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On the role of the points at infinity in Iwasawa theory 

s. Haran 

§o. Introduction. 

For a number field k denote by k+ its maximal totally real 

subfield. Assume k is a eM field, i.e. k is totally imagi­
+ nary and [k:k ]=2. Let K=k(W ) , it's also a eM field, 

poo + 
and we denote by J the non-trivial automorphism of K/K . 

Let A denote the p-part of the ideal class group of K. We 

have for p*2, A=A+~A-, where J acts on A± by multipli­

cation by ±1. Greenberg's conjecture is the assertion:A+=O . 

The purpose of this paper is to generalize the above definition 

of the plus and minus parts of the ideal class group to arbi­

trary number field k, and to poke at Greenberg's conjecture 

from various elementary perspectives, showing that it amounts 

to the assertion that the points at infinity do not play any 

role in Iwasawa theory, thus perhaps making it more plausible 

at least on the philosophical level (there are no continuous 

non-constant maps from the reals into the p-adic numbers ••.• ). 

In § 1, inspired by Iwasawa's sheaves [3J, but adding the 

points at infinity into the game, we define Pic(K) and 

Pic(K;w) , the latter being just the ideal class groups of 

K, and we explore the (Kummer) duality between the torsion 

parts of these groups and certain Galois groups. We have a sur­

jective map: 

Pic(K) --~7)~) Pic(Ki oo ). 

In § 2 we specialize the situation to the case of Iwasawa 

theory, namely when K=k(W p oo
) , [k:~]< 00 , and we are in­

terested in the p-torsion parts of - Pia's. We have a map: 

(*) Pic(K)p-torsion ----~) PiC(K;oo)p-torsion . 

We then consider the case where K is eM and show that 

Greenberg's conjecture is equivalent to the assertion that 

(*) is still surjective. In § 3 we show (*) is (almost 
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always) injective and derive some simple corollaries. In § 4 

we explain how the "generalized Greenberg conjecture", i.c. 

the assertion that (*) is an isomorphism, for all k I imply 

the "cyclicity conjecture lt when k is Galois over ~ I cf.[1] 

for the case when k is abelian over ~, and [4] for the 

case when k is Galois over ~ and is a eM field. Our defi­

nitions allow one to generalize Gross's results [2], and also 

Kuzmin's duality pairings, from the case of eM fields to arbi­

trary ones. In § 5 we show that (*) is surjective if one re­

places the naive topology of § 1 by the flat quasi-finite 

Grothendieck topology(with the small site where pOints at 

infinity can easily be added). 

The author would like to thank Prof. F. Hirzebruch and to 

acknowledge the Max-Planck-Institut fur Mathematik for hospi­

tality and excellent working conditions in which this paper 

was written. 



§ 1. 

For a finite number field, k , we denote by U(k) the topolo­

gical space of all places of k, including the infinite places, 

with the co-finite topology; thus the open sets of D(k) are of 
def { the form D(k;v 1 ••• v,t) = vED(k) v~v1""v~vJ1,}. Given an ex-

tension of number fields, k'/k , we have ~ continuous map 

TIk'/k:D(k') + U(k), given by restriction of places. For a number 

field, K , of infinite degree over m, we let D(K) = lim U(k) , 
~ 

the inverse limit taken over all finite number fields k~K, with 

respect to the maps TI k, / k , and we give U(K) the inverse limit 

topology; thus the open sets of U(K) are of the form 
def -1 

U(KiV1 ... v,t) = TIK/k U(ki V1 ••• v,t), where k e K is a finite number 

field, v1 .•• v£E D(k), ~nd ~K/k: U(K) ---+ U(k) is the natural pro-
e 

jection. U(K) is quasi-compactiT1; every closed setCi U(K) is compact 
Hausdorff; U(K) is irreducible, hence every .constant sheaf is 

flasque and has trivial cohomology in positive dimensions. Given 

a finite number field k ~ K, v 1 ... V,tEU(k), let ~(K;v1'''v,t) = 
= {Ui} , Ui = U(K;v1···vi_1,vi+1···v,t); it's a covering of U(K) 

such that for i ~ j , u. n v. = U (K i v 1 ••• v) is independent of 
. . 1 J .t vp 

{l,J} , and hence for any sheaf F on U(K), H (U(K;V 1 ... v.t),F)=O, 

p ~2; as these coverings are co-final in the category of all 

COVerings HP(D(K),F) = 0, p ~ 2. 

