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This paper is devoted to a proof of the Theorem 1.1 formulated in [2]. In §1 we reformu-
late the theorem in more general form (Theorem 1.1 + Statement 1.2) and prdve it in § 2.

The proof is based on lemmas from §§ 3 — 5.

We use the notations from [1,2] and some new one. A list of them is given at the end of
the paper. Sometimes we refer the reader to the formulas from [2]. We write (2.2.3) for
the formula (2.3) from [2] and so on. We use the abbreviations r.h.s. (L.h.s} for "right—
hand—side" ("left—hand—side") and write ¢, instead of € By "¢y << 1" ("K >>1")

we mean "positive £, is small enough" (" K is large enough").

1.  Preliminary transformations.

In a symplectic Hilbert scale {2,{Z;|s € R}, a(a) = < Ez(a) dz, dz > 5} (see [1]) we

study a Hamiltonian equation with a hamiltonian
H(zae) =1 < Al(a) sz >, + ¢, H(zae,) ;
1%y 0 2 L Z 0 1@y 0 1

i. e. the equation

!

2 = 12(a)(AZ(a)s + ¢ VE(za,e) , 3%(a) = - (3%(a)) (L1)

Here a € A CC R™ is a n—dimensional parameter, £ € [0,1] is a small parameter, H is
an analytical function, Jz(a) , Az(a.) are linear operators and for some Hilbert basis

{goj:E | j2 1} of the space Z the following relations take place:



() o =% M) o7 Vi, Va, (1.2)
Az(a) <pj:E = A‘?(a) cpji Vi, Va. (1.3)

For the exact assumptions on equation (1.1) see [2].
1.1. Change of the symplectic structure.

The numbers {/\‘} (a)} are nonzero Vja and are positive for all j large enough (see
(2.1.4), (2.1.18)). So after unessential exchange cpji on tpj:F for some finite number of
‘indexes j we may suppose that ).‘1 (a) > 0 Vj,a. Let us consider a linear operator La
which maps tpjﬂ: into (A‘}(a.))l/2 tp.:’: ,i=1,2,...By flssumption (2.1.18) this opera-

J \‘
tor defines an isomorphism of the scale {Zs} of order d;/2,L, :Z 5= Zs—dJ/2 Vs . It

is selfadjoint in Z with the domain of definition Z d./2 - By Corollary 2.3 from [1] the
J

mapping L;l transforms solutions of the Hamiltonian equation (1.1) in the symplectic
Hilbert scale {2, {Z.;} ,a(a)} into solutions of a Hamiltonian equation with a

hamiltonian  J¥, (z;3,¢() = % <A (a)zz> 5 +¢e5H(zae)) in a symplectic Hilbert

scale {Z, {Z;},;(a) =< J,(2) dz, dz > ;} . Here

- Z

- Z
J(a)=1,J (a)L,, A (a)=L,A%@a)L,, H; = H(L, za,y) .

By the definition of the operator L_ and by (1.2) one has

. +__ ¥ .
J,(a) o =% ¢, Vi, Va . (1.4)



So operator J,(a) does not depend on the parameter a, J, = —(J,) -1 J; ,and a

Hamiltonian equation with the hamiltonian aq has the form
z=1J,(A(a)z + EOVHl(z;a,so)) (1.5)

and

VH, = L VH,(L, za,¢,) ' (1.6)

Let us denote by .Z(ZB; Zs ) the space of linear continuous operators from Zs to Zs
1 1
with the operator norm || - ”s, s and by L:U— HAZg Zs—dJ/2) the mapping

BL .
ab g

Lemma 1.1. For every s
Lip(L : 2 — H(Z; Zs—dJ/2)) <C. (1.7)

For every s and every a
” I‘a “ 8,8 -dJ/2 + " L;I ” 8,8 + d‘:]/2 < Cy- (2.8)

Proof. An operator L, —L
3 B

j'](al))lf 2_(x jJ(az))lf 2 For the assumptions (2.1.18), (2.2.19)

is diagonal in the basis {(pj:h} with eigenvalues

+ _
ALT = ()
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d
43 3/2
K, |a; —a,] ] K d./2
AE| < 12 <L—la—ay| i’
A RO O e

and inequality (1.7) results from (2.1.2). Inequaltiy (1.8) results from (2.1.2) and
(2.1.18). g

7
Let us demote d =d+gd; and T, =I]'T(N, %=U{T,(O)I€ 5},
-1, ¢
0% =L170,% Then
d a a “d

n
2 2 I.
+ £, 4+ - a . a
T (I) = . . . . =21. =1... I. =1-|—
J=

and by the assumption (2.1.13) and estimate (1.8)

distz(ya;z;,\o;, aL)>’S>0 Va€ea. (1.9)

By the analyticity assumption (2.1.15), Lemma 1.1 and identity (1.6) one can see that the
mappings -

H,:0% x2% x[01] —C

1 d a

(1.10)

VHI:Oc/ x2 x [0,1] — Z°,

a d —dg —d

J

are complex—analytical with respect to the first variable and Lipschitz with respect to the

second one unifomly with respect to €, € [0,1] .
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The operator A,(a) is an isomorphism of the scale {Z } of the order d;=d, + dy

and
A,(a) <pj* = A{a) wj* Vj, Va . (1.11)

7/ /
Equation (1.5) satisfies conditions 2) of the theorem with d, =d, +dy, d; =0,
/

dH = dH + dJ . So it is sufficient to prove the theorem in a case dJ =0.

1.2 A change of parameter.

The statements of the theorem are local with respect to the parameter a . So one may
replace the set 2 of parameters a by arbitrary &,—neighbourhood 2 (a,,6,) of the
point aj in . If positive 4, is sufficiently small, then for the assumptions (2.1.7),
(2.1.8) the mapping

w:A(ay,6,) — RY, ah o(a) = (A,(a),-,A ()

isa Cl—differomorphism on some neighbourhood fl, of the point w, = wy(a,) and

Lip w + Lip ol < Kl, , (1.12)
. 1
diam Q1) < K 6&, (1.13)
-1 n
K6, SmesQy<K6, . (1.14)

So Lipschité dependence on the parameter a € 2 (ao, /) a.) is equivalent to Lipschitz depen-

dence on the parameter w € ﬂo .
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1.3. A transition to angle variables

In what follows we use the notation O(Q,8,B) for the é—neighbourhood of a subset Q of

a metric space B ; for a Banach space Z we write O(6,Z) instead of 0(0,4,Z) .

Let us set ‘Z0 CZ be equal to 2n—dimensional linear span of the vectors {(,ojd: |j<n}
and Y8 C Zs’ s €R, be equal to the closure in Zs of a linear span of the vectors
{goji|j2ﬁ+ 1} and Y= Y, - For a vector from 70 let {xj:k|1 <j<n} beits co-
efficients for the basis {goji| j<n} . In some small enough neighbourhood of a torus
T,(I) let us change coordinates {xj:b} to (q,¢),q ET", ¢ € 0(360,5'.“) (6 << 1):

' 2 2
_ Are (v 4+ i iyt ) o1
9= Arg (XJ + 1X; )s fj = f[XJ + X; ] Ij . (1.15)

Let us consider toroidal spaces ]s =T" x R" x YB, 8 € R, with a natural metric distﬁ and

tangent spaces Tu;/s v R® x R x Ys = Es’ u€ 4 - Let J be a restriction on Ys of the

operator J,,i.e. J ‘pj:i: =¥ wj* Vi>n +1 (see (1.4)); let

IT. R x B — R® x BY, (8q,6¢) b (8¢, —6q) ,
and
1#=3T <3 B = (R"xR") x Y, — E_.
Let us introduce in ¥ g 8 2 0, a symplectic structure with the help of 2—form

o¥ =<344 7, d 7> p . The triple {j/o, {}’s}, a J/} is a toroidal symplectic Hilbert
scale. See [1], § 4, for details.



For the fixed s ER, 1€ J, w€ ﬂo and 60 << 1 let us consider a map
n
+ +
L: T x 036, R") x Y, — Z, (a67)P ) x79 +7v
=1

(see (1.15)). It defines a complex—analytical diffeomorphism of a domain
Q°(s) = O(T™ x {0} x {0},36,, #,)C #,=(C"/2x L") x C" x Y © (1.16)

on a complex neighbourhood of T,(I) in Z_ . This diffeomorphism is Lipschitz on I and

on w (via the dependence a = a(w)) , i.e.
Le£R) | Q%) 2 (1.17)
ﬂO x ' s '
- forall 5.

The subspaces Z0 CZ,YCZ are skew—ortogonal with respect to the 2—form

a, =<J dz, dz > 7 - A restriction of a; on 70 is of the form dy A dx+ and, so, it
is equal to df A dq (see [A]). A restriction of the form a on 70 is dé Adq, too.

Hence

*

L¥a, = L¥ax Adx™ + <3'dy, dy > ) =dé Ada+ <Jdy, dy > y =¥

and the map L is canonical. So the equation (1.1) in the coordinates (q,£,y) is Hamil-

tonian with the hamiltonian



n

) 1
”0(‘1:(5}';“):1:50) = const + 2 ij_] + i < A(ﬁ)) Yry >+ EOHO(Q)fsy;w)I)EO) (118)
j=1

(see [1], Proposition 4.1). Here we use the identity

2 2
%<A1(w)zo, >g= 2—2)(«:)[ J_]-.-.ijfj
J..

Zx ?; +xsoEZO

denote by A(w) a restriction of the operator Al(w) on the space Y and denote by
<, >=<-,">y 2 scalar product in Y induced from Z . The Hamiltonian equations

have a form

- 4 10 _ d 0
qj—wj+£0-5-£—jH, Ej——eo-aq—jH
(1.19)
- 0
y = J(A(v)y + ¢ VyH ).
Let us set By =1, x J. A Borel set J is the same as in (2.1.11), i.e.
JC{IeR K¢ I;<K Vj=1,..,0}. (1.20)

It results from (1.9), (1.17) and from the analyticity of the mappings (1.10) that
VEO € [0,1]



Q%4 ),8 p ' Qc(d'),a
HO-;- O¢x , VHO-;-, O¢k
| H( :50)| SRy I y ( 50)" d-dg ] s

4

1

if in (1.16) 85 <<1.

The operator A(w) has the double spectrum {Aj(w)| j=n+1n+2..} and the opera-
tor JA(w) has the spectrum {% i j(a;) lj2n+ 1} . Let us shift the numeration:

. £, _ * 8) ._ ,(8)
@) = Ajn(0); o= P A= a82)

and redenote

d

oo —

/
dg :=dg +dy, di=d =d+35d;.
Then by the condition (2.1.2) the set of vectors {gp:;: A j(—s) |j2 1} is a Hilbert basis of

Y, and for some new K
K1 <A j(s) <K, Aj(‘“) = (Aj(s))_l Vi>1, Vs €R (1.21)
By this condition the scale {Y_} is interpolational. See below appendix A.

