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Abstract

A cyclotomic polynomial Φn(x) is said to be ternary if n = pqr, with p, q
and r distinct odd primes. Let M(p, q) be the maximum (in absolute value)
coefficient appearing in the polynomial family Φpqr(x) with p < q < r, p
and q fixed. Here a stronger version of the main conjecture of Gallot, Moree
and Wilms [3] regarding M(p, q) is established. Furthermore it is shown
that there is an algorithm to compute M(p) := max{M(p, q) : q > p}.
Our methods are the most geometric used so far in the study of ternary
cyclotomic polynomials.

1 Introduction

Let Φn denote the nth cyclotomic polynomial. Let ω(n) denote the number of
distinct prime factors of n. If n is odd and ω(n) = 3, then Φn is said to be
ternary.

Let p, q, r be pairwise coprime positive integers. We define, following Bachman
[1], the ternary inclusion-exclusion polynomial

Φp,q,r(x) =
(xpqr − 1)(xp − 1)(xq − 1)(xr − 1)

(x− 1)(xpq − 1)(xpr − 1)(xqr − 1)
=
∞∑
k=0

ap,q,r(k)xk.

It is not difficult to show that Φp,q,r(x) is a polynomial of degree (p−1)(q−1)(r−1)
with integer coefficients. Note that the above definition generalizes the notion
of ternary cyclotomic polynomials because it coincides with the usual definition
of the cyclotomic polynomial Φpqr in the case where p, q and r denote different
primes. This is a consequence of the identity

Φn(x) =
∏
d|n

(xd − 1)µ(
n
d
),

where µ denotes the Möbius function. Every previous result regarding the coeffi-
cients of ternary cyclotomic polynomials which is used in this article also applies
to inclusion-exclusion polynomials, since the condition that p, q, r are prime is
not needed in the proofs of these results.

The height A(p, q, r) of Φp,q,r is defined by A(p, q, r) = max{|ap,q,r(k)| : k ≥ 0}.
Furthermore, set

M(p, q) = max{A(p, q, r) : r > 0} and M(p) = max{A(p, q, r) : q > 0, r > 0}.
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Using Lemma 1 below it is easy to see that M(p, q) ≤ M(p) ≤ p. It has been
pointed out by Gallot, Moree and Wilms [3] that for p, q different primes

M(p, q) = max{A(p, q, r) : r > max(p, q) and r is prime}

and for p prime

M(p) = max{A(p, q, r) : p < q < r primes},

so the expressions M(p) and M(p, q) generalize the usual definition of these ex-
pressions in the literature about maximal coefficients of ternary cyclotomic poly-
nomials.

Let us introduce the notion

Mq′(p) = max{M(p, q) : q ≡ q′(mod p) and q > 0},

where p denotes a positive integer and q′ denotes any integer coprime to p. We will
prove the following theorems, the first two of which confirm what Gallot, Moree
and Wilms state to be their main conjecture concerning M(p, q) (Conjecture 8 of
[3]).

Theorem 1 Given coprime positive integers p and q′, there exists a q0 ≡ q′(mod p)
with the property that for every integer q ≥ q0 satisfying q ≡ q′(mod p), we have
M(p, q) = Mq′(p).

We will also show the following theorem:

Theorem 2 For every positive integer p and integer q′ coprime to p we have
M−q′(p) = Mq′(p).

Then, we will describe a finite procedure to determine Mq(p), establishing the
following theorem:

Theorem 3 For each positive integer p and integer q coprime to p there exists
a deterministic algorithm to determine the value of Mq(p).

Since M(p) = max{Mq(p) : 0 < q < p}, we only have to apply that procedure
for Mq(p) a finite number of times to find the value of M(p), yielding:

Corollary 1 For each positive integer p, there exists a deterministic algorithm
to determine the value of M(p).

Inspired by our technique to prove Theorem 3 we will finally be able to prove
an upper bound for the q0 defined in Theorem 1:

Theorem 4 If p and q are positive integers such that

q > 14p10, (1)

then M(p, q) = Mq(p).

