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INTRODUCTION

The aim of the present article is to prove the Selberg trace formula for Hecke
operators and automorphic forms of arbitrary real weight. Regardless of the ex-
tensive literature on the subject and the far-reaching generalizations in the work of
J. Arthur there is, to my knowledge, no publication covering this case.

We include automorphic forms with respect to a finite-dimensional unitary rep-
resentation of a lattice I' in the universal covering group G of SL(2,R) and express
the trace formula in an invariant form, namely, in terms of irreducible characters of
G. For this purpose the Fourier transform of weighted orbital integrals, obtained by
J. Arthur, R. Herb and P. Sally, jr., is explicitly calculated in Propositions 7 and 8.
It 1s the lack of an analogous result for SL(2,Q,) that prevents us from proving
as explicit a trace formula in the adeélic case. So we treat Hecke operators in a
somewhat old-fashioned way, which allows us, however, to consider non-congruence
lattices at the same time.

Our point of view is a representation-theoretic one, thus the trace formula
appears as an identity between invariant distributions on Harish-Chandra’s L!-
Schwartz space of G. Nevertheless, traditional parametrizations and notations (like
s = % +ir and h(r)) facilitate an immediate comparison with the classical picture
presented, e.g., in D. Hejhal’s books. The statement of our main result (Theorems
13 and 14 in section 4) uses only notations introduced in sections 1 and 3.

Part of this publication was prepared during a stay at the University of Toronto,
to which I would like to express my gratitude for its hopitality.

1 IRREDUCIBLE REPRESENTATIONS AND INTERTWINING OPERATORS

Let us first fix some notations. The group PSL(2,R) = SL(2,R)/{£I} will
throughout be denoted by G', the symbol G being reserved for the universal covering
Lie group of G', the main object of our considerations. We shall view the elements
of G as homotopy classes z of paths connecting the identity of G' with some element
z' (the image of z under the canonical projection G — G'). The product of =,
z2 € G is defined as usual by (z; o t1)(z2 0t;), where t = (¢1,%2): {0,1] — [0,1]?
connects (0, 0) with (1, 1); here we have neglected the distinction between homotopy
classes and their representatives.

For 8, u, v € R, we denote the matrices

cos@ sind et/? 0 1 v
—sinf cosf )’ 0 e /2 )0 0 1/’

taken mod(%I), by kp, a,, and nl, respectively. They form subgroups K', A’ and
N' of G'. Recall that any morphism of linearly connected topological groups lifts
to a homomorphism of their universal covering groups. If we apply this to the
embeddings of K, A’ and N' into G', the universal covering groups K, A and N
become one-parameter subgroups of G. There are unique parametrizations 8 +— kg,
% — ay, and v — n, for them such that the images kp, a), and n}, in G' are just
the elements introduced above.

Passing to the universal cover is functorial with respect to direct products of
manifolds. Therefore the Cartan decomposition G' = K'exp,s and the Iwasawa
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decomposition G' = K'A'N' yield the corresponding decompositions G = Kexpgs
(providing the parametrization of G used in [27] ) and G = KAN. Heres C g
consists of the symmetric (2 x 2)-matrices. The kernel of the projection G — G’ is
the centre Z of G consisting of all ks with 8 € 7Z.

The aforementioned parametrizations carry the Lebesgue measure du resp. dv
from R to A and N. We fix Haar measures on K by vol(X/Z) =1 and on G by

j;;f(:c)da:=A’LLf(nauk)e_"dkdaudn

for f € Cy(G). Together with the counting measure on Z this fixes a Haar measure
on G', for which

/6, g(a'(i)) da’ = f% g(z +iy)y 2 dz dy

for g € Co(H), where z + z'(2) is the linear fractional action of G’ on the complex
upper half-plane H.

Viewing elements D of the universal enveloping algebra & of g¢ as distributions
on G with support {1}, we may unambiguously interpret an expression of the type
f(D1zy ... DpzpnDyyr) with sufficiently smooth f as the convolution Dy # 65, *- - - %
D, % é;, * Dy evaluated on f. The identity 2Dz} = Ad(z)D reduces this to
the case n = 1, i.e., to f(Dy ; s1; D7) in Harish-Chandra’s notation.

Let us define the spaces of rapicly decreasing smooth functions on G as

CF(G) = {f € C°°(G): |£(Di ko, auke, Dy)| < CeVP(1 4 ul +16; + 6,])~"
Vn € N and Dy, D, € ®}.

These are LP-functions in view of

/ f(z)dz =2 / f / Fk' " aykk'ysinh u du dk dk'.
le] Z\K JK Jo

The same definition applies to G’, where |6;| < w, say. CP(G') is then Harish-
Chandra’s familiar LP-Schwartz space.
Next we turn to the representation theory of G. As usual, we put

w(f) = /G f(z)n(z) du

for f € L'(G) and bounded representations 7 of G. Now suppose that 7 has a
central character € € Z. One can then form

m(f) = fi(z)m(z)dz

Z\G

for all f' € L'(G,¢), i.e., such that f'(z7'z) = e(z)f'(z) and [f'| € L'(Z\G). This
generalizes the lift of a representation of G’ to G, which corresponds to the case
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when ¢ is the trivial character of Z. If f € L'(G), one immediately checks that
7(f) = n(f.), where
fe(z) =) e(2)f ()

2€Z

lies in L(G,¢). Inversely, f € C*(G) can be recovered as
f@) = [ fla)de,

the Plancherel measure de being so normalized that vol(Z) = 1. This partial Fourier
transform with respect to Z extends to a unitary isometry

L(G) — fz L¥(G,€) de,

thereby in a certain sense reducing harmonic analysis of L?(G) to that of L?(G,¢).

We shall only be concerned with such representations = of G which decompose
into a finite sum of Z-isotypical components. Then n(f) is determined by finitely
many f.’s. One is tempted to consider the sum of the latter instead of f, leaving
aside unnecessary information. However, such sums are not contained in L'(G),
and one would have to introduce a certain space of almost Z-periodic functions
on G. We shall avoid this technicality, as it seems not to yield any additional
information. <

Let us now fix notations for induced representations. The unitary characters of
K are ¢m(kg) = e'™? with weight m € R (= £*). As we use induction from the
left, the space M, of Ind% (¢) will consist of classes of functions ¢ on K satisfying
#(zk) = e(2)¢(k) and |¢| € L2(Z\K). A basis of H, is formed by all ¢,, with m
in R, = {m € R: ¢m|, = €}, which is a coset mod 2. Inversely, m € R determines
ém € Z by m € R,_. Incidentally, this identifies 7 = R /2Z and the Plancherel
measure de, = —;-dm.

Given s € C, we extend ¢ € H, to G by
ds(nayk) = e**g(k) forne N, ke K.

These functions constitute the Hilbert space H, s = H, in which the representation
Te,s, Induced from the parabolic subgroup P = NAZ, acts as

(me,s(x)ds)(y) = dslyz).
It is unitary (principal series) iff s = £ +ir, » € R (2 a*). By the isomorphism

He,s = H, we let 7, , act on H,. The action of the Lie algebra g¢ can easily be
calculated. If we put

(1 0 . (01 _ {0 0
m=(o 5) 2= (50) =1 0)
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and By = H £i(X +Y), then ¢n o(Xz) =0,
Sm,s(nauksBx) = $ma(au(e™* Ex)ke) = €8 o(au(H F i(X ~ Y))ks)

- g .0
= e:k:2z€ (25{; F l%) qu,s(auk'g) = (28 + m)¢mi2,,(naukg),
hence

Te,s(E4)pm = (28 £ m)dma2,
Te,o( X — Y)dm = tmdn,
Te s(w) = s(s — 1)Id
with the Casimir element
w=LH*+2XY +2YX)=NEyE_- + E_E; - 2(X - Y)?).

We see that the elements ¢,,,r, m' € £{m,m+2,m+4,...}, span a gc-invariant
subspace 'Hﬁfm of H,, . ms2. lfm > 0,it can be completed to the Hilbert space Him
of a unitary representation m4.,, of G (see [27]). One may describe the scalar product
of H.m with the help of intertwining operators, which we shall now introduce.

Besides P, we also consider the group P = NAZ, where N = {f,: v € R},
iy = expg(vY). Comparing the integral formula for the Bruhat decomposition

Z\G flz)do = ;lF/N /A fN f(nauni)e™™ dnday dn

with that for the Iwasawa decomposition, we obtain for ¢, ¥ € H,

(6:8) = 1 [ o pst i

We shall sometimes write ¢ p , instead of ¢, etc., because one may induce represen-
tations also from P by defining

¢ps(Rauk) = e ""¢(k) forie N, k€K,
Again, np , , acts in Hp , , = H, by right translations, and

(6:8) = 1 [ o005 sl dn.

Given s € C with ®s > 7, we define the bounded operator Jpp(e,s) in He by

1 Sy
Tpple,0)pa(e) = = [ gr(ie) dn
TIN
(cf. [14, p. 130]). This is an intertwining operator:
Tpp(e,8)TPe,s(2) =7p 1 () pp(e; 5).
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Interchanging P and P, one obtains Jpp(e,s) with the analogous property. The
integral formula for the Bruhat decomposition implies that

'/ZA\af(l‘)dm _ %/N/Nf(nﬁ)dﬁdn= %A,[Vf(ﬁn)dndﬁ.

Putting f = ¢P,371[)P,§! we get (¢: JPP(E:)S)d)) = (JPP(€7S)¢)¢)3 ie,

Jpp(e,8)" = Jpp(e, 9).

It is easy to calculate Jpp explicitly. Since fi, = ayny ke with e™* =1+ v? and
% = 1= (which is easy to check in G' and lifts to G), we obtain

1+1v
. mj2
1 -2
- _ 2\—s
bmalin) = 1+ (22

(continuous branch with value 1 at v = 0),
. 1 - _ 1 e : N—a—m/[2 - N—at+m/2
Im(8)i=— | @m(ft)dn == (14 iv) (1 —iv) dv
TJN T J—eo

2ups—1) 1 DN

TT(s+ DI -%) Va D(s+2)T(- 2y

and, by the intertwining property,

Jpplem, s)om = jm(s)dm.

Thereby the restriction of Jpp(e,s) to the subspace HX of K-finite elements ex-
tends meromorphically to s € C.
Now we introduce the meromorphic function u(e, s) by

wle,s)Ipple, 1 — s)Jpp(e,s) =1d

(cf. [14], p. 141). One deduces from p(e,s)im(1 — 5)jm(s) = 1 with the help of the
reflection formula for the I'-function that

li(&'m,s):ﬂ-(s_%) sin 2ms

cos Tm — cos2ws’

We define the normalized intertwining operators as

Rpp(€,3) = jm, ()"  Ipp(e, s),

where m, € R,, |m.| < 1. Explicitly,

)

~1-lmlg g
Rp (6)3 gbm:( - 2 )¢m
PP ) kl;_[l S+J%[—k
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From the obvious properties
Rpp(e,1 —s)Rpp(e,s) =1d,  Rpp(e,s)" = RBpplc,3)

one sees that Rpp(e, 3 + ir) is a unitary intertwining operator between unitary
representations.

Let W denote the normalizer of 4 in K. Then [W : Z] = 2, and W' = W/Z
is the Weyl group of A’ in G'. Left translation by w € W, w ¢ Z, produces an
intertwining operator Hp, _, — Hpe1-5. Composed with Rpp(e,s), this gives

an intertwining operator ’Hﬁe‘ s 'H;’g’ e,1—s> Namely,

—3)

(Rp(e,$)$)1-s(z) = dm (W) Rpp(e, 3)¢)1—3(w—1$),

where m, is as above. The multiplication with ¢,,, (w) makes Rp(e, ) independent
of w; however, for ¢ = £, we get two operators Rj%(e] ,8) depending on the sign of
m, (i1.e., a chamber in ¢£). Note that

Rp(e,s)pm = (=1)" "™ 2 Rpp(e, $)dm.
One checks that, for 0 < m <1,

R(exm,1— 2): MY | jp/HE (o) = Him

is a pre-unitary intertwining operator, if the scalar products in the two spaces are
given by

($,%)am = (RE(xm, 1 = B)b,9)  and  (6,9)am = (RE(Esm, B)é, %),

respectively (the superscript + being ignored for m # 1). A similar assertion is
true for m > 1, if one considers lim,_,;_p/2(s — 1 + 3 )Rp(e+m,$) and lim,_.,, /5
(s—2) 'Rp(etm,s). Completing the pre-Hilbert spaces, one gets two realizations
for the unitary representations 74, (discrete series). Similarly we can unitarize
e, for real s (complementary series) provided the scalar product

(6,9)e.s = (Rp(e,5)8,%)

is positive definite. This is the case iff's € (J%[, 1— J—?-l), where m € R,, |m| < 1.
There are two extremal cases (exactly those obtained by lifting from SL(2,R)): For
the trivial character ¢ of Z, the complementary series exists for 0 < s < 1, while
for the alternating character €;: Z — {1} there i1s no complementary series, and
Te 172 = M1 @ 7—y. If we denote the corresponding orthoprojections by p, then
continuation in s gives Ry(e1, 1) = £(p4 — p-).

