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1. Introduction.

The Hilbert 4th problem [H] deals with the description of geometries
in which geodesics are straight lines. The problem was entitled as “the
problem of lines as shortest curves between two points.” Originally for-
mulated quite broadly, this problem can be split into several parts. Some
parts were solved as soon as 1903 by H.Hamel [Ha], followed by the work of
P.Funk in 1930 [Fu], J.Douglas [D] in 1942, and finally by a series of works
by H.Busemann [Bu)] on the geometry of geodesics. Later appeared a book
by A.V.Pogorelov exclusively devoted to the Hilbert 4-th problem.

The Hilbert problem and its generalization that we deal with can be
formulated as follows. To describe all Finsler metrics ') or more general La-
grangians whose extremals are straight lines. More generally this problem
can be formulated in this form: to describe all k-dimensional Lagrangians
in R" such that all k-dimensional planes are their extremals {of course they
have other extremals too).

The solution that is given here uses the Radon transform connected
with a pair of Grassmannians (section 6).

First, we describe Finsler metrics in R"™ whose extremals are straight
lines. They are solutions of a system of PDE’s and they can also be de-
scribed as the image under the Radon transform of positive measures on
the space of hyperplanes in R”.

We describe all k-dimensional Lagrangians in R”™ that have all k-
dimensional planes among their extremals. These Lagrangians are solutions
of a system of PDE’s and this system coincides with the lower order terms
of the Euler-Lagrange equations.

These Lagrangians are the images under the Radon transform of the
measures on the space of (n — k)-planes in R™. This Radon transform, first

1} Let us remind the definition of a Finsler metric. It is a function F(z,v)
of a point z in the domain in R™ and a tangent vector v € T, that is
smooth in z,v, that is positive homogeneous in v: F(z, Av) = AF(z, v) for
all A € R, and such that the indicatrix of F defined as Ind.F = {v €
T:)F(z,v) = 1} is a twice differentiable closed conver! hypersurface in
T:. The Riemannian metric is a special example of a Finsler metric when

F(z,v) = V/quadralic form in v



defined in [GS1] is different from the classical Radon transform, but a sys-
tem of PDE’s for k-Lagrangians can be interpreted as the standard F.John’s
system of PDE’s describing the image of this special Radon transform.

The k-dimensional Lagrangians introduced here are analogues of closed
differential forms. Other analogues of differential forms and De Rham com-
plex were studied by M. Baranov and A.S.Shvarts [BS].

2. Even and Odd Densities and the Crofton Formula.

Consider in R™ a k-dimensional manifold A7*. Suppose M* has the
following parametrization: M* = {z(s1,...,5¢) € R", where 5 € Q* ¢
Rk} We want a functional

S[M*] = /m L{z(s), £&, ..., §=)dsy .. .dsy,

to be independent on the parametrization of M*. Then after a change of
parametrization s — ¢, L must change in the following way

Liz(t), B2, §5) = det(Z) L{a(s), £5,.... £2) or

Liz(t), $5, ..., $&) = |det(§1) [ L(s(s), B2, .., ).

In the first case L is called an odd k-density, in the second case L is
called an even k-density. The main example of odd k-densities are differ-
ential k-forms. An example of an even & density is a k-dimensional volume
element,.

Now let us explain what is a Crofton density or Crofton Lagrangian.
It is an even density that has some additional properties. Let us replace a
manifold M* by its Crofton function. It is a function on the set Hy ,_x of
(n — k)-planes in R". The value of the function Crofys«(£) on the (n — k)-
plane £ is equal to the number of intersection points of M* and £. Crofton
functions carry almost all information about the original manifold M*.