Remark: This yields another method to calculate M(p): Simply choose for each
q′ ∈ Z/(pZ) the least q ≡ q′ mod p satisfying (1), calculate M(p, q) for these
values (this is possible in finitely many steps, see [3]) and determine the maximum
over these values. The procedure described in the proof of Theorem 3 could yield
a much more efficient algorithm, if implemented in an elegant manner.
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2 Preliminaries: Kaplan’s lemma revisited

Recall that p and q are coprime positive integers. Let 0 ≤ [i]p < q and 0 ≤ [i]q < p
be such that [i]p ≡ ip−1(mod q) and [i]q ≡ iq−1(mod p). Note that for 0 ≤ i < pq
we have [i]pp+ [i]qq = i or otherwise [i]pp+ [i]qq = i+ pq depending on whether
[i]pp + [i]qq is greater or smaller than pq. Especially, [1]pp + [1]qq = 1 + pq. We
will use Kaplan’s lemma [5] in the following form:

Lemma 1 Let p, q, r be pairwise coprime positive integers and k ≥ 0 be an inte-
ger. Furthermore, we put

bi =


1 if [i]p < [1]p, [i]q < [1]q and [i]pp+ [i]qq ≤ k/r;

−1 if [i]p ≥ [1]p, [i]q ≥ [1]q and [i]pp+ [i]qq − pq ≤ k/r;

0 otherwise.

We have

ap,q,r(k) =

p−1∑
m=0

(bf(m) − bf(m+q)), (2)

where f(m) is the unique integer such that f(m) ≡ r−1(k − m)(mod pq) and
0 ≤ f(m) < pq.

We introduce 0 ≤ a, b < pq with a ≡ −r−1(mod pq) and b ≡ kr−1(mod pq),
implying f(m) ≡ am + b(mod pq). Let s be an irrational integer with bk/rc <
pqs < bk/rc+ 1. Note that

[i]pp+ [i]qq ≤
k

r
and [i]pp+ [i]qq − pq ≤

k

r

are equivalent to
[i]p
q

+
[i]q
p
< s and

[i]p
q

+
[i]q
p
< s+ 1,

respectively.
Since M(p, q) = max{|ap,q,r(k)| : r ≥ 1, k ≥ 0, (pq, r) = 1}, we now regard

p, q as fixed and k, r as varying. We can remove k and r from the conditions of the
lemma and formulate the conditions in the lemma only using p, q, a, b and s. On
the other hand, given any triple a, b, s where a ∈ (Z/pqZ)∗, b ∈ Z/pqZ and s is a
positive irrational number, we can easily find k, r such that a ≡ −r−1(mod pq),
b ≡ kr−1(mod pq) and bk/rc < pqs < bk/rc+1 (simply choose r > pq, (r, pq) = 1,
with r ≡ −a−1(mod pq) and take a k ∈ (bpqscr, bpqscr+r) with k ≡ br(mod pq),
which is possible since the length of this interval is greater than pq). Therefore
from Lemma 1 and the above argument we infer the following result regarding
M(p, q).

Lemma 2 Let p, q be coprime positive integers, a ∈ (Z/pqZ)∗, b ∈ Z/pqZ and
s ∈ R+ \Q and 0 ≤ f(m) < pq with f(m) ≡ am+ b(mod pq). Let

bi =


1 if [i]p < [1]p, [i]q < [1]q and

[i]p
q

+ [i]q
p
< s;

−1 if [i]p ≥ [1]p, [i]q ≥ [1]q and
[i]p
q

+ [i]q
p
< s+ 1;

0 otherwise.
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Then
∑p−1

m=0(bf(m) − bf(m+q)) is the value of ap,q,r(k) for appropriately chosen k
and r. We have

M(p, q) = max{
∣∣ p−1∑
m=0

(bf(m) − bf(m+q))
∣∣ : a ∈ (Z/pqZ)∗, b ∈ Z/pqZ, s ∈ R+ \Q}.