Here is a complete list of the irreducible unitary representations of G (cf. [27]):

(1) the principal series of representations 7, , with Rs = 7, (g,s) # (€1, 3);

(2) the complementary series of representations m, , with s € (j%l,l — ]%l),
8 # 3, where m € R, [m| < I;

(3) the discrete series of representations 7, with [m| > 1;

(4) the limit of discrete series representations m; and 7_q;

(5) the pseudo-discrete series of representations 7,, with 0 < |m| < 1;

(6) the one-dimensional trivial representation mg.
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The operator Rp(e,s) is a unitary equivalence between ., and m,1_, if they
belong to the principal or complementary series. Any other two representations in
this list are non-equivalent to each other.

By a simple extension of Harish-Chandra’s regularity theorem to groups with in-
finite centre, the character O(f) = tr n(f) of any irreducible unitary representation
7 of G is a regular distribution given by integration against an analytic function
(which we also denote by ©) on the set Gieg of regular elements of G (i.e., those
whose images in SL(2,R) have different eigenvalues):

o(f) = /G O()f(z)ds  for f €CY(G).

Obviously, ©(f) depends only on f,, where € is the central character of 7. We shall
therefore restrict our attention to functions f' € C!(G,¢), for which we put

o) = ten(f) = [ @ @)

For a first reading, one may now pass to section 3.

2 HARMONIC ANALYSIS ON G

Harish-Chandra’s invariant integrals associated to the two Cartan subgroups
AZ and K of G are tempered distributions (by what we mean continuous linear

functionals on C%(G,¢) for any € € Z). They are defined for f € C¥(G,¢), z € Z,
u#0,0¢nZas

Fiayz) = |e“/2 - e_“/2| f(z™ ayzz) dz,
AZ\G

Ff(ke) = (e — %) / Flz™ kpz) dz.
K\G
Ff( is a smooth function on K = K — Z, and the transformed expression

F}"‘(auz)=e“/2/ ff(k_‘aunzk)dndk
Z\K JN

extends to an even Schwartz function on A (cf. [11], sect. 17, Theorem 5, [28§],
section 8.8). Our next task will be to express these invariant integrals in terms of
the irreducible characters.

Lemma 1. Let 1/p > max(Rs,1 —Rs). If f € CP(G,¢), then . 4(f) is an integral
operator in ‘H, with smooth kernel

Knestown = [, [ Fem oo,
NJA

which belongs to M(. #) (s,1~s) In an obvious notation. This operator is of trace
class, its trace equals



@,,S(f)=/ FA(ay)et=1/D% du

—-00

and is a continuous linear functional on C?(G,¢). For fixed p and f, ©.,(f) is a
smooth function of s in the corresponding strip, holomorphic in its interior and
rapidly decreasing together with all derivatives as |Ss| — oo, uniformly in Rs.

Proof. We have
|F(Dz™ aunoyE)| < v(f)elHl/rtane=Du/2(1 4 o)) 7n(1407) 727 (log(1 +0%)) 7",

where v is a continuous seminorm on C?(G,¢) depending on z, y € G, n € N
and D, E € & (cf. [28], Lemma 41). Thus the integral defining (D @ E)K .,
is absolutely convergent, and a variation of Theorem 1 of [19], ch. VII, implies
that 7., is of the trace class. O, , is obtained by integration over the diagonal
z =y € Z\K, its properties follow from the same estimate as above and the fact

that O, ,(w™f) = s™(s = 1)"O, ,(f). O

Obviously, it would have been enough to take f in the larger space CE(G,¢)
obtained by completing with respect to the seminorms for fixed exponent of decay
n only, provided n is sufficiently large.

By Fourier inversion we obtain

Lemma 2. For f € C*(G,¢),

[o 5]

1
F;“(au) =5 /_m cos(ru)O, 1y (f)dr.

In view of Ff‘(z‘lau) = s(z)Ff‘(au) for the given f, this contains the full infor-
mation. Incidentally, the Weyl integration formula

/ f(z)dz = ! Z/ Ie“/2 — e_“/2|2/ flz7 ayzz) dz da,
G 274Ja AZ\G
—i—/ (ew - e_m)2 (z7 ko) dzx dkyg
K K\G

shows that

e(s—l/Z)u _ 6—(&—1[2)!.:

|cu/2_e-u/2| ?

O s(ayz) = €(z) O, s(ks) = 0.

Now we turn to the discrete series characters. As a convergent geometric pro-
gression in the space of distributions on K, the character of 7, for m # 0 is

oo , . e(m—sgn m)e
Om (ko) = Z elmt2nsenm)? = — sgn(m) et — g—ib
n=0



From Harish-Chandra’s regularity theorem and his matching conditions, generalized
to groups with infinite centre, one can deduce that the only extension of ©,, to G
as a tempered invariant K-finite eigendistribution of w is given by

e—(Imi=Djul/2

|8u/2 _e—u/2|

Om(ayz) = g(z)

(cf.[28]). Alternatively, it has been proved in [27] that this is in fact the value
of ©,, on AZ. With the help of the Weyl integration formula we can write, for
feC¥ G em), Im| < 1

1 - .
On(f) = 5] e"“’"l_l)|"°‘|/2I~T’J‘:l(c‘;u)dau + sgn(m) e'(m"ss“m)sF){‘(kg)dkg.
A Z\K

In the particular case € = ¢; we put ©,, = (01 — ©-1)/2, whence
0u() = [ Ff(ka)dta
Z\K

Given any f € C%(G,¢), we thus know the Fourier coefficients of F}‘ and may set
up its Fourier series:

—in 1
F}f(kg) = 0,6, 0, (f) + Z sgn(n)e ™0, 1sqnn(f) + 3 /;1 be(8,u)Ff(ay) day,
nERe +1

where § is the Kronecker symbol, and

be(8,u) = — Z sgn(n)e " "0=Inul/2,
n€eR, +1

. Ob, Je.
Note th&t Iﬁ = Qa—u

, where
ce(,u) = sgn(u) Z p—inf=Inul/2.
neER, +1

Applying the summation formula for geometric progressions, we obtain

Lemma 3. Let f € C*(G,e), m € R, with m| <1, § ¢ 7Z. Then

Ffi(kg) = 6,60 () + > sen(n)e™™ Ontegun(f)
n=m+1(2)

1 [ A
+ 5 be(8,w)F} (au)du,

.d K ‘ ]
zﬁpfh (ko) = Z Inle ™ O ntsgnn(f) "‘/

n=m+1(2) —ee

o0 1

¢
ce(8, u)EFfl(au)du,



where

e—i(m—l)e cosh m2j:1 u— e—ilm+1)8 cosh m2—l u

bo(0. 1) = coshu — cos 26 ’ ifm{ <1,
e(,u) = sin 26

coshu — cos 26’
e~ im=1)8 ginnh %ﬂu — emilm+18 ginh "‘T_‘u

ife =€y,

ce(fyu) = cosh u ~ cos 20

(When we integrated by parts, the boundary term vanished, since ¢.(6,0) = 0.)
Inserting the formula for F#! from Lemma 2, we obtain an expression for F}‘ in
terms of the irreducible characters. In order to make it explicit, we have to calculate

1 [
ec(0,7) = 5 /_oo cos(ru )b (8, u) du.
All we need is the identity
1 [ ity _ sinh(m —26)A

or J__ coshu — cos 26 “ = “sin20sinh 7

for 8 € (0,7), RA > 0, |[SA| < 1 (see [19, Lemma VIII 3.2]). By a lengthy but
elementary calculation one deduces from it that, for 6 € (0, ), |m| < 1,

1 [% cosrucosh mdly _ _1_% ]°° exp (ilr|u + 24lu)
27 J_o coshu — cos28 2r J_oo coshu —cos26

1 cosh2(m —@)r cos(m +1)8 — cosh 26r cos(m + 1)(x — 6)
sin 26 cosh 27r + cos tm '

If we put absolute value on 8, this formula remains valid for § € (—=,0). Combining
it with its counterpart for —m, we obtain a formula for e,, which is even valid for
|m| = 1 by continuity in view of b,, = limpy ~ (be,.,, + bs_m)/2.

Lemma 4. Let f € C*(G,¢), m € R, with |m| <1, 10| € (0,x). Then

F;((ko) = 65,81661(.0 + Z Sgn(n)e_ing@f&sgn n(f)

n=m+1(2)

1 o0
+ 5 / 65(6! T)ez,-;—-i-ir(f) dT,

—c

where

, cosh 2(m — |8])r + e~iTms8n 8 cogh 26
= 6 .
ee(6:7) = isgn(0) cosh 27r + cos Tm

Since Ff{ has the same behaviour under Z-translations as f € C*(G,¢), it is easy
to extend e, to arbitrary 8 ¢ 7Z such that Lemma 4 remains valid, namely,

(27" ) cosh2(8 — 8_)r + e(22" ) cosh 2(8 — 84 )r

cosh27r 4+ cosmm

ee(8,7) = isgn(sin 9)6

¥
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where z4 = kg, € Z are the endpoints of the connected component of K;eg con-
taining kg.

In the Selberg trace formula orbital integrals over any conjugacy class {z}g =
{y~'zy: y € G} in G generally occur. In the previous lemmas, only those over
conjugacy classes in Greg (1.€., {ay2}g with u # 0 and {ke}c with 8 ¢ xZ) have
been expressed in terms of characters. We need to do the same for the remaining
classes {z} € Z and {n412}g, too. This is easily reduced to Lemma 4 in virtue of
the formulae

FE(kygz) := lim FE(kez) = :i:27ri/ f(z7 ngza) dz,
K (ksor) 2= Jim Ff(kos) [

Ff(kyoz) — Ff(koo2) = 2miFf(2),

d .
El’i_l‘r%)i;@-F}‘ (koz) = 4m f(z),
where all occurring distributions are tempered. Indeed, since the natural projection
G — G' maps some G-invariant neighbourhood of {n4;z}¢ to its image diffeomor-
phically, it suffices to prove these assertions for G', which has been done in [12] (cf.
also [19], ch. VIII, section 2, [28], Theorem 47).

As above, we may restrict attention to 2z = 1. We shall also state the formulae
obtained by passing to the limit in Lemma 3. Here one has to use the identity of
distributions

1 1
ey DV~ + mib(z).
It implies
6m(u/2—i9) emu/ﬂ

A e o) PV ap e 2mi6(u)

and the same for —u, which sum up to
sinh &%

. _ 2 .
el_l.ni‘lo be(8,u) = Sinh & + wib(u)

for m € R,, |m| < 1, while limg_4¢ b¢, (6,u) = £2mié(u).
Lemma 5. Let f € C*(G,¢), m € R, with |m| < 1. Then
F}{(kio) — be,e,0c, (f) — E sgn(n)Ontsgnn(f)
n=m+1(2)
1 [ sinmm _
2 /_w (cosh 27r 4 cosm + 2) e"”:’“*"(f) dr
* sinh %+

. 1
:J:me‘(l) + 3 (1- 5,,,1)/ 2 F;‘(au)du,

—oo Sinh ¥
srf) = 3 rlOusman() = [

o r sinh 271
n=m+1(2) -

* cosh 2t (¢
= — 2. —FMay,)du.
/_00 sinhZ  du flau)du

ee,%+ir(f) dr

oo €COSh2mr + cos mm
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In accordance with the general theory, the Pancherel measure has turned out to
be a multiple of
mr sinh 27r

L) = _
we, 3 +ir) cosh 277 + cos mm

If we insert fxg*, where f, ¢ € C*(G,¢), we obtain the Plancherel formula (compare,
e.g., [10], [14], [19], [20}, [23], [28])

47r(f,g) = Z |n|<7rn+sgn 1:(f):7rn+sgn n(g)>

n=m+1(2)
[eo]
+ ] (Terrir (DT in ()7 (e, & + 7 d,
—00

where (B, C) = tr(BC*) is the scalar product for Hilbert-Schmidt operators in the
corresponding representation space. This provides a natural invariant decomposi-
tion L*(G,e) = L2, (G,¢e) & L%, (G,e). The notion “discrete series” used above
is therefore justified in so far as it consists of representations discretely occurring
in L*(G,¢) for the pertinent central character ¢ € Z. One can prove the deeper
result that the aforementioned decomposition, intersected with C?(G,¢), yields a
decomposition C?(G,e) = C3,(G,e) ®C%,,.(G,¢€) (see [28], ch. 8, for € = ¢ or &;).