For the shifted sequence {A 0= A j("’O)} relation (2.1.16) takes place with the same d;,
some new I, K21,...,K2r'1, dl,l’“"dl,r—l and some new K!. For all j21,w€N,

+ F

Aw) pF = yor: (1.22)

+
J . = F .
] ) ‘PJ ¥

J
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and
,\j(w) >0 Vj2 jo. (1.227)

Theorem 1.1 from [2] may be reformulated for equations (1.19). Here we formulate some
more general result. For to do it , we suppose that the operator A(w) depends on £ »
A= A(vgy) ;80 A i= A j(m,eo), and A 0= A jo(so) . We suppose that

50 HO = eOHO(q,ﬁ,y,ﬂ,eo) + Hs(qianﬂ)EO) ’

functions Hy, "3 may be continued to complex—analytic functions on a domain Qc(d),
d> %dl . It is supposed that Veo € [0,1]

Q(d).8,

Q(d),8
|Ho( 55 p) | +||VyHO(-;-;eo) I g 0 0_<_K1 (1.23)

H

and Vb = (q,¢,y) € Q%(d)

a,,Lip 9
B35, 0 <K (1€ + 1€l lvlly + sl
(1.247)

e.,Lip
V(05,6 O <Ky(le] + IIsllg)

B8.,Lip
3 0 2
905l "<kl + ol 020

Here
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dg€d;~1, dg° <0, dg<d;—1. (1.25)

In the terms of the decomposition £g m = € H0 + H® the results may be formulated in
more exact way, important for some applications (for example, to perturbed KdV

equation).
Theorem 1.1. Let the conditions (1.20) — (1.25) hold together with

1) dy21 and

d d d d

! 1.%1,1 —1.%1,r-1 4
[djo—Kqi ~—Ky'j =K TS K T (1.26)

for some K, = Ko(eq) > 0,121, K2J = KzJ(eo) ER (j=1,..,r—1) and for

d, > d1,1 >..> dl,r_1 > dl,r such that

-1 ] . .
dl -1> dl,l" K3 < K2(€0) < K3) |K2 (60) | < K3 Vi, V50 ;

moreover

) d
Llp(Aj 0y — R) <K T Vi, VeO ; (1.27)

2) if dg >0 then it is required that for d,=d+d; -1 _dHO weak in ydc

solutions of (1.19) with initial conditions in an arbitrary set O(T" x {0} x {0}, D, %)
exist for some time T =T(D)> 0 and stay inside a set O(T" x {0} x {0}, Ky 4)
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with some K, = K,(D).
Then there exist integer jl, M1 such that if a condition

3)  [8-wyt fAjgt Ayt t /J Aj10| 2K, >0

1
(1.28)

j
Vs€z®  |s| <M;, Vsez, 15|/1|+...+|/jl|$2,

is satisfied, then for sufficiently small €y >0 there exist 6a > 0 sufficiently small and

independent on &, (see (1.13), (1.14)), a Borel subset B8_ C B, and analytic embeddings
0

260 T — %, (w)€B_ ,d =d+d —d—1
(U,I) dc’ ! 60’ C 1 H !

with the following properties:

a) mesB o [I] — mes Oy (¢ — 0) (1.29)

uniformly with respect to I € J;

b)  the mapping

3Ot xe, — g, @u)n 30 (9, (1.30)

0 (@)

is Lipschitz and is close to the mapping
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0
2 : Tn X BEO——’ },d ’ (Q,U,I) B (q,0,0) € yd .
c v
That is
. 0 £y 0
aisty [ 3 (@), Ywun] <0 Ve<1/3,
(1.31)
Lip[EO—ZEO:Tan ——»]](Ceg Vp<1/3;
€9 dc =>p0 ’

€
¢) every torus 2(0 ! ("), («,J) €8 ¢+ is invariant for the equations (1.19) and is
w, 0

: , , “0 £0 ! n
filled with weak in % solutions of the form =z “(t) =2 (q+w t),q€T" ,
)

4 ’
w =o (wley) € R" and
|w—w,| 50601/3; (1.32)
d) if dg €0 orif dg >0 and Y(q¢,y) € Q%(d) N %, we have

<IVEXaeW), lyonéy > g<clisslilvlly - Veyevy, Vo,

€
then all Liapunow exponents of the solutions z 0(1;) are equal to zero.

Statement 1.2. Under the assumptions of Theorem 1.1 a sharper form of estimates (1.31),

(1.32) is true:
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0 €
disty (3 (@), ] Ywun] <Ce, (133)

/
lw—w | £C (1.34)

1%-

Remarks.

1) For a rather general theorem applicable to verify the assumption 2) of Theorem 1.1
see [K].
2)  For a discussion of assumptions (1.23) — (1.25) see § 7.1 below.
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2. Proof. of Theorem 1.1

We extend the scalar product < -,-> to a bilinear over C map Yo xY*— € and
denote by .fs(Ys . Y, c) a subspace of operators L € .?(Y‘; ;Y ) symmetric with
1 2 1 2

respect to <-,-> , ie < Lyl, Yo > =<Y¥y Ly2 > Vyl, Yo € Y; . We denote
N, = NU {0} . We shall use the following domains in c/ 2x 1%, ¥, and ]sc :

U(6)={¢£ €C®/ 22 Z"| |Im €| < 6},

O%(€ gyt #g ) = Ul€g) * O(¢4, C) x O(6,, Y, ) -

Let us fix some

7, € 0,11, pE(0,3) (2.1)

and set 7, =2(1_'2 +27% 4 ),

_J0,m =0
‘m = {(1‘2 +om )y hm, (22)
e = EO(“@)m, 6, = 6,(1—e(m)), U =U(6_), (2.3)

C_ ~C 2/3  1/3 ,° _AC
0, °=0%s_e H3¢e U3 4, 0_=0Sn g,.

We shall need some subdomains of U and O mc . For this end let us set



0<j<5 (2.4)

_s 0 1
(s0 6, =6

5
m m > > 65°), and denote

' . F—i (2 —j 11 o ]
Omjc — Oc(ﬁm'], (2 Jem) /3, (2 Je:m) /3; ﬂdc), UmJ = U('smj) )

If €y << 1 then 2_Jem > €my1 j=1,..,5, and so the domains Omjc are neigh-
c c 1c Sc c
bourhoods of 0m+1' 0m J Om J...D 0m J 0m+1 .

We denote by C, Cl’ 02, ... different positive constants independent of £ and m ; by

C
C(m), C,(m), ... different functions of m of the form C(m) = C;m 2 ; by C%m),

Cle(m), ... different functions of the form exp C(m) . By C,, C,;,..,C,(m),
Cyq(m),... we denote fixed constants and functions of the form C(m) . Let us mention

that V C(m), Y C%m) and Vo >0
| C(m) < sgl Vm , C%(m) < agl Vm if g<<1.
Let m € N0 and 8 be a Borel subset of 8, = ﬂo x J such that
mes 8_ [1] > K(1— 7, e(m)) Vie s, (25)

Here K, = mes{; and 7, asin(2.1).

We shall denote a pair («,I) €8, by 0 and shall omit dependence of functions and sets

on the parameter ¢, . All estimates will be uniform with respect to ¢, € [0,1] .
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At domain Omc let us consider a hamiltonian depending on the parameter 8 € Bm ;

H = Hy (0.5:0) + e 0 (0.6:6) + B (a6.5:0) , (26)
Hy, =&AL (0) + %— <A (a0)yy>. (2.7)
Here the function H® is the same a8 in (1.24) and
A, :8, — R [A_(o]) - o Om Lipg eofe(m); (2.8)
the operator A (q;f) is equal to A(f) + AI}l(q;B) and
Ap(@0) ¢ = B (i) ;™ Vi, (29)
b € 48 (U0, 14 I £y e(m) jd](:11 - (2.10)
We supposeé that H_ € g'm(OI(I:l;(E) and
|H_| OO, <Cy(m) =K, (2.11)
9l O 8 < ey 1)

B
. . . . - 1_
For m =0 the hamiltonian ¥, in (1.18) has a form (2.6) with A («]) = w, Ay=0
and the assumptions (2.11), (2.12) are fulfilled by the theorem’s assumptions.
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Hamiltonian equations with the hamiltonian ¥ have a form

Q= Ap(0) + Vleg By + B) (atyif) (213)
{=- Vq(% <A (a0)yy >+ (e H + B%) (,6,5:0)) , (2.14)
7= 3(AL @0y + V(e By +B) (.6%:0)) - (2.15)

For m = 0 these equations coincide with the equations (1.19).

The theorem will be proved via KAM—procedure. For m = 0,1,2,... we shall construct

canonical transformation Sm : 0 — Om which i8 well—defined for 0 € Bm 41 and

m+1
transforms the equations (2.13) —(2.15) into Hamiltonian equations in O 41 With a
hamiltonian of form (2.6) with m:=m+ 1. For #¢€ B, = NB,, the limit transfor-
0
f0
mation 2 :S0 ©8;° .. transforms equations (1.19) into an equation in a set
n : :
N0, =T x {0} x {0} . The last one has solutions (q+ tA_(6),0,0), A =lmA4A_,

QET™ . Sofor A€ B, equation (1.19) has desired quasiperiodic solutions of a form
0
250( +tA_,0,0)
q.O [i1] ] b *

Let us extract from H_ alinear on ¢ and quadratic on y part:

Hp (a,6,y:0) = hY(g8) + ¢ - nl(qi0) + <y, (q0) > +

+ < y,0"¥(q0)y > + By (a.6.5:0) (2.16)
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Hao = 01612 + Iyl + 1€1 llylly) - (2.17)

Here h1€C, hle €C", 1Y € Y® and hYY is an operator in the scale {Ys} . We may

vary H  on a constant depending on ¢ and so may suppose that

th(q;a) dg/(20)"=0. (2.18)

Here and in what follows

[t dasen® = @n)™ [ @) aq
Tll

for an arbitrary vector—valued function integrable on T™ . Let us define a function

1% (6) = Jﬁlf (@:8)da/(27)" and set

né(q;0) = h1¢ — 0%, Ay = Ay +e 0% (2.19)

and rearrange the terms of a?m in the following way:
/
3
XK =Hy(aéy0) +e (Hy + H3m) +H (2.20)

Here

/

: 1 i -

H2m=hq+£-h5+<y,hy>+<y,hyyy>.



—921 —

Lemma 2.1. If £ << 1 then

U_.8
a) |n9) ™ e, (m),

8 _Lip
'|hf| W ¢ 90, (m)e 23, |h°f| ﬁC*(m)s;2/3,

: U_,8
’ —1
871 ™ ™ < Cylm) e /3,
H

b) WY(q,0) € £(Yy,Y, _d%) Vq €T, Vo

8
Tt s o $Cylm) 213,
d,d-d

¢) ifin(2.11) K, >>1 then

0 2] ¢ 8
1! 1 1 1
By | “HU R /3||v ||dm:;0 m ¢ 1o, (mt1)ef ;

! R C. .

d) HOm' H2m’ H3m € "‘Bm(om ! G) !
8_,Lip:

e) LSO T Cefem + 1)
Proof.

a) The estimate (2.21) results from (2.11) because h9(q;9) =

estimate the mapping nlé let us define a function of an argument z € €, |z| < €m

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

H_(q,0,0;6) . To

2/3.



—929—

z— H_(q,2£,00), £ €C", |£] 1.