For an open set De D(K) define: O*(U) = {fEK*jlfl = 1 for all -- . v 
v E U}, M (D) = K*; 0* and M are sheaves on U(K) ,0* ~ M, we let 

!2. = !!IQ* denote the sheaf quotient. For v E U(K) let O~ = {fEK* j 

If I = 1},V = K*/O* , these are the stalks of 0* and _V. Also, v -v -v 
given a finite number field k ~ K, v ={v 1 ••• v,t}, Vi E U(k), let 

C = U(K)'-D(K;v) , and define: V-(K) =Ho (U(K) ,V), E_(K) = HO (U(KiV) ,0*); _ -v c - v -
by omitting v we shall designate the empty set of Viis, and 

we omit K from the notation whenever it is clear from the con-

text, thus e.g .. E = roots of unity in 

of R,E, = p-units of R,E = elements 

R,E = classical units 
00 

of K that have absolute 
pm p 

value 1 away from p including at infinity. Using the exact se-

quence 
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(1. 1) *----+1 0* ----+> M ----;-; V ----+1* 

and V are f1asque, we get that and the fact that M 

HP(U(K;V),O*) =O,p~2, and -PiC(K;V)def H1 (U(K;V),Q*) is given by 
I 

div-
(1. 2) *----+1 E­

v 
------+> K* ___ ~v__+> ~(U(KiV})----+>Pic(KiV)----+>* 

I 

We denote by div- : K* v ---+) Q{U(KiV», and div-: K* v 
----+) '0-

-v 

the obvious maps, thus e. g. div' (f) 
co 

is just the ideal generated 

by f, and so Pic(Ki co ) 

Pic(Kj~) = lim Pic(k;ro), 
----+ 

is the ideal class group of K. 

the limit taken over finite k S K with 

the obvious maps, and as a direct limit of finite groups Pic(K;co) 

is a torsion group. The "minus eigenspace of the ideal class group" 

alluded to in the introduction is just Pic(K)t . • orS1.on 

For two open sets U
1

=U(K;V), U
2

=U(K;VU), c=U1'U2 , we get by the 

relative cohomology sequence for Q*, using the observations 

Hco (U,,_O*) = 0, H 1 (U 0*) = V- , H2 (U1 ,0*) = 0, the following exact 
C 1'- a C -

sequence: 

(1.3) *--+E- ---+E-~~ V- ---+ Pic(KiV) ----+Pic(KiVU) ---+* v va -a 

Thus e. g. with v empty and a = co we get: 

div 
(1. 4) *--+E ----+E 

00 

co 
-+ .'0 

-co 
----+Pic(K) ---TPic(Kjoo) ----+* 

Hence for any natural number n we get: 

(1.5) *-+( Qu./' ) [n] -+ Pic (K; v) [n] -+ Pic (Kj VU) [n] --) 
.............-div- (E--) a av 

(

1)-

-r ~-(E--) 
a av 

\-+ Pic(KiV)/n-+ Pic(K;VU)"n--T* 
np'u) /1 Il 
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From 