3 Proof of Theorem 1

In the following paragraph we fix coprime positive integers p, q′ and choose a
q ≡ q′(mod p). For notational convenience we put ρ = [1]p and σ = [1]q.

Let Tq : Z/pqZ→ [0, 1)2 denote the map into the unit square given by

Tq(i) = (tx(i), ty(i)) :=

(
[i]p
q
,
[i]q
p

)
.

For ease of formulation we will say “i lies in...” instead of “Tq(i) lies in...”. By
the Chinese remainder theorem the image of Tq equals

Γ := {(x, y) ∈ [0, 1)2 : qx, py ∈ Z}.

Put
diag = {(x, y) ∈ R2 : x+ y = 1},

i.e. diag is the diagonal through the upper left and lower right vertex of the unit
square. Since ρp+σq = 1+pq we have tx(1)+ty(1) = ρ/q+σ/p = 1+1/pq. Note
that Tq(1) is the element of Γ above diag with the least distance to diag (since
any other i lying above diag satisfies tx(i) + ty(i) = 1 + i/pq > 1 + 1/pq). Define
Z = (1− σ/p, σ/p). Observe that Z does not belong to Γ and is the intersection
point of the lines l := {(x, σ/p) ∈ R2} and diag.

There is no element of Γ between Z and Tq(1), because such a point would
have a smaller distance to diag than Tq(1). Therefore the ”left neighbor” of Tq(1)
in Γ (i.e., the point with coordinates (tx(1) − 1/q, ty(1))) lies left of Z, which
implies (ρ− 1)/q < 1− σ/p < ρ/q. Let h be the vertical line passing through Z.
Observe that the coordinate equation of h is given by x = 1 − σ/p, so no point
of Γ lies on h. The conditions [i]p < ρ, [i]q < σ and [i]p ≥ ρ, [i]q ≥ σ appearing
in Lemma 1 are equivalent to ”i lies beneath l and left of h” and ”i lies above or
on l and right of h”, respectively. Define

s+ = {(x, y) ∈ R2 : x+ y < s} and s− = {(x, y) ∈ R2 : x+ y < s+ 1}.

Let
G+ = {(x, y) ∈ [0, 1)2 : x+ y < s, x < 1− σ

p
, y <

σ

p
}

and
G− = {(x, y) ∈ [0, 1)2 : x+ y < s+ 1, x > 1− σ

p
, y ≥ σ

p
}

be the polygons which are bounded by the lines x = 0, y = 0, h, l, s+, respectively
x = 1, y = 1, h, l, s−. Their definitions depend only on p, q′ and s, but not on q
itself as long as q ≡ q′(mod p) because σ = [1]q ≡ q−1 ≡ q′−1(mod p) depends
only on p and q′. We will call the pair G = (G+, G−) a polygon pair.
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With these definitions we can alternatively write bi as

bi =


1 if i lies in G+;

−1 if i lies in G−;

0 otherwise.

(3)

We will now describe the behavior of Tq(f(m)). From now on we will regard
[0, 1)2 as (R/Z)2, then Tq is a linear map and, since f(0), f(1), . . . , f(p− 1) is an
arithmetic progression,

S+ := (Tq(f(0)), Tq(f(1)), . . . , Tq(f(p− 1)))

is also an arithmetic progression on (R/Z)2, starting at an arbitrary Tq(b) ∈ Γ

and being continued by a vector ~Tq(a) = ([a]p/q, [a]q/p)
t which is only subject to

the condition that [a]p and [a]q are coprime to q and p, respectively. Furthermore,

[f(m+ q)]p ≡ (am+ aq + b)p−1 ≡ (am+ b)p−1 ≡ [f(m)]p(mod q)

and
[f(m+ q)]q ≡ (f(m) + aq)q−1 ≡ [f(m)]q + q[a]q(mod p).

