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Hilbert 4-th Problem, Radon Transform
and Symplectic Geonletry

J .-C.Alvarez, I.tvl.Gelfand, M.M. Smirnov

1. Introduction.

The Hilbert 4th problem (H] deals with the deseription of geometries
in whieh geodesies are straight lines. The problem was entitled as "the
problem of lines as shortest eurves between two points." Originally for­
mulated quite broadly, this problem ean be split into several parts. Some
parts were solved as soon as 1903 by H.Hamel [Ha], followed by the work of
P.Funk in 1930 [Fu], J.Douglas [D] in 1942, and finally by aseries of works
by H.Busemann [Bu] on the geometry of geodesies. Later appeared a book
by A.V.Pogorelov exclusively devoted 1,0 the Hilbert 4-th problem.

The Hilbert problem alld its generalization that we deal with ean be
formulated a.s folIows. 1'0 describe aH Finsler metrics 1) or more general La­
grangians whose extremals are straight lilles. More generally this problem
ean be formlliatecl in this form: 1,0 describe aU k-dimensional Lagrangians
in Rn such that aH k-dimensional planes are their extremals (of course they
have other extremals 1,00).

The solution that is given here uses the Radon transform eonneeted
with a pair of Grassmannians (sedion 6).

First) we deseribe Finsler metrics in Rn whose extremals are straight
lines. They are solutions of a system of PDE's and they ean also be de­
seribecl as the image under the Radon transform of positive measures on
the space of hyperplanes in Rn.

We deseribe all k-dimensional Lagrangians in Rn that, have all k­

dimensional planes among their extremals. These Lagrangians are soilltions
of a system of PDE's and this system eoineides with the lower order terms
of the Euler-Lagrange equations.

These Lagrangians are the images under the Radon transform of the
rneasures on the spaee of (n - k)-planes in Rn. This Radon transform, first

1) Let us rem ind 1, he defin ition of a Finsler metrie. It is a fu netion F (x J v)
of a point x in the domain in Rn and a tangent vector v E Tz; that is
smoot h in x, v, that is posi ti ve hOlllogeneous in v: F (x, >. v) = >.F(x I v) for
all >. E R, and such that the indieatrix of F defined as Indz;F = {v E
Tz;IF(x, v) = I} is a twiee differentiable closed convex! hypersurfaee in
Tz. Thc Riemannian metrie is a special example of a Finsler metrie when
F(x, v) = -Iquadratic form m v
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defined in [G SIJ is d ifferen t rrom the classical Radon t,ransform 1 bu t a sys­
tem of PDE's for k-Lagrangians can be interpreted as the standard F.John's
system of PDE's describing the image of this special Radon transform.

The k-dimensional Lagrangians introduced here are analogues of closed
differential forms. Other analogucs of differential forms anel De Rham com­
plex were stlldied by M. Baranov and A.S.Shvarts [ES].

2. Even and Odd Densities and the Crofton Forll1ula.

Consider in Rn a k-dimensional manifold JU k . Sllppose M k has the

following parametrization: M k = {X(Sl'"'' Sk) E Rn, where B E nk E
R k

} We want a functional

to be independent on the parametrization of M k. Then after a change of
parametrization s --+ t, L must change in the following way

L(x(t), ~, ... , Hf;) = det(~) L(:z:(s), ~, .. " t,:) or

In the first, case L is called an odd k-density, in the second case L is
caBed an even k-density. The main example of odd k-densities are differ­
ential k-forms. An example of an even k density is a k-dimensional volume
element.

Now let us explain what is a Crofton density or Crofton Lagrangian.
lt is an even density that has some additional properties. Let us replace a
manifold M k by its Crofton fllnction. It is a function on the set H n n-k of,
(n - k)-planes in Rn. The value of lohe funetion CrofM " (~) on the (n - k)-
plane ~ is equal to the number of intersection points of M k and ~. Crofton
funetions carry almost aB information abont the original manifold M k .

Crofton Lagrangians (or Crofton densities) are such densities for which
the Crofton formula is valid: i.e. there exists a measure J.l(~)d~ on the set
Hn,n-k of (n - k)-planes such that for every manifold M k E Rn

For example, accorcling to the classical Crofton formula of the integral
geometry an element of k-dimensional nonoriented volume in Rn is an even
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Crofton k-density. A Crafton density depends on the measure p(€)d€ on

Hn,n-k. We shall write an explicit formlIla for a Crofton density by means
of a special kind of (n(n - k))-dimensional Radon transform of the measure

p.