* I n·O* n·M ) n:V ) * 
J t~n) ~ 

* 0* M I n·V ) * 

we get 

associated to * ---+ n·O* 
we get 

and using the long cohomology sequence 

---+ 0* ---+ M(n~n.M ---+* over U(K;V), 

(1.6) * ---+ Eg ---+ E----+ M (n) (U (K; V)y'(K*) n --+ Pic (Ki v) 
v v -

Assume 

By Kummer theory we have a perfect duality 

< > (g) 

x(e) x ~(n)(U{K;V) )/Ev{K*)n ' v, 1}-1n 

Hence from the exact sequence (1.6) we get 

Proposition: x (n) 
v is dual to Pic(K;v}[n] • 

Similarly, for a super-natural number m I letting 

, = lim ~ ,Pic(K;V) [m]= lim Pic(Ki~)[n], M'!)= lim M(g), 
m~/n ~I v~1 v n m n m n m 

Corollary: Assume WmS K. x(~) is dual to Pic(Kiv)[m]. 
v 

2. Let k be a finite number field and let K=k(rp~). We apply 

the corollary of §1 with 
ClO 

m=p and with -v=poo ,<x>,P, empty 

set, respectively. We get (omitting (p<x» from our notations): 
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M = maximal ClOp p-abelian unramified-outside-p extension of K. 

N = K(E1/ p "") oop wp the field obtained by adding all p-power roots 

of all p-units to K. 

since V -p is p-divisible. 

n 
M = M = K(f 1

/
p ; div(f)Ep~V) 

p 

N = K(E 1/poo) 
p p 

N = K 

We have a diagram of fields: 

The following questions naturally 

(0) Is M = N M ? 
00 "" 

(0) p Is M = N M ? 
00 ""P 

(q) Is N OM = K ? 
00 

(q) p Is N OM = N ? cop P 

arise: 
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Assume k is a CM field. Denote by J the non-trivial auto-

morphism of k/k + • In h t is case also K=k (ll ) 
"--pw is a CM field,-

and we denote again by J the non-trivial automorphism of 

K/K+. J acts via inner conjugation on Gal(M /K). By Hilbert 
co 

* *1-J theorem 90 we have K [1 +J} = K For a place v /00 of K, 

choose an embedding crv : K t:!...--t<e , representing v, and let 

cJv denote the conjugate embedding. We have for 
* cJv <TV crv 

fEK, II{II v =f . f = (f 1+J) , hence 0* = *1-J _.v K I and cr 
v 

induces an isomorphism K*1+J~_ V . From this we see that -v 
divoo (f) Epn .• V _ co if and only if 

*1-J * pn 

f 1+J E(K*1+J)pn, or equivalently, 

if and only if fEK (K). Since Kummer duality interchanges 

the plus and minus eigenspaces for the action of J, i.e. 

n n 
<J X ,f) (~ ) = <x ,-Jf)(E ) 

v v ' 
we see that X=Gal(M/K) is the plus 

eigenspace of Gal (Moo/K) . We also have E (K)(1-J]=E (K+), and 
co . "00 

by Dirichl~t unit theorem, 1-J 
Eco(K) ~Eco(K)/E (K)[1-J] is torsion, 

. co 

hence E (K) 1-J= E(K). . co . Similarly E (K) =E (K)[1+J] 
p pro. are the 

minus p-~nits of K. From these observations it follows easily 

that (q) and (q) have an affirmative answer. Also, the restric­
p 

tion mapi x ---+ X, is surjective, and its kernel, Gal (Moo/NcoM) , 
<Xl 

is just the minus eigenspace of Xoo. Dualy, the map coming from 

the relative cohomology sequence, Pic(K)[poo] ---4 Pic (K;oo) [pool, 

is injective, and its cokernel is just the plus eigenspace of the 

p-part of the ideal class group of K, Pic(K,oo) [p<x>]1+J . Thus, 

Greenberg's conjecture is equivalent to the assertion that X ---+. X 
00 

is an isomorphism; i.e. the answer to (Q) is also affirmative. 

In [1] Greenberg shows that if all totally real fields 

layers of the cyclotomic 

Leopoldt conjecture, then 

Z -extension 
p 

N =N Np , cop co and 

satisfy the 

so (Q) follows 

from that is, the contribution to the plus eigenspace 

the 
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of Pic(Kjoo)[pOO] coming from p-ideals in trivial. 