This means that we obtain the points of the arithmetic progression

S− := (Tq(f(q)), Tq(f(q + 1)), . . . , Tq(f(q + p− 1)))

by translating the points S+ by the vector (0, q[a]q/p)
t. By combining (2) and

(3) and using the introduced notation, we obtain:

ap,q,r(k) = |G+ ∩ S+|+ |G− ∩ S−| − |G+ ∩ S−| − |G− ∩ S+|. (4)

Especially,

M(p, q) = max{||G+ ∩ S+|+ |G− ∩ S−| − |G+ ∩ S−| − |G− ∩ S+||},

where a, b and s range over their whole domains, which means that (S+, S−)
ranges over every pair of arithmetic sequences (B,B+~v,B+2~v, . . . , B+(p−1)~v) ∈
Γp and (C,C + ~v, C + 2~v, . . . , C + (p− 1)~v) ∈ Γp subject to the constraints that
its generating vector ~v = (vx, vy)

t fulfills gcd(qvx, q) = 1, gcd(pvy, p) = 1 and that
C = B + (0, qvy). We will call such a pair of sequences a q-legal sequence.
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Define Ω = {(x, y) ∈ [0, 1)2 : x ∈ Q \ {1 − σ/p}, py ∈ Z}. Note that
the definition of Ω (and G± as we have seen before) depends only on p and
q′, but not on q as long as q ≡ q′(mod p). We will now consider the pairs of
sequences S+ = (B,B + ~v,B + 2~v, . . . , B + (p− 1)~v) ∈ Ωp and S−(C,C + ~v, C +
2~v, . . . , C + (p − 1)~v) ∈ Ωp such that ~v = (vx, vy)

t fulfills gcd(pvy, p) = 1 and
C = B + (0, qvy) (since qvy ≡ q′vy(mod p) this definition does also depend only
on p and q′). Those pairs of sequences are called legal sequences. For every
polygon pair G = (G+, G−) and legal or q-legal sequence S = (S+, S−) let χG(S)
denote the value |G+∩S+|+|G−∩S−|−|G+∩S−|−|G−∩S+| (we will call this value
the characteristic of S). We define mq(p) to be the absolute maximum of χG(S)
where S ranges over the legal sequences and G ranges over all polygon pairs. This
is another definition which depends only on p and q′ so that we can equivalently
write mq′(p). We will see at the end of this proof that mq(p) = Mq(p).

Obviously, Γ ⊂ Ω and any q-legal sequence is legal. This means that:

M(p, q) = max{|χG(S)| : S is q-legal, G is a polygon pair}
≤ max{|χG(S)| : S is legal, G is a polygon pair} = mq′(p).

(5)

Now we will show that, on the other hand, M(p, q) ≥ mq′(p) for any large enough
q with q ≡ q′(mod p). Let (S,G) be a pair, consisting of a legal sequence S and
a polygon pair G, such that |χG(S)| is maximal (i. e. = mq(p)).

For each F ∈ Ω we will call the unique set H(F ) ∈ {G+, G−,Ω\(G+∪G−)} in
which F is contained, the home of F . First, we show that there is an ε > 0 such
that for each F = (fx, fy) ∈ S all the points of NF = Ω∩{(fx+µ, fy) : 0 ≤ µ < ε},
the ”right neighborhood” of F , lie in the home of F .
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This follows from the fact that the only points not having a right neighborhood
lying in their home are those on the right boundary of the unit square, G+ or
G−. But these right boundaries consist solely of the lines s+, s−, h and x = 1,
which contain no point of Ω because the equations x + y = s and x + y = s + 1
which describe s+ and s− have no rational solution (note that we defined s to be
irrational) and the line h given by x = 1− σ/p as well as the right boundary of
the unit square contain no point of Ω by the definition of Ω. So each F ∈ Ω has
a right boundary of the form NF = Ω ∩ {(fx + µ, fy) : 0 ≤ µ < εF} for some εF ,
and ε := minF∈S{εF} fulfills the required property.