For (2.11) its module is no greater than C_(m) and for the Cauchy estimate its derivative
at zero is no greater than ¢_2/° C (m). So |¢-h¥(qi0)| <23 C (m) V¢| <1
and |111£ | € 5;2/ 3 C,(m) . By considering a function

z— Hm(q,zf ,0;01) - Hm(q,zf ,0;92) , one can get an analogous estimate for the Lipschitz

U_.B8
constant on @ . So |h1£ | ™ L 552/3 C,(m) . From this estimates results (2.22).
The estimate (2.23) results from (2.12) with y =0.

b)  Let us consider a map

{Ia} <e 3y — LANTIELA & MCTEDN (2.27)
H

(||y||d < 1) . Its derivative at zero is equal to h¥¥(q;f)y . So by (2.12) and Cauchy esti-

mate

U.,8_
[regl fdoms»smz/‘* C o (m) Vvl <1
H

The last estimate implies (2.24). The inclusion h¥Y € £ (YqY4_q0) results from the
' H

general fact that Hessian of a function is a symmetric linear operator.

c) Let b=(q,£,y)€0mi1 and u=smf’/3 . Then (q,(z/u)2§,(z/l/)y)E0mc for

z€C, |z| S 1 . Let us consider a function z — Hm(q,(z/ u)2£ , (z/v)y;0) and its Taylor
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geries at zero:
H_(a,(2)%, (B)y:0) =h, +hz + hoz? +
my iy, Sy Rgyld 0 1 2 et

By (211), |h,| < C,(m) Vk.Since Hy (5:0) = hyv® + byt + ... | then

C,(m) e ? C,(m+1)e ”
. _ 3 4 * m * m
|Hy  (5:0)| = |hge” + hyv® + .. | < . 8 S 5

m

if K7 >> 1. In a similar way one can estimate a Lipschitz constant of H3m
To estimate VyH3m let us consider a map

72—V (0(2%, Dyi0) =hy +hy 2+ . €Y

0-
d—dy

By (2.12) [|h |l a0 S 13 ¢, (m) Vk. So

4 4
||VyH3m(h;0)||d_dO = ”h2V2 + 113”3 + .. ”d—dIOI <

2
STTmAINCRS Emit ANLEDE

A similar estimate is true for the Lipschitz constant, so (2.25) is proved.

d) The analyticity of the functions is evident. Their real—valuedness for real (q.¢,y)
results from the real—valuedness of ¥
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e)  The estimate results from (2.8), (2.19), (2.22). -
Let us consider an auxiliary hamiltonian ¢_F,
F=19(q0) + ¢ - £(aif) + <y, F(a0) > + < v ¥ (q;0)y > ,
and the corresponding Hamiltonian equations
q=c¢ V,F, E=—¢ V qF, y = emJVyF . (2.28)

A flow of these equations consists of canonical transformations {St} of the phase space

(see [1], Theorem 2.4). Let us set Sy = s! and denote (q,¢,y)=h . Then
A i 2
a’é’m(sm(b,ﬂ),ﬂ) = K& _(h0) + e {F, K }+ 0(5m ).

Here { -, -} is a Poisson bracket; see [1], Proposition 4.3. So if [),Sm(b) € O_, , then by
(1.247), (2.20) and (2.25)

% (S,,(0)) = By (5) + e (Hy () + {F(), Hy_(0)}) +

+ (e, ) = Hy (6) + e By (6) =V F(5) - W, Ho () +

+VF qu;m + <IV K@), vyH(;m(b) >)+ 0, 1P
(we omit the parmeter 4 ) . As

/ 4

4
V£H0m =Apio Vy Hym = ApYs VqHOm

n

1
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then we ma.ir denote

’ i '8
w = Am+1(a:;0), —r = Uj 3q. (2.29)

and rewrite & m° Sm as follows:
H# (8 (0:6):0) = HE)m + sm[%fé- < Vqu Y.y > — &fq/aw, -
_t 0800 —<y,60)00 >—<y(0F7/80 )y > +
_+<Amy,JfY>+2<Amy,JfYYy>+h‘1+5-hf+ <yh >+

H<ydTy>1 406kt (2.30)

We try to find a transformation § m such that the contents of the square brackets is

O(ef) . For this end we have to find %, £€,£Y, 1YY golving homological equations:
4 /
000 =1Yq0),  8/8w =1(g0), (2.31)
/
/6w —A_(0)IF = bY(qh), (2.32)

/
760 +PVTA_—A_JPY =0 (q0) -

- AWV (q;0) + %f’f : Vqu(q;a) : (2.33)

Here AhYY is an admissible disparity.
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Lemma 2.2. If £ << 1 then there exists a Borel subset Bm +1 C Bm such that

mes (8,\ 8, 1) [1] < 7, Kg(m + 1)/ 7 VI (239)

a.ndfora.llﬂEBm_*_1

a) equations (2.31) have solutions e # %m_'_l(Uml;(E), fE € A % 1(U ml;ﬂln) and
{4 Un B < C(m), |ff U By <e23 c(m) ; (2.35)
|1 < C(m), || ey ; .
b)  equation (2.32) has an analytical solution ¥ € x%mH(U 2 v§ a0 4q,) 2nd
2 g /
gl m '“m+1 < C8(m —1 3; 236
91,7 % <O (236)

c) thereexist ALY € 4 g' (Umz; f(Yd,Y o)) such that

m+1 d—dH
Ao = b (a)p;* Vi, Va, (237)
2
U _“8
LA mH < omye v, (2.38)

equation (2.33) has a solution 7 belonging to the same class as AhYY
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2

8
17| ama +mX(11 < C%(m) e, 2/3 Va€ [-d-Add] , (2.39)

(here Ad = d; —dg" —1) and

2
8
l|A_ 37 — Y5 A || Vm m+1 ¢ o¥m) /3. (2.40)
d-dH
A proof of the lemma is given below in § 3.
Let us denote
11}, AR 8, — 75 (58P hH, (2.41)
Og: ¥°x8;,— 8, (b0 wa, (2.42)
let Hq H£ be projectors of ;/c = (C%/ 22 I™) x €™ x Y® on the first, second and

third term respectively and let Sm be a time one shift along the trajectories of the system
(2.28).

Let dc=d+d1-d0-—1 and O cd = mcﬂ }g with the norm dJstd O];d is

. c .
dense in Om and is unbounded in j/dc .

We may identify the torus T" with a measurable subset T(n) CRY,

{a €] |qj| <7 Vi} cT(™ ¢ {q € R ;1< = V3
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(the map T" — T(n) is one—to—one, measurable and discontinuous), and may identify
# with a subset T(n) xR'xY of E= R2n x Y . The identifications depend on a choice
of T(n) , but if dist y(bl’%) < 7 then the point in E corresponding to hl —f]2 does
not depend on T(n) . We shall use these identifications and treat a difference of two close

#—valued (or T"—valued) maps as a E—valued ( R"—valued) map.

Lemma 2.3. If £ << 1 then

: R 4c, c
a) | S € 45 (0 0p) (2.43)
and
5¢ .
0'"x8 LLip
18— 4 g el (2.44)
d, _
More precisely,
SCyg L
,Lip
LIEYCRES I9Thhs m+1E ¢ O(my e 113, (2.45)
5¢ .
O x8 ,Lip
Mo (5, =11 )] m o T CBm) e, (2.46)
5C Li

o 8 ., .Lip
i o (s, - },)|| d‘: D+1" ¢ ¢8(m) Ei/3. (2.47)

b) A restriction of S, on O +1 is a canonical transformation which transforms

equations (2.13) —(2.15) on the domain O_ into Hamiltonian equations with a hamil-
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tonian ¥, of the form (2.6) with m:=m +1 on the domain O |

+ +1°

The lemma is proved in § 5.

Let usset G .l = 8, - Then 950 is a Borel set. For the definition of 7, and e (see

(2.2)) and for (2.5)
mes 880 [1] > (1 —% 7,) mes Vies. (2.48)

For €08 and r, N €N, let us set
£y 0

I

2

=S (.- .. 0f c
(;0)=8(;0)0.08 n(;0:0 xi 10

r+N+1
(2.49)
f c
and let us set 2 be equal to the identical map of O ~.
T
Lemma 2.4. Forallr, m 2 0
r o¢ x8_  .Lip
lz -1 |Er+m,dc m+1 <3 5{_), (2.50)
I+m 4 d.

Proof. Let us denote the Lh.s. in (2.50) by Dri m - One may rewrite the identity

z 1' (h;6) = S_( 2 ik (h;6);8) in a form

I+m r+m
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T

r+1
) My=06—Ty)e (2 *%HE

1'+II[

So by (2.44) we get an estimate

r+1 +1
r+m = Ef (Drim +2)+ Drim' (2.51)

As Diim = 0, then the lemma’s assertion results by .the induction. g
Let us denote Tol1 =T" x {0} x {0} and '0; =U(6,/ 2) x {0} x {0} C }’; . Then
TOHCO(::J and O; lies in Olfl forevery m > 1 as 6m>%60 Vm .

¢
Lemma 2.5. If £, << 1 then Vm € N, the maps 2 :'0::J x8, — }gc

m+N 0

m
(N — o) converge to a map 2 . : O; X BEO — }’gc such that

m
a) forevery # the map 2 (-;8): O; — yg is complex—analytical;
o c

b)
300y (0= (;0); Yo<m<p, Ve, (2.52)
P ® ® 0
o°x9 L
) |2 ~Ty &' 1p53€£; (2.53)

C

m
) lnye} 6lly <en!/* V(60) € Tp <8, (254)
m
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m
LEMIRCOIES Tk V(5o) € TG <8, . (2.55)
_ |

m
Proof. Let b, € 0; and for j2 1 let f)j= 2 +_(b0;0) . Then by (2.44), (2.50)
m—r)

m m
ﬁistdc(bN+1, By) = disty ( y NN ) INCEDR

{2¢

<(1+3sp)em+N_

P
m+N -’

So the sequence {f)j} is fundamental and converges to a point b € y(cl . The r.h.s. of
c
m

the last estimate does not depend on by, . So the sequence { 2 N(- ; 0)} converges
+

uniformly in Oc to an analytical map 2 ( 6) ——» y d; 2 (bo,ﬂ) o - The re-

lations (2.52) take place and the items a), b) are proved.
The estimate (2.53) results from (2.50) by going to a limit.

To prove (2.54), (2.55) let us take h € O; and set f)m+N+1 =h,

: J
) (N *0) € 0S Vi€ [m,m + N] Ny
m+N+1

Then B =S j(bj+ 1.6) and by (2.47)

| b’lld < h’“lld +yef e, m<j<m+N.
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m+N+1 _ m +1/3
As TLb =0, then |[Th "dcsexfl /3 so

m
[ 02 » (b;9)||d < emp+1/3 and by going to limit when m—— o one gets
Y “m4N+1 c

Estimate (2.55) results from (2.46) because for the last
. 1 .
M| < M|+ C%) ¢ m

As AO(U,I) = w then by (2.19) with m=0,1,...,r—1

0 0 0
A(w]) = w+e4hy ¢4 e1hy I €1 hril : (2.56)

Here the vector—function hgé corresponds to the hamiltonian & m with m=j. So

B8_,Lip

[
IEjhgﬁl ° SC(j)ejlls, (2.57)

the maps A : 8 e —— R" (r — o) converge to a Lipschitz one
0

) n _ 0¢ 0¢
Am.BEO——»R yAp=w+eghy” + bt + (2.58)

and by (2.57)

9, 1P 1/3
|4 (@]) = w] $Cegy . (2.59)

Let us fix 6 € 950 and denote w_=A_(6y), m < w. Then by (2.56), (2.57)
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| w | < C(m) £m1/3 Vm,Vp21. (2.60)

m~ “m+p

/
Let us consider a curve th b (t) = (g5 + t«,0,0),0< ¢ <1, on the torus
m
’I‘o11 = T" x {0} x {0} . The map 2 m(- ; 83), m 2 0, transforms it into a curve

bm(t) = (q, (t):€, (t)y (1)) € O . By the estimates (2.53) — (2.55)

dist (q(t), 9,,(0) + tw;) <C slfl , (2.61)
1/3+p

”ym(t)”dc Se , (2.62)

[€n(t)] < iemzf 3. (2.63)

The cases dp >0 and dg < 0 must be considered separately.

A) dg>0. For the assumption 2) of Theorem 1.1 system (2.13) — (2.15) with hamil-
tonian ¥ and initial condition (0) € ¥ d, has a weak in ¥ d, solution

0 0 0 0 0 0

h(t),0<t<T , and  [£(1)] +]ly (t)lldcscl. Let  {by =(ap(t), &x(D)

y%(t))lN: 1,2,... } be a sequence of strong in ¥ g sSolutions which converge to ljo in
c

. Then
¥/ d,

1ER()] + ||Y§(t)||dc <G, (2.64)

for some C, andforall 0<t < Ty=min {T,1}.
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0
The canonical transformation (2 )-1 transforms bg into a strong in  #; solution
m

by = (aN(t), EN(1), YR (1)) of a system with Hamiltonian & ,N=1,2... .