In the classical proof of Dirichlet's unit theorem it is proved 

that the R-linear map, A : ~E (k) ---;- ~I (k) , is injec-
CIO 00 "" 

tive, where Ioo(k) is the free abelian group on k-places vl oo , 

and for eEEoo (k), AJe) = v 700 logco (lNkv IJe~~v, log 00 

log on the positive reals and is extended to all m 

is the usual 

by 

logoo(-r)=log(r) for r>o. In [2] Gross conjectures, (for 

CM fields k), that the p-adic analogue of this holds, namely the 

injectivity' of the ~ -linear map, A:O ~E (k) ---;-~ ~I (k) , 
P P P P p P 

where Ip(k) is the free abelian group on k-places vip, and 

for eEEp (k) 1 A (e) = [ log (Ek 1(0 (e») ~ v , log is 
P vip P Vi' p P 

Iwasawa's log. It is proved (for CM fields) that this is equi-

valent to X (-1) r~ Gal (Np/K) (-1)r (~z~ , r=di~p~p~Ep (k») or 

equivalently, to X (-1) ... = 0, r= Gal(K/k). p ... . 

A nice property that PicCk) has, versus Pic(kjoo) , is its 

injectivity up the cyclotomic Zp-extension K/k. Namely, from 

the exact sequence 

* ---r) E(K) ---+1 K* ---rl K* /E (K) ---rl * 

together with Hilbert theorem 90:H1 (r,K*)=O I and H1(f,E(K»=O , 

we get 

* I k*/E (k) ) V(U(k» ) Pic(k) ) * 

I - r 1 
* ) (K*/E(K» r )Q (U (K) r > Pic (Kr ) * 

Applying the snake lemma we get from this 

* ~ PicCk) + Pic(K)£' +12 (U (K) ) £' /~ (U (k) ) 1* 
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§ 3. Fix a finite number field k, and let ik:;[k:k+J. Note that, 

if denotes the layers of the cyclotomic Z -extension of 
p 

k , and that 2·i k according 

to J1 c k p- respectively. For k a eM field, the 

requirement just p*2 the familiar requirement from 

Iwasawa theory for such fields. 

Proposition: Assume Wp~' pti k , then (
V (k) ) 
-~v (k*) ,[p] =0 

0::> 

Proof. Let L2k, L/k+ Galois, and without loss of generality 

pt[L:k+]; we will prove in fact that * (D (L) / di v (k » [p] = 0 
-00 "" 

For each place of L, let J =a-- 1°cr'E Gal(L/k+) the"com-v v v 
* *1+J The map, div",:k ---+V (L)= $ L v, 

-0::> . v 1
00 

plex conjugation at v". • 

is just div (x) = ffi x1+Jv • Let 
0::> lJl«-

'" .. ."" 1 +J p.y= d~v (x), xEk*i ~.e. y =y V 
0::> V V 

We have to find x
1

Ek* 

. '" l+Jv 
~.e. Yv=X1 Let F=L(x1 / p ) • 

y=(y )E V (L) be such that v -0::> 

for some Y EL* 
v ' 

and 

such that y=div",(x1 ) ; 

If F=L, xl/PEL then 

since pt[L:kJ, X
1 / PEk, and we can take we have 

y P=(X
1

1+J I),)p , v . 

and positive at 

and since both 

I), y"-l -X 1 +J v 
v- 1 

and are real 

So assume F*L, and let god.. 

denote the natural action of gEGal (L/k +) on a:EGal (F /L) via 

inner conjugation. Since mod(L*)P, we get J o~:::: rf, 
I) 

for all . v I 00 • Since " XEk* and flp£k, we get ho~ (t; 