EXRlnple. Consider an even 1-density L in R 2 given by the formula

Let llS parametri ze lines in R 2 by the equation X2 = ax 1 +b. I n coordinates

a, b the corresponding dual measure p(a, b)dadb is

=
-1-a2 +2b2

2(1+a2 +b2)!'

The extremals of the problem JL(xdtL x2(tL xdtL x2(t))dt are straight

lines.

3. Systmn of PDE for Lagrangians solving Hilbert's ProbleIn.

Theorenl 1. If a fUllclion L(a.:; VI, ... , Vk) of (l point x E Rn and
k-tangent vectors Vi = (vI, .. " vi) E TxRn is an even Crofton density then
it satisfies for all x and all VI, ... , Vk: lVII + ... + IVk! #- 0 the following
equalions:

i,j=l, ... ,k, (1)

and I = 1, ... , k. (2)

/f L is a ftmctiou of a point x E Rn and k-tangent vecto1'S Vi =
(vI, ,.. ,vi) E TxRn which is even in Vi (lnd satisfies (1) and (2) then it
is a eroflon even k-density.

The density L defines a functional

S[Mk
] = 1 L(x(tL g; ,... ,:t )dt 1 ... dtk.

n k I ""

~Ve want to find its extremal k dimensional surfaces. Let us write general

Eu ler- Lagrange equations for k-dimension al ex t remals x Tn (t I, ... , tk) of the
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functional S. They are

8r) - 0"""lii"; - ,

where s = 1
"

", k, m = 1, ... , n.

Thcoreln 2. Differential opemtor (2) in the equations for a Gmfton
k-density coineide with the terms of Euler-Lagrange operator for L whieh
do not contaiTl second deri votives in v:

(3)

From thc last theorem it is possible to deduee
Theorelll 3. An even k-density satisfies the Gmfton formula if and

only if all k-planes in Rn are contained a1l10ng its extre1l1ols.

4. Finsler llletries in R Jl whose extrelnals are sraight lines.

We consider 1-Lagrangians L (x, x) that are even densi ties. If the ind i­

catrix ludr L = {v E T:c : L(x, v) = I} is convex (and twice differentiable)
for all x then this Lagrangian is a Finsler metrie.

Consider an even I-density for which the Crafton formula is valid. It
depends on a measure on the space of hyperplanes in Rn and can be ex­
pressed through this measure by thc Radon transform (see section 5 and
(GS1]).

Proposition 5. The indiealr'ix of the Gmfton l-density with the posi­
tive duol funetion is strietly eonvex.

So such density is a Finsler metric whose geodesics are straight lines.
For I-densities t.he equations for Lagrangians whose geodesics are straight
lines can be written in a particularly simple form. One can find them
already in the work of Hamel [Ha] anel Funk [Fu]. strangely enough, P.Funk
who along with Radon is the "father ofthe Radon transform" did not notice
how the Radon transform can be applied Lo the Hilbert's 4-th problem,
although he himself worked on that problem. H.Busemann [Bu2] noticed
the eon nection between the HiIbert '5 4- th problem and the cl assical integral
geometry in the sense of Buffün, Crofton, Poincare and Chern, but not tü
the Radon transform .
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Now let us write the equations for Crofton I-density.
Theorem 4. An even l-density L(x, v) satisfies the Gmfton formulo

if ond only if

This is equivalent to the pmperty thot oll extremals 01 L are stmight lines.

ReIllß.l'k. These equations ean be deduced from equations (2) of the
theorem 1 usi ng the homogenei ty equations (1).

5. ß,adon transform far a pair of Grassnulunians Gn +1,n and Gn +1,k

and k-Lagrangians.

The Radon transform in the general situation maps a geometrie objeet
on the souree spaee (funetion, differential form, eonnection) into integrals
of t,his object over some family of submanifolds in the souree spaee. So it
is a mapping from geometrie objects on the souree spaee into geometrie
objeets on a target space that is the family of submanifolds in tbc souree
spaee.