0
The solution [jrl.g(t) is well—defined while bI(\)I(t) stays inside domain 2 (0,,) ,ie. for
m

t € [0,T mN] with some T . < T, . When N— o the solutions converge to a weak
solution §™(t). As d + dy <d_, then by (2.64) and (2.50) with r =0

D8l 4 o SIoBllg <Cp+1 V. (265)

As §™(0) = h_(0), then by (2.61) — (2.63) with t =0

ROl <3 e, 5%, 16RO €36,
| (2.66)
dist (q5,a5(0)) $3Ce )’

for N2N_>>1.For 0St<T N One gets from the equation (2.15) an identity

1d m 2 m
53t ”YN(t)”d =< Amme, YN > d +
(2.67)
3 .m m
+<JVyH,yN>d+sm<vaHm,yN>d.

As the operator J A_(q) is antiselfadjoint in Yy then <JA_ YN y‘;; > 4=0.50by
(2.12), (1.24) and (2.65) we have for yj(t) € O
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D=

d m 2 3 m m
G 1RO < ITE g IRlgaa + callyRla 17l <

< (Cq+ DKy (IIyRIIE + 1671 + Om) e, Iyl -
So gT "ylli;(t)”?1 < 01531/3 and by (2.66)
Bl <3+ ey e 23 VOSt<T - (2.68)
In a similar way by (2.13), (2.14), (2.14") and (2.66) we get estimates on £(t), q(t) :

. m ! p
dist(qp(t), qy + twy ) SC1 +t) e,

(2.69)
€2 | <+ oye 3 VOSt<T -
So the solution b? stays inside O_ N Oélc for 0<t¢< CII (i.e. one may take
TN =Cy ) and for sucha "t" estimates (2.68), (2.69) are valid for §™(t) , too. For
the inequalities (2.61) —(2.63), (2.68), (2.69) and (2.60) dist, (5™(t), b (1)) < Ce?

0
Yo<t< CI]’. The mapping 2 (-:0): ¥ 4 #q 18 Lipschitz by Lemma 2.4. So
m
/
dist § (bo(t), by(t)) £ C alfl Vt € [0,0'1'1] for arbitrary m . Hence l]0= hy and

0
Y (b(t)if) is a weakin g, solution of the initial Hamiltonian system.
(1]

B) dg<0.Let b(t) be some strong solution of the system with hamiltonian H#o
staying inside O N Omlc for 0<t<T. Taking the inner product in Y4 of equation
(2.15) by y(t) we obtain
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1d 2 _ 3
s g VOl = e <IVH y> 4+ <IVE, y> <
2
<ellyllgllVoEyllg + llyll Xy Alylig+ 161D

1/3

and |ly(t)]l4 < lly(@)ll4 + %t e, | for 0 <t <T. By equations (2.13), (2.14) we have
d;

)] € 1€0)] +Ft ey M®, dist (a(t), a(0) + tug) S Cted  (0<E<1).

So if
O RETRENTOTES TRARTOYS o (2.70)

then the solution b(t) stays inside O 1 Omlc for 0<t<1.If H™(t) is a weak
solution of equations with hamiltonian ¥ m and h™(0) = bp(0) , then (2.70) is true by
(2.61) — (2.63) with t=0 . So by Theorem 3.1 from [1] solution §H™(t) exists for
0<t<1 ﬁnd for this solution estimates (2.68), (2.69) take place. So as in the case A) we

0
see that by(t) = 5°(t) ,ie. ) (b (t)if) isaweakin g, solution.
(1]

Now the assertions b) — c) of the theorem are proved by setting

€ 0
z 0 (q;0) =z (q,0,0;8) , because estimate (1.31) results from (2.53) and (1.32) results
m

from (2.59).

In order to prove the assertion a), we set in (2.1) 7, = 7,(M)\,0 , where M is a
natural parameter tending to infinity. Assertions b) —c) are valid for £, =¢y(M) >0,
and we may assume that £,(M) ™\, 0 . Then by (2.48) for ¢, € (65(M + 1), £,(M)]
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mes {}) —mes 8, [I] < 7,(M) 0 and the assertion is proved.
0

For to prove assertion d) let us mention that Liapunov exponents are stable under a change

of phase variable. So exponents of a solution by(t) of equations (2.13) —(2.15) with

0 -1
m =0 are equal to ones of the solution b _(t)= (2 ) bo(t) of the equations with
' m

m=m . Let 6&h=(dq, 6, 6y)(t) be a strong solution of the variational equations for
(2.13) —(2.15) along b_(t):

8= V(e Hy + )0, (), (80, &, &),
68 = =V (Hop, + el + EO)(0,(1)),( 80, &€, 6), (211)

8y = J[A () 6y + (8q- Vg A (q.,(t)y +

3
4T (e By + )0, (1), (60)]
Taking the'inner product in E; of these equations with dh(t) we get an inequality:
Gellb®llg < el
qllv®llg € e ol -

The same i8 true after the change t — —t . So modules of the exponents of variational

equations do not exceed 5mp . As m is arbitrary, they are equal to zero.
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3. Proof of Lemma 2.2 (solving of homological equations)

In § 3—5 we write ¢,6 instead of ¢ _, 6~ and sometimes we omit the argument
¢ for functions and maps. In the deductions of estimates, we use systematically the

e 8
conditions £y << 1, 6, << 1. We denote I = I \ {0}, I,=1 \ {0}.

. . _ 102 ad
The assertions of the lemma will be proved for 9m+1 =8 \ (| ue‘unr’),

where B8P are Borel sets, and for p=1, 2, 3
p -2
mes 87 [I] < 7, Ke(m + 1)77/ (37,) Vi. (3.1)
By (2.8) the map
/
B, [1]3wbrw = Am+1(w,1) (3.2)

for all I is a Lipschitz homeomorphism , changing the Lebesgue measure by a

factor no greater than two. Le. for every Borel subset 2C 8 [1]

%—mes N<mesA . (0I)<2mesf (3.3")

+

(see Appendix C, Treorem C 1). Besides,

8, [1],Lip

1A=l {C .eof’, |Apy1(@D) — | < C(sop + 6,)

(3.3)
VYwe€ 8 [1].
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Therefore, if

Bl=u{Blsez, },Bl={0€8_| |v (6) 3] &

<[m+ 128" 17y, (3.4)
then

mes 8" [1] £ 2 mes B: 1] €
s€Zy

/ 4
<2y mes{w ||v-s] <(m+1)|s| " CT}<
s€Z;

2 —n—1 -1 —2
50—22 Cyl8| ™ £2C,CT(m + 1)
(m+1)” g€zt

and condition (3.1) is satisfied if C>>1.For 6€B_\8',q€U_', the
solutions of equations (2.31) are given by convergent trigonometric series and satisfy

the estimates (2.35) (see [A, Sec. 4.2] and Lemmas B1, B2 in Appendix B below).

We turn to the equation (2.33) (a proof of the assertion b) on the equation (2.32) is

much simpler, a sketch of it is given at the end of the section). For j€ llO we set

o+ N -
Wj—(50|j| +(SSHJ)“P|j|)/n-

Then {wj AE?) | j€ EO} is a Hilbert basis of a space YBC , 8 ER . For complex
numbers X jE EO , we denote by diag (xj) an operator in Y® which maps w f to
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Xi¥; Vj € Z,, . In particular by (2.9)
J A (a:6) = diag (1A3(ai0) (3.5)

with A}(q;ﬂ) = 3(0) + Bip(0i6) Vi€ Iy . Here for JEN A_(6) =—2A(a),
B_im(%0) = — By (ai6) - By (2.10) and (1.27) viez,
ad

U_.8
1 ' o H
I"j (';')_"j(')l - mS50p|J| )

(3.6)
1 . dlr P dgl
I/\j(q;!?)-f\onSC(ﬁalJl ’+50 |J| ) VQ:B

(here "jO = Aj(wo) ) . Let us choose functions bj(q;ﬂ) , JEM (see (2.37), (2.38)),

as follows:

g =1 1L W O
b(ai) =5 ) <Gt Vo Ampr 0765, 65>
o=%

and define an operator AWYY , AWYY qui= bj(q) :,aj:b Vi€EN . By (2.24) and
(2.10), (2.35)
1

0
U._"08 d

Vien. (3.7)
So operator A’V satisfies (2.37), (2.38).

Let us denote h17¥(q:8) = Y + 16 .V A — AWYY . Then by (2.24), (2.35) and
2 q“m
(3.7)
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1

Uu_.8 .
[n2¥]| m " mEL ¢ g(m) ¢ 23 (3.8)
d,d—dH

As operators J and A commute we may write equation (2.33) as follows:

0—3,— # 4 [7,34_] =1l (3.9)
W

Let us fix for a moment some functions W j(q;t?) ,JE ZZO , such that Wj =— W_j ,
and

1

Uu_-.8
R 1. m ' m+l < .
Wj € a‘em_l_l(Um ; €), |Wj| < C(m) Vi (3.10)

(they will be chosen later) and denote W(q;#) = diag(exp i Wj(q;ﬂ)) . Then

b, wEl(q;0) = + diag (i —L W (q,0) WEL(q;0) .
dw fw J

So if we substitute into (3.9)
Y =wr¥ wl b —weY wl | (3.11)

then by (3.5) we get for F¥Y an equation

O, BV 4 [FYY, diag i 01 ——Zrw))] = BYY . (3.12)
Ow I v )

Let us take functions Wk be solutions of equations
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a 1 ! / 1

};"Wk(q;a) = ,\k(q;ﬂ) - A],K(g) J "k = J.\k(q;ﬂ) dq/(21r)n . (3.13)
If §€8 \ Bl then the equations (3.13) may be solved just as equations (2.31)
and by (3.6) estimates (3.10) take place for the solutions Wj ,J€Ly. By (3.10),

1

ul g

@y |-, m+1_norms of operators h'¥Y and HYY | 7 and FY7 differ
¥

by a factor no greater than C®(m) . Thus to get estimate (2.39) for a solution of

(2.33) is equivalent to get it for one of (3.12).

Let us mention that a matrix {Fy } of operator F¥Y in the basis {W;lj €y}
is equal to _ij =< F7 W, W_j > and the same is true for a matrix {ij} of
operator HYY . So we may apply quadratic forms corresponding to the operators in
Lh.s. and r.h.s. of (3.12) to vectors W, , W—j and get equations on the matrix
elements ij(q;ﬁ):

i

2By (a0) + (A,(0) - A;(B)) Fy = By (af). (3.14)

N
For a vector—function f(q), q € T", we denote by f (8) , s € I" , its Fourier

coefficients: f(q) = ¥ f (s) ¢4 " ®. By (3.8) and Lemma Bl

8 , Lip
Bl 50 " < OFtm) e, 2001l o)

For the diagonal elements {h}j} of the matrix of operator b1 we have:

1

_1 lyy + . . - + . . -
hi{a)=g<h (Q)(fpm+1(sgn1)¢|j|),¢|j| l(sgnJ)som>
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=L (<)o ¥, 07 2'¥0) 0,3, o)
5(<h (Q)¢|J|,§0|J|>+< (Q)S0|J|:<P|J|>)-

So by the definitions of the functions b j and operator plyy , h}j(q) =0 Vj and

the same is true for the operator HYY :
Hjj(q;l?) =0 Vi (3.17)

By (3.17) equations (3.14) are equivalent to the following relations on Fourier co-

efficients:

. / ’ !~ _ 0 if k= ] ,
kj
Let us choose /F\kk(s) =0 Vke I, and denote
(s =25+, i#k
i(w - -8-2.4+2.),]
. k/? )
Then
P P _1 .
F kj(s) = ij(s;ﬂ) D (k,j,s;0) . . (3.18)

Lemma 3.1. There exists a Borel subset 67 C 8 with the property (3.1) and a
constant ¢ > 0 such that if €g<<1 and 6a << 1 then for all

p€6, \(8'UB%) andforall jk€Zy,j#k,s€I" the following estimate
takes place:
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2.
2] 8% Lip
ID_I(k,j,S;') I o \ <

2c+1 -1
< c(m)(1+ |s|)*Ha + Ao = 2D (3.19)
The proof is given in § 4 below.