Crofton Lagrangians {or Crofton densities) are such densities for which
the Crofton formula is valid: i.e. there exists a measure u(£)d€ on the set
Hy n—x of (n — k)-planes such that for every manifold M* € R”

[ =] cron@ne
MK Hax

For example, according to the classical Crofton formula of the integral
geometry an element of k-dimensional nonoriented volume in R” is an even
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Crofton k-density. A Crofton density depends on the measure p(£)d€ on
Hp n-k. We shall write an explicit formula for a Crofton density by means
of a special kind of (n(n - k)})-dimensional Radon transform of the measure

o

Example. Consider an even 1-density L in R? given by the formula

2(z1v1 + 22v9)* — (v + v3) (2 + 23 + 1)
(zi+23 4+ 1)2((v +vd) (e} +2i+1)— (z101+2202)2)

L(zy, 22301, 02) =

Let us parametrize lines in R? by the equation £3 = az; +b. In coordinates
a, b the corresponding dual measure u(a, b)dadb is

—1—a? + 2
vpzav, 2(1 4 a2 4 bg)% .

zg=aa:1+b

1 §*
pla,b) = §|vx|a—v%‘L(11, Tg; v1,V2)

The extremals of the problem fL(:rl(t),zz(t),:i:l(t),:i.'z(t))dt are straight

lines.

3. System of PDE for Lagrangians solving Hilbert’s Problem.
Theorem 1. If a function L(x; vi,..,vk) of a point z € R” and

k-tangent vectors v; = (v}, ...,v?) € T-R™ is an even Crofton density then
it satisfies for all z and all vy, .., vi: |vi|+ ...+ |vi| # 0 the following

equations:

(EU;’%)L=JUL, i,j=1,...,k, (1)

=1 3

k n ) 32 P
and (ZE"»W)L=@L, [=1,... k. (2)

p=1li=1

If L is a function of a point ¢ € R” and k-tangent vectors v; =
(v},..,v?) € T:R"™ which is even in v; and satisfles (1) and (2) then it
is a Crofton even k-density.

The density L delines a functional

S[M*] = fm L(z(t),gg,...,gf)dtl oodi.

We want to find its extremal & dimensional surfaces. Let us write general
Euler-Lagrange equations for k-dimensional extremals z™ (¢!, ..., t*) of the
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functional §. They are

ko k 62 m
( ! ZZ aﬂ’ (‘31}‘(9:!:’+ZZ 3t-7<9t?’ dv? av) (=t

p=1j=1i=1

where s=1,...,k, m=1,...,n.

Theorem 2. Differential operutor (2) in the equations for a Crofton
k-density coincide with the terms of Euler-Lagrange operator for L which
do not contain second derivatives in v:

(9 k n . 82
o T ; 2B G )

From the last theorem it is possible to deduce
Theorem 3. An even k-density satisfies the Crofion formula if and
only if all k-planes in R" are contained among its extremals.

4. Finsler metrics in R" whose extremals are sraight lines.

We consider 1-Lagrangians L{z, £) that are even densities. If the indi-
catrix Ind; L = {v € T : L{z,v) = 1} is convex (and twice differentiable)
for all z then this Lagrangian is a Finsler metric.

Consider an even l-density for which the Crofton formula is valid. |
depends on a measure on the space of hyperplanes in R" and can be ex-
pressed through this measure by the Radon transform (see section § and

(GSL)).

Proposition 5. The indicatriz of the Crofton I-density with the posi-
tive dual function ts strictly conver.

So such density is a Finsler metric whose geodesics are straight lines.
For 1-densities the equations for Lagrangians whose geodesics are straight
lines can be written in a particularly simple form. One can find them
already in the work of Hamel [Ha] and Funk [Fu]. strangely enough, P.Funk
who along with Radon is the “father of the Radon transform” did not notice
how the Radon transform can be applied to the Hilbert’s 4-th problem,
although he himself worked on that problem. H.Busemann [Bu2] noticed
the connection between the Hilbert’s 4-th problem and the classical integral
geometry in the sense of Buffon, Crofton, Poincaré and Chern, but not to
the Radon transform.



Now let us write the equations for Crofton 1-density.
Theorem 4. An even I-density L(z,v) satisfies the Crofton formula
if and only if

*L 8L
O0z;0v; Oz;0v;

=0, for all i,j=1,..,n, and v #£0.

This 1s equivalent to the property that all extremals of L are straight lines.

Remark. These equations can be deduced from equations (2) of the
theorem 1 using the homogeneity equations (1).