+ for all hEGal(L/k). Thus(Gal L/k} acts trivially on 

Gal(F/L), and since these groups have relatively prime car-

dinalities, the central extension + * ---+ Gal (F/L) --+ Gal (F/k )--+ 

splits; i.e. x=Xo with 

Since ePEk even eEk. We have now 
2 1 +JV ) P • 

:::: Xo .(e Setting 
. ...., 1+3 

wI) = Yv /e v, 
2 = Xo I hence WvEk , and is independent of the 
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place v up to multiplication by a th p---root of unity; more-

over (since Let now 1/2 x
1 

=w • e, then 

v 00 (kl.-- ) Corollary: (-~ [ ] 
divoo(Eoo(k» p 

Proof. We have only to verify that 

( diVoo (k1- )[p] = (~ ) [p] = 0 
~div (E (k» k-E (k) 

IX) 00 ro 

k-=ker {diVoo:k* ---+ ~oo}. This follows since 

k*/E(k)~ Eoo(k)/E(k) Ei) k-/E(k) Ei) k*/k-(E (k» . 
00 

Similarly for the second assertion. 

where 

Let K=k(_1 ). By the above corollary, and the remark at the rpoo 
beginning of § 3, we get for pfi

k : 

( V ~ ) [pool = 0 
-00 div (E (K» 

00 poo 
By the sequence (1.5), we get an affirmative answers to 

(q) and (q) • 
p 

Corollary: 

Pic(K) [poo]~ Pic(KiO:;) [poo] , Pic(KiP) IpCO]~ Pic(KiPro} [pOOl , are 

injections, or dualy x~ X, X ~"-x 
00 p. ------- P' 

Since is a finitely generated torsion 

r=Gal(K/k), we get 

are surjections. 

A =If{; [[1'.11 
p 

module , 

Corollary: X is a finitely generated torsion A-module. 
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Greenberg's conjecture (0), i.e. the surjectivity of 

Pic (K) [p ""J----... Pic (Ki oo ) [pro J is now equivalent to the surjec-

tivityof Pic(K) [pn] ~Pic(K;oo) [pn] for all n, and this, 

v~the sequence (1.5), is equivalent to the injectivity of 

v (K) 

~(E (K»·pn V (K) 
00 00 -00 

• 

Writing this explicitly and applying once more the above propo-

sition, we get that (0) is equivalent to the "down-to-earth" 

assertion: 

(0)' given fEK*, such that its associated ideal, div' (f) , 
00 

is a pn thpower there exists gEK*, and a unit eEEoo (K) , 
n 

such that divoo(f) = divoo(gP .e). 

§ 4. Fix a finite number field k such that ~p~k and k is Galois 

over ~. For simplicity we assume also ptik. Let 

8=Gal(k/O), 8-=Gal(k:/~),K=~ ), r=Gal(K/k), G=Gal(K/~), 
. n P'" 

G-=Gal(K/k+)i , but in general the central 

extension 

* --~f'r --~~G --~+- * 

.. 

does not split. Let A =Z [[r]] Q=Z [[GD p 'p 

For any ~ -module 
p 

M , set M=M® ~ • 
Z P 

P 

We have 

is a principal ideal domain; and A is a central subalgebra of 

n, n is a free A-module of rank [k:~] • Let 

til: A----'1; Gal (fHl'p) 10) - ~ JPp-1' l;0= l;w (0) for l;EtJp' oEf), • 

- + Denote by, sgn:8 ---+{-1} , the restriction of W to 8-
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Let AO=ker{sgn: A- ~{±1}} =Gal(k/kO) 

maximal CM subfield of k. Let 

where kO is the 

denote the associated idempotent; it can be viewed as an element 

-of n, or as an el'ement of the center of n. Let 

Y=Gal(M /K), M the maximal p-abelian p-ramified extension of 
00 00 

K i y is a ~p-module on which G acts continuously via inner 

conjugation, hence it is an n-module. Let Y-=S-Y, again an 

n-module,and denote by M the subfield of Moo such that 

Y-=Gal(M:/K). Let Y~ denote the A-torsion submodule of 

Y-, and set Z = Y-/Y~ . 

4.1) Theorem: For every non-zero prime p- of A . 

as Q -modules. 