For a map g(k,p),g: ZZO x P — C, where P is an abstract set, we denote

18P /7= (3 1etkp) DT
kEHO

and treat g as a map from P to /r(ﬂo) :

We have to estimate the norm of operator F¥YY(q;f) . By Lemmas B 1, B 2 this is
equivalent to estimate the operator norms of Fourier coefficients /F‘\yy(s) . For this

end we :

(1) estimate matrix coefficients H kj(s) of operator HY’(s),
s
(2) estimate coefficients F .(s) via the relation (3.18);
J P
(3) estimate the norm of a matrix /F\W(s) via coefficients F j(s) .

Step (1) is rather simple. Indeed, the matrix of operator /H\Jy(s) : Yg — Yg -0
H
with respect to basises {Ak(_d)wk |k € Xy} C Y¢,

0 0
(—d-!-dH) ¢ ‘ (—d+dg) ~ (—d)
{2 w |k €L} C Yd—dg[ is equal to {A, ij(s) "j } . So

by Lemma B1 Vj€ I,
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8 _,Lip B_,Lip
m m

o SC|HY ()| <

72 (x) d,d~dg

. d-dg o~
H . —d
|1kl FH e 1317

< C(m) 2/3,75/6 68| (3.20)

Step (2) results from (3.18) and Lemma 3.1:

1 y. - H, .(s8
—~ Bm\ (8~ U B%),Lip | kj | T,

F (S) - )
| Fye)] T+ T - 3501

(3.21)
T, = C;(m)(1 + |s])**!.

For Step (3) we have to glue the estimates (3.20), (3.21) in order to obtain esti-

mates on _/Fﬁ'y(s) and FYY(q) . The operator /Fwy(s) from the space Yg with

the basis {2 j(_d)w b into the space Y§ ,d,=d —dd +d; —1, with the basis
c

(—d,)

{Aj w j} has a matrix

(d,) ~

Oy & Fpa Yy | (3.22)

LM
Let us denote by T j (J,k € Zy) a function = 1- Jk’ i Then for (3.21) we
have a trivial estimate for / 1--norm of the column number j and its Lipschitz

coefficient:

S (dy) ~ B4 1o 1P
e CF @A 1y <

(3.23)
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. d,—1
) d—d ~ S R T
Tyl |k Hy8) [il "2 | — | /2
=1 k 4% (k 4k
For to estimate the r.h.s. we need the following statement:
Lemma 3.2. If j; in(1.28) is large enough then Vj, k €N
d d d d
1 1 -1 ,.1 1
Cili -k |2|"j0"Ak0|201 i "=k 7| (3.24)
If j>k>0 then
d,-1

Proof. For j=k the inequalities (3.24) are evident. So we may suppose that
j> k. Then for the assumption (1.26)

dp 4

r—1

|AG, k)| <C )
1=1
d d d d d d
<O -k H+K G K K DTECHE -k )

d d

d
~k My 4K j

d
(J 1,1 k 1,1'5

1,r
+ K1

and C,(j) , Cy(i) — 0 as j— o (one has to mention that

d d, d d d,—1 d d, —d

il-k12it-G-1n12ci!l amdso (jl-kD)j Y—g (j— w)

because d, < d; —1). Now the estimate (3.24) is proved for j greater than some
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C, -For j,k<C, itis true with some C; >>1 because
inf {| "jO = Aol 11 Sk<j<C,} >0 for the assumption (1.28) with s =0 and
-4 = /j=1 (one has to take j; 2 C, ).

Inequality (3.25) results from (3.24) . -

For this lemma

d,-1 :
1 |j|-1 ®
. |k 2 k
1k4LJ],|\ I—A-Wl 2 SC[ L+ 2 ] ldl a*
k0 "jol I Z%(k) k=—m k=|j]+1 [|k| 1 Ll 1]

2(d,-1)

After a substitution k = |j|y one can estimate the sums in the r.h.s. via integrals.
So

d,-1

. -1 2(d,-1)

"%, j k| <

’ 2 C 1-]j] . ly| <
T+ ool | 2o S Tor [ Y B VLT
R aw I (e

By (3.20), (3.23) and for the last estimate , £ 1_norm of the column number j of

the matrix (3.22) and its Lipschitz constant are no greater than
L, = C,(m) T e /3% 75/6 bls] |

For ¢'-norm of the row number k of the matrix (3.22) and its Lipschitz constant
we have an estimate:

(d) ~ _4). B pLip
|4 ¢ F e At g

Z 1)
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d
. 1
d—d —1 ~ B ,Lip n . |k
H 1d k,j
<CT, | |k H (8)]] .S
aRL k;8) 4] |/ 205 | TTOF R 5D | 2

(3.26)

c
As B (q) € ..fS(Y::1 ;Y ) then by the interpolation theorem (Corollary A2)
d—d

H
1 ol
ul.e .8

[12: 34 ISP 2 |: S *m%m 0 £CC, (m) 23
1—d+dg,1-d d,d—dH

and for the conjugate operator (Hyy)* one has an estimate

1

IE = <CCy(m)e 23,

d—1, d—do-l
Thus Vsk

0
4 °(J)
(3.27)

and the first factor in the r.h.s. in (3.26) is estimated. For the second one the

following estimate is true:

d
k| 12
<

3] (1+|'\k0“"j0|) jz(j) -
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-1 -1
- k| 1-| k|

ST%[J + J + T ] dy T—<C, .

2 1,2
—o |k|_1 1+|k|_1 y'(l-sgn y |y| 7)

For it and for (3.26), (3.27) / 1_jorm of the row number k is bounded above by

—2/3 5
the comstant L, = C,(m) T, ¢ / exp—z &(s] .

So the matrix (3.22) of the operator F ¥¥(s): Y{— Y4 has columns and rows
: c

bounded in ¢l-norm together with their Lipschitz constants by max(L;,L,) .
Hence the norm of the operator is bounded by the same constant; for this classical

result see [HLP, Chap. 8] or [HS]. We have got an estimate

a8 Lip
5|, =+ < o(m) T, e 2/3e75/6 618] By it and Lemma B2
d,d, 1

Yy U;’Bm-i-l < d vy Ul?l’gm-i‘l e —2/3
[l Pl +) ||-,9;13f lg7a, " S Crlm) e (3.28)
1

because the norm of 77 is equivalent to the norm of F¥¥ up to a factor C%(m) .
So (2.39) is proved for a = d . The estimate (2.40) results from the equality (2.33)
and from estimate (3.28).

The symmetry of the operators FYY and 7Y results from the one of the Fourier

coefficients /Fwy(s) (formula (3.18)). For q € T" the operator £¥(q) is real, i.e.

it maps Y, into Y, ;0 because the operators hW¥(q), q € T, are real. So
H

#Y(q) € £(Yg; Yg ) - Now the validity of the estimate (2.39) Va € [—d_.d]
Cc

results from the estimate for a = d , from the symmetry of operator 7 and inter-
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polation theorem (Corollary A2) . The assertion c) is proved.

We give now a sketch of a proof of the assertion b). Let us substitute into (2.32)

¥ =wF b =WH . Then

fr—Fy— [J A_ — diog [i irwj]] F =gy
or
(iw -5) FY — diag(i ,\;(o)) FY-HY. (3.29)
Let

Then by (3.29)

N _1 N / /

F j(s) = D, (j,s0) Hj(s), D,(j8i0) =i(sw — Aj) (3.30)
By (2.30), (8.10) and Lemma B1

e ,Lip
Bl ™5™ ¢ ofm) 38/ SIsl (3:31)
H

For to estimate DII we use an analog of Lemma 3.1 (it will be proved in § 4):



— 51 —

Lemma 3.3. There exists a Borel subset 8% c B, with the property (3.1) and such
that

3.
_, 8_\8°Lip
D7 ™ <CC,, (m) |s]F3. (3.32)

By equality (3.30) and estimates (3.31), (3.32)

Li

0 -1
So by Lemma B2
UZ.8p 4 U2 Bni . e -1/3
1] 0 + ”Vq Pl 0 <C(m)e
d_dH d_dH

and the estimate (2.37) results from the equality (2.32).
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4.  Proof of Lemmas 3.1, 3.3 (estimation of small divisors)

The estimate (3.19) results easily if we prove the following one:

Avn— A
|D(kjsi)| > — kO 1°|c
C, (m)(1+]s])

(4.1)
Vij€r,,Vse 1", Voen_\ (8 ue?).

Indeed, Lip D™ < (Lip D)(inf|D|) ™2 and by the estimates (3.6), (1.27)

d,-1
Lip D(k,j,5;) < C([s| + 1 + max{|j|, |k|} © ) . So (4.1) and (3.25) imply
(3.19) .

We may suppose that |j| 2 |k| and j> 0 because
| D(k,j,8)| = |D(j,k,8)| = |D{(—k,—j,—s)| . So in what follows

>0, k| i, k#i. (4.2)
By estimates (3.6)
0
’ d d
e | . H .
35— Al SC&, 13l M+ 15l ) Vi, Vo (4.3)

By this estimate and (4.2), (3.25) we have for &, €y << 1 inequalities

/

4 4 /
1
|"k—Aj| 2 |)‘k0""j0| - “k_"kol - |)‘j_"j0| 2‘2'|"k0—"j0| +
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1

d,— d,—1
R TR BN |
+§sz _cl(6a+60)|.]| 2§|Ak0-"10| . (44)

/ / 4 1 / 4 1
If 2|w 8] <A, =A;| thenby (44) |D| 23|A =] 27]Ag— Ayl and

the estimate (4.1) is obtained. So we may suppose below that

/

4 /

20w 8] 2 |2 = A (4.5)
In particular, s # 0. By (4.4), (4.5) and (3.24), (3.25)

dl_l ’
RARTIPIE (4.6)
I/‘ko—"jOISCISI, (4.7)

4 %

lj "= 1%| "} £Cyfs] . (4.8)

Situations d1 =1 and d1 > 1 have to be considered separately. We start with
more difficult one.

. 0 .
A) d;=1. Thenin (1.25) dg < —x and in (1.26) dl,r {—x and
d, j €1—yx Vj for some 0 < y < 1. Depending on the relation between k and
8 , we consider three cases.

~x , 1
A1) |s| <9K,|k|™X+ 5. Then

k| < (18K )X, |s] <ok, +1 (4.9)



—54 —

because |s| 21, |k| 21.By (4.8)

. 1 1
J<CyJs] + k| <C,0K, +3) + 8k )VX = ,

Let us take in the assumption 3) of the theorem i 2 Ciy and M, 29K, + % .

Then by (3.3), (4.3) and (1.28) with /j=1,/|kl=—sgnk(or /j=2 if
k=-j)
1 4
IDI 2 Juy-s + A= Apl — (0K +3) [/~ g -
/ / ep

Now the estimate (4.1) results from the last one because 0  j< C
k| < (18K )X,

1%

—-x 1 i) -1
A2) [s| > 9Kk X45,|k| £Cyq(m) |s| °.Here my 2x (n+3) anda
function ~ C,,(m)  will be chosen later. By (3.6) and (1.27)  Lip
’ ’ —y .
(A —2;) $3K; k| X if gy<<1.80

7 4
. 1

Let

. -1 !
T = T(k,j,8) = Cyy(m)|s| IAjO"‘kO" m =mg+n+2,
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and
4
8 (k,js) = {0 €8 | |D(kisf)| < T},

4 —_ .
8% = U {8 (kjs)| (0K, k| X+ < |s|, k| <3,

m
0
| k| SC*3(m) [s] 7, |"k0_’\j0| <Cis|}.
We shall construct a set 82 as 82 =821 U@>? (a set 822 will be defined
later). Therefore, if 0 ¢ B2 then 4 ¢ 82! and |D| 2 T. So (4.1) is true.