Let us define now the Radon transform tImt is used here. Let p(()
be a function on a manifold Hn,n-k of (n - k)-planes in Rn. To caeh
X E Rn we assoei ate a variety lJ z; ::;:; {( E Hn ,n _ k I( passes through x}. To
every pair (x, l) where x E Rn, and l is a k-subspace of a tangent space
Tz; we associate a pair: a variety Hx and a measure Ul on Hz; which is a
k(n - k)-dirnensiollal subvariety in Hn,n-k.

The even Radon transform is given by

ljJ(x, €)::;:; Jp(()dUl.

1/r

We ean writc now an explieit formula expressing a Crofton density L in
terms of J..t using the even Radon transform eonnected with a pair of Grass­
mann manifolds Gn +1,n and Gn +1,k. This transform will be defined below.
We shall do it in several steps.

1. \Ve regard R~ as an affine part, of Gn+1,n.

2. \Ve go [rom the measure J-t on Hn,n-k to the function jj on a frame
manifold E n +1,k.

3. For every x E Rn and k-tangent vectors VI, ... , Vk in the point
x we construet a differential k( n - k)-form n on the frame manifold En,k.
Aetually this form is constructed using not x but vectors 111, ... , 11n whieh
spans n-space from Gn +1 ,n corresponding to the point x.
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4. The k( n - k)-form n ean be pulled down from the frame manifold
En,k which is a bundle over G,l,k to a Grassmann mallifold Gn,k and

L(x, v) = 1 0 •.
0 ... ,.

Let us repeat this eonstruetion in details.

1. COlupactification of Rn and Hn,n-k Let HS eonsider R: as an

affine part of Gn +l,n. Then t.he set of aU (n - k) planes in R: 1 whieh
we have denoted by Hn,n-k, ean be eompactified to the Grassmannian
Gn+1 ,n-k+l, whieh is eanonieally isomorphie to Gn+1,k. Consider two man­
ifolds of frarnes: En+1,k, the manifold of k-frames in R n +1 and En +1,n, the
manifold of n-frames in R n+1

. They are bundles over Gn +1,k and Gn +1 ,n

eorrespondingly.

2. Constrllctiou of jj. To every measure J-l()d( on Hn,n-k C

Gn+1 ,n-k+l we eorrespond in a eanonieal way a function ji.(w) of a k-frame
w = (Wl' .. " Wk) E En+1,k timt. has the property

jl(Aw) = IdetAI-n- 1p(wL for A E GL(k, R). (7)

Beeause Gn +1,n - k+ 1 and Gn+1 ,k are eallonieally isomorphie, every
measure Jl on Gn + 1,n-k+l is isomorphie to a measure Il' on Gn + 1,k' We
now eonsider a loeal eoordinate system on Gn +1,k given by

(

11

~ ... :~
1

o

where q = n-k+ 1. In loeal coordinates Ilc~11 the measure J-l' ean be written
as J-l' (cL ... , ck) dc~ ... dck, where J-l' (cL· . " ch) is a function of Ilc~ 11, For
a k-frame w' = (W'l' " ., wh) E En +1,k with wi = (cL "., C~, I, . , ,,0), "',
wk = (c7 I '''' c~, 0, ' , ,,1) we define jl(w') by the equality

-( ') I ( 1 q)J-l W = J-l Cl1"" Ck

and we extend ji. for arbi trary w E En +1,k using (7),

3. Constructiou of a forul O. Consider now a point x E Rn C
Gn +1,n. We ean look at X as at the tl-subspace Lx C R n+1

, Let 11 =
(Ul1' , ., u n ) be a basis of Lx, Then any k-frame w = (Wl" .. \ wd in Lx
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ean be written in the unique way as

So when we fix a basis U1, ... , U n of Lx the eomponents of the matrix
T = Jlt111 form the loeal eoordinat.e system on the manifold En,k of k-frames
in Lz;. \Ve define differential [OrIllS lT1, •.• llTk on En,k as

lTj= L (-lttilt~:l ... t~I<dtfk+l ... dtf·, i=l, ... ,k
(P1···P,..)

where s is the sign of the permu tat ion (PI, P2, ... , Pn). Symbolically (J' j can
be written as

(

tl

(J'j =det t
t?

t1 dtf ... d;l) ,
tn dtr dt~k

where we multiply differentials dt1 by the exterior product.
For a basis Ul, ... , U n of Lz; E Gn +1,n and k tangent vectors

Vl, ... , Vk E TxRn we define a differential form n on En,k as

= jJ((UI ...un)T ) I. L. Pi, ...i.T;, ...i.jUI /\ ... /\ Uk,

11< .. ·<11<

where Pi1 ... il< =det (V~'
v~1<

t~' )

CI<
k

1 ~ i 1 < ... < h $ 11.