We have now finished the necessary harmonic analysis of invariant distributions
on G, i.e., such which take the same value on f ason f*:y — f(zyz~!). Unfortu-
nately, the truncation procedure usually applied in the proof of the trace formula for
non-uniform lattices produces certain non-invariant distributions, which can clearly
not be expressed in terms of characters only. These are the so-called weighted or-
bital integrals, which are defined for f € C*(G,¢), auz € AZ,u #0, as

Tf(auz) = —|e""2 — e_“/2| o f(z7 ayzz)(H(z) + H(z)) dz.

Here we use the notation
H(nayk) = u, E(ﬁauk) = —u

forn € N,n € N, k € K. Note that H 4+ H is left A-invariant and negative.
Due to the Iwasawa decomposition it suffices to check the latter on N, and in fact
H(n,) = —log(1 + v?).

As well as F4, Tf is an even function of u and a tempered distribution. However,
while F I’ﬁ satisfies the homogeneous differential equation

d’l
EEF?(CL;:Z) = F(“:J+l/4)f(au3)

([13], [28], Theorem 17), where w is the Casimir element introduced in section 1,
Tf satisfies the inhomogeneous equation

d? : -
mTf(auz) = T(§u+1/4)f(auz) + 3(sinh $) 7 Ff(ay2)
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(see [2]). Moreover, it has been shown in [2], [3] (strictly speaking, only for € = &
or €1) that if f € C%,(G,¢e), m € R, u # 0, then Tf‘ can be expressed by the
discrete series characters:

Tf(auz) = —[eﬂ/2 — e‘_u/2| Z G)_n—ggn n(auz)®n+sgnn(f),
n=m+1(2)
nF#0

In particular, the restriction of T{ to C3;,(G,¢) turns out to be invariant. One can
check (which we shall not do here), that the proof applies to the present case, too.
It remains to determine the Fourier transform of Tf for f in the complementary
subspace C2,, (G, ¢). This has been done in [5] for €9 and &;. Again one can gener-
alize the argument to any ¢ € Z. We shall not explicate this here but only restate
in our parametrization what Lemma 3.2 of [5] will then provide. For this purpose,
given f € C%(G,e) (which we suppose to be K-finite for simplicity, although this is
unnecessary) and u # 0, we define
e(z™1)

2 (1_68,81)95,%(f)

-1 o0
+ ez )p.v./ e ™" tr (We,%-f-ir(f)JpP(Ea % + i)~ I5p(e, % + zw)) dr,

27 oo

I}j(auz) = Tf(auz) —

where Jp, = 4 Jpp. Note that If(auz) = e(z‘l)If(a:,). (One may define If
for f € C*(G) by putting a further integration over ¢ € Z on the last two terms.)

If f € CP(G,e) with p < 2, we may choose ¢ < 1 such that the integrand is

holomorphic for ¢ < Rs < % except for a simple pole at % (if € = &1), whence

-1
If(auz) = T}A(auz) + ez") A (me,a(f)Ipp(e,s) " Tpp(e, s)) ds.

2me Res=0o
Lemma 6. Foru >0, m € R, and f € C2,,(G,¢) satisfying
f(kozke) = e+ f(g),

one has ) o
@) =3 [ bn@Poy (i

where ¢, » 1s a continuous function of at most polynomial growth in the r variable
satisfying limy_, o0 ¢m,-(u) = 0, uniformly on compacta in r. Consequently, I})(a)
is an invariant distribution.

(In [5], the right-hand side of (2.8), and therefore that of (2.18), as well as the
last three terms of (1.8) should be prefaced with an additional factor (27)~!: With
ttx(A) as used on p. 32, the Plancherel measure corresponding to the Haar measure
adopted on p. 21 is (27) ™! uy (A).)

In view of ©, 1, ((w + D) = —r?0, 11,,(f), If satisfies the same differential
equation as T}‘*. This together with Lemma 2 implies that

Gm (1) = —1¢m (u) + 1 (sinh -’25)—2 cosTu.
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It is clear that ¢, = (¥r -+ -, )/2, where ¥, is a solution of

Pl(u) = —r2p(u) + & (sinh &) 7 e’

n (0,00). The substitution ¥,(u) = e™x (u) yields

Xo(u) 4+ 2irx(u) = 3 (sinh 12‘-)_2 ,

. 2
X() + 2irxe() = T +ex.

Putting now x(u) = e~*™w,(u), we obtain

262iru

1—ev

wi(u) = + cre¥'™,

One solution for ¢; = 0 is given by

—u

¢
f t—:!:'r(l _ t)—l dt = 2Be—-u(1 - QiT: O))
0

I
[\
:\.
8
®
[ =]
)
o
A
[~
fl
(]

where B denotes the incomplete beta function. In general,
wr(t) = 2Bg-u(1 — 2ir,0) + coe?'™ + ¢3.
Hence
bm (1) = €™ Be—u (1 + 2ir,0) + e Byou(1 — 2ir,0) + c4e’™ + c5e Y,

The condition on the limit implies ¢4 = ¢5 = 0. In particular, ¢, » is independent
of m, and ¢mo(u) = —2log(l ~ ¢™*). From the integral expression for w, we see

that .
o0 617""
Yr(w) = / pore
and, since O, 3 ;. is evenin r,

1 e oo 1
5 [ bnr@B (D = [ PR

by Lemma 2.
In 4], J. Arthur introduces a distribution similar to If, using Rpp instead of

Jpp. While his distribution is even in u, ours is not: The evenness of T}-A‘ unplies
that

1 ® —iru N ;
o)~ Foms) = oo gl =gt 4

~ Typlet —inpple, ;i) ) dr

: /oo ciru ,LL'(E, % + 11')

. - 1.4
27 oo ple, & +ir) HE R

(f)dr,
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where we have used the intertwining property of Jpp and of left translation by
w € W — Z. Explicitly, for m € R,,

‘ 1 T
LE’er—,”l =L _omi (coth 27 —
ple, 5 + ir) i

sinh 27r )

cosh 2nr + cosmm

In order to express If(au) - If(a_u) in terms of FA, we shall now calculate the

Fourier transform of the distribution p.v.%. Using the integral formula for 7 and

Lemma 2, we get

mo/2 | g=mu/2 _ gu/2
ev/2 _ g=v/2

N [e ) —
! 6(1/2—’)“3-.——~'"(5)@z,,(f)ds = / . lFf‘(au+v)dv,
0

g Rs=c Jm(s)

where f € CP(G,¢), 3 <o < ;1)-, m € R, |m} < 1. This implies that

/[ cosh B2
1F(aw) — IF(azy) = / ( 2 Seny )F;*(au+v)dv,

Coo \ sinhF o oemlvl/2 -1

valid even for f € C%(G,¢) by continuity. Combining our results, we obtain the
following more explicit variant of Theorem 1.8 of [5].

Proposition 7. Foru # 0, f € C*(G,¢) and m € R, with |m| < 1 one has

I?(aﬂ) + Z e_lnu]/2®n+sgn n(f)

n=m+1(2)
nF0
1 [ /. _
= 5= (elr|u|Bc—|u|(1 + 2ir,0) + e‘"‘|“lBe_|u|(1 — 2ir,0)) ee.%-Hr(f) dr
— Qo0
1-sgnu % 1 sinh 277
+ 5 /;oo sin(ru) (Zrnr_“ + coth 2mr — P Wm) Oc,§+ir(f) dr

00 o) m(utv
_ 1 A 1—sgnu cos—gz—l A
- || e - S [ i e

-0

(The singularities occurring in the last two integrals for u < 0 cancel each other.)
Now we consider the behaviour of Tf‘(auz) as u — 0. Using the Iwasawa de-
composition, we get

Tf(auz) = |e“/2 - e_"/2|/ / f(k7'n tayzn, k) log(l + v?) dn, dk
2K JIN
= e“/2/ / f(k_la,,zn,,k)log (1 +(1- e_“)_sz) dn, dk,
2K JN

which, unlike the second expression for Ff(auz), does not extend continuously to
v = 0. In [2], J. Arthur defines the singular weighted orbital integral as

Tf(z) = t};% (Tf(auz) + log(1 — e'“)2Ff"(auz))
- 2[ / (k= znok) log [o] dne db,
Z\KJIN
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which also appears in the trace formula. It is easy to check that Tf‘(z) is a tempered

distribution, too. Let us define 1 f (z) by the same formula as before. In order to
pass to the limit in Proposition 7, observe that

oo e(2ir—l)v —e?

wr(u) + log(l — e7*)? = w(u) — wo(u) = 2/ dv,

—_— Vv
u l1—e

which for u — 0 gives 2¢(1) — 21(1 — 2ir) with
D) [T et e
o=t = [ (F-i5m) @

tllii% (¢m r(u) —log(l — e ™)? cosru) = 24h(1) — (1 + 2ir) — (1 — 2ir).

(Rs > 0). Hence,

On the other hand, integration by parts shows that

oo
1 A A
/u o Ff (@) dv - wo(w)Fj(a)
= ~{(utuv)/2 d A
= - /u log(1 —¢ )d_va (ay) dv,
which also converges as u© — 0. So we obtain the following variant of Proposition 4.7
of [5].
Proposition 8. For f € C}(G,¢) and m € R,,
o0 —u d
O+ Y Ouiegan(f) = —2] log (1 — ™/2) L FA(a,) du

0 du
n=m+1(2)
nF#0

“o [ G0+ (14 2ir) 440~ 20r)0, )

where C' = —(1) is the Euler-Mascheroni constant.

3 AUTOMORPHIC FORMS
Let T’ be a lattice in G and denote its projection on G' by I,
Lemma 9. I" is a lattice in G', and [Z : T'N Z] < oo.

Proof. The Lie algebra of the closure of IV is Ad(T')-invariant and thus Ad(G)-
invariant by the Borel density theorem ([24], [6]), i.e., an ideal in g. But g is
simple, so if we assume that I' is not discrete, then it has to be dense in G'. From
this we shall now deduce a contradiction.

Choose a neighbourhood ¢ of 1 in G and a number £ > 0. I is dense in the
open set of elliptic elements in G'. So we can find two elliptic elements v;, v € T
(i.e., vi is conjugate to some kg, with 8; ¢ nZ) with different fixed points 21, 22 on
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the upper half-plane H such that v} is close to v;, and hence z; = gz; for some
g € U. There always are nonzero integers ny, ng with |n(8) — n262| < e. The fixed
point of gv;97! is 29, hence, for ¢ small enough,

¥2® € gty T U CURUTU.

T being discrete, we get v5'* = ;' for sufliciently small 2, and 2y # 2, then implies
vt € Z. Therefore, I'Z : T = [Z : I'N Z] is finite, 'Z is discrete, and so is
I =T'Z/Z in contradiction to our assumption. O

Given I' as above and a unitary representation y of I' on a finite dimensional
hermitian vector space V, we consider the induced representation m, = Ind®(x). It
acts on the Hilbert space H, consisting of classes of measurable functions : G — V
which satisfy p(vz) = x(7)¢(z) (for all v € " and a.e. z € G) and |¢| € L*(T\G).
One may interpret such ¢ as L?-sections of the hermitian vector bundle V xr G
over '\ G with monodromy .