The Jacobsthal-function of an integer n, is the least positive integer such that
among any j(n) consecutive integers, there is at least one integer coprime to n.
Kanold [4] showed that j(n) ≤ 2ω(n), where ω(n) denotes the number of distinct
prime divisors of n. Note that

j(n)2

n
≤ 4ω(n)

n
≤
∏
p|n

4

p
≤ 4

2
· 4

3
< 3. (6)

It follows from this that j(n) = O(
√
n) and hence we can choose a q0 ≡ q′(mod p)

with j(q)/q < ε/p for all q ≥ q0 with q ≡ q′(mod p). We will now consider such
a q.

Let B = (bx, by) be the first point in the arithmetic progression S+. There
is an integer in the interval [qbx, qbx + 1), say w. Note that B′ := (w/q, by)
is contained in Γ and lies less than ε/p to the right of B, since 1/q < j(q)/q
and, by assumption, j(q)/q < ε/p. Let ~v = (vx, vy)

t be the generating vector
of S+ = (B,B + ~v, . . . , B + (p − 1)~v). There is an integer ν coprime to q in
the interval [qvx, qvx + j(q)) since it contains at least j(q) different integers. Set

~v′ := (ν/q, vy)
t which deviates from ~v by a vector ~δ pointing straight along the x-

axis in positive direction and having length smaller than ε/p, since by assumption
j(q)/q < ε/p.

Note that ~v′ is a permitted vector for a q-legal sequence since gcd(ν, q) = 1 by
the definition of ν and gcd(pvy, p) = 1 since by assumption S is a legal sequence.
Especially every point B′ + k~v′ in S ′+ := (B′, B′ + ~v′, ..., B′ + (p − 1)~v′) with
0 ≤ k ≤ p− 1 belongs to Γ, because the components of the vector ~v′ are integral
multiples of 1/q and 1/p respectively, implying that the translation by ~v′ maps
points of Γ to points of Γ.

Furthermore, every point B′ + k~v′ in S ′+ = (B′, B′ + ~v′, . . . , B′ + (p − 1)~v′)
with 0 ≤ k ≤ p − 1 is obtained from its corresponding B + k~v ∈ S+ by a
translation to the right with absolute value equal to |B′−B|+k|~δ| < (k+1)ε/p ≤
pε/p = ε which means that B′ + k~v′ lies in NB+k~v. If we define S ′− as the
image of S ′+ under the translation with vector (0, q′vy)

t (this is the vector which
maps S+ to S−), then each point F ′ ∈ S ′− lies also in NF , where F appears at
the same position in the tuple S− as F ′ does in S ′−. Thus, every F ′ ∈ S ′ lies
in the home of its corresponding F and thus, contributes in the same way to
the values |G+ ∩ S ′+|, |G− ∩ S ′−|, |G+ ∩ S ′−| and |G− ∩ S ′+| as F contributes to
|G+ ∩ S+|, |G− ∩ S−|, |G+ ∩ S−| and |G− ∩ S+|, respectively. As a consequence
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we have that

χG(S ′) = |G+ ∩ S ′+|+ |G− ∩ S ′−| − |G+ ∩ S ′−| − |G− ∩ S ′+|
= |G+ ∩ S+|+ |G− ∩ S−| − |G+ ∩ S−| − |G− ∩ S+| = χG(S)

for every G.
But since the components of the vector mapping S+ onto S− are integral

multiples of 1/q and 1/p, we deduce that this vector maps Γ onto Γ so that all
points in S ′ lie in Γ and, since v′ fulfills also the coprimality condition, S ′ is
q-legal.