4. Pull down of n to Gn,ko We can see that when we evahIate form
non k(n - k) tangent vectors to En,k, components of these tangent vectors
whieh are tangent to the fibers of the bundle En,k ~ Cn,k does not play
any role. So n can be pu lied down to Gn ,Ie .
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Theorelll 5. Every Cmfton k-density L(x; VI) "'1 Vk) in Rn can be
represented as

whel'e 0", is the form n pulled down to Gn,k and UI".Un is any n-fmme
spanning the space L1: E Gn+1,n corresponding to the point x E Rn.

6. Symplectic forIus on the manifold of oriented lines in Rn.

Let H denote the manifold of hyperplanes on Rn. Let P be a two­
di mensional plane in Rn. Let us denote by L (P) the space of nonoriented
lines lying on P.

A smooth measure p on Hinduces a smooth measure pp on L(P) for
every 2 dimensional affine subspace P C Rn.

Let Hp be the set of all hyperplanes in Rn that intersect P in a line.
The set Hp is an open dense subset of 1I. \Ve consider the natural projec­
tion

7rp : Hp --.. L(P) .

If U is a Borel subset of L(P) we set J1.p(U) := p(1T"pl(U)).
Since the map 7rp is a submersion the measure pp is smooth if the

measure I' is smooth.

TheoreItl 6. A Crofton l-density in Rn with dual measure p defilles
a Fiusler metric if and onLy if the indtlCed meastJres flp are positive for all
2-dimensionaL affine subspaces Penn.

Let HS remark timt the positivity of the induced measures J-lp does Hot
imply the positivity of the measure IL

Let us denote by i(p) the space of oriented lines lying on P. As a
double cover of Lpl L(P) carries a uniqlle measure jip which indllces the
measllre J-lp on L p •

TheorClll 1. Let L(Rn) be the sp(Jce 01 oriented Lines in Rn, and let.

be the inclusion map. There exists a unique closed 2-f01'11l w on i(Rn
) slJch

that Iipw I= ji, p for all 2- di mensional affines subspaces P C Rn. A1oreoverJ

the induced measures J1.p are positive if (md only if the form w is symplectic.

Definition. Let ,r denote the set of all oriented lines passing thmugh
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a point x E Rn I and let

be the inclusion map. A 2-Jorm w is said to satisy condition (A) iJ j;w = 0
Jor all x ERn.

Proposition. A 2-Jorm w on L(Rn
) satisfies condition (A) iJ and

only iJ there exists a smooth signed measure Jl on H such that Jor every
2-dimensional affine subspace P C Rn we have that 1ipw I = ji p .

Theorem 8. There is bijeetion between the set oJ Finsler metncs
on Rn whose geodesics are straight lines (so called Desarguesian Finsler
metric8) and the set oJ sympleetic forms on L(Rn) which satisJy condition
(A).

7. NOlllocal differentials und the Hilbert trallsfornl for 1-
Lagrangians.

We shall explain now in what sense even Crofton l-densities can be

viewed as "differentials" of fundions. Let f be a funetion in Rn. The

usual differential dJ, which depends on a point x from Rn and a tangent

vector v [rom TrRn can be written as (dJ)(x, v) =1:00

J'(t)j(x - vt)dt.

The nonlocal (ar even) differential of a funetion f is

(dO f)(x! v) = 1+00

; f(x _ vt)dt= [+oof(x + vt) + f(: - vt) - 2f(x) dt.
-00 t Ja t

\Ve suppose that f is such timt this integral converges at infinity.

Theorem 9. Let f(x) be a mpidly decreasing Junetion in the Schwartz
space S(Rn

). Let f be the Radon transfonn oJ a Jtmetion F(o) :

+00

f(xI, ... , xnFJF{Ol' ... ! On-I! X n - (OIXI + ... + On-Ixn-d)dol ... dCln-1

-00

Let L (x! v) = rfJ F be an even differential of the funetion F. Then

(1) L(x! v) is a Grafton density in Rn.

