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INTRODUCTION

The aim of the present article is to prove the Selberg trace fonnula for Hecke
operators and automorphic farms of arbitrary real weight. Regardless of the ex
tensive literature on the suhject and the far-reaching generalizatians in the work of
J. Arthur there is, to my knowledge, no publication covering this case.

We include automorphic fonns with respect to a finite-dimensional unitary rep
resentation of a lattice r in the universal covering group G of 8L(2, IR) and express
the trace formula in an invariant form, namely, in terms of irreducible characters of
G. For this purpose the Fourier transform" of weighted orbital integrals, obtained by
J. Arthur, R. Herb and P. 8ally, jr., is explicitly calculated in Propositions 7 and 8.
It is the lack of an analogous result for 8L(2, Qp) that prevents us from proving
as explicit a trace formlua in the adelic case. So we treat Hecke operators in a
somewhat old-fashioned way, which allows us, however, to consider non-congruence
lattices at the same time.

Dur point of view is a representation-theoretic OllC, thus the trace formula
appears as an identity between invariant distributions on Harish-Chandra's L1 _

Schwartz space of G. Nevertheless, traditional parametrizations and notations (like
s = ~ + ir and her)~ facilitate an immediate comparison with the classical picture
presented, e.g., in D. Hejhal's books. The stateluent of our main result (Theorenls
13 and 14 in section 4) uses only notations illtroduced in sections 1 and 3.

Part of this publication was prepared durillg a stay at the University of Toronto,
to which I would like to express my gratitucle for its hopitality.

1 IRREDUCIBLE REPRESENTATIONS AND INTERT\VINING OPERATORS

Let us first fix some notations. The group PSL(2, IR) = 8L(2, IR)/{±I} will
throughout be denoted by G', the symbol G being reserved for the universal covering
Lie group of G', the main object of our considerations. We sha11 view the elements
of G as homotopy classes x of paths connecting the identity of G' with SOlDe elenlent
Xl (the iInage of x undel' the canonical projection G -+ G'). The product of xl,
X2 E G is defined as usual by (Xl 0 t] )(X2 0 t2), where t = (tl, t2) : [0,1] -+ [0,1]2
connects (0,0) with (1, 1); here we have neglected the distinction between homotopy
classes and their representatives.

Für B, u, v E IR, we denote the lllatrices

(
cosB

- sinB
sinB)
eosB ' on,

taken mod(±I), by k~, a~ and n~, respectively. They form subgroups 1(1, A' and
N' of G'. Recall that any lnorphism of linearly eonnected topological groups lifts
to a" homomorphism of their universal covering groups. If we apply this to the
embeddings of !(', A' and N' into G', the universal covering groups K, A and N
become one-paralneter subgroups of G. There are unique parametrizations () l---+ ko,
U ~ au , and v ~ n v for them such that the iUlages k~, a~ and n~ in G' are just
the elements introduced abüve.

Passing to the universal cover is functorial with respect to direet products of
manifolds. Therefore the Cartan decolDposition G' = !('expc's and the Iwasawa
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decomposition GI = JC AI N' yield the corresponcling decompositions G = !{expc!i
(providing the parametl'ization of G used in [27] ) and G = K AN. Here s c g
consists of the symmetrie (2 x 2)-tnatrices. The kernel of the projection G --t G' is
the celltre Z of G consisting of all ke with B E 1rZ.

The aforementioned parametrizations carry the Lebesgue measure du resp. dv
from IR. to A and N. We fix Haar measures on ]( by vol(!(jZ) = 1 and on G by

for f E Co(G). Together with the counting measure on Z this fixes a Haar Iueasure
on GI, for which

r g(x'(i)) dx' = r g(x + iy)y-2 dx dy
Ja' l1t

for 9 E Co('H), where z ~ x'(z) is the linear fractional action of G' on the complex
upper half-plane 'H.

Viewing elements D of the universal enveloping algebra <B of gC as distributions
on G with support {I}, we may unambiguously interpret an expression of the type
J(D1 Xl ••. Dn xn Dn +1 ) with sufficiently smooth J as the convolution D1 *OXl *... *
Dn * O:r. n * Dn+1 evaluated on J. The identity xDx- 1 = Ad(x)D reduces this to
the case n = I, i.e., to J(D1 ; SI; D2 ) in Harish-Chandra's notation.

Let us define the spaces of rapicly decreasing smooth functions on G as

CP( G) = {/ E C oo(G): 1/(D1 kOl auko:z D2 )1 :::; Ce-1uI/P(1 + lul + IB1 + 82 1)-n

Vn E N and DI, D2 E <.B}.

These are LP-functions in view of

r f(x)dx = 21r r r [00 l(k
,
- 1 au kk')sinhududkdk'.

Ja JZ\K JK Jo

The same definition applies to G', where IBi 1 :::; 7r, say. CP(G') is then Harish-
Chandra's familiar LP-Schwartz space.

Next we turn to the representation theory of G. As usual, we put

for fELl (G) and bounded representations 7r of G. Now suppose that 7r has a
central character € E Z. Oue can then form

K(f') = r f'(x)7r(x)dx
JZ\C

for all/' E L1(G,c), i.e., such that f'(Z-l x) = e(z)f'(x) and II' I E L1(Z\G). This
generalizes the lift of a representation of G' to G, which corresponds to the case
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when e is the trivial character of Z. If fELl (G), one immediately checks that
1r(f) = 1r(fe), where

fe(x) = L e(z)f(zx)
zEZ

lies in LI (G, e). Inversely, f E Cl (G) cau be recovered as

f(x) = hf,(x)dc,

the Plancherel measure de being so normalized that vol(Z) = 1. This partial Fourier
transform with respect to Z extends to a unitary isometry

thereby in a certain sense reducing hannonic analysis of L2 ( G) to that of L 2 ( C, c).
We shall only be concerned with such reprcsentations 7( of Gwhich decolnpose

into a finite SUffi of Z-isotypical cOlnponents. Then 7r(f) is determined by finitely
11lany f~ 'so One is teruptcd to consider thc suru of the latter instead of f, lcaving
aside unnecessary infonnation. However, such sums are not contained in L1(G),
and one would have to introduce a certain space of almost Z-periodic functions
on G. We shall avoid this technicality, as it seerns not to yield any additional
information.

Let us now fix notations for induced represelltations. The unitary characters of
!( are 4>m(ko) = eirnO with weight m E lR (~~*). As we use induction from the
left, the space 1-l~ of lud~ (e) will consist of classes of functions 4> on !( satisfying
4>(zk) = e(z)4>(k) and 14>1 E L2(Z\I(). A basis of 1-l~ is forrned by all <Pm with m
in IR~ = {m E IR: 4>m lz = e}, which i8 a eoset 1110d 2. Inversely, n~ E IR determines

ern E Z by m E Rem' Incidentally, this identifies Z ~ 1R/2Z and the Plancherel
measure dem = !dm.

Given sEC, we extend 4> E 1i~ to G by

for n E N, k E K.

These functions constitute the Hilbert space 1-le ,8 ~ 1-l~ in which the representation
7r~,8' induced from the parabolic subgroup P = N AZ, acts as

It is unitary (principal series) Hf s = ~ + ir) l' E R. ('" a*). By the isomorphism
H~,8 '" 1-l~ we let 7re ,8 act on 1-l~. The action of the Lie algebra Qc can easily be
calculated. If we put

x=(O 1)
. 0 0 '
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alld E± = H ± i(X + y'), then 1Jm,6(Xx) = 0,

1Jm,s(nau koE±) = <Pm,s(au(e±2iOE±)ko)= e±2i°<pm,s(a u (H 1= i(X - Y))ko)

= e±2iO (2 ;u 'f i ;0) rpm,s(auko) = (28 ± m )rpm±2,s(nauko),

hence

1r~,6(E±)1Jm = (28 ± n~)q;m±2,

1r~18(X - Y)<jJm = irnq;m,

1r~,s(W) = s(s - 1)Id

with the Casimir element

We see that the elements <Pm', m' E ±{m, nl +2, nl +4, ... }, span a ge-invariant
subspace 1-t.~m of 1-t.~± m ,m /2' If m > 0, it ean be ealIlpleted to the Hilbert spaee 1-t.±m

of a unitary representation 1r±m of G (see [27]). One may describe the scalar praduet
of 1-t.±m with the help of intertwining operators, whieh we shall now introducc.

Besides P, we also consider the group P = ~lAZ, where N = {n v : v E IR},
nv = expc(vY). Comparing the integral fonnula for the Bruhat decomposition

r f(x)dx =.!- rJ !_ f(naun)e- U diidau dn
}Z\G 1r iN AiN

with that for the Iwasawa decolnposition, we obtain for 1J, 'ljJ E 1t~

We shall sometimes write cP P,6 instead of <Ps etc., beeause Olle may induee represen
tations also from P by defining

far n E N, k E ](.

Again, 1rP ~ s acts in 1-t.p ~ s ~ H~ by right translations, and, , ~ ,

Given sEC with ~s > ~, we define the bounded operator J pp(e, s) in H~ by

(cf. [14, p. 130]). This is an intertwining operator:
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Interchanging P and F, aue abtains Jpp(e, s) with the analogous property. The
integral formula for the Bruhat decomposition implies that

,{ f(x)dx=~ { {_f(nn)dndn=~ {_ { j(nn)dndn.
lZA\G ~ lN1H ~ lH1N

Putting f = <PP,s1f;p,:!, we get (<p, Jpp(e,s)1f;) = (Jpp(e,s),p,'ljJ), i.e.,

Jpp(e,s)* = Jpp(e,s).