4.2) Corallary: For every non-zero fEA, Z/f·Z is a cyclic Q-module. 

4.3) 

Proof of theorem: Let 

of k* at p. It is 

U= n 0* ,O~ the units of the completion 
pip P P 

easily verified that n~ Qp[A] as 

0p[A]-module. Class field theory gives us a ~p[A]-surjection 

'" - ..... U »Gal (Mo/k) , where Mo is the maximal subextension 

of M which is abelian over k. Note that we have 
00 

a ~ [A)-surjection: p 

Let 

S U 

o 0 K =k (ll ) I 
'-po:> 

and let 

- '" '" = Gal(Mo/K) = Zr . Thus we have 

ZO be associated to just 

as Z was associated to K, then by [1],20 is a free 

A-module of rank + [k : ~] , from which we deduce: 
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dim~ Zr ~ [k+:~] 
p 

On the other hand, + 
= [k :/D] I 

hence (4.3) is an isomorphism, and the proof of the theorem is 

finished via the following, 

'" Lemma [4]: Let Z1' Z2 be two Q-modules, free of finite rank 

as A-modules, and such that (Z1)r~(Z2)r' as ~p[6]-modules. 

Then, for every non-zero prime p of A, 

as n-modules • 

Let T denote the Tate module of Pic(K), T=Hom (~p/~p I Pic (K» 

n-module, 
,..., -Then, as T~al (L/1<>"", where L =maximal subextension 

of M unramified over K . Assuming K+ satisfies Greenberg's 
co 

conjecture, and that all the fields satisfy Leopoldt's 

Y~ under 

. 

conjecture, it follows that the image of 

y- ~~ Gal (L-/K) has bounded exponent [1; Proof of Theorems 5], 

hence that we have an 
,..., . . 
n-surJect~on As is well known, 

T is a finitely generated torsion A-module, hence foT = 0 for 

some f E A, and we get an n-surjection 
'" ,.., 
Z/f·Z --+)~)o T • 

By corollary (4.2) we see that T is a cyclic n-module. If K 

satisfies (0), T = Hom (IDp/Zp' PicCKioo») is the Tate module of 

the ideal class group of K, and it also follows that K+ sa-

tisfies Greenberg's conjecture, thus we get 

4.4)Theorem: If (0) has an affirmative answer, and if all the fields 

k(t pn )+ satisfy Leopoldt's conjecture, then 

1s a cyclic n-module, 
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§ 5. The moral of § 3 is that we can glue the places at infinity to­

gether without much loss. So let UV(K) denote the topological 

(5. 1 ) 

space obtained from U(K) by glueing together all the points 

at infinity into one point which we shall denote by W Let 

XV; U (K) -- U V(K) denote the glueing map, and let 0 * denote 

the sheaf 1(" V 0* on UV (K) i away from infinity nothing chan-* -
ges: Q*{UV(K;oo-)} = Q*(U(K;ooV»; at infinity we have stalk 

Let Af denote the constant sheaf K* 

as beror, and define VV as the sheaf cokernel 

*--~O * ----r * The stalk of at is 

just VV = K*/O = div (K*)= V • We have 
--00 _00 00 ---0;) 

PicV(Kioo) d;f Hi (UV(KjOO), O*}= Pic(Kjw), and from the diagram 

.Q*)~ * 

* -- 0*) -;,. * 

where the top row is the analouge of the relative cohomology 

sequence (1.4) for UV (or equivalently, from the Leray spec­

tral sequence for XV), we get for PiCV(K)d~fHi(UV(K)/Q*) 

The point is that by the proposition of § 3, for 

has no p-torsion, hence 

* 
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These remark will motivate the definition below, where we need 

infinity to be glued for some technical reasons (see the proof 

of the Descent Lemma below). 