Foranye € Z, let V, = V(e]rnz) be the e-isotypical component of y. Then we
may define a unitary representation y.(yz) = x(’y)e(z)lv of 'Z on V,. We shall
endow H, with the slightly modified scalar product )

(o9) = n! [F ECRIOL

nr = [Z : T N Z], for then the e-isotypical component H,(€) of m, is easily seen to
be Hy,. (Thus one would not restrict generality seriously by assuming that Z C T
and x|, = €1d.) Note that there are only finitely many ¢ for which V, # {0} and

thus Hy(e) # {0}. Decomposing 7|, into isotypical components, we obtain the
Hilbert direct sum

Ho(e) = @D Hy(dm),

meR,

whose constituents are just the spaces of square integrable automorphic forms of
weight m with respect to I' and y. While many papers are devoted to the Selberg
trace formula for a single weight m, our motivation is to decompose 7, into a direct
integral of irreducible unitary representations of G (in the spirit of [10], say).

To keep later notations shorter, let us agree to write Py = NgAgZ for the stan-
dard parabolic subgroup which has been called P = NAZ in section 1. A general
parabolic subgroup of G is then P = k=1 Pyk with unipotent radical N = k™1 Nyk
and special split component A = k~!Agk, where k € K is arbitrary. Conjugation
by k transports the Haar measures to P, A and N. For each P, we fix one such
k = kp in the Z-coset of possible ones. If we define ap, = k;laukp € AforueR,
and Hp(z) =u for z € Nap K, then Hp(z) = H(kpz) generalizes H = Hp, and
H= Hp,.

A parabolic subgroup P of G is called cuspidal (w.r.t. I') if its unipotent radical
N contains a nontrivial element of I'. As one knows, the finitely many cusps of
the Riemann surface '\'H are parametrized by the I'-conjugacy classes {P}r =
{yPy~!:v € T'/T N P} of cuspidal subgroups. The Iwasawa decomposition H =
G/K = N A provides a parametrization of the geodesics nA(:) C H, n € N, which
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tend to the boundary point kp'(co) € RU {co}. The parameter value is given
by the function Hp whose potential surfaces are the N-orbits (horocycles) on H.
However, this parametrization determined by the choice of K (or of i € H) is not
adapted to I': a geodesic on ['\'H running into a cusp has various lifts to H, from
which it inherits different parametrizations.

To rectify this, we replace kp by gp = a,,kp, where e™*P = vol(T'Z N N\N).
Then TZ NN = {gp'n,gp : v € Z}, and one checks that

Hp(z) +up = Hp,(gpz),

which is our new parameter. The value 0 now corresponds to the horocycle whose
projection on I'\'H has length 1.

Given a cuspidal P = NAZ, we denote by V¥ the maximal subspace of V on
which XII‘ ~p acts trivially, by prP the orthoprojection on V¥ and, for every ¢ € Hy,
by

oP(z) = vol(I' N N\N)™! / pr¥p(nz)dn
LAN\N

its “constant term” along P (convergent in L;. (G)). It has the propreties

loc

pf(nz) = F(z) forneN,
¢ (y2) = x(1)¢"(z) foryelnP.

(Since TN N is normal in I' N P, the measure dn is ' N P-invariant.) If ¢ € H,(¢),
then @” takes values in the trivial subspace V.I” of x. rznn» Which happens to be

smaller than V,NV P, In such case, the corresponding cusp has been called irregular
in [1].
Note that one needs only consider one constant term for each cusp, since

e (@) = x(v)e (v ).

It is therefore useful to fix a (finite) set § of representatives for the I'-conjugacy
classes of cuspidal subgroups and to define

¢(z) = (¢" (95 7)) Pes

a left Np-invariant function with values in V' = @pe VF. If ¢ € Hy(e), then
©®*(z) € V7 in the obvious sense. The identity (my(z)p)(y) = ¢¥(yz) shows
that, heuristically, the constant term operator is something like an intertwining
operator. This will be made exact in Proposition 11.

The constant terms give, of course, no information about the G-invariant sub-
space

H® ={p € Hy: @® =0 for all cuspidal P}

of cusp forms (which equals H, if T is a uniform lattice). A crucial result is that
for every K-finite eigenfunction ¢ € H, of the Casimir element w, every compact
set §) € G and every n € N one can find a constant C such that

(9 — 9P (@y)| < Ce™™ 2@ for Hp(z) > uq, y € .
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Note that, for sufficiently large ug, TN G\{z € G : Hp(z) + up > ug} projects
diffeomorphically on some “neighbourhood” Cp .y, C I'\G of the cusp corresponding
to P, and

o0
/ lo(z)|*dz = n;,lP/ f f le(nap k)|*dn e du dk,
Cpug P'nZ\K Jup—up JTNAN\N

where npp = {[Z NN : T N N|. The rapid decrease in the cusps is the reason
why the restriction of my(f) to H{* is of the trace class for f € C1(G) (see [21]).
As a consequence, H5' is contained in 'Hféis, the maximal discretely decomposable
subspace of H,. Moreover, every irreducible unitary representation of G occurs in
HY'® with at most finite multiplicity.
We have now an orthogonal decomposition

HX — H;i(is & H;:(on — chus ® eres ) H;on,
where the superscripts “res”, “con” will become clear later. The above estimates
also entail restrictions on the possible representations which may occur in H',
because of must then be square integrable on C Pug-
Lemma 10. The representations of G occurring in HY® belong either to the com-
plementary series, or to the pseudo-discrete series, or are trivial. Moreover, if ¢ is
a K-finite element in the isotypical component H?*(m, ,) and w.lo.g. s € (0,1/2),
then o” € Hpe,, @ VP, ,

Proof. Let v € Hi*(me,s) be K-finite. Clearly, m (w)p = s(s — 1)p. Take a
cuspidal P. Replacing I' by a conjugate subgroup if necessary, we may assume
that P = P;,. Now, in the notation of section 1, w + % = ;(H - 1)* + XY,
P ((w+ 1)z) = 197 ((H - 1)),

This differential equation has the basic solutions e** and e!!=* (resp. ue*/? if
s = 1). But e** is square integrable on (ug, c0) with respect to e~ *du iff Rs < z.
Thereby the principal series is excluded, and the assertion about the complementary
series follows.

Let now ¢ be a vector of weight =m in Hy(7m4m), m > 0. Then

0=¢"(@auEz) = " (au(h £4(X — Y))) = (2% - m) o' (ay),

thus @ (a,k) = e™*/2pP(k), which is square integrable iff m < 1. O

As for the trivial representation my of G, it is clear that H,(m) C 'H;fs consists
of the constant functions with values in the subspace of y-invariants in V. The
multiplicity of the other irreducible representations of G in H, is hard to determine
(except for the discrete series).
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A refinement of this question is connected with Hecke operators. We denote by
[ = {¢ €T :¢7'T¢ is commensurable with T'}

the commensurator of I' in G and define the Hecke algebra as

(G, x) = {t: T = EndV| i(11é7v2) = x(m WH(E)x(r2) for v, 72 €T, £ € T
supp(?)/T" is finite}

with operation

ty xt2(€) = Z ti()ta(n~"€) = Z t1(En~ ta(n),

nelr/T ner\r

involution #*(£) = #(£~1)* and unit element x (extended by zero to all of I'). The
restriction of ¢ to a double coset T'¢T" is determined by the value t(€), which can be
arbitrary in Hompng-1pe(V, V¥¢), if V¢ denotes V endowed with the representation

xe(v) = x(€v€71). H(G, x) has a *-representation

(re)z) = Y HE)p(¢ ')

nel/T

on H, commuting with 7 (see [16] for the case x = 1). The restriction of 7(t) to
Hy(€) is 7y, (t.), where

L&)=Y HeDe(zpr.

z€Z/TNZ

One easily recovers ¢ from the t.’s as 3, 2. = nrt, using that 3., _ . e(z) =0
if z¢ T'nZ. For x = 1 and congruence subgroups I', one can take the adelic
point of view, well suited for the study of Hecke operators 7,(t) (see [17]). One is
interested in their traces in the isotypical components H, (7). Some information
can be obtained with the help of Eisenstein serties, which will be considered in
section 5. In order to state the results, let us introduce certain Dirichlet series
which will also appear in the trace formula.

Some preparation is necessary. Take any w € W\ Z. The Bruhat decomposition
G = Py U NywP, (disjoint union),

being Z-invariant, is a simple consequence of that of G. For any pair P, Q of
cuspidal subgroups and any z € G,

either z € galep(:n)auNogp with zgp(z) € Z
or T € galNowQP(:c)auNogp with wop(z) € W\ Z,
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depending on whether zPz~! = @ or not. Here Hgp(z) = u and zgp(z) resp.
wop(z) are uniquely determined. We shall use the notation

Tor(1) =T Ngg' Pogep,
fQP(w) = F N g5JN0wP0gp.

For any £y € f‘Qp(l), the map € +— &£ induces an injection Tgp(1)/I' NP =
'nP/TnP—TYT. |
Given t € H(G,x), € € Z and s € C, let us consider the finite sum

cor(t,le,8) = Y elaqp() e Har@y()pr!
£elqp(1)/TOP

and the Dirichlet series

Eqp(t,w,e,s) = mpg > bm(wop(€)™ e M Oprly(E)prf,
EGFI"\U\TQP(IU)/FHP

both with values in Hom(V,”, V.?), where U denotes the unipotent radical of Q
and m € R,, |m| < 1. If m = %1, we indicate its sign as t%P. We may replace I’
by I'Z and t by t, without changing the value of égp; then the coeflicient nr g =
[TZ NU : T NU] vanishes. We put cop(t,w,e,s) = jm(s)éop(t,w,¢,s) with j,.(s)
as in section 1. Clearly, the maps cgp, égp for all @, P € § combine to linear
operators ¢, ¢ in V.

Proposition 11. The series c(t,w,&,3) is absolutely convergent for ®s > 1 and
extends to a meromorphic function on C, whose singularities, except for a finite set

S, C (%, 1-— JT—;—'-] of simple poles, lie in the half-plane s < % (Here m € R, with
m| < 1.) Moreover,

c(t,1,e,8)" =¢(t*,1,e,1 - 3), c(t,w,e,8)" = c(t*,w,¢, 3),
c(x,1,¢,8) =1d, c(t1,1,e,8)c(te,1,e,8) = ¢ty *12,1,¢, 8),
c(t1,1,6,1 — s)e(ty,w,e,8) = ct),w,e,8)c(te, 1,€,8) = c(ty * 2, w,¢,8),

c(t,w,e,1 — s)c(ty, w,€,8) = ¢ty *tg,1,¢,8),

where t, t1, t3 € (G, x). In particular, ¢(x,w,¢,s) is unitary for s = %, self-
adjoint for real s, and an involution for s = :12-

Foro € S, let V(x,e,1—0) be the range of the self-adjoint operator ¢(x,€,0) =
Ress=¢ ¢(x,w, €, 3) endowed with the scalar product

(Q(X) €, O’)U, Q(X: £, U)w) X,&,1=0 = (Q(X7 £, J)v? w) '
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Theorem 12. For any ¢ € Z, there are isometries

I HEM () — / Heppir ® VEdr 2 L5 + iRy, £5) O H @ V7™,
I M () — Hm @ V(e 3o P Her—o®Vix,e,1-0).
0€S,
a’<lE|m|/2

The map I, = I°" @ I is explicitly given by

(hopsa) = [ o au)e™du

— 0

for ¢ € H,{e), where the integral is understood as a Fourier transform of dis-
tributions. I, intertwines the representations m, and 1, of G and $)(G,yx) with

the direct integral of m. s @ c(.,1,€,8) (resp. mm @ ¢(.,1,€,8) for s = L’—;ﬂ) over
& (3 +iRp)U(L-5).

I,p, being a priori a hyperfunction on C with values in H, ® V", turns out
to be the sum of an L?-function on % + R (with a certain symmetry explained in
Proposition 18) and of some é-functions located at 1 — S..

Proposition 11 and Theorem 12 will be proved in section 5.

4 THUE TRACE FORMULA

We shall now state the trace formula for a unitary representation y of a lattice
['in G. We prefer to do so in the special case when Z C I' and x|, = €Id for some
€ € Z. As discussed in the beginning of section 3, this is no serious restriction.