So, finally

M(p, q) = max{|χG(S∗)| : S∗ is q-legal, G∗ is a polygon pair}
≥ |χG(S ′)| = |χG(S)| = mq′(p) (7)

Together with (5), this implies mq′(p) = M(p, q) for q large enough, and shows
that mq′(p) is the maximum of M(p, q), where q ranges over all the positive
integers in the residue class of q′(mod p). So mq′(p) = Mq′(p) and the theorem
follows. 2

4 Proof of Theorem 2

Elder [2] established the following lemma (generalizing an earlier lemma of Kaplan
[5]).

Lemma 3 Let a, b, c be positive coprime integers and d > a + b − 1 with d ≡
±c(mod ab). Then |A(a, b, c)| ≤ |A(a, b, d)|.

Proof of Theorem 2. Choose a q ≡ q′(mod p) with M(p, q) = Mq′(p) and let
r be a positive integer with |A(p, q, r)| = M(p, q) = Mq′(p). Choose some s ≡
−q(mod pr) with s > p + r − 1. Then Mq′(p) = |A(p, q, r)| ≤ |A(p, s, r)| ≤
M(p, s) ≤Ms(p) = M−q′(p). So for every q′ ∈ Z coprime to p, we have Mq′(p) ≤
M−q′(p). But the same line of thought, applied to −q′ instead of q′, leads to
M−q′(p) ≤Mq′(p), immediately yielding the theorem. 2

5 Proof of Theorem 3

In Section 3 it was observed that Mq(p) is the absolute maximum of the charac-
teristic of a legal sequence on Ω. We will now describe a procedure which could
be transformed into an algorithm to determine this value.

First, fix the y-coordinates of the first element B = (bx, by) of S+ = (B,B +
~v, . . . , B + (p − 1)~v) and the y-coordinate of the generating vector ~v = (vx, vy)

t,
where we assume w.l.o.g. that vx and vy lie in [0, 1) (note that by the definitions
of Ω and legal sequences, there are p possibilities for the first choice and φ(p)
for the second, so we can apply the following procedure for all these pφ(p) cases
separately).
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Now we consider the three continuous degrees of freedom bx, vx and s. They
determine χG(S) uniquely. Forget for a moment the constraints on bx, vx, s which
are:

bx, vx ∈ Q
s ∈ R+ \Q and

bx + kvx 6≡ 1− σ

p
(mod 1), k = 0, 1, . . . , p− 1. (8)

Assume that bx, vx and s are arbitrary real numbers in [0, 1) and imagine the unit
cube (R/Z)3 to be their domain. Define

S+ =: (B0, B1, . . . , Bp−1) and S− =: (Bp, Bp+2 . . . , B2p−1).

For each 0 ≤ k ≤ 2p− 1, regard Bk as a linear function in bx, vx, namely the
one which assigns the position of Bk to a given pair (bx, vx). Now define

P+(k) = {(bx, vx, s) : Bk(bx, vx) ∈ G+} and P−(k) = {(bx, vx, s) : Bk(bx, vx) ∈ G−}.

Since, for k < p, Bk = (bx + kvx, by + kvy) lies in G+ exactly if

• bx + kvx + by + kvy < s;

• 0 < bx + kvx < 1− σ/p;

• 0 < by + kvy < σ/p

(where the conditions have to be interpreted modulo 1) and we have analogous
conditions for k ≥ p, we see that P+(k) is described entirely by linear inequalities
with rational coefficients in (bx, vx, s) and thus is a set which can be described
as a union of polyhedra in the unit cube. The same result applies also to P−(k).
Now define the function