It is easy to calculate J pp explicitly. Siuce nv = au n v k9 with e- U = 1 +v 2 and
e2i9 = i+~~ (which is easy to check in G' aud lifts to G), we obtain

(1 . )m/2
~ 2 -s - zv

,pm,s(nV ) = (1 +v ) 1 + iv

(continuous brauch with value 1 at v = 0),

1 ;; 1 100

jm(s):= - _ <Pm,s(n)dn = - (1 +iv)-s-m/2(1_iv)-s+m/2dv
~ N ~ -00

22 - 2S f(2s-1) 1 f(s)f(s-!)
= f( s + '; )r( s - ';l) = fi . r( s + '; )r(s - r;)'

and, by the iutertwining property,

Thereby the restrietion of J p p(e, s) to the subspace H~ of K -finite elements ex
tends meromorphically to sEC.

Now we introduce the uleromorphic function p.(f., s) by

Il(e,s)Jpp(e,l - s)Jpp(e,s) = Id

(cf. [14], p. 141). One deduees from fl(f.,S)jm(l-s)jm(s) = 1 with the help ofthe
reflection formula for the r -function that

(
] sin 2JrS

J1(em,s)=~ 8-2') 2 .
eos ~ln - eos 1TS

We define the normalized intertwining operators as

where m~ E IR~, Im~ I ::; 1. Explieitly,

(
[9±!-] s _ 1 - l!!:l +k)

Rpp(e,s)<pm = II .E.J.2 <Pm.
k=l S + 2 - k
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From the obvious properties

R p p(e, l - s)Rpp(c, s) = Id, Rpp(e, s)* = Rpp(e, s)

one sees that R pp (c, ~ + i r') i8 a unitary intertwining operator between uni tary
repre8entations.

Let W denote the normalizer of A in JC Then [W : Z] = 2, and W' = W / z
is the Weyl group of A' in G'. Left translation by w E W, w t/:. Z, produces an
intertwining operator Hp,!!, L_ s ---+ 1iP,~,1-s' Conlposed with R pp (c, s ), this gives

. t .. t '1JJ( '1JJ( Ian In ertwImng opera 01' 'l- P,~,s ---+ 'l-P,I!, 1-s' nallle y,

where m e is as ahove. The lnultiplication with 4>m~ (w) makes Rp(e, s) independent
of w; however, for c = Cl we get two operators R~ (el , s) depending on the sign of
rne (i.e., achamber in ie). Note that

Rp(c,s)4>m = (-1)(m-mt/:)/2Rp p(e,.9)4>m.

One checks that, for 0 < rn ::; 1,

R±( 1 m). '1Jl\: /'1JJ( '1JJ{
p e±m, -"2.' l-e±m,l-m/2 'l-±(m-2) ---+ 'l-±m

is a pre-unitary intertwining operator, if the scalar products in the two spaces are
given by

and

respectively (the superscript ± heing ignored for m =1= 1). A similar assertion i8
true for m > 1, if one considers liIlls _1- m /2( S - 1 + r:; )Rp(C±m, s) and lims _ m /2
(s - r;) -1 R p ( C±m , .9 ). Cornpleting the pre-Rilhert spaces, one gcts two realizations
for the unitary representations 1T±m (di8crete series). Similarly we can unitarize
1Te ,tJ for real .9 (complementary series) provided the scalar product

is positive definite. This is the case iff's E (~, 1 - ~), where rn E IR!!, Jrnl :::; l.
There are two extremal cases (exactly those obtained by lifting from SL(2, IR)): For
the trivial character co of Z, the complementary series exists for 0 < s < 1, while
for the alternating character Cl : Z ---+ {±I} therc is HO complementary series, allel
1T~l,l/2 = 1T] EB 1T_I. If we denote the corresponding orthoprojections by P±, then

continuation in s gives R~(Cl' ~) = ±(p+ - p_).
Here is a complete list of the irreducible unitary representations of G (cf. [27]):

(1) the principal series of representations 'lr~,s wi th ~s = ~, (c, s) =1= (c1 , ~ );

(2) the complementary series of representations 'lre ,8 with s E (~, 1 - ~),
.9 =1= t, where m E IR~, Iml < 1;

(3) the discrete series of representations 'lrm with In~1 > 1;
(4) the limit of discrete series representations 1Tl and 1T-1 ;

(5) the pseudo-discrete series of representations 1Tm with 0 < Irn] < 1;
(6) the oue-dimensional trivial representation 1To.
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The operator R p (c, s) isa uni tary equivalenee between 7re ," and 7re, 1 -.'I if they
belong to the principal 01' eomplelnentary series. Any other two representations in
this list are non-equivalent to each other.

By a simple extension of Harish-Chandra's regLtlarity theorem to groups with in
finite centre, the character 8(f) = tr 7r(f) of any irredueible unitary representation
7r of G is a regular distribution given by integration against an analytic funetion
(which we also denote by 8) on the set Greg of regular elements of G (i.e., those
whose images in SL(2, IR) have different eigenvalues):

8(/) = r 8(x )/(x) d.1:
lOreg

for / E Cl(G).

Obviously, 8(/) depends only on Je, where c is the central eharacter of?T. Vve shall
therefore restriet our attention to funetions f' E Cl (C, c), for whieh we put

8(f') = tr n(/') = { 8(x )J' (x) dx.
JZ\Greg

For a first reading, one may now pass to seetion 3.

2 HARMONIe ANALYSIS ON G

Harish-Chandra's invariant integrals assoeiated to the two Cartan subgroups
AZ and K of G are tempered distributions (by what we lllean continuous linear
functionals on C2 ( G, c) for any c E Z). They are defined for f E C2 ( C, c), z E Z,
u f= 0, () rt. ?TZ as

Ft(attz) = leU
/

2
- e-u

/
2 1{ f(x-1auzx)dx,

1AZ\G

Ff (kr;) = (eir; - e- iO ) r f(x- l kox) dx.
lK\G

Fr is a smooth funetion on !(reg = K - Z, and the transformed expression

Ft(auz) = eu
/ 2 r [f(k-Jaunzk)dndk

lZ\J( iN
extends to an even Schwartz function on A (cf. [11], seet. 17, Theorem 5, [28],
section 8.8). Dur next task will be to express these invariant integrals in tenns of
the irreducible characters.

Leluma 1. Let I/V ;::: max(~s, 1 - ~s). H f E CP(G, e), tben ?T~,,,(f) is an integral
operator in 'He with smooth kel'nel

which belongs to 'H(e,~),(.'Ill-") in an obvious notation. This operator is oi trace
dass, its traee equals
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0.,s(f) = i: Ff(au)e(S-I/2)U du

and is a continuous linear functional on CP(G, e:). For fixed p allel I, Ge,s(/) is a
smootb function oE s in the corresponding strip, holamorphie in its interior alld
rapidly decreasing togetl]er witb all derivatives as I~sl -+ 00, ullifonnly in ms.
Proof. We have

where v is a eontinuous seminonn on CP ( G, e:) clepending on x, y E G, n E N
and D, E E <8 (cf. [28], Lemula 41). Thus thc integral defining (D ® E)l(f,e,s
is absolutely eonvergent, and a variation of Theorenl 1 of [19J, eh. VII, implies
that 7T~,s is of the traee dass. G~,s is obtained by integration over the diagonal
x = y E Z\l(, its properties follow from the saule estimate as above and the fact
that 8 e,s(wnf) = sn(s - 1)n8~,8(/). D

Obviously, it would have been enough to take f in the larger spaee C~ (G, e)
obtained by completing with respect to the semillorms for fixed exponent of deeay
n only, provided n is sufficiently large.

By Fourier inversion we obtain

Lemnla 2. For f E C2 (G,e),

1 100

Ff(au) = - cos(ru)8e l+ir(f)dl'.
27['" -CX) , 2

In view of Ft(z-la u ) = e(z)Ft(au ) for the given I, this contains the full infor
mation. Incidentally, the V\Teyl integration formula

shows that

Now we tunl to the diserete series eharacters. As a convergent geouletrie pro
gression in the space of distributions on !(regl the eharacter of 7Tm for 1n =I- 0 is

co e(m-sgnm)9
Gm (k 9 ) = "e(m+2nsgn m)9 = - sgn(m). .