Recall from section 1 that Greg denotes the set of regular elements of G. It is
the union of the G-invariant sets Gen and Ghyp consisting of all elements comug,a,te
to kg with 8 gé 7nZ or to a,z with ©u #£ 0, z € Z, respectively. Put Freg =InN Ghreg,
Psmg =T - l"reg While any element of I‘s,ng belongs to some cuspidal parabolic
subgroup (see section 7), the same is true only for a subset of elements of T'reg
(disjoint with I'), which we call Tp,;. We shall see in section 6 that any element of
T par belongs to exactly two different cuspidal subgroups, i.e., fixes two boundary
points of the upper half-plane H. Consequently, I'par C Ghyp Let us subdivide
F,eg I‘par into two subsets Tey, I‘hyp in the obvious way, thus obtaining a disjoint
union

f - ]._-‘e]] U f‘hyp U f‘par U Fsing.

By our assumption on x, H, = H, (). Recall the invariant decomposition H, =
'Hd" @HY™ and let pdis, p°°" be the corresponding orthoprojections. Put wii*‘(f) =
pd‘s'irx(f) and 79°%(t) := p¥®7, (). Any element of (G, x) can be decomposed as

Ax +t with A € C and suppt NI’ = @. Tt is convenient to state the trace formula
for x and ¢ separately.
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Theorem 13. Given T, x, € as above, let f € C!(G,¢), m € R,. Denote
h(r) =0, 14i(f); hn = Onysgnalf)
for |Qr} < 3, n=m+1(2), n # 0. Ife = &y, put ho = (0:1(f) — ©_1(f))/2. Then

dls( f) is of trace class, and its trace equals the following absolutely convergent
111tegrai -series:

dim(v)vol(F\G) ( /°° r sinh 277 W) dr+zn:*|n|hn)

47 —oo COSh 277 4 cos Tm
o0 —irm
N Z ' tr x(’y). 1 f cosh2(m — O)r + e cosh 26r B(r) dr
2i[[':Z]siné oo cosh 277 + cosTm
{v}IrCZ\l'en

+6¢ e, ho + Z* sgn(n)e_‘"aizn)

tr u o0
+ Z 41r[F.Y:XZ(‘]TS)inh % [m COS(?‘u)h(T‘) dr

{¥}rCZ\Thnyp

—dim(VCS‘)< / $(1 + 2r)h(r) dr + Z h )

n;éU

1 [ asinTm
pPf - o d,
+ PZG:S Me (47r /_oo (cosh 2nr + cosTm + 210g(2 cos(3 ))> hr) dr
(89 *
+-2—Tr (&mho + ; sgn(n)hn))

aE(—m,m)
1 L CNfe ,
+ Ep.v./ tr(E(x,w, €, 3 — ir)(&(x,w,€, 1 +ir))h(r)dr

—o0

1
- :11-(1 — 6,,,1) tr(e(x,w, €, %) Id)A(0) - 3 e e, tret (x,w,¢, 2)}1.0

Here ), = 3., my1(2) Oe.er 18 the Kronecker symbol, 1(s) = T'(s)/T(s), m P isthe
multiplicity of —e'® as an eigenvalue of x(gp nigpr), and each (smtably Lbosen

modulo Z) determines 6 € (0,7) or u > 0 by {y}c = {ke}c or {v}c = {au}c,
respectively.

Using the results of section 2, we may express all items except the p.v. integral
in terms of the Fourier transform of h(r), namely g(u) = FfA(au), and h,. If f €
CP(G,s), = ma‘x(%l: ) and f(kgzke ) = e—im(9+9')f($)> then We,}z--}-ir(f)ﬂbm' =
6m,mfh(7')¢m, thus h, = h(’—}) for n between 0 and m, hy = $h(0)sgnm, and
h, = 0 otherwise. In this case, Theorem 13 becomes essentially Theorem 6.2 of
[15], cf. also [1], [9], [10], {18], [29].

It remains to consider t € H(G, x), suppt NI = . First we introduce some
notations. For P = NAZ € §, let us parametrize the elements of N as np, =
97 nugp, thus providing an isomorphism TAN/T'NN 2= Q/Z (see [16,Lemma 9.3]).
If £ € TNN, then £ commutes with TN N, hence #(¢) intertwines X|r‘n As above,
np, is a generator of ' N N, and the eigenvalues of x(np;) different from 1 are of
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the form —e'®, o € (=, 7). Given £ e TNN/T NN, let vf‘,t =min{v > 0:np+, €
¢ N N)}. Clearly, vf = 1, and vf +v; = 1for £ ¢ TNN. Let t£(£) be the
restriction of ¢(n P,uf) to the eigenspace of Xlrn  corresponding to a. Obviously,
these eigenspaces make up the orthogonal complement of VP,

We shall also need the hypergeometric series

(o =] n 1
_ z . _
Bv,z) =v ' F(v, ;v + 1;2) = ,,E.__O T /0 171 — zt) 7 dt.
This series converges absolutely for |z| < 1 and conditionally for |2] = 1, z # 1.

Incidentally, 2¥8(v,z) = B,(v,0) for z € [0,1), where B denotes the incomplete
beta-function. Moreover, if v = %, where p < ¢ are positive integers (the only case
we need), then the substitution ¢ = z? yields

ﬂ(g,z) = — Z w P log(1l — w) for z ¢ [1,00),

wi=z

where we take the continuous branch of the logarithm on C — (—oc0,0] determined
by log(1) = 0.

Theorem 14. In the situation of Theorem 13, let t € H(G, x), suppt N T = .
Then tr('fr;i(is( f )T;lis(t)) equals the following absolutely convergent integral-series:

z tr x(£) (1 /°° cosh 2(w — 8)r 4 e ™™™ cosh 26r

2i[Te:2]sin0\2 J_, cosh 277 + cos mm h{r) dr

{€}rCZ\T oy
+bee ho + Z sgn(n)e"mghn)

tr x(§u « ,
+ ) 47r[I‘£:Z]sinh%_/ cos(ru)h(r)dr

{f}l‘cz\f‘hyp e

tI‘X(f) * —inlu/2 /‘00 eiru '
+ Z 2Sinh% nz#:o [ hn + e 271- (l + QBe—u(l + 227,0))

{E}PCZ\Ppnr
sinru {1 sinh 27r
—— th 27r — h(r)dr
+ 2 (27rr +eoth e cosh27rr—|—cos7rm)) (7)d7}
1 )
_ Z Z tr(t(f)prp) [52 (1+icot ﬂvz')hn
PeF teTnN/TNN n#0

oo cosh2nr 4 cosmm

- | S
+ / Z;(Zzl;(l +2ir) 4+ 2C + (o) + (0] ) + —m e )h('r)dr}
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[en)

+y > [(ﬁ(v;*,—e"“)trti:(ﬁ)+ﬂ(vg,_e-‘°)trt;(g))£;/ h(r)dr

PEF gel'NN/TNN —c0
ac(—m,m)

oF
e et (6) /1 [ sin7Tm .
n +( ) (5 / h(r)dr + 8¢, ho + Z sgn(n)hn)]

2isin oy oo COSh 277 + cos mm -

1 > . e .
+ Ep.v../;oo tr(&(t, w,e, 3 —ir)(&(x,w,¢, 5 + i) h(r)dr

1

1
- Z(l — b6y ) tr(c(t,w,e, 3) — (c(t, 1,6, 3))R(0) — 50e,e, tret (2,6, )ho.

Here C' = —¢(1) denotes the Euler-Mascheroni constant, P = NAZ, and each § €
Treg (suitably chosen modulo Z) determines € (0,m) or u > 0 by {¢}6 = {ke}c

or {£}a = {au}q, respectively. Moreover, each § € T, determines I = Hgp(y),
where v € Tgop(w) and P # Q are the cuspidal subgroups containing &.

Theorems 13 and 14 follow fromn Theorem 25 and the results of section 3.

5 EISENSTEIN SERIES

We turn now to the harmonic analysis of the orthogonal complement 'H?is =
HE® @ HY" of HY in Hy. In view of the extensive literature covering this topic
for G’, our explanations will sometimes be sketchy.

The constant term operator defined for a cuspidal subgroup P = NAZ in sec-
tion 3, when restricted to compactly supported (mod I') functions ¢ € Hy, is a
G-equivariant map to the space

Hpx = {: G — V|¢(nyz) = x(v)d(z) forne N,yeNPandaec. z€G,
¥l € L*(N(T' N P)G)}

of the induced representation 7p, = II:1df\-",(Pﬁ P)(X|r ~p)- Such i are automatically
VF-valued. We equip Hp,, with the scalar product

(,262) = ! /F (1 (<), 92 () da

NP\G

(s w]
=”1:]/ / (1(apuk), ba(apyk))e™ P du dk.
'mzZ\K J -0

The formally adjoint of the constant term operator is the series 8p satisfying

) =nit [ (ele) b ds = (o, 00000,

I'nP\G

which should conveniently be defined more generally as

bp(tbz) = Y. HE(E )

Eer/rnp
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for any t € H(G,x), because then 7(¢)0p(x,¥) = 6p(t,4). Later we shall see
(Proposition 15 with ¢ = 1) that 6p(¢,7) is a.e. absolutely convergent provided
|#)(z)]| is essentially bounded by a multiple of exp(c Hp(z)) with o > 1.

It is easy to reduce 8p(t,%) to the case t = x: collecting all items with the same
Q = £EPE7!, we obtain

Op(t,,z) = Z Z HE)p(E z)

Q ¢elqp1)/InP

in the notation of section 3. With T',g,-1 p(1) = yTgp(1) we obtain

¥) =Y 8o(x,qr(t, 1)),

QEY

where

(rep(t, )=y = > #HEW(E 'x)

¢elgp(1)/INP

is a finite sum. Clearly, 7pp(x,1) = Id, Top(x,1) = 0 if P and @ are not I-
conjugate, and

> tro(t', V)rqp(t,1) = Trp(t xt,1).
Qes

Dually, we may express the constant terms (7¢(t)p)? by those of ¢ € H,: the

elements of each coset éI' C T' conjugate the cuspidal subgroups of exactly one
class {P}r to Q, thus

(r®e)@) =D Y. HEe(E ).

Pe¥ EEPQP(I)anP

Since for ¢ € Tgp(1l) we have £7'U¢ = N (U the unipotent radical of Q) and
HOVP = Ve
(rx(1)e)® =) rop(t, 1)p”

Pey

Calculating (@, 0p(t,%)) in two ways, we obtain the formally adjoint rqp(t,1)* =
TPQ (t*,1).

The functions 8p(x, 1) for all cuspidal P and all ¢ € Hp, with compact support
mod (I'NP) are dense in Hy'*, as follows from their definition. One can thus describe
%gis in terms of them, provided one knows their scalar product

(8p(t, %), 00(x,¥") = (3(t,),%").
In order to calculate 9,‘3, split Bp(t,v) into two terms according to I' = Tgp(1) U
Fgp(w) and take the constant term along @ of each one. The first sum then
simplifies to 7gp(f,1)1. On the other hand, for £ € Tgp(w) we have EPE~INU =
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{1}, whence ' N U acts freely on Tgp(w)/T' N P from the left. We split off a
summation over I' N U and join it with the constant term integration to obtain

69(t, %) = rop(t, )¢ + op(t, w),

where

(rar(tw)i)(@) = vl N\ ) [ (e ue) du

EErNU\lqp(w)/TNP

is absolutely convergent if 8p(t,%) is so. Calculating the above scalar product in
two ways, we get Tgp(t,w)* = rpo(t*,w). Taking the constant term of

r(t)0p(t, %) = 0p(t' x t,9) = D 6o(t', mor(t, 1)),
Qes

we see that

Z tro(t, V)rop(t,w) = Trp(t *t,w) = Z Tro(t ,w)Tgp(t,1).
QET QEF

The next step is harmonic analysis of Hp . Since, for 91, 2 € Hp (€),

(thr, h2) = /Z . /_ ($1(05" auk), ¥alg5" auk))e"du dk,

left gp-translation and Fourier transform provide a G-equivariant isomorphism
1 [ .
Hpy(e) = —2—1;/ 'He,§+n~ 029 V!Pd‘r' & LZ(% + iR,%) QH. ® V!P

with a direct integral over the principal series. We write the inverse Fourier trans-
form for « € L%( +ir), ¢ € H. @ V.F as
o0

(@8 F@) = 3= [ al}+inby lore)dr

— 00

For a(s) extending holomorphically to Rs € [1,0], o > 1, with sufficient decay as
|Ss] — o0, this can be inserted into ép, and

1 o0
8p(t,(a ® )f,z) = 5 / oo +w)Ep(t, ¢,0 +ir,z) dr,

provided the Eisenstein series

Ep(t,¢,s,2)= Y H{E):(9pe " ) = Op(t, ¢,p,2)

eetyrne

is absolutely convergent for s = o. Here, ¢, p(z) = ¢,(gpz). Let now C*(K,¢)
be the subspace of n times continuously differentiable functions in H,.
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Proposition 15. Fort € $(G,x) and ¢ € C*(K,e) ® V.F, the FEisenstein series
Ep(t, ¢) is absolutely uniformly convergent for (s, z) in compact subsets of G x {s €
C: Rs > 1} to a function holomorphic in s and n times continuously differentiable
in z. If Q is any cuspidal subgroup, Ep(t,¢,s,z) is bounded on Cg,. by a multiple
of exp(cHg(z)), o = Rs. Furthermore,

T (t)my(zD)Ep(t, ¢,5) = Ep(t *t, (%, s(zD) ® Id)$, 3)

fort' € (G, x), ¢ € G, D € & with deg D < n, where 7, and 7, have the obvious
meaning although Ep ¢ H,.