χ(bx, vx, s) = |{k < p : (bx, vx, s) ∈ P+(k)}|+ |{k ≥ p : (bx, vx, s) ∈ P−(k)}|

−|{k < p : (bx, vx, s) ∈ P−(k)}| − |{k ≥ p : (bx, vx, s) ∈ P+(k)}|,

which is obviously the characteristic of the sequence with these particular values
of (bx, vx, s). With this terminology Mq(p) is the maximum absolute value of χ,
where bx, vx, s are subject to the constraints mentioned before. We can now apply
an algorithm to determine the finitely many different parts of the cube which we
obtain when we dissect it at the boundaries of the polyhedra P+(k) and P−(k).
For each of these parts, we can check easily in which of these polyhedra it is
contained and thereby calculate its characteristic (more precisely, the common
characteristic of all the points it contains). Now we show that Mq(p) is the
maximum of the absolute value of the characteristic taken over all parts of the
cube with positive volume (this latter restriction excludes the exceptional parts
of the dissection with dimension < 3 which occur e.g. when some polyhedra only
share a face, edge or vertex), a value which we can directly read off from our
previous computations.
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It suffices to show that in each component with positive volume there is a
point satisfying the restrictions stated in (8), thus representing a legal sequence
and that, conversely, any point satisfying these restrictions lies in a part of this
dissection with positive volume. The former is trivial because the set of triples
satisfying the restriction is dense in [0, 1)3.

The latter can be deduced from the observation which we made in the proof
of Theorem 1 that for each legal sequence there is a small ε > 0 with the property
that we can increase vx and bx by arbitrary values not greater than ε, such that
no point of the legal sequence leaves its home.

This implies that, for each point P = (bx, vx, s) in the dissected cube satisfying
the restriction (8), all the points (bx+w1, vx+w2, s) with arbitrary 0 ≤ w1, w2 ≤ ε
lie in the same part of the dissection as P . Now consider the minimum d of the
distance from a point in the legal sequence represented by P to one of the lines
s+, s− (which were defined by x + y = s and x + y = s + 1, respectively). Then
d is positive as no point of a legal sequence lies on s+ or s−. Assume w.l.o.g.
that ε < d/(p+ 1). If we increase bx, vx by w1, w2 ≤ ε each point of the sequence
is translated by a vector with modulus ≤ w1 + (p − 1)w2 < pε. By the triangle
inequality, the distance of any of these points to s+ or s− does not decrease to
less than d− pε > (p+ 1)ε− pε = ε and we are able to increase the value of s by
any value 0 < w3 < ε without letting s+ or s− cross any point of the sequence.
This implies that the whole cube

V := {(bx + w1, vx + w2, s+ w3) : 0 ≤ w1, w2, w3 ≤ ε}

lies in the same part of the dissection as P which proves the claim made above
and therefore shows that we can compute Mq(p) algorithmically in the previously
described way, completing the proof of Theorem 3 and yielding Corollary 1. 2

6 Proof of Theorem 4

Recall that, in the definition of the dissection of the unit cube in the previous
section, the planes dissecting the cube were given by equations of the form:

bx + kvx +$s = m/p (9)

Here 0 ≤ k < p is an integer, $ ∈ {−1; 0} and m/p ≡ α mod 1 with α ∈
{0,−σ/p, by + kvy}, so m is also an integer. In addition, the boundary of the
cube is described by the equations bx = 0, bx = 1, vx = 0, vx = 1, s = 0 and s = 1.
If a point V (bx, vx, s) is the point of intersection of three such planes of the form
(9), then it is obtained as the unique solution of the linear system of equations:1 k1 $1

1 k2 $2

1 k3 $3

bxvx
s

 =

m1/p
m2/p
m3/p

 (10)
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By applying Cramer’s Rule, we obtain:

bx =

∣∣∣∣∣∣
m1/p k1 $1

m2/p k2 $2

m3/p k3 $3

∣∣∣∣∣∣∣∣∣∣∣∣
1 k1 $1

1 k2 $2

1 k3 $3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m1 k1 $1

m2 k2 $2

m3 k3 $3

∣∣∣∣∣∣
p

∣∣∣∣∣∣
1 k1 $1

1 k2 $2

1 k3 $3

∣∣∣∣∣∣
as well as:

vx =

∣∣∣∣∣∣
1 m1 $1

1 m2 $2

1 m3 $3

∣∣∣∣∣∣
p

∣∣∣∣∣∣
1 k1 $1

1 k2 $2

1 k3 $3

∣∣∣∣∣∣
Observe that, the numerators in both fractional expressions are determinants