5. Radon transform for a pair of Grassmannians Gy, and Gppk
and k-Lagrangians.

The Radon transform in the general situation maps a geometric object
on the source space (function, differential form, connection) into integrals
of this object over some family of submanifolds in the source space. So it
is a mapping from geometric objects on the source space into geometric
objects on a target space that is the family of submanifolds in the source
space.

Let us define now the Radon transform that is used here. Let p(()
be a function on a manifold H, n_x of (n — k)-planes in R". To each
z € R" we associate a variety H; = {( € Hn n-&|¢ passes through z}. To
every pair (z,€f) where z € R, and £ is a k-subspace of a tangent space
T, we associate a pair: a variety H. and a measure o, on H; which is a
k(n — k)-dimensional subvariety in Hy, ,_g.

The even Radon transform is given by

¢z, 0) = fp(()dcrg.

H,

We can write now an explicit formula expressing a Crofton density L in
terms of y using the even Radon transform connected with a pair of Grass-
mann mantfolds G, 41 n and Gny1,k. This transform will be defined below.
We shall do it in several steps,

1. We regard R: as an affine part. of Gpyy 5.

2. We go from the measure y on H, ,—x to the function ji on a frame
manifold By .

3. For every z € R” and k-tangent vectors vy, ..., vx in the point
z we construct a differential k(n — k)-form Q on the frame manifold E,, .
Actually this form is constructed using not x but vectors uy, ..., u, which
spans n-space from G, 41,5, corresponding to the point z.
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4. The k(n — k)-form ©Q can be pulled down from the frame manifold
Fn k which is a bundle over Gy, & to a Grassmann manifold G & and

L(z,v) = f Q..
G

Let us repeat this construction in details.

1. Compactification of R” and H, ,_ Let us consider R} as an
affine part of Gnoy1,n. Then the set of all (n — k) planes in R, which
we have denoted by H, ,_r, can be compactified to the Grassmannian
Gnt1,n—k+1, which is canonically isomorphic to G 41 . Consider two man-
ifolds of frames: Eyy1 &, the manifold of A-frames in R"*! and FEajin, the
manifold of n-frames in R**!. They are bundles over Grt1,k and Gpyin

correspondingly.

2. Construction of . To every measure pu(¢)d¢ on Hypnop C
Gn+41n-k+1 we correspond in a canonical way a function ji(w) of a k-frame
w = (wy,...,wg) € Egy1x that has the property

A(Aw) = |detA|"""li(w), for A€ GL(k,R). (7)
Because  Gryin—k+1 and  Gpqq s are canonically isomorphic, every

measure gt on Gnyi1n-k+1 18 isomorphic to a measure g’ on Guyy 6. We
now consider a local coordinate system on G4 & given by

cf c; 1 0

: : )

c‘f . cg 0 1
where ¢ = n—k+1. In local coordinates ||c_'],|] the measure p’ can be written
as y'(cl,...,¢f) dej...def, where u'(c}, ..., ¢f) is a function of |c}|]. For
a k-frame w' = (wi,...,Wi) € Epprk with wi = (cf,...,¢},1,...,0), ...,
wi = (c§,...,c8,0,...,1) we define i(w’) by the equality

W) = ' (e}, )

and we extend ji for arbitrary w € E, 4« using (7).

3. Construction of a form 2. Consider now a point z € R" C
Gni1,n. We can look at z as at the n-subspace L, C R Let u =
(uy,...,u,) be a basis of L. Then any k-frame w = (wy,...,wg} in L,

6



can be written in the unique way as

o4
(Wi,...,we) = (w1,...,0,) :
o1
So when we fix a basis uj,...,u, of Ly the components of the matrix

T = ||t}|| form the local coordinate system on the manifold Ey, x of k-frames
in L;. We define differential forms &y,...,0% on E, i as

oi= 3 (=1 A dif i=, Lk

(pr..pn)
where s is the sign of the permutation (p1, p2,...,pn). Symbolically o; can
be written as
¢t dtl L di)
gi=det| : i aE
0o dit L dtl

where we multiply differentials dt*} by the exterior product.