Provided convergence, the last assertion is obvious. It reduces the proof to the
case t = x, n = 1. But x and ¢ are bounded, thus ony Ep(1,1,s) will bother
us. Here, e.g., the proof of [18, Theorem 2.1.1] together with the complementary
remarks applies. Note that any Dirichlet series is holomorphic in its half-plane of
absolute convergence.

One checks that

TQP(t! l)qu,P = (CQP(tv 1, S)Qs)S,Q’
TQpP(t,w)ds p = (Cor(t,w,$)d)1-s,0 for Rs > 1

with uniquely determined maps Cop : C*(K,e)@V,F — C"(K,e)®V,?, which are
G-equivariant and thus preserve the decomposition of H, by K-types. In order to
state the properties of Cgp which follow from those of Tgp, we consider

E(t,é,S) = Z Ep(t,pI'P(}S,S) ‘

Peg

for ¢ € He @ V& (cf. section 3), where prp denotes the projection on the P-
component. The Cgp then combine to linear operators C in C*(K,e) @ V" such
that

Ty (z)E(t, ¢,s) = E(t, (7 s(z) @ Id)d, s),

T (t)E(t, ¢,s) = E(t xt,¢,5) = E(t',C(%,1,5)d,s),
E®'(t, ¢,8) = (C(%,1,8)¢)s + (C(t, w,8)d)1_s,
C(t,1,8)* = C(t*,1,1 - 3), C(t,w,s)* = C(t*, w,3),
C(x,1,s)=1d, C(t',1,8)C(t,1,8) = C(¥' *¢t,1,s)
C(t', 1,1 -s5)C(t,w,s) = C(t' *t,w,s) = C(t',w,s)C(t,1,s).

We shall not indicate the dependence of E and C on ¢ € Z but rather consider

them as Z-equivariant maps defined on the space ), C"(K,e) ® V& of functions
¢: K — Vet

We may now insert 1 = (@ ® ¢)p and ¢, = (8 @ ¢'), where ¢ € H, @ V,F,
¢ € H® VCQ, into the scalar product formula for 8p, 6o and express the latter
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by Eisenstein series. Suppose that «, § are holomorphic and rapidly decreasing for
1 — o0 < Rs < o, o > 1. Fourier inversion shows that

(¢0:(B® ")) =(4",4)8(1-3)
for any ¢" € H. ® V2. Some calculation now gives

(6p(t, (a ® 6)p),80(x, (B ® ¢")3))

=5 [ ()BT 5)(Car(t,1,5)6,4) + (BN Car(t w,s)é,¢')) s

Ra=0o
Thus, as usual, the next task is analytic continuation of E and C to s = %
Proposition 16. Let ¢, ¢' € H ® V' be K-finite, t, t' € H(G,x), m € R, with
m| < 1. Then E(t,¢,s,z) and c(s) = (C(t,w,s)¢,¢') extend to meromorphic
functions on C with the same singularities (for generic z € G ), which, except for a

finite set S, C (-;-, 1-—- j%l] of simple poles, lie in the half-plane Rs < % Moreover,
E(t,¢,3) = E(x,C(t,w,s)$,1 ~ s),
C(t',w,1~3)C(t,w,s) = C(t'*t,1,s),

c(s)a"1/? H _ST9

1—g—
rr s—0

for some a > 0 and all s with Rs > ;—

<1

Now the aforementioned properties of £ and C extend to all regular s. In
particular, C(x,w, s) is unitary for Rs = %, self-adjoint for regular s € R, and is an
involution for s = % Being a K -finite eigenfunction of w, E(t, ¢, s) is analytic on
G. We shall see later (Lemma 19) that S, — {1 — J%i} is independent of the weights
occurring in ¢.

It suffices to prove the proposition for ¢, t' = x and ¢, ¢' of the form ¢,y Q@ v |
with m’ € R, and v € V,F. In this case, proofs are given in [25], [15, pp. 130, 156;
2961, 299; 374, 380]. One may also adapt the elegant proof from [7], [8].

All proofs depend on the MaaB-Selberg relations, which also play a role in the
proof of the trace formula. They are connected with the notion of truncation.
Given a truncation parameter v € R, let xpu be the characteristic function of
{z € G: Hp(z) + up > u}, which projects on Cp, C T'\G for large u. By the
choice of up,

XP,u(Afw) = X'r'lP‘y,u(z)'
We have seen a similar invariance for the constant terms, and thus the truncation
operator Ay, defined for ¢ € H, as

A== xpup?,
P
yields an element of H,. Here the sum over all cuspidal subgroups P is locally finite,
whence we may apply A, to more general functions ¢ : G — V with the same I'-
equivariance but which are only locally integrable, say. For large u, the xp,. even
have pairwise disjoint support, and if we view ¢ as a section of the bundleV xr G,
then A, simply replaces ¢ by ¢ — ¢F over each Cp,,.
A special case of the Maafl-Selberg relations is the following
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Lemma 17. Let ¢,¢' € H, @ V5 be K-finite, t € H(G, x), and take s € C such
that s and 1 — s are regular points for E. Then A, E(t,¢,3) € Hy, and

(AuE(t,¢,5), AuE(x, 4,1 —3))
=2u(C(t,1,8)¢,9") — (C'(x,w,1 = 8)C(t,w,s)¢,4")

+ 251—_1 (6‘“‘“”“(0(x,w,1 = 5)C(t,1,8)$,¢') — ! 2I4(C (¢, w, 5)4, ¢‘>) -

Sketch of proof. One quickly obtains the identity
[ (hp(wn), A (@) = (Aul@), Aug(w2)] do
G
== [ TR @) (e @ " ra (e e

for smooth ¢, ¢’ € H,, one of them with compact support modulo I'. Integration
by parts transforms the right-hand side to the integral over £ € T' N Z\K of

d —u cs - 1cs —u cs d —u cs
R R O B O )

The resulting identity extends to K-finite eigenfunctions of w in view of the rapid
decrease of Ay on each Cpy. In particular, for ¢, ¢' as in the lemma and regular
3, 8/ € C we obtain

(3(5 - 1) - S’(S’ - 1))(AHE(t= ¢1‘5)= AHE(Xi qug’))
=(s—3s") (e(”’l-l)"(C(t, 1,8)$,¢") — e(l_’_sf)“(C(x,w,s')C(t,w,s)c;S,qﬁ'))
+ (s = 1) (L7HC U6 w,)C(E 1,8)4,4') - 70Ot w, )8, 6))
Dividing both sides by s(s—1)—3s'(s'—1) = (s+s'—1)(s—s') and letting s’ — 1—3s,
we prove the lemma. 0O :

In the formulae connecting the series 8p (resp. their scalar products) with E

resp. C), we now move the line of integration to ®s = 1, taking care of the
g 2 g

residues at S,. Applying an approximation argument to & ® ¢, one proves as usual

Proposition 18. Fixe € Z and, for o € S,, let H(x,€,0) be the Hilbert space
obtained from HX @ VS by factoring out the null space of the scalar product

(®,2'); = (Res C(x,w,s)®, ')
and then completing. Then there are isometries

I {2 e L (5 +iR, E)QH @ V7™ : (1 — 5) = C(x, w, 8)®(s)} — HE"(e)

UAba @ H(x,e,0) — H*(e),
UGS: t
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which are given by
Ieme = ! E(x,®(L +1ir), L +4r)d
X yr X, ®(5 +ir), 3 +r)dr,

I;es@ = Z B—GSE(X’ ®,, S)
o€S, =

for compactly supported ®. I3°" and I3 intertwine the representations of G and
(G, x) defined by m., ® Id and C(.,1,s) with the representations 7y, and Ty In
Hx(e).

From Schur’s lemma it is clear that the intertwining operators C'op should be
multiples of Rp,. We can make this explicit. Some calculation using the notations
introduced in connection with Proposition 11 allows us to specialize the formulas
for Tgp as follows:

(Cor(t,1,8)8)a(x) = Y tE)u(a-ngrerzer(€) ™ a),

Eelfqp(1)/TNP

(Cop(t,w,s)d)1-s(z) =nrg >, pro(€)

¢eTNU\Tgp(w)/TAP

: ,/;V ¢a(a—HQP(5)wQP(£)—1n$)dn'

Comparing this formula with the formula for Rp;, we obtain

Lemma 19. With the notations of Proposition 11,

C(t’ 11 s)|'H‘®V‘cn = Id® C(t, 11673)7

C(t,w, 3)|'H.®v,=°t = Rﬁo (e,8) ® ct(t,w,¢, 9),
where the second formula is an equality of convergent integral-series for s > 1,
and the superscript & is ignored for € # €.

Proof of Proposition 11. Restricting the second formula in the preceding lemma to
¢m @ V.F with m € R,, |m| < 1, we get

Cqor(t,w,5)(¢m ®v) = ¢m @ cSp" (t,w, €, 8)v.

The functional equations for ¢ follow from those of C'. [l

Proof of Theorem 12. Applying I, to the formulae of Proposition 11, we obtain by
Fourier inversion, using the invariance of @,

(LI @) (g +ir) = B(3 +ir)y 4,

and, as a Fourier transform of distributions,

(L I5®)(s) = ZB__(_&E C(x,w, z)@f,/ 7™ dy = ngg C(x,w,2)®,6(s—0).

o
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The assertions about I3°" follow immediately.
As for the residual part, we have now the commutative diagram of isomorphisms

res

Hi(e) . @B, Resy=o C(x, w, s)(He ® V=)
e N\ /" ®ResC
D, Hix,¢,)

It remains to identify the range of ResC and to transfer the scalar product to
it. Since Rp,(¢,s) is holomorphic on (3,1 - J—l] taking residues in the formula
in Lemma 19 affects only the second fa.ctor, which gives ¢(x,€,0). The range of
Rp, (€, s) has been determined in section 1, and the assertions about scalar products
are easily checked. ([

6 THE GEOMETRIC SIDE—REGULAR PART

In the remaining sections we shall prove the trace formula under the assumption

that Z C T, XlZ = eld. Let f € Co(G,¢), t € H(G, x). One calculates that

(r(F)ra(B)p)() = /F Kaatevewdy

where

Kpo(z,y)= Y fla™ éy)t(€)

eezZ\l'

is absolutely uniformly convergent on compact sets and slowly increasing ([21, ch. §]
applied to |f] and the finitely many cosets in '\ supp(t)). Given a I'-cuspidal
P = NAZ, we similarly obtain

(px( Fyrpp()(z) = /F g K@U

in the notations of section 5, where

Krpuay) =vol@ONNT [ S g e dn,

PON\N ¢ 2 Tnp
Being obtained from a subseries of Ky, integrated over a compact set, Kp s is
slowly increasing on Cp,y,, too. When restricted to the diagonal z = y, Kp s, will

turn out to be the leading term of Ky on Cpy, as ugp — oo. The trace formula
will be obtained by integrating the trace in V' of

Kz, z) ZXPUO z)Kp f(z,2)
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over I'\G, where the sum is taken over all cuspidal P (which makes it T-invariant).
Here we interpret

/I:\G p(z)dz = u}iinoo /I:\G QO(a:)(l — ; XP,ul(l')) de.