/
g1 [I] . For this end we estimate mes B8 (k,j,s) [I] .

We have to estimate mes
By the estimate (3.3,) mes B,(k,j,s) [I] €2 mes ﬂ’(k,j,s) [1] . Here

Q/(k,j,s) (I] is the image of the set B,(k,j,s) [I] under the map (3.2). For to
estimate mes ﬂl [I] it is enough to estimate one—dimensional Lebesque measure of
the intersection of o’ [I] with an arbitrary line of a form {w,= w’(t) =

n+ts| s|_.1|t €R} ,7€R" . The set of "t" corresponding to this intersection is

contained in a set
L] ~TSPE) ST, T =n-s+t[s]+ Gy =A@ (1) (410)

/
By (33) Lip(v:w Ww) <3 if e;<<1 VIE.J.Soby (4.10)
. / 4 7 1 1
Lip (tH(Ak—Aj)(w (t)) 58] —7 - Hencefor t; > t,

Dlty) = Tltp) 2 [8](t; —tp) = | (O = A;)(w (1) -

“Qg =3 ()] 2 1ty = o] Gls] +J)
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-1
and the measure of the set (4.11) is not greater than 2T(%| 8| + i) . Since the set

f
1 [I] is bounded and the vector 5 may be chosen orbitrarily, we have by Fatou
/
lemma: mes 0 (k,js) [I] < CT(|s| +1)™>. So

mes 821[1] < T mes® (ki) [1] <2 ) ¥ mes 0 (kjs) [1] .
k,j8 840 j,k

' m
As |k| £ C,q4(m) |5] 0 and |i—k| < C,|s| , then we have no more than
m,+1 o _ )
C Cyq(m) |s] admissible pairs (jk) . As |Ak0_"j0| <Cj|s| then

1—m1 1
T < C|s} Cy4(m) and

m0+1
Cyg(m) 8] ~ €y Cyglm)

mesBz’l[I]SCE m, < C,,(m)

840 Cyq(m) |5

Therefore, under a suitable choice of the function C,,(m) , depending on a choice

of C,q(m) ~, mes 821 [I] is no greater than one—half of the r.h.s. of (3.1) .

m
Ag) k| 2C,g(m) |s| °,5#0. Then by (4.2) and (47) j>k> 0. By (1.26)
(with d; =1, dl’rg—x,dl’jsl—x Vi=1,..,r=1) , (43) (with

0
dl,r <-x,dg <-—x) and (4.7) we have

’ ’ ..
|"j""k“‘K2(j—k)| CCKX(|j—k| +1)&
(4.12)
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- 1—xm
<CCuyX(m)|s| ~ .

Let us set

77 ’ ’ ’ |/\.0-Ak0|
N (B,N)={wI|w—~w|$1,|w03—NK2|S 1 5
° Cyo(m) |5 *F

(a function .C_,(m) will be chosen later) and
2 2 / r7
%" =U{0€B |w (€N (sN)}.

'y

Here we take the union over all s € Zlg and N€Z.Theset 1 (s,N) is empty if
r77 4

IN| 2 Cls] K;"; by (47) mesR  (5,N) < C(C,p(m) |5"%)™ . Soby (33)

C

C
mes 82’2[1] _<_2 2 1 -3 < 2m
s%0|N|SC|s|/K20*2(m) 15|22~ Ty (m)

and mes B! [I] 1is no greater than one—half of r.h.s. of (3.1) if the function

C,o(m) is large enough.

77
If 9¢8%% then by (3.25) and (4.12), by the definition of 0 (s,N) and by the
inequality m, 2 (n+3)/x

D] = 1 ;=2 — Ko=) + (Kyi= k) = 0 - 8)] 2

l-x m
05

-1 -n-2 -
> 3= Ayl Cogm) s 2=C S X (m) [s]
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1 —1 —2
2'2_|’\j0_"k0| Cyq (m) |s| ™",

if C *S(m) is large enough. The inequality (4.1) for 4 € Bm\ 822 results from the

last one.
Now the lemma is proved for d =1 with p?=g>lypg??.
B) d;>1. Letusfind x € (0,1) suchthat d;—1>x and d; <d;—1-x.

By the inequality (4.6)

d-1
Is|2C, i . (4.13)

d.—1 e
. —1.1 . 1 .
Let us denote j = (12 K, C, ) /x » Jyx =31y (KIJ* +1)+1 and

consider two cases.

Bl) j<ig, |8] $igx - In this case the estimate (4.1) results from (4.3) and

assumption 3) of the theorem if 120 My 2y, and g5<<1, 6 <<1.

4
B2) j>j, or |s| >j,, - Let thesets B (k,js) and 0'(k,js)[I] be the same
as in the item A2) and

/
82 =U {8 (kjs)|i> |¥|, [ Ak = Aol SC sl ] 2C, 7).

Then for § € E]m\Ei2 the estimate (4.1) is true. So we have to estimate mes g2 (1] .
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By (1.27) and (3.6)

’ ’ d,—1
. 1 — .
Lip(w A (o) €351 (KiX+ef),r=kj.

By this estimate and (3.3) we have for the function I'(t) (see (4.11)):

) d,—1
1 S
F(tl) _F(tg) 2 |s| (tl _t2) -3 (Kl.l X + 58) (tl - tg) .
If j>j, thenby (4.13) for t; > t,

4! X 4 P)) > L
F(tl) - F(tg) 2 (tl - tg)] (C* -3 (Kl ]+ EO)) 2 b} C*(tl - t2) ,

if j<j, then |8] >j,, and

d,—1
4 —
() —T(tg) 2 (¢, —to)(8] —3j, (K X+ 1) 2t —ty.

So mes 0 (k,j,s)[1] < C,T and mes 82[1] <CY Y T(kis).
s#0 k, j

By (4.13) there are no more than C|s|2x admissible pairs (j,k); by (4.7)
|’\k0_’\j0| <C|s| . So

g2 1] <C 2 C_l( ) 1+2x-m, ¢ C
mes m)|s ,
= oo *4 |8 = U*4im§

if m, 21+ 2+ 2x, and the estimate (3.1) is fulfilled if C_ 4(m) is large enough.
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The lemma is proved. -
Proof of the Lemma 3.3. Let us define a set 93 as follows:
3 _ ’ . n .
8°=U{8 (je)[s€ZT",jEL},

8'(18)={0€8| [s- v (0)=1;(0)] < Coy(m1 + [s) ™7}

1/d

4
By the assumption (1.26) the set B is empty if |j| 2 C|s]| 1 By (1.26) and

(1.28) with §=0, 4] +..+ |/jl| =1 and M; large enough ,

120)] 2 Cc! Vj,0. So by (4.3) this set is empty if s=0 provided that

€y <<1,6, <<1 and C,(m) >> 1. Thus we may suppose that

1/d,
HESIO T (4.14)

/
As in the proof of Lemma 3.1 we get that mes B (j,8)[I] <C C;i(m) |s|_n_2 :
So by (4.14)

‘ C
mes 8 <o T Y (0 1) oty
%0 iKC 5| "

and (3.1) is true if C, (m) is large enough. If 6 ¢ 8% then
|D| 2 C**(m)—l(l + |s] )—n—l and (3.32) is proved.
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5.  Proof of Lemma 2.3 {estimation of the change of variables)

Let us denote by E:g ,8€ER, o ==, the space E: = C2n x Y:' endowed with a
?

norm ||| (08.6)

9 2 i% 2 *325 9
||(p,§,}')"(:|:,s,£)=lpl +e 617 +e lyllZ-

The following assertion results from the definition.

Lemma 5.1. For all 8 €ER the spaces Eg,f are dual with respect to the bilinear

pairing <._,.>E:E°xE°-_»c,

"b"(:l:,s,g) = s::p |< b’b* >El -
6%l 5.6y €1

We denote by disty ,y a metric in ¥, induced by ||-||(_8 &)

Let us write down the system (2.28) in a form:

b=c (), b= bh(t) = (alt), £(), y(1)),

(5.1)
5= (59 3¢, 97), 1= V., 5t =-VF 57 =V F.

If 50<<1,thenfor j=1,..,5
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disty g ) (0 ¢, 0_c\o_¥)>c (m). (5.2)

By Lemma 2.2 and the Cauchy estimate

3CB

0 x ,Lip
loll ™ BT B m)el/3 pd=a, -0 -1 (5.3)
(—,d + Ade) :

By (5.2) and (5.3) for 0t <1 and €q << 1 the solution of (5.1) depends analy-
tically on h(0) € Om4c and stays inside O m3c . S0 (2.43) is proved.

3c
Om

For every b€ the following estimate on a tangent map & 4 Tesults by

Lemma 2.2:

a8 JLip
le &40 (™F Yoy (ot aag S Cm) el
(5.4)

Va€D = [-d—Add] .

For t € [0,1] let usset #(t) = st £(0)n . Then n(t) is a solution of the Cauchy

problem

iWt) = e F(6(t)) ”(t) , m0) = 7, b(t) = SH(h) .

4c

By (5.4) for H €O and a € D we get estimates:

,Li
IS4 -1 10 oy pag SO 63)



and

Li
lIs(h) —1d — te 3'*(h)l|(m+1 . (a4 Bde) < 12C%(m) £/
(5.6)

The first of them results from the identity

1
m0) -n=¢ [ 7,001) () ar
0

and the second one results from the identity

t

W) = n-et F, 0= [ (F,000) wt) = F,(0) m) ¢
. 0

Let B(t) = (q(t), é(t), y(t)) be a solution of (5.1) with H(0) = h = (q,¢,y) . Then
(r) = ¢ £(a(7)

So Il ° s7(h) = sg(q;o) (i.e. does not depend on ¢ and y ) and by (2.35)

$(q) Uri’em+1< (m) 1/
| 4 —q {rC(m)e ¥,

(5.7)
3
ST —a—re @] ™ ™ ¢ 2 0 m) 23
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By the first estimate with 7=1 we get an assertion (2.45).
For y(t) we have an equation
y(t) = 26 3 ¥ (a(r))y + e I P (q()) . (5-8)

Let z(t) = 2(t) (q;6) be a solution of (5.8) with zero Cauchy data. Then by (2.36),
(2.39), (2.40) and (5.7)

4

vie
)| ™ 2 <t c8m) 23 Vi€ [01] . (5.9)
d—d + 4
H 1

Let us substitute into (5.8) y(t) = z(t) + u(t) . Then
u=2J(q(r))u,u(0)=y. | (5.10)

So u(t) =y + U(t)y,here U(t) is a linear operator and by (2.39), (5.7)

4
vl e
Nowll g™y 2ig<tCm e Ve o] (5.11)

So S _(a.6y) -y =12(1) (q6) + U(1) (q;0)y and the estimate (2.47) results from
(5.9), (5.11).

The estimate (2.46) results from the equation on £(t) and the estimates on
q(t) , y(t) . Now (2.44) results from (2.45) — (2.47) .
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The transformation Sp = st 1 18 canonical as a shift along the trajectories of

It =
Hamiltonian flow (see [1], Theorem 2.4). For to investigate the transformed hamil-

tonian ¥ oS  we start with an analysis of the quadratic term

At) = % <A () y(t),y(t) > with y(t) =2(t) + u(t) = 2(t) (¢:6) + v+
+ U(t) (q,8)y . Tt is equal to a sum of terms of zero order, first order and second
orderon y:

At) = Ag(t) + < W(t)y > + < WV (t)y,y >, (5.12)

(1) (a:0) = 5 < A (a(t)i6) 2(t), =(t) >,

W(1) (a6) = (1 + V() *Ap(a(t)) =(v),

2w (1) (g:) = 5(1 + U(t)*A m(a(t)) (T+ U(L)) .

