jJ E Sing(C), let us denote

o 2 .
ap,k : H (P : O(k - .3)) -+ 0p,p/Jp,k,d

the p-coordinate of tXk. It is easHy seen that

Let P p,k thc projective space of Kerap,k' It is in a natural way the space of curves 01'
elegree k - 3 whieh verify the cünditions imposeel by thc ideal Jp,k,6' Then

is the prüjective spaee cf Kel'ak.
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Proposition 5.2. Let C !Je n reduced ClllTe of degree 6, let fJ E Sing(C) a double
point oE type a2r-!' IE'I' > 1, elellote by L (resp. Q) thc ta.ngent line to Gf at p (resp.
the conie having InaxiInal cOlltact). Thcn

(i) IEr = 1: Pp,k is the space oE curves 01' degree I,; - 3.

(ii) IE r = 3 allel the intersection IluIllber of C illld L at JJ is greater than 4, tllen
Q = 2L, P p,4 is tlle space oi' lilles passing through P illlel P p,5 is tbe space oE cOllies
tangent to C at p.

(iii) IE T = 6 allel tlle intersection IHll11ber ofC allel L at p is cqual to 4, then Q =j:. 2L,
P p,4 = {L} Hnd P fi,5 is the pencil oE conies generater! by Q (J,lld 2L.

(iv) Ifr = 9 allel the intersection nUlnber orG allel L at p is cf/ual to 6, then Q = 2L,
P p ,4 = {L} and P p ,5 = {2L}.

(v) JE T = 9 allel the intersection number oi' C allel L at p is eqllal to 4, then Q =j:. 2L,
P p,4 anel P p,5 are enlpt)' sets.

Proof. The result in (i) is trivial.

Consider now (ii). \Ve begin with k = 4. \Ve have seen that Jp,5,6 is the maxiInal
ideal in the local ring of p in P~. Then the quotient is C and Ctp ,4 is the evaluation of

the polynolnials at p. Then, P p,4 is the space of lines passing by p.

For k = 5, it follows from the next observation: Let x', y' be another analytical
system of coordinates, such that x' is also tangent to Gf at p. ThcIl Jp,5,6 = (x) + M 2

.

Let us suppose that ]J = [0 : 0 : 1] and L is ){ = O. \Ve apply this property to --,'C, 1/~ and

we get Jp,5,6 = (.Y, y2).

Let llS consider n]!,s, \Ve can choose 1, ..\, i··, --,\.'2, _\Y, y2 as a base in the source and
the classes of 1 and 1'~ as a base in the target. It follows that --,\, ..y2, --,yl'~ generate the

kernei, anel we get the result.
Consider now (iii). \Ve proceed for k = 4 as in the case k = 5 for (ii).
Let HS consider now k = 5. \Ve fix panel L as above and let 115 suppose that the

Inaximal contact conie Q is ){ - y2 = 0 (in affine coordinates .Y, Y); it is possible

because it cannot be 2L. \Ve recall that (Q . G)p ?: 10 because 1l1uximal contact implies
that Q passes throllgh (at least) five infinitcly near points of C at p, which are double
points, anel we apply Noethcr's formula for the intf~rsectioll llulIlber. Let HS take also
analytical coordinates :C, y such that thc local equatioll of C at fJ is x 2

- y12 = O. \Ve
deduce that:
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and

It is easily seen that such a coordinate change exists if WB replace the term ayT5 .. , by
a1/~a ... , a 2:: 1. The fact that L is tangent to C ilnplies that CL 2:: 2 (replace ..'\. = 0 in
the series .7;2 - yl'2 = 0; the order should be equal to four). The fact about Q implies
that CL 2:: 10 (replace )( = y2 in the series x:.! - yI'2 = 0; the order should 2:: 10).

Then, (:r, y4) = (x) + )\.14 = (..'\. ~ y2) + )\114 = (.'\. - 1"2; 1/4 ). Let us take now üp,5'

It is easily seen that the kernel is generated by )( - y2 aud ..\"'2 alld we get the result.

\-\Tc prove in thc Si;lIUC wa)' the resul ts of (iv) alld (v) for CL 17 (see [A] for details).
Q.E.D.

Proof of Theorern 0.4, Example 1. The singular points of BI alld B 2 are a17+2al. Let
us denote Pi the CLlrsingular point. It is deal' that P pi,k = P k (Bd, k = 4,5. Applying
Proposition 5.2(iv), we get that P 4 (Bd and PS(B 1) have exactly one point each one.
Then,

dinl Kera4(Bl) = dirn Kerarl(Bd = 1.

By Proposition 5.2(vL we get that P-t(B2 ) = P5(Bd = 0. Thcll:

In both cases, (t4 (resp. 0'5) is a linear nutp between spaces of dimension 3 (resp. 6).
Then the dimension of the cokernel equals the diIllcllsion of the kerne!.

\i\Te get ~l = t4 + t2 + 1 auel ~2 = 1. Q.E.D.

Proof of Theorem 0.4] Example 2.
The singular points of BI auel B'2 are au + as + :3al' [f we take again the notations·

in the introduction pb is the as-point of Bi and P~3 is thc all-point. It is deal' that

\,Ve begin with k = 4; by Proposition 5.2(ii) allel (iii), P" (Bi) is the space of liues tangent
to Bi at P~3 auel passing through pb. By thc definition of t.he pair (B Il B 2 ), we get that
P,,(Bd has exactly Olle point and P,,(B2 ) = 0. Thüll,
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\\Te apply again Proposition 5.2(ii) and (iii) for k = .J. Take the equations for BI aud
Bz defined in §1. Let LU) bc thc tangent line to Bi at ]J~3; their equations are:

L(I) : .Y + Z = 0 L(2) : v.\" + J ~:lV + 8Z = O.

It is clear that thc conie with Iua....ömal contact is C,~i). The tangent line to Bi at p~~ is

CIi); whose equation is Z = 0 in both cases.

Then PS(Bi ) is thc set of conics in the pencil generated by C~i) and 2L(i) which are

tangent to CIi) at pt). For 'i = 1, the conic in the peneil passing through pt3 is exactly

2L(1) which is virtually tangent to Cfi). Thcn Ps(Bd has exactly one point ..

For i = 2, the conic in the pencil passing through pt?, has equation

13.,,\'"2 + J -3..\'"1'" - 28.X"Z - 20yC3:vZ - 32Z2 = O.

This conic is not tangent to Cf2). Vve find Ptl(Bd = 0. Then,

cliIn Kcrafl(Bd = 1, diIn Kero:,~(B2) = O.

As in Exarnple 1, 0:4 (rcsp. a,,) is a linear Illap between spaces of dimension 3 (resp.
6). Then the dirnensioll of thc cokernel equals the dirnension of the kerne!.

\Ve get ~l = t4 + t'2 + 1 anel ~2 = 1. Q.E.D.
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