For a basis wy,...,u, of L; € Gpi1n and & tangent vectors
Vi,..., vk € TR" we define a differential form §2 on E, 5 as
Quy,. .. un; vy, i) =

oL A .. A,

= ji((uy...u,)T)

Z Piy.inTiy. iy

0 <. .<ig
i1 i i iy
vt Yy oty
where pi, ., = det , and T3, i, =det ,
ik k i iy
vt Y, L2 RPN %

1<y <. < <n.

4, Pull down of Q to G, k. We can see that when we evaluate form
£ on k(n— k) tangent vectors to £, &, components of these tangent vectors
which are tangent to the fibers of the bundle E, x — G, x does not play
any role. So 2 can be pulled down to Gy, 4.
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Theorem 5. Fvery Crofton k-density L{z; vy,...,vk) in R" can be
represented as

L{z; vy, ..., Vi) :f Q. (uy, ..., un; Vi, Vi),
Gn,k

where Q, is the form Q pulled down lto G, and u;..u, is any n-frame
spanning the space Ly € Gpy1,n corresponding to the point z € R".

6. Symplectic forms on the manifold of oriented lines in R”.

Let H denote the manifold of hyperplanes on R". Let P be a two-
dimensional plane in R"®. Let us denote by L{P) the space of nonoriented
lines lying on P.

A smooth measure 4 on H induces a smooth measure pp on L(P) for
every 2 dimensional affine subspace P C R".

l.et Hp be the set of all hyperplanes in R" that intersect P in a line.
The set Hp is an open dense subset of H. We consider the natural projec-
tion

ﬁ'p:Hp_}L(P).

If U is a Borel subset of L(P) we set pp(U) := pu(rp' (U)).
Since the map mp is a submersion the measure pp is smooth if the
measure p is smooth.

Theorem 6. A Crofion I-density in R” with dual measure u defines
a Finsler metric if and only if the induced measures pp are posilive for all
2-dimensional affine subspaces P C R".

Let us remark that the positivity of the induced measures up does not
imply the positivity of the measure pu.

Let us denote by L(P) the space of oriented lines lying on P. As a

double cover of Lp, L(P) carries a unique measure fip which induces the
measure gp on Lp.

Theorem 7. Let E(R“) be the space of oriented lines in R", and let
ip : L(P) — L(R™)

be the inclusion map. There ezists a unique closed 2-form w on L(R™) such
that |ipw| = fip for all 8-dimensional affines subspaces P C R". Moreover,
the induced measures pup are positive if and only if the form w is symplectic.

Definition. Let v, denote the set of all oriented lines passing through

8



a point ¢ € R”, and let
je 192 — L(R™)

be the inclusion map. A 2-form w is said to satisy condition (A) if jiw =0
forallz € R™.

Proposition. A £-form w on L(R™) satisfies condition (A) if and
only if there exists a smooth signed measure u on H such that for every
2-dimensional affine subspace P C R" we have that |ipw| = fip.

Theorem 8. There is bijection between the set of Finsler metrics
on R" whose geodesics are straight lines (so called Desarguesian Finsler
metrics) and the set of symplectic forms on L(R"™) which satisfy condition

(A).
7. Nomnlocal differentials and the Hilbert transform for 1-
Lagrangians.

We shall explain now in what sense even Crofton 1-densities can be

viewed as “differentials” of functions. Let f be a function in R". The
usual differential df, which depends on a point z from R” and a tangent

+00
vector v from T, R" can be written as (df)(z,v) :f &' (t) f(z — vt)dt.
The nonlocal (or even) differential of a function [ is -
+00 +o0 _ _
(d°f)(z,v) :/ t%f(-’l?—'vt)dt:f f(:+vt)+f(:; ut) 2f(r)dt.
—eo 0

We suppose that f is such that this integral converges at infinity.

Theorem 9. Let f(x) be a rapidly decreasing function in the Schwartz
space S(R"). Let f be the Radon transform of a function F(a) :

+00
flz, ..., In)ZfF(Ql, vy @pe1, T — (@121 + .k an_lm,,_l))dal...dan_l

Let L(z,v) = d°F be an even differential of the function F. Then
(1) L(z,v) is a Crofton density in R™.