The disjoint union I' = I'reg U Tsing gives an obvious decomposition
Kro=Kf8+ K738, Kppo=Kp%, + Kp§,

In the present section we shall obtain a geometric expression for the regular part,
deferring the singular part to section 7.

To handle the contribution from f‘reg NP, P =NAZ € § (which is absent in the
case t = x), we need some preparation.

Lemma 20. For u # 0,

Z tri(é) = |e_" — 1| Z tr(t(€)pr?).

{€}ranCTNap N ¢elfnap, N/TNN

Note that apy N = {ap.}n and that #(supp(t) N P/I'N N) < #(supp(t)/T) <
0o. Thus the right-hand side is finite and vanishes but for finitely many .

Proof. Assume for simplicity that P = Py and multiply the right-hand side by

|e—“—1|—1/Ng(aun)dn='/Ng(n_]aun)dn,

where g is in the Schwartz space S(a, N) =2 S(R). Rewrite the result as
vol(T'N N\N)_lf Z tr(t(f)prp)/ g(n™¢n'n)dn'dn
TONAN ccfna, N/TAN N

with a futile integration over I' N N\N. If the Fourier transform of ¢ has suitable
compact support, this equals

/ 3 (e )g(n~ en) dn
FﬂN\N EGf‘ﬁauN
by the Poisson summation formula (cf. [16], Lemma 7.9), or else
Z tr(t({)prp)f g(n~'¢én)dn.
{€}ranClNauN N

After replacing £ by a, in the integral we may divide it out, since it is nonzero for
suitable g.

Thus it only remains to show that the left-hand side of the asserted identity does
not change if we replace t(£) by ¢(£)pr?. It is obvious at least that we may replace
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t(¢) by t(£y) for any v € I' N N, since this only permutes the (I' N NV)-conjugacy
classes in ' N a, N. Linear combination now yields

> tr(t(E)p(x(10) —1d)) =0

{€}ranClNap N

for any polynomial p over C, where 7y is a generator of I' N N. Choosing p with

p(0) = 0 and p(A—1) = 1 for every eigenvalue A # 1 of x(70), we get p(x(70)—1d) =
P
pr —1d. O

Multiplying both sides of the identity in Lemma 20 by an integral as in the proof
and transforming the right-hand side in the same way, we see that

/r‘nN\N Z g(n~en)trt(€) dn =/ Z g(én) tr(t(f)prp)dn,

€T 1egNAN PANAN ¢ePognAN

now for any g € Co{ AN). Applied to ¢(y) = f(z~'yz), this shows, after integration
over a compact set, that

/l"nP\G( Z f(:c—lfat) trt(€) — tr I(;f’!},t(m,w)) XPuo,u,(z)dz =0,

E€EZ\D'egNP

where X p ug,u, = XPuo — XPu;- One can check that both terms depend linearly on

uy — ug. In view of Kre Py [(z,z) = (;f?“('ym,'y:v) and the similar property of

X P,uo, SUmMming the last equation over P € § gives

L2 e - wKE (o)) xrsom (2)ds =0
G 5

er\r,e,nP

Letting u; — oo, we see that

/P Ztr( Fa—tea)(e) — \';f*}t(:c,a:))xp,uo(z)d:vzo,

G
\G p EEZ\TgNP

the integral being at least conditionally convergent in the obvious sense.
The regular part of the geometric side of the trace formula now becomes

Kib(z,z XPuo(T) K55 m,m)d:c
[ CRR RENOL O

- Z tr¢(€) /PE\G f(x_lﬁf’«')(l - Z XP,u0($)> dx

{&}FCZ\FH; P9€
where I'¢ denotes the centralizer of ¢ in T
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The evaluation of the terms for the various conjugacy classes {{}r depends on
the type of £. If £ doesn’t belong to any cuspidal P, then

vol(Te\Ge) A
2sinh ¥ Fylau)
/ flz7 ¢z)dz = 2
Fe\G VOI(PE\Gﬁ)FK(k. )
2ising I\
depending on whether £ is conjugate to a, with u > 0 or to k.

Let us turn to the remaining case £ € P. We may choose the representative
¢ in such a way that P € § and £ € AN. From [16, Lemma 8.1] it follows that
there exist Q € § and v € I' such that £ € v7'Qy # P and hence v € Tgp(w).
Moreover, since G¢ = Zn;]AnE for a unique ng € N, e = GeNPNT = Z. In this
situation, the lemma just cited tells us that P # Q. If Q = N'A'Z is the Langlands
decomposition of ), then G e -1 = Z'.raff—lA’nfs for a unique n; € N'. Thus, in the
notation of Proposition 11,

-1 -
v=ng  gg wer(v)ugrns,

where | = Hgp(7y) is uniquely determined by ¢, even independently of the choice
of P in view of Hpg(y™!') = Hgp(y).
The contribution from {£}r now becomes tr#(¢) times

/ F(E €)1 = Xpua(E) = Xoymt Qo (2)) d
Z\G

- ] / FE'n " ap unk) [ (1 = Xp o (@) = Xauuo (vang n)) dadn dk,
Z\K JN ni_lAu{

where ap, = ngfn_]. The inner integral equals

/(1 — XPuo(a) = XQ,uo(95 wor(1)aigpan)) da

Here the first characteristic function is nonzero for H(gpa) > o, and the second one
for H(ajgpan) > ug. So the integral equals 2ug + 1+ H(kpn), and the contribution
from {£}r can be transformed to

e (20 + DEPea) + Te).

If f is smooth and K-finite, Proposition 6 implies
QT;*(a,,) =I{"(ay) + I{°(acy) + (1 - b.,c,) O, ()

——pv / (el 4 e be(r, 4 yir()I (e, § +ir)T T (6,3 +i7)) d,

where J = Jp p,. The terms containing spectral data or the truncation parameter
1y have to be rewritten so that they will finally cancel against analogous terms on
the spectral side. First of all, by [16, Lemma 8.1], {{}r NP = {€}rnp, and the only
cuspidals in § which intersect {£}r are P and Q. Thus,

1
X =52 2.
{E}l"cz\rpar PES {E}FﬂNcpregnAN
Using Lemma 20, we finally we obtain
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Lemma 21. For K-finite f € C§°(G.¢) and t € H(G, x),

ol K™8(z ) — uol Cres - .
/{‘\Gt (Af,t( ) ) ;XP, 0( )I P,f,t( ))d
= Z trt(g)VOI(FS\GE)Ff(aH) n Z trt({)vol(PE\GE)Ff((kg)

_ 2sinh ¥ ) 21sin 8
{£}rCZ\Thyp f€IrCZ\len
tri(é) A P P
u ° u I 0 -
+ E 4sinh§(2lFf(a)+If (ay) + f(a ))
{E}I"Cz\r‘par

+ Z Z tr((é)pr”) (LIIC_HP(E)/Q(l - 56:51)66.%(f)

PEF el 0N AN/TAN

+ -zl—ﬂp.v./ e~ (/2+iNHP(O) tr(vrc’%ﬁr(f)(ugld—%.f(s, s+ (e, 5+ ?Ir)))dr),
where P = NAZ, and ¢ (suitably chosen mod Z ) determines 8, u and | as follows:

{€}e = {ke}g or {{}c = {au}s, u >0, and I = Hqp(v), where v € Tgp(w) and
P # @ are the cuspidal subgroups containing €.

7 THE GEOMETRIC SIDE—SINGULAR PART

In this section we shall calculate the singular part of the geometric side of the
trace formula. As before, let f € C§°(G,¢), t € H(G, x) with x as in section 6. Since
Laing = Up(T' N ZN), where P runs through all cuspidal subgroups and N is the

unipotent radical of P ([16, Proposition 7.2]), the singular part can be transformed
as

/]:\G tr (K;‘{‘;‘S(m, z) — ZP: Xp,uo(m)fffji:}%t(a:, m)) dz — vol(I\G) f(1) trt(1)

- u}i—r>noo ./I‘np\G(l - XP,u1($))( Z fla™ ) trt(€)

Peg telfnN
£#1
—XPuo(z)vol(T N N\N)™! z tr(t({)prp)/ f(z7 nz) dn) dz
¢ePAN/TAN N
- JITt(l) + lim (1 —xpu () flz™ ) tre((€)(1d — prP))d:r)
P‘ZE%'( ! "1_'00'/””)\6 ’ EG;N
£#1
whith
= T aown”) [ (vol(r AN Y fe era)
¢elAN/TAN NZ\G 755:1N

- XP.uo(w)/ fz7 " nz) dn) (1= (Hp(x)ur) gy
N
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the exterior sum being finite. With the help of the Poisson summation formula one
can prove (see [16, Proposition 10.2]) that the integral over NZ\G = A x Z\K 1is
absolutely convergent to a holomorphic function for Rs > 0. Moreover, the second
term of the integrand is integrable for Rs > 1:

oo
Z\K J—o0 N

e(l —B)uﬂ

= [ xpwalans) [ 500k dn =0k = S FAQ)
Z\K J—-o0 N (8—1)

Hence the first term of J }? «(8), namely,
Vju(s) = f S faT o) te(t(E)prP e TR ) gy,
FOPAG eeran

£

also has a meromorphic continuation to Rs > 0, whose only possible pole is a simple
one at s = 1 with residue

ResY/u(s)= D tr(#(&pr")FAL).
EETNN/TNN

Clearly, J f: (1) equals the difference of the constant terms in the two Laurent series:

TE) = m T (- DY) fue Y aHOpTIFAQ).
EELNN/TNN

We may rewrite

Yh(s) = ) tr(t(f)pr”)/zwf_oo f(k™ ap —y€ap k)e™ (W Hee) dy dk

éel'nN
g1
= Y tr(t(npy)pr’) / / f(k aoynya,k)e™* du dk
np €T Z\K v —o0o
us£0
= Z tr(t(np,v)prp)lvr"/ / Fk™ ng &)o' |*~1dv’ dk.
nP,yEF Z\K ‘I‘J'/‘U)O
v#EQ
If we define
CLals)= ) tr(t(npo)pr®)o|™
"P,qu‘
+uv>0

and recall from section 2 that

Ff(kto) = £2m /

/ F(k™ n, k) dv dk,
Z\K J+v>0

37



we get another expression
2wiRes Y{(s) = Res ([, (s)Ff* (ko) — Res (7 ()Ff (ko)

for the residue of Yf .- Comparing both, we see that

Res(lu(s)= ), tr(t(€)pr").

¢elNN/NN

It is now easy to calculate that

lim S (- DY) =5 Y e(OprITAW)

s—1 (8 -
EerNN/I'NN

d
+ —21; 11_13 &;(3 - 1)(C§+(S)Ffl((k+o) - Cf_(s)Ff((k,o)),

We may express C{? + in terms of the generalized zeta-function

oo

((s,0) = 3 (n +0),

n=>0

namely,

Fuls)= 3 w@(Opr)(s,v8),

cel'nN/TAN

where vét is as in section 4. The well-known formula

lim (((s,v) - S—~1~—) =—-9(v) for Rv >0

s—1

implies that

Jpy= ) te((&)pr”)

EelNN/TNN

- (qu;*(l) F 5TAW) = 5 (B FH (ko) — (o ) (k_o))) .