L...J et9 - e-19
n=O
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From Harish-Chandra's regular"ity theorelll and his matching conditions, generalized
to groups with infinite centre, one can deduce that the only extension of Gm to G
as a tempered invariant ](-finite eigendistribution of w is given by

(cf. [28]). Alternatively, it has been proved in (27) that this is in fact the value
of 8 m on AZ. With the help of the Weyl integration formula we can writc, for
f E C2 (G,cm), Iml ~ 1:

In the particular case c = Cl we put e~l = (81 - 8_1)/2, whence

Given any f E C2
( G, c), we thus know the Fourier coefficients of Fr and 11lay set

up its Fourier series:

Fr (ko) = 0"" 0" (J) + L sgn(n)e-in00n+sgn n(J) + ~1b.(O, 1t)Ft(an)dan,
71ElRc +1 A

where 8 is the I<:ronecker symbol, and

b~(B,'U) = - L sgn(n)e-i71e-lnul/2.
71E~ +1

c~(B,u) = sgn(u) L e-inO-lnul/2.

nE~+l

Applying the sUlnmation formula for geoIlletric progressions, we obtain

Lelnlna 3. Let! E C2 (G,c), 1n E IR~ witb 11nl ~ 1, () ~ 7rZ. TiJen

Ff(ke) = 8~'~18~1(f) + L sgn(n)c-inOSn+sgnn(!)
n;,"+1(2)
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wbere

iE C = Cl,

if Iml < 1,
cosh u - cos 2e '

sin 2e

e- i(rn-I)8 cosh!!!±!u - e-i(rn+I)8 cosh rn-I U
2 2

b.(0, u) = {

cash u - cas 2e '
e- i(rn-l)8 sinh.!!!.±.lu - e- i (m+l)8 sinh rn-I U

(B ) 2 2Ct; ,U = .
cash U ~ cos 2e

(When we integrated by parts, the boundary tenn vanished, since Ct;(B, 0) = 0.)
Inserting the formula for F/ fronl Lelllina 2, we obtain an expression for Fp· in
terms of the irreducible charaeters. In order to lnake it explicit, we have to calculate

1 ]00e.!(e,r) = - cas(ru)b.!(e,u) du.
21r -00

All we need is the identity

1 ]00 ei>'u sinh (1r - 2e)..\
21T -00 cosh u - eos 2e du = sin 2e sinh 7f A

for e E (O,7r), ~..\ > 0, I~..\I < 1 (see [19, Lenlll1a VIII 3.2]). By a lengthy but
elementary calculation one deduees from it that, for eE (0, 7f ), 17TI I < 1,

1 ]00 COS TU cosh!!!±lu 1]00 exp (ilrlu + !!!±lu)
_ 2 du = _~ 2 du
27f -00 eosh u - cos 2e 27r -00 cosh u - cos 28

1 cosh 2( 7r - e)r cos (m +1)8 - cosh 28r eos (m +1)(7f - B)
= sin 2e . cosh 27fr + cos 7nn

If we put absolute value on e, this formula remains valid for eE (-7f, 0). COlnbining
it with its counterpart for -1TI, we obtain a fonnula for et;, which is even valid for
Iml = 1 by eontinuity in view af b.!l = lilllm/ l (b~m + b~_m) /2.

Lemola 4. Let! E C2(G, c), rn E IR.~ with Irnl S 1, jt1] E (0,7r). Then

Ff(ko) = 8~'~le€1(!) + L sgn(n)e-in9Sn+sgnn(!)
n:=m+l(2)

wbere
. cosh 2(7f - lel)r + e- i1rm sgn 0 cosh 2er

e~ (e, r) = zsgn( B) h .
cos 21TT + eos 7r711

Sinee Fr has the Baille behaviour under Z-translations as f E C2 (G,c:), it is easy
to extend et; to arbitrary e~ 7fZ such that Leinma 4 renlains valid, llatllely,

(8)
. (. D)c(z+1)cosh2(e-e_)r+c(z:1)cosh2(e-e+)r

et; ,r = zsgn SIn u ,
cosh 27rr + eos 7rnl

10



where z± = ko± E Z are the endpoints of the eonneeted eomponent of ](reg eon
taining ko.

In the Selberg traee fornlula orbital integrals over any eonjugaey class {x}e =
{y-I xy : y E G} in G geuerally oeeur. In the previous lemmas, only those over
eonjugaey classes in G reg (i.e., {auz}a with u. f=. 0 ancl {ko}a with 0 ~ 7fZ) have
been expressed in terms of eharacters. Vile need -to do the SaIne for the remaining
classes {z} E Z and {n±I z}G, too. This is easily redueed to Lelnlna 4 in virtue of
the fonllulae

Ff" (k±oz):= Enl Ff
K (koz) = ±27fi r J(x- I n±1 zx) d.T,

o-±o lNZ\G

F}( (h':+OZ) - F}( (k-o z) = 27riFt (z),

liln i ldoFP" (koz) = 47rJ(z),
0-0 (

where all oceurring distributions are telnpered. Indeed, since the natural projection
G --t G' maps some G-invariant ncighbourhood of {n±lz}G to its image diffeoul0r
phieally, it suffiees to prove these assertions for G', whieh has been done in [12] (cf.
also [19], eh. VIII, seetion 2, [28], Theorem 47).

As above, we may restriet attention to z = 1. We shall also state the formulae
obtained by passing to the limit in Lelnlna 3. Here one has to use the identity of
distributions

1. = P.v..!. ± 7ri8(x).
x =F zO x

It implies

em (u/2-iO) emu / 2

Ern - p v ± 27ri8(u)o-±o eu / 2- iO _ e-(u/2-i8) - .. eu / 2 _ e-u / 2

ancl the same for -u, which sum up to

sinh~

Ern b~(O, u) = . h; ± 7ri8(u)
8-±O SIn '2

for mE IR~, Iml < 1, while lim8_±o bEl (0, u) = ±27ri8(u).

Leulnla 5. Let f E C2 (G,c), n! E IR~ with Iml ::; 1. Then

Ff(k±o) - 8~l~1 S~l(f) - L sgn(n)Sn+sgnn(f)
n:;;:;:m+l(2)

1100

( sin 7fm .) S (f) d=- ±z - l' 1"
2 -00 cosh27rT' + COS7rm ~,~+Ir

1 100
sinh!!!J!

= ±7r'iF!(1) + -2 (1 - 8~lEJ . 11; FtCau ) du.,
-00 SIn '2" 100

1" sinh 27rr47rf(1) - LJ InISn+sgnn(f) = h2 S~ l+ir(f)dr
-00 eos 7rr + cos 7rm ':Z

n:=:m+I(2)

100 cosh~ d
=- . h; '-dFt(a u ) du.

-00 Sln '2 'l.L

11



In accordance with the general theory, the Pancherel measure has turned out to
be a multipIe of

l' 1rr sinh 21rr
fL(e, - +tr) = ------

2 cosh 2?Tr + eOS?Tm

If we insert!*g*, where I, 9 E C2 ( G, e), we obtain the Plancherel formula (compare,
e.g., [10], [14], [19], [20], [23], [28])

41r(f, g) = L In! (?T 71+sgn 71 (I), ?T n+sgn n(g))
n;;m+l(2)

where (B, C) = tr(BC*) is thc seruar produet for Hilbert-Sehmidt operators in thc
corresponding representation spaee. This provides a natural invariant deeomposi
tion L2(G,e) = Lais(G,e) EB L~on(G,e). The notion "discrete series" used above
is therefore justified in so far as it eonsists of representations discretely oecurring
in L2(G,e) for the pertinent eentral character e E Z. One can prove the deeper
result that the aforementioned decomposition, intersected with C2( G, c), yields a
decomposition C2(G,e) = CJis(G,e) EBC~on(G,e) (see [28], eh. 8, for c = co 01' el)'

We have now finished the neeessary harmonie analysis of invariant distributions
on G, Le., such wmch take thc same value on f as on fX : y J---+ !(xyx-1 ). Unfortu
nately, the truneation procedure usually applied in the proof of the trace formula for
non-uniform lattices produees certain non-invariant distributions, whieh can clearly
not be expressed in terms of characters only. These are the so-ealled weighted or
bital integrals, which are defined for f E C2 ( G, e), auz E AZ, 'll =1= 0, as

Here we use the notation

H(nauk) = u,

for n E N, n E N, k E ](. Note that H + fI is left A-invariant anel negative.
Due to the Iwasawa deconlposition it suffiees to check thc latter on N, and in fact
H(n v ) = -log(l + v 2

).

As weH as Ft, Tt is an even function of'll and a tempered distribution. However,
while Ft satisfies the homogeneous differential equation

([13], [28], Theorem 17), where w is the Casimir element introduced in seetion 1,
Tt satisfies the inhomogeneous equation
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dr,

(see [2]). Moreover, it has been shown in [2], [3] (strictly speaking, only for c = ca
or cl) that if / E CJis( G, c), m E IR.!, u "# 0, then TI can be expressed by the
discrete series characters:

TF(auz) = -leu
/

2
- e- u

/
2 1 L 8-n-sgnn(auz)8n+sgnn(/).

n::m+I(2)
n#O

In particular, the res triction of Ti to CJis (G,c) turns out to be invariant. One can
check (which we shall not do here), that thc proof applies to the present case, too.

It remains to deternline the Fourier transforIll of Tt for f in the conlplementary

subspace C;on (G, e). This has been done in [5] for cO and cl. Againone can gener
alize the argument to any c E Z. VVe shall not explicate this here but ouly restate
in our parametrization what Leml11a 3.2 of [5] will then provide. For this purpose,
given / E C2(G,e) (which we suppose to be I(-finite for simplicity, although this is
unnecessary) and u -:f:. 0, we dcfine

P A c(Z-l)
If(auz)=Tf(auz)- 2 (1-5.!,e:l)8.!,~(f)

c(Z-l) Joo -iru ( (/)J ( 1 . )-1 J' ( 1 '))+ 21r p,v. -00 e tr 7l'"e:1t+ir pp c, 2 + zr pp c, 2 + u·

where J'pp = ta Jp p . Note that Ir(auz) = c(Z-l )Ij(au)' (One may define Ir
for / E C2 ( G) by putting a further integration over c E Z on the last two tel'l11s.)
If / E CP (G, c) with p < 2, we l11ay choose u < ~ such that the integrand is

holomorphic for u ::; ms ::; ~ except for a sil11ple pole at ! (if c = cl)' whence

JP( ) - T A ( ) c(z-l) r {1/2-&)u. ( (/)J - ( )-1 J' ( )) d
f auz - f auz + 27fi Ja?s=cr e tr 1f.!,s pp C, S pp c, s s.