(2) Let D~ .. F( ClI, ... ! an) ! be the 11even partial derivativeJl of F defined as
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Then the the dual meaSU7'e foT' L is jJ (er) dO' where jJ (0' 1, ... , an) ==
D~ .. F(o'l," .!an ).

Let HS remind that an even l-density is a function L(x, v) of a point
x E Rn alld a tangent vector v at the point'x such that L(x, AV) == 1..\IL(x, v)
for every A E R. An odd i-density is a function B(x, v) of a point x E Rn
and a tangent vector v such that O(x, AV) == AB(x! v) for every ,\ E R.
Differential I-forms give a specific example of odd I-densities, they are
linear in v.

The I-density (H L)(x, v)

+co +co

( )() V I jL(x-vt'V)d 1 jL(x+vt,V)-L(x-vt'V)d
H Lx! V == P. .- t =- t

7T' t 7T' t
-co 0

is called the Hilbert transfonn of a I-density L. \Ve suppose that L satisfy
some growth conditions such that its Hilbert transform exists.

The Hilbert trallsform of an even l-densit,y is an add I-dellsity. The
Hilbert transform of an add I-density is an even I-density.

Theorem 10. The Hilbert trans/arm of a closed i-form with rapidly
decreosing coefficients is the Gmfton I-density. The Hilbert trans/arm of 0

rapidly decreasing eroflon l-density L is a closed I-form. ("Rapid decreas­
ing oj L 11 means that L(x - vt, v) is a rapidly decreosing junction 0/ t fo1'
any fixed v and x). Let f be a rapidly decreasing funetion, w = df is its

differential and L = ..!.dof is its nonlocal differential (which is the Gmfton
7T'

l-density). Then (H L)(x! v) :::; w(x, v) and (Hw)(x, v) = L(x, v). So the
Hilbert tmnsj07"7Jl mops even differentials into adel ones and vice verso.

We can summarize properties of Crüfton 1-densities on the following
diagram:

F Radon trllnsf.~ f f ... Radoo transf. F

d

11 Even Radon tr. d 0/ Hilbert tr. dlf Odd Radon tr.
I"'" ---_a- ...--~... n

11 11

cp (0

Crofton l-density Closed I-form
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8. Crofton 1-LagraugiftIls on the hyperbolic plane.

Consider the hyperbolie plane as an upper half-plane {(x, y) I y > O}

with the metric dx
2

~ d
y

2 . Take z :;::: x+iy. The upper half-plane is a model
y

of the Lobachevsky geometry, where Lobachevsky lines are vertical rays
{(x,V) I x:;::: xo,y > O} and halfcircles {(x,V) I (x-xO)2+ y2:;::: R2

, y > O}.
Let HS parametrize "lines" on the hyperbolic plane. To each half eircle

{(x, y) I (x - XO)2 + y2 = R2 , y > O} we correspond a point ( = (1 + i(2

where (1 = xo and (2 =R. Thus we parametrize almost all "lines" except
vertieal rays.

The set of allIines whieh come through the point (x, y) fOrlns a branch
of a hyperbola (x - (t}2 + y"J =(? on the dual plane (1, (2'

Let us as usual define even and odd 1-densities and also define Crofton
densities with respect t.o Lobachevsky lines. For example the length element
dx 2 + dy2 v2 + v2

--2---";;- 1 2 2 will be a Crofton I-density.
y Y
Theorem 11. Even Groflon densities on the Lolx,chevsky plane satisJy

fhe /ollowing equation

v # O.

Gm/ton densities have the following integml representation through their
dual measures on the set of Lobachevskian lines:

Extremals 0/ Qrbitmry Grofton density are Lobachevsky lines.

8. Crofton Lagrangians aB analogs of closed differential k-forIllS.

In the class of odd densities , densities for which the oriented analog of
t,he Crofton formula is valid are exactly closed differential k-forms [GS1].
They have analogous representation through Radon transform. The PDE's
for the image of this Radon transform are exactly conditions of closedness
of t.he form.

Crofton k-densities give a good example of the integro-geometrictex
prepr functional. There werc several attempts recently 1,0 use illtegro­
geometrie funetionals other tohen area in the functional integral in QFT.
For exampIe, Ambartsumian-Savvid i [S 1] used for this Steiner funetional of
the classieal integral geometry.
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