Fix a finite number field k. Let U(k) denote the Grothen-

dieck topology with objects Y=(spec By'Sy)' where By is a 

flat, quasi-finite, seperated, locally of finite type, o -al­
k 

gebrai hence B ~ ~= n L., where L. /k is a finite exten-
y iE1 1. 1. 

sion of number fields, and 1=1 is the finite set of compo­y 

nents of Y i Sy~Iy is just a subset to be thought of as added 

points at infinity_ Maps in U{k) are the usual maps of 

spec's. Coverings of U(k) are finite "surjective" families 

where by surjective we mean the usual faithfully flatness on 

the finite part and the surjectivity of the induced map on 

the points at infinity_ 

Remark: If one is interested only in the p-torsion part of 

Pic(K)=H1 (U(K) ,0*) , one can also impose the condition on By 

that it will be etale outside p. 

'" Note that U(k) has fibre products hence finite inverse limit 

exist in U(k) 

BX xY = By ~ 

1Y 2 1 By 

and Sy X'y = 
1Y 2 

Namely, given 

By I and there 
2 

y.~ y, 
1. 

are maps 

-1 -1 
~1 (Sy) nC:2 (Sy ) 

1 2 

i=1,2, we have 

U(k) has a final object (spec 0k'~) which we shall denote 

by uv' (k) • 
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If k'/k is a finite extension of finite fields, then 

U (k') = U (k) /U V (k')~ U (k), and we have a continuous map 

of topologies n 
k' /k 

lI(k') -;> U(k),n- 1 (Y)=Yx UV(k'), 
k' /k ,/ UV(k) 

YEObj U(k) . 

If K is a number field of infinite degree over ~, let 
,..., 
U(K) = lim U(k), the limit taken over finite k~K with --;;... 

respect to the maps nk'/k' and we give U(K} the (inverse) 

limit Grothendieck topology. Thus for a sheaf FES(U(k» , 

letting denote the induced sheaves,we 
r-J ,..., 

have H*(U(K) ,FK) = lim H*(U(k', F ). The objects of 
~ k' 

'" U(K) can be thought of as Y=(spec By'Sy) where By is an 

algebra as above but over OK' and Sy a set of "infinite 

places"; for such a y, define Q*(Y) ={fEB~ such that 

,..., 
divoof == 0 for all 00 E Sy}. 0* is a sheaf on U(K), and 

for Y€Obj U(K) let Plc(Y)=H1 (y,0*); in particular we 

,.., '" V ,y " have Pic (K) = Pic (U· (K» and Pic (K; co) = pic (U (K; (0» . 

We say y' -->Y is an open immersion if it is so on the 

finite part, i.e. spec By '--> spec By is an open immersion. 

These open immersions induce a topology on Y which we shall 

denote simply by Y. On the other hand one has the induced 

topology Y = U(K)/y There is a continuous map of topo-

logies j:Y ~y , j-1(y') = y t viewed as element of y. 

Since finite inverse limits exists in Y, jP (pull back of 

pre-sheaves) is exact, hence j* (pull back of sheaves) is 

exact, and so its adjoint j* takes injectives to injectives 

and we get 
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Leray spectral sequenc: 

FES(Y), YEObj U(K) . 

To apply this to 0* we need, 

Descent Lemma 

Proof. Descent theory shows 

finite places of Yi fix such 

R1 . 0* J*_ 
vES • 

Y 

has support at the in­

Let fiER 1 
j,¥ Q* I v be 

open, VES'Y' . Without 

loss of generality y' and Yare connected, 

By'~~ = L, B~~ = F , F/L .Galois, G=Gal(F/L). Taking the 

limit over smaller yJ, we see that we have to compute the 

1st cohomology group of the complex of elements having 

divm=o inside the exact complex: 