Lemma 6. For u > 0, m E IRe: and / E C;on(G,c:) satisfying

Olle has

I}'(a u ) = 2~ I: <Pm,r(U)El,,!+ir(f) dr,

where 4>m,r is a continuous fUllction of at nIost polynomial growth in the r variable
satisfying limu_oe 4>m,r(U) = 0, uniformlyon cOlllpacta in r. Consequently, I[(a)
is an invariant distribution,

(In [5], the right-hand side of (2.8), and therefore that of (2.18), as well as the
last three terms of (1.8) should be prefaced with an additional factor (21r)-1: \Vith
f-lx( A) as used on p. 32, the Plancherel n1easure corresponding to the Haar l11easure
adopted on p, 21 is (21r)-1f-lX(A).)

In view of 8t:,!+ir((W + ~)/) = -r2 8.!,t+ir(/), Ir satisfies the same differential

equation as Tt. This together with Lel11ma 2 implies that

4>~,rCu) = _r2 <Pm1r(u) + t (sinh I) -2 cos ru.

13



It is clear that cPm,r = ('ljJr + 'ljJ_,.)/2, where 'ljJr is a solution of

'ljJ~(1I.) = -r2 'ljJr(u) + t (sinh I )-2 eiru

on (0, (0). The substitution 'ljJr(u) = eiruXr(U) yields

Putting now Xr(u) = e-2ru wr(u), we obtain

One solution for Cl = 0 is given by

100 e2irv l c-
u

.

-2 dv = 2 t-2Ir (1 - t)-l dt = 2Be-u (1 - 2ir, 0),
U 1 - eU

0

where B denotes the incomplete beta function. In general,

wr(11.) = 2Be - u (1 - 2ir, 0) + c2e2iru + C3.

Hence

The condition on the limit implies C4 = Cs = O. In particular, cPm,r is independent
of m, and <Pm ,0 ( 11.) = - 21og(1 - c- tt ). Fr0111 thc integral expression for W r wc see
that

1
00 eiru

'ljJr(U)= u e(u+v)/2_1 dv

and, since 8 e,!+ir is even in r,

1 ;00 100
1

2rr -00 <P m,r(U)0e ,!+ir(!) d1' = u e(u+v)/2 _ 1 Ft(a v) dv

by Lemma 2.
In [4], J. Arthur introduces a distribution siInilar to Ir, using R.t>p instead of

Jpp. While his distribution is evcn in 11., ours is not: The evenness of Tl i1nplies
that

Ireau ) - If(a_ u ) = 2~Pov{: e-iru
tr (7r"t+ ir(J)(Jpp(c:, ~ - ilo )J'p p(C:, ~ + ir)

- J~p(C:, ~ - ir)Jpp(C:, ~ + ir)) ) dr

1 ;00. /-l'(cl.+ir)
= -2p.v. e

lTU

( '1
2

') ee,~+ir(!)dr,
rr -00 It c, 2 + zr

14



where we have used the intertwining property of J pp and of left translation by
w E W - Z. Explicitly, for rn E IR~,

fL'(e,! + i1') 1 . (h2 sinh21TT)
--~--= -;- - 21T'l. cot 1TT - •
fL(e, ~ + ir) zr cosh 21T1' +cos ?T1n

In order to express Ir(au) - Ir(a_u) in terms of Ft, we shall now calculate the

FOluier transform of the distribution p.v. L. Using the integral formula' for 'Ij; and
Jl

Lemma 2, we get

1 1 ., () 100 mv/2 + -mv/2 v/2 1_ (1/2-~)uJm S e (f)d _ e e - e - F A ( )d
2 e . () ~,~ s - v/2 -v/2 I a u +v v,

7r 3?s=u Jm s 0 e - e

where f E CP(G,e), ! < a :::; *' ra E IR~, Iml ::; 1. This implies that

valid even for J E C2 (G,e) by continuity. Combining our results, we obtain the
following more explicit variant of Theorem 1.8 of [5].

Proposition 7. For u =I- 0, j E C2 (G,e) and 1n E IR.~ witb Iml ::; 1 one bas

If(a u ) + L e-lnul/2en+sgnn(!)
n=m+l(2)

n;;cO

= 2~1: (eirluIB.-IUI (1 + 2ir, 0) + e-irluIBe_lul (1 - 2ir, 0)) 0 e ,t+ ir(J) cl,>

1 - sgn U Joo. ( 1 sinh 2?Tr )+ 2 sln(ru) -2- + coth 2?Tr - h e~ l+ir(J) dr
-00 7rr cos 27r1' + cos Km '2

_1.00 1 A 1 - sgn U Joo COS m(~+v) A
- (u+v)/2 _ 1 Ff (av) dv - 2 . ~ FI (av) dv.

u e -00 Sln 2

(The singulaxities occurring in thc last two integrals for u < 0 caneel cach other.)
Now we consider the behaviour of Tt(auz) as U ----. O. Using the Iwasawa de

COlllposition, we get

Tt( auz) = le U
/

2
- e-u/2 1[ [J( k- 1n~l auznvk) log(l + v2

) dn v dk
iZ\K iN

= eu
/

2 [ rj(k- 1au zn v k) log (1 + (1 - e-u )-2v2) dn v dk,
iZ\K iN

which, unlike the second expression for Ft(auz), does not extend continuously to
U = O. In [2], J. Arthur defines thc singular weighted orbital integral as

Tt(z) = lim (Tt(auz) + log(l - e-u )2 FfA(auz))
u-o

=2 r [f(k-1znvk)loglvldnvdk,
iZ\K iN
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which also appears in thc trace formula. It is easy to check that Tt (z) is a telupered
distribution, tao. Let us define Ir(z) by the SaIue formula as before. In order to
pass to the liInit in Proposition 7, observe that

which for u ~ 0 gives 27P(1) - 21/;(1 - 2ir) with

_ r/(s) _ [00 (e-t _ e-st
)

7P(s) - r(s) - Jo t 1- e- l dt

URs> 0). Hence,

!im (cPm,r(u) -log(l- e- u ? cosru) = 27jJ(1) -7jJ(1 + 2ir') -7jJ(1- 2i1·).
u-o

On the other hand, integration by parts shows that

[00 1 A) A )
iu e(u+u)/2 _ 1 Ff (au dv - wo(u)Ff (au

1
00 d

= -2 10g(1 - e-(u+u)/2)-Ft(au)dv,
u dv

which also converges as 11, ----? O. So we obtain thc following variant of Proposition 4.7
of [5].

Proposition 8. For f E C2 (G, €) and m E IR€,

I}'Cl) + L en+sgnn(f) = -2 [X> log (1- e-u
/

2
) d: FtCau )du

n:=m+l(2) 0
n~O

'1 100
= - 21f -00 (2C + 7jJ(1 +2ir) + 7jJ(1 - 2ir))8€,!+ir(!) dr,

where C = -7P(1) is the Euler-Maseberoni constant.

3 AUTOMORPHIC FORMS

Let r be a lattice in G and denote its projection on G' by r'o
Lenulla 9. r' is a lattice in G', and [Z : r n Z] < 00.

Praaf. The Lie algebra of the closure of r ' is Ad(r)-invariant and thus Ad(G)
invariant by the Borel density theorem ([24], [6]), i.e., an ideal in Q. But Q is
simple, so if we assume that r' is not discrete, then it has to be dense in G'. From
this we shall now deduce a contradiction.

Choose a neighbourhood U of 1 in G and a number € > O. f' is dense in the
open set of elliptic elements in G'. So we can find two elliptic elelnents 11, 12 E r
(Le., li is conjugate to sorne kOi with Bi rt ?TZ) with different fixed points z], Z2 on
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the upper half-plane 'H such that ,~ is elose to ,L and hence Zz = gZl for some
9 E U. Thcre always are llonzero integers nl, nz with Inl BI - n zB2 1 < c:. The fixed
point of 9,19-1 is Z2, heuce, for c: sIllall enough,

r being discrete, we get ,;2 = ,~1 for sufficiently SIllall U, and zl =f z2 then iInplies
, ~ 1 E Z. Therefore, [rZ : r] = [Z : r n Z] is finite, r Z is discrete, alld so is
r' = r Z IZ in contradiction to our assunlption. 0

Given r as above and a unitary represelltation X of r on a finite dinlensional
hermitian vector space V, we consider the induced reprcsentation 1TX = Ind[?(x). It
acts on the Hilbert space 'Hx consisting of elasscs of measurable funetions c.p : G ---? V
which satisfy c.p(,x) = X(,)c.p(x) (for all f E rund a.e. x E G) alld Ic.pl E L 2(r\G).
One may interpret such <p as L2-sections of the hermitian vector bundle 11 Xr G
over r\G with monodrolny x.