Lemma 5.2. The following estimates are valid:

127 (1) - 29¥(0) - § £(a) -V, Apy(a) -

4
8
[ A(a), & P¥(q)] ||dmd I(‘;‘“‘1«:"'( ye2l3 (5.13)
~“H
vl e
ll2¥ (1) —2¥(0) - J Am(q)fy(q)”di:i gm“ < C¥(m)e (5.14)

4
|21 PPl ¢ o) A3 (5.15)
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Proof. By the definition of 2YY(t) we get an equality:

d

< @Y(1) - 27(0) vy > = | §r < Apat) u(t) , u(t) > dt =

Oy =

(5.16)

t .
= [ <BO ), () > + § < (e F(a(t)) - VAL (a(t)) u(t) , u(t) > dt
0

with B(t) = [J A_(a(t)) , e 7¥(q(t))] . By (5.7) and (2.40)

)
B ™ ™t < c¥m) /3, (5.17)
d,d-dp
A T 2/3
IB(t) - BO)|| ™ ™F! <t ¢¥(m) /3. (5.18)
,d—dH
By (5.7) and (2.9), (2.10)
vl e
I [fmoe £aim) - Vaga@mll ™ ¢ <eom P, (s19)
d,d—dH

Now we may replace the integrand in (5.16) by its value at t =0 and get the esti-
mate (5.13) by (5.18), (5.19) and (5.11).

For to prove (5.14) we rewrite < (29(1) —2Y(0)) ,y > as follows:
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’ 1
<@ -2(0),y> = [ § < Ag(at) 2t), u(t) > dt =
0

1
= [ (< G Apa®)) + Ag (a(®) 2T FV (@) + 3T (), u(t) > +
0

+ <A (q(t) 2(t) , 2 T FV(q(t))u(t) > ) dt .

If ||y]|_d + dl?[ <1 then by (5.12), (5.8) and estimates on 7 , ¥ this integral

differs from < J A m(q) ef¥(q),y> by Ce(m) €, as stated in (5.14).
The last estimate of the lemma results from (5.10). -

By (5.12) V((1) —2(0)) = (&Y (1) —27(0)) + 2(2¥¥(1) —2¥7(0)) y . So we have

the following consequence from this lemma:
Corollary 5.3. For b € 0m+1

IV (1) - 2(0) -3 < e #(a) - Ty Ag @)y, > -

u_t.8
~< (A (@), M@l y,y>-<TA_(F(@),y> )Ild“‘+(1, mtlce,
) T H

Let Sm(b) =h+ ebl = (E,f,?) . We write the transformed hamiltonian as follows:

(S (5:0)0) = (H_(h6) + ¢ < 8b¥(qi8) v,y > )
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+E<A DFF>-5<A (@yy>-

—< [IA_(0),ef¥(q)] vy > -2 <ef(a)- VoA ¥y > -
—<IA (@) F(a), 3> ], +elE -5 A, 1, +
+e[hq—ﬁrfq]3+s[(hg—ﬁrf£)-£]4-—

—e[<-LF-A_It -1 ,y>],-

fw

8 1
—el< Loy, ) —0Y - VAL A yy > T+

+ [(eHyy + el + EO)(b+ eb!) = (eHy + eHy  + EO)(0)], +

+e[Hy ]g+ B (5.20)

We denote by AjH the functional in the brackets [-] j (together with the pre-
ceding factor).

Lemma 5.4. For j=1,...,8 the following estimates hold:

o ¢ 8
88| mTmA ¢ FC(m + 1) £ (5.21)
Opmi1:®m1 , 1 $o+D)
||Vy AjH"d T $gCy(m+1)e (5.22)
H

Proof. We prove more complicated estimates (5.22) only.
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j= 1. The estimate is contained in Corollary 5.3.

j= 2. For the natural projection Il . EC — Y o ve have:
Vo4 + dH,e) d—dg

i ||(+_d+dH &) d— dg<e‘1/3. (5.23)

By (5.6) with a=—d+ dJ €D, t=1 and by Lemma 5.1

,Li
14 — m+1 <
"(S 1d-e7) (b)”( ,d,—d-1e), (+, —d+dH,e)
< C¥(m) e2/3 . (5.24)
Since

V(e = %) - Ap 4p) =Tl o (S —Td =& 3)*B)0A,.0)

: 2/3 :
and "(O’Am+1’0)”(+,d1—d—1,3) <Ce / , then the estimate (5.22) results from

(5.23), (5.24).
j=3—6. A3H=...=A6H=0.
j= 7. For arbitrary function H we have an identity:

1
Vo (H(h + €b7) — H(H)) = (V H(H)| NP b V H(5)) +

+ 1L (eh')*(6) VyH(h + &b')
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So we have to estimate two terms,

VEO, 1~ 0 (5.25)

and
I (eh')¥(6) VH(b + eb') , (5.26)

for H= s(H2m +¢eH, ) and for H= B3 . Let us denote h=S5,(h) and

mention that Hq o (bl*(b)) (0,0,y)=0. So

I, o (eb)*(5) VyB(5) = 11, o (e61)(5) (0.VB(5).¥, (b))

and by (5.23) and (5.5) with a = —d + dJ

,Lip
I, o V,H(h Om+1 <
M. o (eb')*(v) ||d 0 S

8 Lip
-1/3 1.¥) m+41’
< |(eb™) “(+,—d+d1—l,e) | (+~d+dpe) ™

~ ~ ,L
< [l0.m(6)) , VERONI, T+1d+dp_1 <

~ 8 ,Llp ~ )
< C%m) (31 T() | ™ 4 T ) ata, )

(5.27)
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Let H=¢(H, + Hq ). Then the estimate (5.22) for the term (5.25) results from
(2.12), (2.44) and the Cauchy estimate. The estimate for the term (5.26) results
from (5.27), (2.11), (2.12) .

Let H = H®. The term (5.25) is equal to

y

OV—— M

£
S VB0 + 19hdr = [ (V/Hg), (6 + phyplar
0

Lip

—norm is estimated above by

8
. -m+1°
and its |||| 0

H

VH - 8m+1’Lip ” 1“Bm+1’Lip
IOy, ()] T el Y o
d+dH—dH’ d—-dH H"H

2/3

The first factor is no greater than Ce¢ by (1.24), (1.24”) and Cauchy estimate.

The second one is no greater than &’ by (2.44) as dg < d; —1. So the term (5.25)

is estimated.

The estimate for the term (5.26) results from (5.27), (1.24), (1.24”) and Cauchy
estimate because d —d; +1 <d- dg -

j= 8. The estimate contains in Lemma 2.1, item c) . -

By the equation (5.20) and Lemma 5.4 hamiltonian ¥ (S (b;0);f) has a
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form (2.6) with
Ao (a8) = A (a;6) + 2¢ AbTY(q;0) . (5.28)

Lemma 2.4 is proved.



6. Proof of Statement 1.2.

0 €9 1
By the definitions of maps z and- 2 , for h=(q,0,0) € T,

20(0;9) = H},(q,0,0;H) =(q,0,0) € ¥ and Eso(q;ﬂ) = 2 0(\'.1,0,0;0) . So we have

to prove that

Tn

0
1Y -n,lg) %0 <ce (6.1)
® 4 dc

0
By the proof of Theorem 1.1 the map 2 is equal to
@

0 S .m
Zm(b;9)=SO(-;0)°51(- ;9)0...osm_lt-;e)ozm(b;e)

(6.2)
and
m 0° x Bs ,Lip
1Y -, %o <3¢ f (6.3)
o Y dc

(Lemma 2.5). The r.h.s. in (6.3) is smaller than £ if m 2 m(p) . So for to prove
(6.1) it is enough to check that

C .

415 "<og, Vi<m)  (64)

S.—H
| J
C
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In a similar way,

4
w (0])=w+ 501188 + elh{{E + ... (6.5)
0¢ 0¢ ~1/3 .
(see (2.56)) and |E.ih.i + €541 hj+1 + ... | £C(j) £ (see (2.60) with

m=j,p=m).Sofor to get (1.34) we have to prove that
0¢ .
epd) <Cep  Vigmlp) (6.6)
(we increase m(p) if there is need in it).

For to prove (6.4), (6.6) we shall improve the constants in the r.h.s. of the estimates

c

of Lemmas 2.1, 2.2. For this end we define independent on £ domains Qm ,

Q% instead of O_C,0_: @ =0T x {0} x {0}, 6., #,°),
Q,°=0Q " (see(2.)).

We shall prove by induction the following statement. Hamiltonian ¥~ (see (2.6))

may be written down in the domain ch in the following way:

= Ho (550) + £ B (60) + B(50) (6.7)

Here the function H° is the same as in (1.24), H(m) € ./‘IB{ (QmC;C) and
m

Q. 8, Q¢ 6,

pry $Cr IV Bl ™ g ™ <C (6.8)
(m) m y ~(m) d—dg m
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By (2.6) and (2.7) we see that EOH(m) =e H_ on Omc . So 8OH(m) is an

. . . . c
analytical continuation of emH m o0 the domain Qm .

For m =0 the representation (6.7) coincides with the initial one (see (1.23),
(1.24)). Let us suppose that the statement is true for some 0 {m { m(p)—1. We

denote the terms e H ¢

JH e h%,e h et in the decomposition (2.16) by

m
q 1¢ :

EOH( eOh (m) eoh (m) etc. and denote the coefficients equ , emg etc. of the

hamiltonian smF by eoi?m) , Eoffm) etc. By repeating the proof of Lemma 2.1

we have for h?m) , h%ri) etc. the estimates of the items a), b) of Lemma 2.1 with

m)’

r.h.s. replaced by C_ (we don’t controll the rate of increase on m).

In particular,

0&, _ . (10
by | = &g Iy

el 51)| <eyCpy - (6.9)

For H:(; m) Ve have an estimate of the form (6.8) .

By repeating the proof of Lemma 2.2 we get for 1?111) , l‘E m) etc. the estimates of

form (2.35) — (2.40) with the r.h.s. replaced by CIL . So after the analytical con-

tinuation into domain Q m3c

2
Cm

the vector—field of equation (2.28) is no larger than

and for this continuation the estimates of the item a), Lemma 2.4, are true with

r.h.s. replacéd by 01:131 £ (and with Qr(1:1+1 d in the notations of the norms). In
e

particular .



C .
Qm+1,dc * B4 Lip

3
|Sm—H}|Ed <Ch & (6.10)
c

Hence the transformed hamiltonian a‘%’m o Sm may be continued to domain

Ql;:l+1,dc and has there a form (6.7) with m:=m + 1.

Now the estimates (6.4) and (6.6) result from (6.9), (6.10) with

m=0,1,..,m(p).
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7.  Final remarks.
7.1 On the decomposition eOHO = SOHO + ;G

The assumption dg <0 (see (1.25)) means that the quadratic on y term of the
perturbation sOHO is determined by a bounded operator. This assumption may be
somewhat changed. Indeed, the only part of the proof where we need the assumption
is § 4 because for to solve the homological equations (2.32), (2.33), we perform

non—autonomous change of varibable in the phase—space Y of a form

y(q) = W(q) ¥(q) , q € T" (7.1)

The operator W(q) is diagonal, W(q) = diag (exp i Wj(q)) , Wj is an analytical
function, Wj ~A A i’

8 2@ = 3@ - [ 1}(@) da/2m)® (7.2)

0
d
(see (3.13)). By our estimates (see (2.10)) A Aj(q) is of order j H (j— o). Soif
d]?[ > 0 then the change of variable (7.1) is unbounded in any complex neighbor-

hood of T™, and our proof is spoiled.