The remaining constituent of the singular part, besides vol(T\G)f(1)tr t(1) +
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> peg JF (1), is the sum over all P of

lim (1= xpu(2) Y fla™ €x)te(t(€)(1d - pr”))de
H)—00 FnP\G eernN
£+#£1

/ / 3 te(#(€)(1d — prP)) f(k ap,—ubapuk)e ) du dk
“1—’°° Z\K Ju

1 ¢el'nN
§#£1
= lim / / Z tr(t(npy)(Id — prP)) f(k acynya k)e™ du dk
#1200 JZ\K el
v-—,ﬁ[)
= lxm / / Z tr(t(npy)(Id = prf))|v| 7 F(k  ny k) dv’ dk
I/U>e—u1
1 _ - <
S 1S Gt 1 — pr ) (ol AL + (2riv) (B (ko) + FF (k).
nP,uer
v#0

where we were able to pass to the limit under the integral by dominated convergence.
With the notations of section 4 our expression becomes

53 ((t t*(&)z( )yt (52(
Setnm "

—1(’(

)FA(l)

+%trtj(5) Z (—ei@)n (FF-(k+0)+F;((k_O)))_

+
U + Ve
n+v?‘¢0
The first two series can be expressed in terms of 3, for the last one we need

Lemma 22. Ifa € (—7,7), v € R,v ¢ Z, then

i (—et)" _me
n+v  si

simn Ty

—ivey

n=—00
Consequently,
N __glayn
y E e
n
n=—00
n#0

Proof. Substituting ¢+~ for ¢ in the second term, we get, for 0 < Rv < 1,
B(v,—e'*) + e B(1 — v, —e ') = /000 11+ ei“t) ~dt
= ¢~ive /Ct”*l (14¢) " dt =" B(v,1-v). O
Let us collect the results of this section.
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Lemma 23. For K-finite f € C{°(G,¢) and t € H(G, x),

[ (52 = o xra(a) 5o, )) de = volT\G) (1) e 01

P

£ Y o) (G0 = S D (haa) - $DF (b))

Pef ¢elnN/TAN

+ [ > ((ﬁ(vé’a—e“‘)trti(f)+6(v;,—e"*°)trt;(§))pf(1)
Peg celnN/TNN

aE(—m,n) £¢rnN e"”?“trt“‘( &)

22s81n TTUE

(FH (kyo) + FE(k_ m)

:1;(11/) ! (log(2cos —)Ff (1) + _(Ff (ko) + Ff (k- 0)))]

£ Y o) (30 6)0.4 ()

PEF cePNN/TAN
1 e 1 N :
+§—7-r-p.v.j;m tr(wz,%+,-,,(f)(1,z01d - —2-J(5, 1 +ir) L7 e, 1+ ir))) dr) ,

where mF is the multiplicity of —e'® as an eigenvalue of x(np,).

The geometric side of the trace formula is obtained by adding the formulae from
Lemmas 21 and 23. The last terms of these formulae may be written as sums over
Treg N P/T'N P and Lying N P/T N P, respectively, and since

cpp(t,e,8) = Y e(zpp(6)T e rOi(g)pr”,

¢ernP/T'NP

they combine to §tre(t, 1,6, 3)(1 — &, E1)@ (f) plus

1 e . 1 . :
—p. v/ tre(t, 1,¢,3 +ir) tr(vrz:%_Hr(f)(uoId - §J(£, 3 +ir)" I (e, § +ir))) dr,

27 —co

where J = Jp, p,. This term will occur on the spectral side as well, thus will be
canceled.

& THE SPECTRAL SIDE

Suppose that f € C§(G,¢) is K-finite and t € H(G, x) as before. Our aim in
this section is to obtain an expression for

tr| I{s (2, z) XPuo(2)Kp xm)d:r,
[ (e DCHCLANEE

in spectral terms, where the integral is at least conditionally convergent as explained
in the beginning of section 6.
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By our assumption on x, Hy = H,(€). As one knows, d's( )T;(lis(t) is of trace
class (we shall see this for more general f in the proof of Theorem 25 below), while
7N (F)TEoN(t) i= ptmy(f)7x(t) has an explicit description by Proposition 18:

R (FrN(8) = IO 1, JaS ()T,

where, for shortness, 75%(z) = m¢ o(z) @ Idyest. Using the fact that C(z,1,. )75 (f)
is an integral operator in H, ® V' with kernel

I{f,t,z,a = (C(t, 1, .S) ® Id) (I{f,z', ® Idv‘c-r.)

belonging to H, ) (s,1-5@End Vs 2 (H, ,QV) & (He.,s@V)* (cf. Lemma 2),
one shows by a formal manipulation [16, Prop. 5.2] that 7$°"( f)75°"(¢) is an integral
operator with kernel

1
I\con(,v y) / E(t ®X,(3,1 - S)R’f,t,z,s,((vsy)) dSv
47” Ro=1/2

where E(t; @ t2,(s1,52), 61 ® ¢2,(z1,%2)) = E(ty1, ¢1,81,21) @ E(t2, ¢2,52,22) is
the Eisenstein series for I' x ['\G x G. Since f is K-finite, Ky, , is a finite linear
combination of terms ¢ @ ¢', and Lemma 17 implies that

./I‘\G(Aul QANITE(® x,(8,1 = 8), Ky 1e,5,(z, 7)) da

= 2u, tr(C(¢,1 s)w“t(f)) tr(C'(x,w,1 ~ 3)C(t,w, S)?Tcs"(f))

1

+ 5 (6(2"’—1)“‘ tr(C(t,w,1 — s)wg™_,(f)) ~ e(1=28)m tr(C(t,w s)rrcs‘(f)))

Inserting this, we get

/F\G(A,,1 ® Ay, ) tr K (z,z)de = ;L_‘.rlr tr(C(t,1,5 + z'r)'rrwi _Hr(f)) dr

—0

— __/ tr(C'(x,w, 2 —1r)C(t,w, 5 +zfr)7r°s'i+ir(f)) dr

1 [ n(e,—r) —n(e,r) . sin2ru,
+ I‘;/_m (cos(2ru1)tr oo + > tr(n(e,v) +ne,—r)) ) dr

where, for shortness, n(e,7) = C(t,w, § + zr)ﬂ'cs‘ +ir(f)’ an operator of finite rank.
The other contribution to Ky, is

K§?=Kf— K57,
which is, of course, the kernel of 73*(f)7$*(t). Thus,
~dis _ dis di
]I"\C tr K§5 (z,2) de = tr(n{°(F)r3=(1)).
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It remains to consider Kp s,;. Denoting again xpuyu, = XPu, — XPug, then

f ZXP!IO ul(x) tr I\Pff(x T)dz - Z / XP,ug,ul(T') tr .Kp,f,t(:r,.’l?) dz

peg /INP\G
= Z tI‘ XP,uG,tHTPP(t: l)ﬂ-Pv'X(f))'
Pey

Here we have to take the trace of an operator in (P peqg Hp,x. After Fourier trans-
form (cf. section 5) the corresponding operator in L*(1 + iR, 45) @ H., @ V!
is convolution with the Fourier transform of xp ..., times multiplication w1th
C(t,1,8)7%(f). Integrating the kernel of this operator over the diagonal, we get

Uy — Ug

o /:_oo tr(C’( by 2 + ZT)TTCSt1+!-1_(f)) dr

(cf. [16, Lemma 6.3]). Combining our results, we now obtain the spectral side of
the trace formula:

f tr(fff,z(m,m~ZxP,uo(z)Kp,f,t(w,m)) do = / tr K§%(z,2) do
G 5 1

1\G

+ lim ((Aul ® Ay,) tr K59 (z,z) — ZXP,ua,ul(-T) tr Ii-p,f,t(I,ID)) dz
G

U — 00
P

oo
tr(m d'9'(_f) d“”( t)) — /_ tr(C'(x, w, 3 — ir)C(¢, w, 1+ ZT)WCS'{+;r(f)) dr
]' (o:) ® : CB
+ 1 tr(C(t, w, 3 )7r H (f)) 5 /_Oo tr(C(t,1,% + zw')welt%_l_ir(f)) dr
(cf. [16, Prop. 6.4]). Differentiation of the functional equation for C yields

C(x,w,1—38)C"'(x,w,s) = C'(x,w,1 — s)C(x,w,s).

Thus we may transform one of the integrands as

tr(C'(x,w,1 — 8)C(t,w, s)r &) =te(Clx,w, 1= 8)C'(x, w0, 8)m S(NHC(t,1,9))
= tr(C(t,w,1 = 5)C'(x, w, s)7 s (f)).
With the help of Lemma 19 we may express C in terms of R and ¢ or in terms of
J and &
C(t,w,s)lﬂ@w" = J;i:o(s,s) ® &£ (t,w,e, s),
where Jf;o is connected with Jp p like Rf,t,o is with Rp p . (In the adélic picture, C

splits into a tensor product of local intertwining operators at all places of @, and
J is just the contribution from the infinite place.)
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Lemma 24. If f € C§°(G,¢) is K-finite, t € H(G, x), then

/ tr (Kf,t(cc, z)— Z X Puo(2)Kp g (z, :a)) dz
'\G¢ P

1 o CNa .
= -Ep.v./ tr(é(t,w,e, 3 —ir)&(x,w,€, 5 + zr))(")e’%_i_,-,,(f) dr

+ tr(‘n‘iis(f)rgis(t)) + '}Itr c+(t,‘w,6, %)((1 - 5€,g1)65’12,(f) + 255,“ @gl(f))

1 *° , 1 e :
+ gp.v./ tre(t, 1€, 3-+ir) tr(wz,%+,-r(f)(uold - §J(€, THin) TN (e, $4ir))) dr.
—00
Comparing the geometric side (Lemmas 21 and 23) with the spectral side of
the trace formula just derived, we see that the terms containing the truncation
parameter ug and the logarithmic derivative of the intertwining operator J cancel.
All other terms are invariant distributions not depending on the choice of K.

Theorem 25. Let f € C}(G,¢) and t € $H(G,x), where Z C T, X|Z = ¢ld. Then
we have the following equality of absolutely convergent integral-series:

vol(T\G)f(1)tr (1) + > ;;i(lf)! QIFfau) + I (au) + I (ay))
{€}rCZ\Tpar 2

+ Z trt(€)vol(Te\Ge) FfA(au) + Z tr t(f)vol(Pg\Gg)Ff‘,(ko)

2sinh 3 22sin 6

{£}rCZ\Thyp {€}rcZ\Ton

+y0D> tr(t(é)prp)(%ff"(l) - 5};@(@# (ko) — $(v7 )FF (k_o)))

PEF ¢el'nN/TNN

+ Y [% 2 ((a(v:,—e“')trt:(o+ﬁ(vsa—e""'ﬂrt:(@)f‘“}““)
J8 o :
. 8] —ivc o r -+ .
e t t(:‘(g) (Ff\ (k+0) + F;((k_g)))

2 sin v ¢

____tdrii(jf)mﬁ(logw cos §)FF (1) + f;(F}((kM) + F}((k_o)))]

1 o N\~ .

= —Ep.v'-/—oo tr(c(t,w,e, % - z:r‘)c’(x,w,e, '12' + ”'))@e,%-{-ir(f) dr
1 1

+ zl-(l — be,e,) tr(c(t,wye, 1) — et 1,¢, %))@5,%@) + -2—55151 tret(t,w,e, 1)0.,(f)

+tr(rg* (N (1)),
where u, 6, | depend on the corresponding £ as explained in Lemmas 21 and 23,

and the notations are as there.

Proof. We shall show that all terms are absolutely convergent for f € C1(G,¢) (cf.
the remark after Lemma 1). Since the formula is true for K-finite f € C§°(G,¢),
it extends by continuity.
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We have seen in section 2 that Ff(a), Ff"(k), Ff'(k;to) andIf"(a) are tempered
distributions. Moreover, Ff‘ is a continuous map from C*(G,¢€) to the Schwartz
space on A, whence ®¢’%+,~r is continuous from C?(G,¢) to the Schwartz space on

7 + iR by Lemma 2. With the estimate from Proposition 16 this implies that
the integral on the spectral side is a tempered distribution, too. Note that the
embedding CL(G,e) — C%(G,¢) is continuous.

Next we show that 73°(f) = 75"(f) + 71°(f) is of the trace class for f €
Ci(G,e). This is well-known for 73"(f) (see [OW]). By Theorem 12, H{* is a
finite direct sum of spaces G-isomorphic to H, , or its invariant subspace-for some
s € [0,1], so our assertion follows from Lemma 1.

As #(T'\ suppt) < oo, all sums except that over I'hy, are finite. The remaining

one equals
f ez d
/F\ § ( {z) tri(¢) de,

fEthp

which is absolutely convergent for f € C§°(G,€) by the way it arose. The methods
of [22], Lemma 11.4, would only imply convergence for f € C?(G,e), 0 < p < 1,
so we proceed differently. Since all the other terms extend to continuous linear
functionals on C1(G,€), so does this one. In particular, let ¢ be the characteristic
function of any double I-coset in I and fy € CA(G') a universal majorant for all
elements of C1(G,¢) (for its existence, see [22], p. 95). Then, for any monotonely
increasing sequence { f¢ }32, C C§°(G') of positive functions tending to fo in CL(G'),

/l"‘\G Z fri(z7 €2t (€) dz < v(fi),

Eefhyp

where v is a continuous seminorm on CA(G'). By the theorem of B. Levi, the same
is true for k = 0, which was to be proved. O
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