For any c: E Z, let Ve = V(c:lrnz) be the c:-isotypical component of x. Then we

may define a uni tary representation Xe (, z) = X('Y )c:(z)Iv. of r Z on Ve. We shall
endow 'Hx with thc slightly lllodified scalar product ~

nr = [z : r n Z], for thell the c:-isotypical component HxCc:) of 7rx is easily seen to
be 'Hx~' (Thus one would not restriet generality seriously by assumiug that Zer
and XIz = c: Id.) Note that there are only filli tely many c: for whieh Ve =1= {O} and

thus 1-lx(c:) =1= {O}. Decomposing 1Tx IK into isotypical cOlnponents, we obtC:un the
Hilbert direct surn -

1-lx(c:) = EB 1-lx(<Pm),
mEIRe

whose constituents are just the spaces of square integrable autornorphic fonns of
weight 7n with respect to r and x. While lllany papers are devoted to the Selberg
trace formula for a single weight rn, our motivation is to decompose 7rx into a direct
integral of irreducible unitary represcntations of G (in the spirit of (lO], say).

To keep later notations shorter, let us agree to write Po = NoAoZ for thc stan
dard parabolic subgroup which has been called P = Pol AZ in section 1. A general
parabolic subgroup of G is then P = k-1 Pak with unipotent radieal N = k- 1 Nah".
and special split component A = k- l Aok, where k E [{ is arbitrary. Conjugation
by k transports the Haar Ineasures to P, A and N. For each P, we fix one such
k = kp in the Z-coset of possible oues. If we defille ap,u = kp1auk p E A for u E IR,
and Hp(x) = u for x E Nap,uK, then Hp(x) == H(kpx) generalizes H = Hpo and

fI = Hpo'
A parabolic subgroup P of G is called cuspidal (w.r.t. r) if its unipotent radical

N contains a nontrivial elenlent of r. As oue knows, the finitely many cusps of
the Riemann surfaee r \'H are paralnetrized by the r-conjugacy classes {P} r =
{,P,-l : , E r Ir n P} of cuspidal subgroups. The Iwasawa decomposition H f"V

GIK ~ NA provides a parametrization of the geodesics nA(i) C 'H, n E N, which
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tend to the boundary point kpI (00) E JR. u {oo}. The parameter value is giyen
by the function Hp whose potential surfaces are the N-orbits (horocycles) on H.
However, this parametrization determinecl by the choice of K (or of i E 11) is not
adapted to f: a geodesie on f\11 running into a cusp has various lifts to 11, from
which it inherits different parametrizations.

To rectify this, we replace k p by gp = aupkp, where e-UP = vol(rZ n N\N).
Then fZ n N = {gpl nv9P : v E tE}, and oue checks that

which is our new parameter. The value 0 now corresponds to the horocycle whose
projection on r\H has length l.

Given a cuspidal P = N AZ, we denote by V p the maximal subspace of V on
which xl rnp acts trivially, by prP the orthoprojection on vP and, for every <p E fix,
by

<pp(x) = vol(r n N\N)-l [ prP<p(nx)dn
JrnN\N

its "constant term" along P (convergent in Lloc (G)). It has the propretics

<pp(nx) = <pp(x)

<pp(,x) = X(,)epp(x)

for nE N,

for f Ern P.

(Since rn N is normal in rn P, the measure dn is rn P-invariant.) If ep E 'Hx(E),
then epP takes values in the trivial subspace V~P of x~ IrZnN' which happens to be
smaller than y~ n Y p. In such ease, the corresponding eusp has been called irregular
in [1].

Note that one needs only consider one eonstant term for eaeh cusp, sinee

It is therefore useful to fix a (finite) set ~ of representatives for the r-conjugacy
classes of cuspidal subgroups and to define

a left No-invariant funetion with values in ycst = EBPE;J yp. If cP E fix(E), then
epcst(x) E v~cst in the obvious sense. The identity (1rx(x)ep)P(y) = epP(yx) shows
that, heuristically, the constant term operator is sOlnething like an intertwining
operator. This will be made exact in Proposition 1l.

The constant terms give, of course, no information about the G-invariant sub
space

'H~us = {ep E fix : epP = 0 for all cuspidal P}

of cusp forms (which equals H-x if r is a uniform lattiee). A erueial result is that
for every li-finite eigenfunetion ep E H-x of the Casimir element w, every eOlnpaet
set n E G and every n E Naue ean find a eonstant C such that

for Hp(x) > Uo, yEn.
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Note that, for sufficiently large UD, r n G\{x E G : H p(x) +up > Uo} projects
diffeomorphically on some "neighbourhood" CP,uo, C r\G of the cusp corresponding
to P, and

where nr ,P = (rz n N : r n N]. The rapid decrease in the cusps is thc reason
why the restrietion of 7rx(f) to 'H~us is of the trace class for f E Cl (G) (see [21D.
As a consequence, 'H~us is containcd in 'H~is, the nlaxünal discretely decomposable
subspace of 'Hx' Moreover, every irreducible unitary representation of G occurs in
'H~us with at TIl0st finite IllUltiplicity.

vVe have now an orthogonal deccHnposition

where the superscripts "res", "con" will beconle clear later. The above estimates
also entail restrietions on the possible representations which may occur in 'H~es,

because epP must then be square integrable on CP,uo'

Lemlua 10. The representations oE G occurring in 'H~es belong either to tlle COH1

plementary series, 01' to tl1e pseudo-discrete serics, 01' are trivial. Moreover, if ep is
a j( -finite element in tl1e isotypical component 'H~es('Jr~,s) and w.1.o.g. s E (0,1/2),
then epP E Hp,~,~ ® V~p.

Proof. Let ep E H~es(7re,3) be K-finite. Clearly, 7rx (w)cp = s(s - l)ep. Take a
cuspidal P. Replacing r by a conjugate subgroup if necessary, we may assunle
that P = Po. Now, in the notation of section 1, W + i = i(H - 1)2 + XY,
epP((w + ~)x) = ~epP((H - 1)2 x),

This differential equation has the basic solutions e SU and e(l-s)u (resp. ueuj2 if
s = ~). But e"U is square integrable on (uo, 00) with respect to e-udu iff ~s < ~.

Thereby the principal series is excludcd, and thc assertion about the complelllentary
series follows.

Let now ep be a vector of weight ±rn in H x(7r±m), m :2 O. Then

thus c.pP(auk) = emuj2 epP(k), which is square integrable iff rn. < 1. 0

As for the trivial representation 7ro of G, it is clear that 'Hx(7ro) C H~es consists
of the constant functions with values in the subspace of x-invariants in V. Thc
multiplicity of the other irreducible representations of G in Hx is hard to determine
(except for the discrete series).

19



A refinement of this question is connected with Hecke operators. We denote by

r = {~ Er: e-1re is commensurable with r}

the commensurator of r in G and dcfine thc Hecke algebra as

fj(G, X) = {t : r ~ EndVI t(,1e,2) = X('1 )t(e)X(12) for ,1,12 E r, eE r;
suppet)Ir is finite}

with operation

t1 * t2(e) = L t1(17)t2(ry- 1e) = L t 1(ery-l)t2(ry),
~Er/r ~Er\r

involu tion t'" (e) = t (e-1 ) * and uni t element X (extendcd by zero to all of f'). The
restrietion of t to a double eoset rer is determined by the value tee), which ean be
arbitrary in HOlnrne-1re(V, Ve), if V{ denotes V endowed with thc representation
X{(,) = X(e,e- 1

). fj(G, X) has a *-representation

(TX(t)'P)(X) = L t(e)<pce-1x)
'lET'Ir

on 1ix eonlmuting with 7rx (see [16) for the case X = 1). The restrietion of Txet) to
'lix(e) is TXt:(t~), where

t~(e) = L t(ez)e:(z-1)pr~.
zEZlrnz

One easily recovers t fraln the t~ 's as L:~ t ~ = nr t, using that L:~Irn z =~I e(z) = 0
if Z ~ r n Z. For X = 1 and congruence subgroups r, one cau take thc adelic
point of view, well suited for the study of Hecke operators TX(t) (see [17]). One is
interested in their traces in the isotypical cOInpanents 'lix (7T"). SOlne information
eau be obtained with the help of Eisenstein serties, which will be considered in
section 5. In order to state the results, let us introduce certain Dirichlet series
which will also appear in the trace formula.

Some p1'epa1'ation is necessa1'Y. Take any 1.0 E W \ Z. The Bruhat decomposition

G = Po U NowPo edisjoint union),

being Z-invariant, is a simple consequence of that of G. For any pair P, Q of
cuspidal subgroups and any x E C,

either

01'

x E 9c/ zQP(x)a u No9P

x E 9q1 N owQP(x)au No9p
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depending on whether xPx-1 = Q 01' not. Here HQP(x) = u and zQP(x) resp.
wQP(x) are uniquely determined. 'vVe shall use the notation

- - IrQ P(l) = rn 9q Po9P,
- - J
rQP(W) = rn9q NowPogp.

Far any ~o E f'QP(l), the map ~ ~ (~o induces an injection rQP(l)/r n P
rnp/rnp~r/r.