Let A Aj( m)(q) be A Aj(q) corresponding to the iteration number m . Then by
(5.27) and (3.7)

- 1 Yy, .0 o
A Ximsn)@ =8 Xy +3 2i<h of o>+
o=
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f 1"
+ "a term of order A Aj(m)

So what we need indeed is not the boundedness of the quadratic term, but the boun-

dedness of the eigenvalues of the operator J A

%2 <hyy<pja,<pja>50 VieN. (7.3)
o==%

So it is enough to assume the assumption (7.3) for the quadratic part of H, (see
(1.23)) and to check that (7.3) holds for hamiltonian ¥ 41 Provided it holds for
H*

m>®=0,1,2,... A not complicated analysis of the terms A H in (5.20)

shows that the last statement is true if dg < %—(d1 — 1) . So we have a version of the

theorem. We formulate it in a case d; > 1 only:

i

Statement 7.1. The assertions of Theorem 1.1 are true if dH >0 ,d1 >1 and

instead of (1.25) the following two assumptions hold for some & > 0:
d<d -1, 0<dS <L(d, —1)
H-="1 » T=2FTH =3\ !
| 2 VH 00,60))*|ch ) 5 >|U(6)LIP<K
Vi=1,2,3,...
7.2 On the reducibility of variational equations.

In the statement of Theorem 1.1 we made no use of the estimates (2.9). (2.10),

(2.24) on the quadratic on y part of hamiltonian ¥ _ . These estimates allow us to
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€
prove that the variational equations for (1.19) along solutions z 0(1;) are reducible
to the constant coefficient ones (this reducibility is a typical by—product of KAM—
procedure; see [Al], § 5.5.10).

The variational equations for 6z0 = (t)'q0 , 6&0 , 6y0) € E; along the solution

“0
z=1z (t) have a form:

6‘10 =€ (VEHO(Z))* 0° é =—£0(V H ( ))* 0’
(7.4)
5)"0 = J(A(w) 6}'0 + EO(VyHO(z))*ﬁzo) :

£
Let us denote by T® =T% («I)=E 0 (T™) the invariant tori constructed in
£ £o (1)

Theorem 1.1.

Theorem 7.2. Let under the assumption of Theorem 1.1 dg < 0. Then there exists
an analytical mapping &, : T? — Z(E4,Ey) such that the substitution
0

b2y = ®,(z(t)) 69, 8 = (6q,6¢,6y) € Ey , transforms solutions of (7.4) into so-

lutions of equations

4=0,6¢=0,67=1K (0) by . (7.5)

0
d
+ + . . H 1
Here A _(9) o] = Ij(ﬂ) x Vj and |1'j(0) - Aj(w)I < Egj Vo<s3.

The change of variables 'I'l is constructed in two steps:
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1. The substitution

60 0 ’
2 O(t) = 50(b_(1)) , b(t) = ( + @ £,0,0)
629 = Eo(b,(1)),, 6
0 o\ ‘o /% m
transforms solutions of (7.4) into solutions of equations
6q,=0,68 =0, 6y =JA_(qt) 6y, (7.5)

2. The equation for by  in (7.5) may be reduced to the constant—coefficient one

via a substitution &y = W(q_) by , W = diag (exp (in(qm))) ; see § 3.

We omit the details.
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Appendix A. Interpolation theorem.

Let X, be a real Hilbert space with a Hilbert basis {'qj| jE EO} (i.e.

<y My > X, = 6j,k) . Let X, be a dense subspace of X; with the Hilbert basis

{xj-l nj}  X; >C Vj.Thenfor 0<7<1 theinterpolation space [X2 , Xl] ;18
a Hilbert space with the Hilbert basis {xj‘1+qu| jET,} - In particular if
X,=Y,, X2 = Yb ,b>a,and Ya. , Yb are spaces from the scale {Ys} as in

§ 1, then for the conditions (1.21)

[X5, %] o Yy, Y1, = Y'ra.+(1—‘r)b

(one has to take qj=g0-+ for j>0 and 5. =¢ .

j i & for j < 0). The norms in the

spaces are equivalent:
K_1||Y||Ta+(1_¢)b <yl [Y, . Ya]fs K ||Y”m+(1_.f)b
For comple:;iﬁcations ch and X2c of the spaces ) S X2 we set by definition
(X%, X1, = [X,, XJ B¢

(i-e. an interpolation of complexifications is equal to the complexification of inter-
. c ¢ _ve©e
pOla.tIOIl). So [Yb , Ya ]T = YT3.+(1—T)b .

Theorem Al (interpolation theorem). Let a linear operator L: ch——» Yc_c|J

may be continued to continuous maps Ysc — ch and YBC — Y.

lc . Then
0 0 1 1
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Y7 € [0,1] it may be continued to the continuous map Y c——»ch,

T T
BT=T80+(1—T)81,1T=T10+(1-1')11,a.nd

L {C L , [|L .
ol ;< Cmax lel Il ) 3
For a general formulation of the theorem and for a proof see [LM, RS2].

Corollary A2. Let a linear continuous operator Ysc — ch be symmetric with

respect to the pairing <-,-> (ie. L€ .z’B(Ysc , ch) )- Then

Vre [01] LE LY, Y% ,s =15 +1)~1,1_=1(s+1)~1,and
T T

Jull, ;< cliully-

Proof. We h alities: ||L = ||L* =||L||., . Bere L* is th
Proot e have equaliti ]| ”-—l,—-s || “—-1,—3 || ||ﬁ’1 ere 18 the
operator, conjugate to L with respect to pairing < -,-> . Now the assertion
results from Theorem Al with 50=s,sl=—1,10=1,11=—s..

Appendix B. Some estimates for Fourier series.

Let B be a Banach space with a norm ||-|| , B® be the complexification of B,

M = {u} be a metric space, { > 0 and
G € A3y(U(e) ; B, [l6] VM <1 (B1)

Let us write a Fourier series for G :
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Glaw) =Y Glsm) 9. (B2)
s€I"

Lemma B1. For every s € I
G ()[R < €181 : (B3)

and

P s
G (S)l‘) =G (—B,,u) Vs ) Vp (B4)
- An "almost inverse” statement is true:

Lemma B2. If (B3), (B4) are true Vs € 7" and 0 < A < ¢ then the series (B2)
converges Vq € U(¢ —A), the map G is analytic and

G e £R(UE-2); B9, G| VEAIM ¢ 4np
Lemma B3. If (B1) takes place, 0 <2A < § <1 and

Ry @)= )  Glsm) ™,
T Il

then
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3
-sM_ A
*

The prooves of the lemmas given in [A, § 4.2] for B = R™ , are valid for arbitrary
Banach space B.
Appendix C. Lipschitz homeomorphisms of Borel sets:

Let QCR® be a bounded Borel subset and A:f1— R™ bea Lipschitz map of a
form A(a) =a + A (a),

LipA; Sp<l. (C1)
So
LipA<1+u. (C2)
Theorem C1. If (C1) takes place than the inverse map A7 is well-defined and
LipA~ < (1-p) 7. - (C3)
V4
For arbitrary Borel set 1 C 1
n ! ! n
(1—p) mesf) <mesA(f? )< (1+ ) mes (C4)

Proof. The first statement is evident. Indeed, if A(xj) =7Yj j=1,2, then
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2 2
(x) =xg) + (Ayxy —Ayxp) =y —yp and by (C1) |x) —x5| " S p[x) —xp| " +

-1 _
+ix —%g| [y, =¥yl - S0 [x—xp| S(A—p)" |y;—¥y| and (C3) is

proved.

For to prove (C4) let us continue A to a Lipschitz map A®:R™ — R™ with the
4
same Lipachitz constant (Kirszbraun’s theorem, see [F]). Let mes? =a. Then
4

/
the upper measure of 1 is equal to a, too. So Ve >0 theset 1 may be

covered by a countable set of balls B i CR™, radius of Bj is equal to r i and

®
V12 rjnS(l-l-s)a
=1

(V, is the measure of 1-ball in R"). As Lip A®=Lip A < (1 + p), then A(Bj)
7
is contained in a ball of radius (1 + x) I As A(D)CU A(Bj) , then

mes A ) <V, T (1 + g £ (1+ )" (1 + ) mes .

The second inequality in (C4) is proved because € > 0 may be chosen arbitrarily
small.

For to prove the first inequality we have to consider the map A7! and to use (C3).
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List of notations

1. onstants.

C, C1 , Cz‘, ... — positive constants which arrive in estimates. They are indepen-

dent on £ and m and are different in different parts of the text.

K, K1 , ... — constants which characterize initial data in theorems;
m — a number of iteration;

Cy
C(m), Cl(m) , ... — functions of m of the form Cim %

C, i C, j(m) ~ fixed constants and fixed functions of the form C(m);

Ci(m) , Cg(m) y .- — functions of m of the form exp C(m) ;

2 =2 -2

212 + 224 ... )

1

e(m) =

m
em=50(1+p) ,0<p<1/3;

1 )
§m= O(I—Gm),6m>§60Vm,

(-] j -
6m--(1 é)6m+é6m+l’05355
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2. Lin s and m

Y ,Z - Hilbert spaces with norms ""Y’ ””Z and inner products < -, >y,

<°,'>z;

{Y,|s €R} — a scale of Hilbert spaces YB,|-|Y3=|]-||3,Y0=Y,YE‘1CY32

for 8 2 By, Yy and Y__ are conjugate with respect to the pairing

<.,.>=<.,.>Y;
{,\j(“) @51 JEN} — a Hilbert basis of Ys,Aj(_s)=(Aj(s))_1> Vi, Vs,

Y®, Ysc — complexifications of Y , Ys , the scalar product <-,-> in Y is

continued to a complex—bilinear pairing YBC xY _sc — C,8€ER;

.2’(YB°; ch) a space of linear continuous operators from Yﬁc to ch provided

with the operator norm ||||

81’
£ (Ysc; ch) —  operators from .:/(Ysc; ch) symmetric with respect to
< >
3. ets and domain

Ny =NU{0},Z,° =% {0} , I, =17\ {0} ;

0(Q,6,M) — &-—neighborhood of a subset Q of a metric space M ;
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0(46,2) = 0(0,6,Z) for a Banach space Z;
ACRY — aset of parameters a ;

A(ap,6) = {a EACR"| |a—ay| < 6};

QO — aset of frequencies vectors (wl y ey wn) ;
J — aset of actions (Il ) e ’In) :

Bj ={0=(wI)},j=0,1,.. — subsetsof 0, x J;

0

B[I) ={w€EN|(x])€EB} fora BCNx J and arbitrary [ € J;

(yS=T'1 x R x Y., ¥= ¥, tangent space to HE ¥ is identified with
%=WxMxn;

$E= (2T x P x Y E;
U(8) = {¢ € €%/ 2r I"| |Im¢| < 6} ;
O%(€git b #5 ) = Ulég) x O(£,,€") x O(€,,Y, %) ;

1/3
c c 2/3 c
U, =U(6,),0, =0"(6,e, / Em 3 Hq )
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0,5 = 0%(8, ], (2—J€m)2/3 , (2—J£m)1/3 W AN ESESE

= ¢ .
Om—Om.ﬂ}d,

4.  Maps and functions

For amap G: Q1 — Q ( Qj is a metric space with a distance disi;j ,j=12)

dist2(G(x1),G(x2)) .

Lip G = su dist;(x%p)

x15"2

p.
G = max {sup |G(qQ)|~ ,Lip G} if G:Q,— Q, and Q, isa
Glg, e 1901g, 1 — Q .

Banach space;

A R(Olc;Ozc) is the set of Frechet complex—analytical mappings from 01c C Blc

to 0,°C B, which map 0,°N B, into B, ;

A811(0,50,°) is the set of mappings G : 0,%x M — 0,° such that
G(-;m) € £%(0,50,°) Vm €M and
C.M

0

|G|]32 = sup |G(b;-)|M’Lip<m;

c
bEO,
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<J dz,dz >, 18 a 2—form in a Hilbert space Z ,<J dz,dz >Z[z1,z2] =

= <J dz,dz >Z .
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