(2) Let Dy _F(ay,...,an), be the "even partial derivative” of F defined as

[=o]

: )
Dg“F(arl,...,an)zj -{—EF(al,...,aﬂ—t)dt.
—eo b

9



Then the the dual measure for L is ploa)da where p(aq,...,0n) =
DG Flan,...,aq).

Let us remind that an even I-density is a function L(z,v) of a point
z € R" and a tangent vector v at the point T such that L{z, Av) = |A|L(z, v)
for every A € R. An odd {-density is a function 8(z, v) of a point z € R"
and a tangent vector v such that 6(z, Av) = Af(z,v) for every A € R.
Differential 1-forms give a specific example of odd 1-densities, they are
linear in v.

The 1-density (HL)(z,v)

+oo 400
1 — vt g — — vt
(HL)(z,v) = P.V.= /—L(m d ’v)artzl fL(‘H”t'”) Lz v ’”)dt
T t T t
-0

0

is called the Hilbert transform of a i-density L. We suppose that L satisfy
some growth conditions such that its Hilbert transform exists.

The Hilbert transform of an even l-density is an odd 1-density. The
Hilbert transform of an odd 1-density is an even 1-density.

Theorem 10. The Hilbert transform of a closed 1-form with rapidly
decreasing coefficients is the Crofton [-density. The Hilbert transform of a
rapidly decreasing Crofton I-density L is a closed I-form. ("Rapid decreas-
ing of L” means that L(z — vt,v) is a rapidly decreasing function of i for
any fized v and z). Let [ be a rapidly decreasing function, w = df is its
differential and L = %d”f is its nonlocal differential {which is the Crofton
I-density). Then (HL)(z,v) = w(z,v) and (Hw)(z,v) = L(z,v). So the
Hilbert transform maps even differentials into odd ones and vice versa.

We can sumimarize properties of Crofton 1-densities on the following
diagram:

F Radon trunsf. f f ‘Raduu transf. F
a
2} d: d D
n a,
IJ— Even Radon tr. d,, Hilbert u; df Odd Radon tr,
¢ Q)]
Crofton 1-density Closed 1-form

10



8. Crofton 1-Lagrangians on the hyperbolic plane.

Consider the };yperb;)lic plane as an upper half-plane {(z,¥) | y > 0}
with the metric m Take z = z+iy. The upper half-plane is a model
of the Lobachevsky geometry, where Lobachevsky lines are vertical rays
{(z,y) | z = zo,y > 0} and half circles {(z,y) | (z—=z0)?+y* = R,y > 0}.

Let us parametrize ”lines” on the hyperbolic plane. To each half circle
{(z,y) | (x+ —z0)® +y*> = R%,y > 0} we correspond a point { = (1 + (s
where {; = zg and (3 = R. Thus we parametrize almost all *lines” except
vertical rays.

The set of all lines which come through the point (z, y) forms a branch
of a hyperbola (z — ¢1)% + y* = (Z on the dual plane ¢, (3.

Let us as usual define even and odd 1-densities and also define Crofton
densities with respect to Lobachevsky lines. For example the length element
dz? +dy* v+ 02

vy

will be a Crofton 1-density.

Theorem 11. Even Crofton densities on the Lobachevsky plane satisfy
the following equation

A N ) I
dzOvs  dyduy yv1  Ouadug

)L:O, for v#0.

Crofton densities have the following integral representation through their
dual measures on the set of Lobacheuvskian lines:

[e=] + _
Lz, y;v1,v2) = /;m #(Cr, (2 — G) +9%)Y?) (|(3;1?2_ (1()1; _{_32);11/'2 d¢y.

Eztremals of arbitrary Crofton density are Lobacheusky lines.

8. Crofton Lagrangians as analogs of closed differential k-forms.

In the class of odd densities, densities for which the oriented analog of
the Crofton formula is valid are exactly closed differential k-forms [GS1].
They have analogous representation through Radon transform. The PDE’s
for the image of this Radon transform are exactly conditions of closedness
of the form.

Crofton k-densities give a good example of the integro-geometrictex
prepr functional. There were several attempts recently to use integro-
geometric functionals other then area in the functional integral in QFT.
For example, Ambartsumian-Savvidi [S1] used for this Steiner functional of
the classical integral geometry.
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