Given t E jj(G, X), c E Z and sEC, let us consider the finite SUln

CQP(t, 1, c, s) = L c(zQP(~)-l )e-t1HQP(e)t(~)pr:

eEfQP(l)/rnP

and the DiricWet series

CQP(t,1O,c,s) = rrnr,lQ L if>m(wQp(~)-l)e-"HQP(e)pr~t(~)pr~,

eErnu\f'QP (w) /rnP

both with values in HOln(V<!P, V<!Q), where U denotes the unipotent radical of Q
and m E IR~, Iml :s; 1. If 1n = ±1, we indicate its sign as c~p. We lnay rcplace r
by rz and t by t<! without changing the value of cQpj then the coefficient nr,Q =
{rZ n U : rn U] vanishes. V\je put cQP(t,w,e,s) = jm(S)cQp(t,w,c,s) with jm(s)
as in section 1. Clearly, the lnaps cQP, cQP for all Q, P E \j cOlnbine to linear
operators c, c in V<!cst.

Proposition 11. Tbe series c(t, 10, c, s) is absolutely convergent for ~s > 1 lind
extends to a meromorphic function on C, wbose singularities, except for a finite set
S<! C (~, 1-~] ofsimple poles, lie in tbe jla1f-plane ~s < ~. (Here mE IR<! with
Iml :s; 1.) Moreover,

c(t,l,e,s)* =c(t"',l,c,l-s), c(t,w,e,s)'" =c(t*,w,e,s),

c(x,l,e,s) =Id, c(t 1 ,1,e,s)c(t2,1,e,s) =C(tl *t2,1,e,s),

c(t], 1, c, 1 - s)c(t2, 10, e, s) = c( t J , W, c, s)c(t2,1, e, s) = c(t] * t2, 10, C, s),

c(t 1 , w, e, 1 - s)c( t2 , w, c, s) = c(t] * t2 , 1, c:, s),

where t, t 1 , t2 E .fj(G,X). In particular, c(x,w,e,s) is twitary for ~8

adjoint for real s, and an involution for s = ~.

self-

Far a ES<!, let V (X, e, 1 - a) be thc range of the self-adjoint operator q(X, c, a) =
Ress=O' c(X,1O,c,s) endowed with thc scalar product

(q(x,e,a)v,q(x,e,a)1O) 1- = (q(x,e,a)v,w).x,.!:, 0'
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Theorenl 12. For any c E Z, tllere are isometries

j con '1..Jcon ( ) 1 {oe '1..J n-. Vcst d "" L2 (1 + '101 dr) t&.. '1..J n-. Vc~tX : I LX C ------7 2?T Jo IL~, t+ir VY ~ r = '2 'ln+, 211" vy I L~ vy ~ ,

I~es : H~es(e) ~ Hm 0 V(x,e, 9) ED EB H~,l-u 0 V(x,e, 1 - a).
(lESe

u<1-[ml/2

The map IX = I~on EB lIes is explicitly given by

for <p E H X ( c), wllere tlle in tegra1 is unders tood as a Fourier transforJll oE dis
tributions. Ix intertwines tbe representations 1TX alld TX of G and S)(G, X) with

the direct integral of ?T~,.!l 0 c(., 1,6,8) (resp. ?Tm 0 c(., l,e,s) for 8 = 9) over

S E (! + iIR.+) U (1 - S~),

Ix'P, being apriori a hyperfunction on C with values in '}-{~ 0 V~cst, turns out
to be the sunl of an L 2-function on ~ + iIR. (with a certain symmetry expla.ined in
Proposition 18) and of some 8-functions located at 1 - S~.

Proposition 11 and Theorenl 12 will be proved in section 5.

4 TUE TRACE FORMULA

We shall now state the trace formula für a unitary representation X of a lattice
r in "G. vVe prefer to do so in the special case when Zer and xl z = eId for some
€ E Z. As cliscussed in the beginning of section 3, this is no seriüus restriction.

Recall from section 1 that G reg denütes the set of regular eleluents of G. It is
the union of the G-invariant sets Gell and Ghyp consisting of all eielnents conjllgate
to ke with (J rf:. 1rZ or to auz with u i=- 0, z E Z, respectively. Put f'reg = f' n Greg ,

f'sing = r - rreg. VVhile any elCIuent of f'sing belangs to some cuspidal parabolic
subgroup (see section 7), the sanle is true only for a subset of elements of f' reg

(disjoint with r), which we caU f'par' vVe sha11 see in section 6 that any eleluent of
r par belongs to exactly two different cuspidal subgroups, i.e., fixes two boundary
points of the upper half-plane 'H. Consequently, f\ar C Ghyp ' Let us subdivide
f' reg - f' par into two subsets f'eH, f'hyp in the obvious way, thus obtaining a disjoint
unIon

r = f'eil U f'hyp U f'par U f'sing'

By our assumption on X, Hx = Hx(e). Recall the invariant decomposition Hx =
H~is ~ H~on and let pdis, pcon be the corresponding orthoprojections. Put ?T~iS(f) :=

pdis 1rx(!) and T~is(t) := pdisTX(t). Any eleluent of .fj(G, X) can be decomposed as
AX + t \vith A E C and suppt n r = 0, It is convenient to state the trace fornlula
for X and t separately.
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Theorem 13. Given r, X, c as above, let f E Cl (G, c), m EIRe:. Denote

for I~rl ::; t, n =m+ 1(2), n -I O. H c = Cl, put ho = (81(f) - 8_1 (/»/2. Then
7r~ig(f) is of trace dass, aJld its trace equals the following absolute1y convergent
in tegraJ-series:

dim(V) vol(r\G) (jOO r sinh27rr her) dr +"*ln1h
n

)

47r -00 cosh 27rr + cos 7fm L.J
n

+" tr X(1') (~joo cosh 2(71'" - B)r + e-
irrm

cash 2Br h(r) d7'
LJ 2i[r,:Z] sin () 2 -00 cash 271'"7' + cos 71'"m

{,}rCz\r"u

+0.,., ho + ~* sgn(n)e-in8hn)
n

+ ~ [;r~i])\~ joo cos(1'U )h(r) dr
471'" /' SIn 2 -00

{,}rCZ\rhyp

_ dim(Vcst
) (~joo 7/;(1 + 2ir )h(r) dr + ~~ *hn)

27r -00 2 n:;i'O

+ '" m~ (~joo ( h a sin 1fm +21og(2 cos( ~ ))) her) dr
L.J 47r -00 cos 27fr + cos 1rm

aEf~!,,,) +2: (0.,., ho+~* sgn(n)hn))
n

+ ~P.v.jOO tr(c(x,w,c, t - ir)(c'eX,w,e, ~ + ir») h(r) dr
47r -00

- ~ (1 - 0.,.,) tr(c(X, w, c, ~) - Id)h(O) - ~o.,., tr c+(X, w, C, ~ )ho.

Here 2:~ = 2:n:=m+1(2)' De:,e:l is theI{roneckersymbol, 1/J(s) = r'(s)/r(s), m,~ is tbe

multiplicity of _ein as aJl eigenvalue of X(gp1 n1 gp), and eacb f (swtably chosen
modulo Z) deterrnines () E (0, 1r) 01' U > 0 by {I'}G = {kid G 01' {I'}e = {au }e,
respectively.

Using the results of section 2, we lnay express all items except the p.v. integral
in terms of the Fourier transform of h(1'), namely g(u) = Ft (a u ), and hn' If / E

CP(G,c), %= max(9,1) and f(koxko' ) = e-im(o+o')/(x), then 1re:,~+ir(f)cPmf =
Dm,m,h(r)4>m, thus hn = h(i;) for n between 0 and m, ho = ~h(O)sgnrn, and
h n = 0 otherwise. In this case, Theorem 13 becomes essentially Theorenl 6.2 of
[15], cf. also [1], [9], [10], [18], [29].

It remains to consider t E .fj(G, X), supp t n r = 0. First we introduce some
notations. For P = N AZ E ~, let us parametrize the elements of N as np1v =
9p1nvgp, thus providing aJl isomorphisIll rnN/rnN ::: Q/Z (see [16,Lellllna 9.3]).
If ~ E rnN, then ~ commutes with rnN, hence t(~) intertwines xl rnN. As above,
np,l is a generator of rn N, and the eigenvalues of x(np,l) different from 1 are of
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. - ±
the form _etO', 0' E (-7r,1f). Given ~ Ern N/r n N, let ve = min{ v > 0: np,±v E
e(r n N)}. Clearly, v~ = 1, and vt + ve= 1 for e rt. r n N. Let t~(e) be the

restrietion of t(np,vt) to the eigenspace of xl rnN corresponding to 0'. Obviously,

these eigenspaces make up the orthog.onal complement of V p.

We shall also need the hypergeometric series

00 n 11
ß(v, z) = V-I F(v, 1; v +1; z) = L _z_ = tV-I(l - zt)-Idt.

n=O n + v 0

This series converges absolutely for Izl < 1 and conditionally for Izj = 1, z =f. l.
Incidentally, zVß(v,z) = Bz(v,O) for z E [0,1), where B denotes the incomplete
beta-function. Moreover, if v = ~' where p ~ q are positive integers (the only case
we need), then the substitution t = x q yields

ß(~,z) = - L w-p log(l - w)
wq=z

for z rt. [1, 00),

where we take the continuous brauch of the logarithm on C - (-00,0] determined
by log(l) = O.