*~ F*~ (F~F)* ~ (F~F~F)* . 
L L L 

This latter complex is isomorphic to the standard complex of 

G-chains with values in F*: 

crEG 

Now B is represented by 

cr,TEG 

(f )E n F* , 
o oEG 

with div (f ) = 0 
ex> 0 

for all oEG, and since a 1 (f ) = 0 
(J 

and the above complex 

1-0 is exact (Hilbert Theorem 90) we can assume f =g for o 

some gEF*. Since n g1-.0 = g[F:L]. N g-:-1 
oEG F/L , 

[F:L] divw(g) = -div ON / g), we can define 
00 F L 
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and if Div (g) = div (x) for some xtL* then 
00 00 

or (f) = aO(g/x) with div (g/x) = 0, i.e. o 00 

co-boundery. Therefor, the map 

Div",,(g), 

1-0 f =(g/x) 
o 

f is a o 

r-~>~ Div (g) (mod Z), is well 
"" 

d f " d d"" t" d by dd' th t t e ~ne an ~nJec ~ve, an a ~ng n roo s 0 L it is 

easily seen to be surjective. 

Applying the Leray spectral sequence, noting that j*Q* is 

just 0* on Y we get 

and by the Descent lemma the last term is just Jl £~Q~/Z 
VESy 

In particular, for y=UY(K;oo) we get the classical 

PicYCKi oo } = Plc(Ki oo ), and for y=UV(K) 

we get: 

From this we have 

(5.4) *--+ PicY (K) [pooj ~ Pic (K) [pOOl --> !!.~Qt1J.p/'J!, ~ 
p 

And if we want to compare the p-part of Plc(K) with our 
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original Pic(K) we get from (5.4) and (5.2): 

(5.5)*--+ Pic(K) (poo] ----+ piC(K) [poo] --+ V ~ ()2 / :> 
_00 P!7lp 

(5.8) 

--+ Pic(K)~~ L ----+ pic(K)~~ ~ ----+ * 
Pf/1,p P!:l p 

On the other hand, since D (or rather S(D» is "nothing 

more" than the mapping cone category of D(oo) and the cate-

gory of infinite places, we have a relative cohomolgy se­

quence for D, that can be compared with the relative coho­

mology sequence for UV. We get: 

div 
VV Pic V (K) PicV(K;oo)----+ * co 

* --+ E ----+ EGII ----+ :> ----+ 
-00 

1 ~ If ! t 
* ----+ E ----+ E ----+ H~(U,Q*) ;;. pic (K) ~ pic (Kjco)~". 

00 

From this we can read the bottom row, using (5.3) we get: 

--;;.~ pIc (K;"") --~;;. * 

Since the first term of (5.6) is divisible we get: 

piC(K)~m ~ 
p/~ p 

= pic (Kj (0) ~({! Iz PI). P 

To "understand" why we have no difficulty with surjectivity 
..., 

on the p-torsion part for Pic's, as opposed to the situa-

tion with Pic, note that the first term of (5.7) is nothing 
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but div (E )~G2 /Z 
"" ex> P 

P 
= E(» ~'l? /:2t 

p p' and so (5.7) can be re-

written as 

(5.9)* ~ Eoo~mp/z ~ PiC(K) [poo] ~ Pic(K;",,) [p~] ~ * 
p 

By Kummer duality the first term of this sequence is dual to 

G(N IK) , the last is dual to X =G(M IN), at least when 
00 00 OJ t':O 

~p",,£K. It is possible to check that (5.9) is just the se-

quence dual to the extension of Galois groups 

* ~ G(N IK) ~ G(M IK) <~~-- G(M IN } ~ * 
00 co co co 

i.e. that pic(K) [pOO] is dual to the "big" G(M !K) co when 

In order to give a more standard definition of Pic(K) [poo] 
n 

one can use the exact sequence * ~p --->0* ~O* ~ * 
pn 

'" n 1 "" to get Pic (K) [p ] = H (U (KJ ' ,. n); and than via the rela-
p 

tive cohomology sequence for ~ with respect to U(K) and 
pn 

U{K;""), one gets H1 (U(K), ~ ) = H1 (U(K;ro), ~ ); thus 
pn n 

00 1 "" p 
Pic(K)[p] = H (U(K;oo), W co) • 

p 
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