of matrices with integral entries and therefore integers, while the denominators
are both of the form p% where % is an integer between 0 and p− 1. This can be
deduced from the fact that for all values $i equal, the determinant would be zero,
violating the assumption that the three planes intersect in a single point, and,
whenever one or two of the values $1, $2, $3 are nonzero, then the determinant
is given by % = ki − kj for i, j ∈ {1, 2, 3}. It is easy to see that bx, vx are still
rationals with denominator p% when one or more of the three planes are replaced
by faces of the cube.

Let P be a polyhedron of the dissection associated to Mq(p). Since it is a
nondegenerate convex polyhedron with positive volume, its boundary contains
at least 4 vertices, which are denoted (together with their respective coordi-
nates) A(A1, A2, A3), B(A1, A2, A3), C(C1, C2, C3) and D(D1, D2, D3). Each of
these points is the intersection of three planes of the dissection (including the
faces of the unit cube). Hence we can write Ai = ai

pα
, Bi = bi

pβ
, Ci = ci

pγ
and

Di = di
pδ

for i = 1, 2 with ai, bi, ci, di, α, β, γ, δ integers such that 0 < α, β, γ, δ < p.

Let π be the projection (bx, vx, s) 7→ (bx, vx). This projection maps P to a
convex polygon P ′ with positive volume. Define A′, B′, C ′, D′ as the projections
of A,B,C,D. We assume that A,B,C have been chosen in such a way that
A′, B′, C ′ are not collinear (this is possible because, otherwise, all vertices of P ′
would lie on the same line, forcing P ′ to have zero area). The area F of the
triangle A′B′C ′ is given by the formula:

F =
1

2
|A1B2 +B1C2 + C1A2 − A1C2 − C1B2 −B1A2|

=
1

2

∣∣∣∣ a1b2p2αβ
+

b1c2
p2βγ

+
c1a2
p2γα

− a1c2
p2αγ

− c1b2
p2γβ

− b1a2
p2βα

∣∣∣∣ (11)

=
l

2p2αβγ

Here l denotes a positive integer. Thus, l ≥ 1, which yields, together with
α, β, γ < p, the estimate:

F >
1

2p5
(12)
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On the other hand, the circumference U of the triangle cannot be greater than
3
√

2 because every side of the triangle is a line segment inside the unit square and
cannot be longer than

√
2, the length of its diagonal. By means of the well-known

formula 2F = rU , this gives us a lower estimate for r, the radius of its incircle:

r =
2F

U
>

1

3
√

2p5
(13)

Now for any q satisfying the required inequality (1) we have:√
1 + j(q)2

q
≤
√

3q

q
=

√
3

q
<

2

3
√

2p5
< 2r,

where we used that (6) implies that j(q)2 + 1 ≤ 3q. Observe that the left side
equals the length of the diagonal of a rectangle with sides of length 1/q and
j(q)/q, while the right side equals the diameter of the circle. Since a diagonal
of a rectangle is a diameter of its respective circumcircle, every rectangle can be
embedded in a circle with diameter greater than that diagonal. In particular, it
is possible to place a rectangle with sides of length 1/q and j(q)/q parallel to the
bx- and vx-coordinate axes, respectively, inside the incircle of the triangle.

By the definition of j(q), this rectangle contains a point p′ with coordinates
(b/q, v/q), where b, v denote integers in ]0, q[ with v coprime to q. Since p′ lies
in P ′, there is a point p = (b/q, v/q, s) ∈ P with π(p) = p′. Now observe that
this point p together with the choice of by and vy, which was made a priori (see
the beginning of the proof of Theorem 3), specifies a q-legal sequence S whose
characteristic value equals Mq(p) because of the choice of the polygon P .

This implies that M(p, q) ≥ χ(S) = Mq(p) and therefore M(p, q) = Mq(p), as
desired. 2
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