Theorem 14. In the situation oE Theorem 13, let t E .fj(G, X), supp t n f = 0.
Then tr (1T~is (f)T~is (t ») equals th e fallowing absaltl tely convergen t integral-series:

L tr X(e) (1 ;00 cash 2(1f - 8)r + e- irrm cosh 287' ( ) d
. . - h r r

2z[re:Z] Sln 8 2 -00 cash 2?TT + cos trm
{{}rCZ\f' ,,11

+0"'1 ho + L' sgn(n)e-in9hn )

n

" tr X(e)u ;00
+ Lt_ 41f[fe:Z ]sinh.Y.. -00 cos(ru)h(r)d7'

{e}rCZ\rhyp 2

tr X(e) [... ;00 (e irU

+ L . u - L e-lnluj2hn + - (l + 2Be-u (1 + 2ü', 0»)
2 Slilh 2" -00 21f

{{}rCZ\tpar n~O

sin ru ( 1 sinh 21fr ) ) ]+-- -- + coth 27rr - h(7') d7'
2 21fr cosh 21fr + cos 7rm

- L L tr(t(e)prP) [~L' (1 + i cot 1rvnhn
PE'J eEf'nNjrnN n~O

j oo 1 ( 1fi cot 1fv+ sin 7rrn ) ]+ -4 27/J(1+2ir)+2C+7/J(vt)+7/J(ve)+ h e h(r)dr
-00 7r cos 27rr +cos trm
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+ L L [(ß(vt ,_ei,,) trt;t<O + ß(ve,_e- i
") trt~(O)4~ ['" h(r) dr

PE'J" eEf'nNjrnN -00

O'E( -1t',1t')

. + ]e-IVe 0' tr t+(~) 1 00 sin 7rm ..
+ .. ~ (-1 h her) dr + 8~'~1 ho + L sgn(n)hn )21 Sln 7TV c 2 -00 eas 27T1' + eas 7rm, n

+ 2-p.v .1°O tr(c(t, w, c, ! - i1')(c'(x, W,f:,! +ir))h(r) dr
47r -00

- ~(l- 8<,<1) tr(c(t,w,t:,~) - (c(t, l,t:, ~))h(O) - ~8"" trc+(t,w,t:, !)ho.

Here C = -4'(1) denotcs tlle Eulcr-Masc11el'orll COllstant, P = N AZ, alld each ~ E
f\eg (suitably chosen modulo Z) detel'mines f} E (0, 7T) 01' 1L > 0 by {~}c = {ke}e
01' {~}G = {au}c, l'espectively. lvlol'eovel', each ~ E r par detennilles 1 = HQP (,),

wbel'e , E r QP(w) and P =1= Q are tbe cuspidal subgroups containing (

Theorenls 13 and 14 fallow rroln Theorem 25 and the results of section 3.

5 EISENSTEIN SERIES

We turn now to the harmonie analysis of the orthogonal cOlnplement H~is 

'Hles EB 'H~on of 'H~us in 'Hx ' In view of the extensive literature eovering this topie
for G', our explanations will sometiInes be sketchy.

The constant tenn operator defincd for a cuspidal subgroup P = N AZ in sec
tion 3, when restricted ta compactly supported (lnod r) functions 'P E 'H,,<, is a
G-equivariant map to the space

fip,x = {1/; : G ---+ VI1/;(n,x) = Xe,)'if(x) for n E l'l, , Ern P and a.c. x E G;

l'if) E L 2(N(r n P)G)}

of the induced representation 7rp,x = Ind~(rnp/Xl rnp)' Such 1/; are autolnatically

v P-valued. We equip 'HP,x with the scalar product

('1/;1,1/;2) = n r1 r (VJt(x),'I/;2(x)dx
Jrnp\G

= nr-1 r 100

(l/;1(ap,uk),'I/;2(ap,uk))e-U-UPdudk.
JrnZ\K -00

The formally adjoint of the constant term operator is the series Bp satisfying

(i.pP,'if) = nr- 1 r (i.p(x),1/;(x))dx = (rp,Bp(x,'if)),
Jrnp\G

which should conveniently be defined more generally as

Bp(t,l/;,x) = L t(e)'I/;ee-1x)
eEr/rnp
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for auy tE 5J(G,X), beeause then T(t){}p(X,lf;) = (}p(t,'lj;). Later we sha11 see
(Proposition 15 with 4> = 1) that (}p(t, 'lj;) is a.e. absolutely convergent provided
I'lj; (x) I is essentially bounded by a multipIe of exp(a H p ( x )) wi th Cf > 1.

It is easy to reduce ()p ( t, 7jJ) to the ease t = X: eollecting all items wi th the same
Q = ~p~-l, we obtain

(}p(t,v;,x)=L L t(~)1jJ(~-lx)

Q eEf'qp(l)/fnp

in the notation of section 3. With r ,Q"y-1,P(1) = ,rQP(l) we obtain

(}p(t, 'lj;) = L (}Q(X, TQp(t, 1)'lj;),
QE~

where
(rQP(t,l)'lj;)(x) = L t(~)'lj;(~-lx)

eEr qp (l)/rnP

is a finite sunl. Clearly, TPp(X,l) = Id, TQP(X,1) = 0 if P and Q are not r
conjugate, and

L TRQ(t', l)TQP(t, 1) = TRP(t' * t, 1).
QE~

Dually, we lnay express the constant terms (Te( t)'P)Q by those of <p E rtx: the
elements of each eoset ~r c r conjugate the euspidal subgroups of exactly one
dass {P}r to Q, thus

(rx(t)<p)(x) = L L t(~)<p(~-lX).
PE~ eEf'qP (1 )/rnp

Since for eE rQp(l) we have e-1U~ = N (U the unipotent radical of Q) and
t«()V P = vQ,

(TX(t)<p)Q = L TQP(t, l)<pP.
PE';}

Calculating (<p, (}p(t, 'lj;)) in two ways, we obtain the fonnally adjoint TQp(t, 1)'" =
TPQ(t'" , 1).

The functions (}p(X, 'ljJ) for all cuspidal P and all 'ljJ E fip,X with cOlnpaet support
fiod (rnp) are dense in fi~is, as follows from their definition. One can thus deseribe
fi~iS in tenns of them, provided one knows their scalar product

In order to calculate ()~, split {} p (t, 'ljJ) into two terms accorcling ta r = rQ P (1) U
rQP(w) and take the constant term along Q of each one. The first surn then
simplifies to TQp( t, 1)'ljJ. On the other hand, far ~ E rQp(w) we have ~PE-1 n U =
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{I}, whence r n U acts freely on rQP(W )/r n P from the left. We split off a
summation over r n U and join it with the constant tenn integration to obtain

where

(TQP(t,W)t/»(X) = vol(r n U\U)-l L prQt(,)Jt/>(C1ux)du
eErnU\f'qp(w)/rnp U

is absolutely convergent if Bp(t, 'I/J) is so. Calculating the above scalar product in
two ways, we get TQP(t, w)* = TPQ(t*, w). Taking the constant term of

Tx(t')Bp(t, 'I/J) = Bp(t' * t, 'I/J) = L BQ(t', TQp(t, 1)'I/J),
Qell'

we see that

LTRQ(t',l)TQp(t,w) = TRP(t' *t,w) = LTRQ(t',W)TQp(t,l).
QE~ QEa

The next step is harmonie analysis of 'HP,x' Since, for 'l/Jl, 'if;2 E 'Hp,x(e),

left 9 p-translation and Fourier transform provide a G-equivariant isomorphism

with a direct integral over the principal series. We write the inverse Fourier trans
form for a E L 2 ( ~ + ir), 4> E 'H~ <9 V~p as

(a 18l4»'f,(x) = 2
1
11" i: a(~ + ir)4>t+ir(gpx)dr.

For a (s) extending holomorphically to ~s E [t, a], a > 1, wi th sufficient clecay as
l~sl -7 00, this cau be inserted into Bp, and

1 100

Bp(t,(a~4J)j"x)= -2 O'(a + i1')Ep(t, 4J,a +ir,x)dr,
7T -00

provided the Eisenstein series

Ep(t,4>,s,x) = L tCe)<ps(gpe-1x) = Bp(t,4>~,p,x)

eEf'/r n p

is absolutely convergent for ~s = a. Here, <Ps,p(x) = 4Js(gpx). Let now Cn(I(, e)
be the subspace of n times continuously differentiable functions in 1t~.
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Proposition 15. For t E 5j(G, X) and </> E cn(K, €) C9 V~P, the Eisenstein series
Ep(t, </» is absolutely unifonnly convergent for (5, X) in compact subsets ofG X {s E
C : ~s > I} to a function holamorphie in s and n times continuously differentiable
in x. H Q is any cuspidal subgroup, Ep(t, 4>, s, x) is bounded on CQ,u by a Inultiple
of exp(aHQ(x)), a = ~s. Furtbermore,

for t l E 5j(G,X), x E G, D E Q; with degD ::; n, where TX and 7rx bave the obvious
meaning altbougb Ep ~ H x'

Provided convergence, the last assertion is obvious. It reduces the proof to the
case t = X, n = 1. Eut X and 4> are bounded, thus ony E p (l, 1,8) will bother
uso Here, e.g., the proof of [18, Theorem 2.1.1] together with the complementary
relnarks applies. Note that any Dirichlet series is holomorphic in its half-plane of
absolute convergence.

One checks that

TQp(t, l)4>s,p = (CQp(t, 1,8)4»$,Q,

TQp(t,W)1>!J,p = (GQp(t,w,8)4»1-s,Q for 3?8 > 1

with uniquely determined maps GQP: Gn(I{,€)0V~P ~ Gn(K,€)0V~Q, which are
G-equivariant and thus preserve the decomposition of 'H.~ by K-types. In order to
state the properties of GQP which follow from those of TQP, we consider

E(t, 1>, s) = L Ep(t, prp4>, s)
PE'J

for 4> E 'H.~ 0 V!cst (cf. section 3), where prp denotes the projection on the P
component. The GQP then combine to linear operators G in Gn(I<, €) 0 V!cst such
that

7fx(x)E(t, </>, s) = E(t, (7r!1S(X) 0 Id)4>, s),

Tx(t')E(t, tjJ, 8) = E(t l *t,4>,s) = E(t',C(t, 1,8)4>,s),

E cst
( t, </>, 8) = (C(t, 1, s) 4>)" +(G(t, W, 8 ) if> )1 - 8 ,

G(t, 1, s)* = G(t*, 1, 1 - s), G(t, w, s)* = G(t*, w, s),

C(X, 1, s) = Id, G(t', 1, s)C(t, 1, s) = G(t' * t, 1, s)

G(t l
, 1, 1- s)G(t,w,s) = G(t' * t,w,s) = C(t',w,s)G(t, 1,s).

We shall not indicate the dependence of E and C on e E Z hut rather consider
them as Z-equivariant maps defined on the space I:! CU(I(,e) ® V

t
cst of functions

4> : K ---4' vcst .

We may now insert 7/;1 = (a 0 4» p and 7/;2 = (ß 0 4/)'Q, where 1> E H! 0 V!p,
</>' E H! 0 V!Q, into the scalar product fonnula for Bp, BQ and express the latter
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by Eisenstein series. Suppose that 0', ß are holomorphic and rapidly decreasing for
1 - (j < ~s < (j, (j > 1. Fourier inversion shows that

(</>~,Q' (ß 0 cjJ')Q) = (</;", cjJ')ß(l - s)

for any cjJ" E He ® VeQ. Some calculation now gives

(Bp(t, (a ® </»'1», BQ(X, (ß ® </>')Q))

= ~ r (a(s)ß(l - s)(GQP(t, 1, s)</>, cjJ') +a(s)ß(s)(GQP(t, w,s)cjJ, cjJ')) ds.
2?Tt J3h=0'

Thus, as usual, the next task is analytic continuation of E and G to ~s = !.
Proposition 16. Let </>, cjJ' E H ® Ve

cst be ]{-finite, t, t' E S)(C, X), m E IRe with
Iml ~ 1. Then E(t, cjJ,s, x) and c(s) = (G(t,w,s)cjJ,</>') extend to meromorphic
functions on C witb the same singularities (for generic x E C), which, exccpt for a

finite set Se C (!' 1 -lTl] of simple poles, lie in the half-p1aJle ~s < !. More0 ver,

E(t, cjJ,s) = E(X, G(t, w, s)cjJ, 1 - s),

G(t', W, 1 - s)G(t, w, s) = G(t' * t, 1, s),

I
c(s)a... - 1 / 2 TI s - Cl I~ 1

l-s-O'
O'ESc

for same a > 0 and 811 s with ~s 2: !.
Now the aforementioned properties of E and G extend to a11 regular s. In

particular, G(X, w, s) is unitary for ~s = !' self-adjoint for regular s E IR, and is an
involution for s = !. Being a ]{-finite eigenfunction of w, E(t, cjJ, s) is analytic on

C. We shall see later (Lelnma 19) that Se - {l-.l!fl} is independent of thc weights
occurring in </>.

It suffices to prove the proposition for t, t' = X and cjJ, cjJ' of the form </>m' ® v I

with m' E IRe and v E V~p. In this case, proofs are given in [25], [15, pp. 130, 156;
296f, 299; 374, 380]. One may also adapt the elegant proof from [7], [8].

All proofs depend on the Maaß-Selberg relations, which also playa role in thc
proof of the trace formula. They are connected with the nation of truncation.
Given a truncation parameter u E IR, let XP,u be the characteristic function of
{x E G : Hp(x) +Up > u}, which projects on CP,u C r\G for large u. By the
choice of u p ,

XP,u( ,x) = X,-l P"u (x).
We have seen a similar invariance for the constant terms, and thus the truncation
operator Au, defined for ep E 1ix as

Auep = ep - L XP,uepP,
p

yields an element of 1ix' Here the surn over all cuspidal subgroups Pis locally finite,
whence we rnay apply Au to more general functions ep : C ~ V with the same r
equivariance but which are only locally integrable, say. For large 'U, thc XP,u even
have pairwise disjoint support, and if we view ep as a section of the bundlcV Xr C,
then Au simply replaces c.p by ep - c.pp over each CP, u'

A special case of the Maaß-Selberg relations is the following

29



Lemnla 17. Let if>,4/ E H~ (9 v~cst be !(-finite, t E fj(G, X), and take 8 E C such
that 8 and 1- 8 are regular points for E. Tben AuE(t,if>,s) E H x, and

(AuE(t, if>, s), AuE(X, (1/, 1 - s))

= 2u(C(t, 1, 8)4>, if>1) - (C/(X,w, 1- 8)C(t,w,8)rf>,if>')

+ 2s~ 1 (e(28-1)U(C(x, w, 1 - s )C(t, 1, s )</>, t//) - e(1-2.)u(C(t, IV, s )</>, </>')) .

Sketch 01 prool. Oue quickly obtains the identity

{ [(Aucp(wx),Au<p'(x)) - (Au<p(x), Au<p'((wx))] dx
Jr\G

= - L [ [(<pP(wx), <p,P(x)) - (<pP(x), <p,P (wx))] XP,u (x) dx
PE;j Jrnp\G

for smooth 'P, <pI E H x, oue of them with compact support modulo r. Integration
by parts transforms the right-hand side to the integral over k Ern Z\I( of

The resulting identity extends to !(-finite eigenfunctions of w in view of the rapid
decrease of Au<p on each Cp,u' In particular, for if>, if>' as in the lemma ancl regular
s, 8' E C we obtain

(S(8 -1) - 81(81-1))(A u E(t,if>,8),A u E(x,if>I,i))

= (8 - 8') (e(S+~I-l)U(C(t, 1, 8)fjJ,q/) - e(1-S-SI)U(C(x,w,s')C(t,w,s)fjJ,if>I))

+ (8 +8' -1) (e(S-"")U(C(X,W,8')C(t, 1,8)if>,if>1) - e(SI-~)U(C(t,w,s)if>,if>I)).

Dividing both sides by 8(8-1)-8'(8' -1) = (8+81-1)(S-81) and letting s/ -t l-s,
we prove the lelnma. D

In the fonnulae cOllllecting thc series 8p (resp. their scalar products) wi th E
(resp. C), we now move the Ene of integration to ~8 = ~, taking care of the
residues at S~. Applying an approxilnation argulllent to Cl: ® 4>, one proves as usual

Proposition 18. Fix c E Z and, for a E S~, let H(X, c, a) be tbe Hilbert space
obtained from H~< (9 v~cst by factoring out tbe null spacc of tbe scalar product

(<p, <I>')lT = (Res C(X, w, s)<1>, <p')
S=lT

and then completing. Tben there are isometries

~on: {<p E L2(~ +iIR,:~)0'H~®V~cst: <1>(1-8) = C(X,W,S)<1>(8)} -t 'H~on(c)

I~es : EB H(X, c, a) -t H~es(c),

lTESc
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whieh are gi yen by

I~on<l' = :7r i: E(X, <l'(! + i,'), ~ + ir) dr,

I~es<p = I: ~e~E(x,<pu,s)
ues.

for compactly supported <P. I~on and I~es intel"twine the representations of G and
ij(G, X) defined by 1r~,lJ ® Id and C(.) 1, s) with the represelltations 7rx and TX in
'Hx(e).

From Schur's lemnla it is clear that the intertwining operators GOP should be
multiples of Rpo' We can make this explicit. Some calculation using thc notations
introduced in connection with Proposition 11 allows us to specialize the fOTInulas
for TQP as follows:

(CQp (t,1,s)cjJ)s(X) = I: t(~)cjJs(a_HQP(e)ZQP(~)-lx),
eef'QP(1)/rnp

(CQP(t, w, s)<fth-lJ(x) = nr,~ I: prQt(~)
eernU\f'QP( w)/rnp

. f cjJs(a_HQP(e)WQP(~)-lnx)dn.JNo

Comparing trus formula with the formula for Rpo' we obtain

Lemilla 19. Witb the notations of Proposition 11,

C(t, 1,s)I1i.®v.c • t = Idtg)c(t, 1,e,s),

G(t, w, s)11i.0V~cllt = R~o (e, s) @ c±(t,w, e, s),

where tbe second formula is an equality of convergent integral-series for ~s > 1,
and tbe superscript ± is ignored for c f=. cl.

Praof of Proposition 11. Restricting the second formula in the preceding lemnla to
4>m 0 V~p with m E IR€, Irnl ::; 1, we get

CQP(t,w,s)(ePm @v) = <Pm @ c~~m(t,w,e,s}v.

The functional equations for c follow from those of C. D

Froo! of Theorem 12. Applying Ix to the formulae of Proposition 11, we obtain by
Fourier inversion, using the invariance of <p)

and, as a Fourier transfonn of distributions,

(Ixx;,es<l')(s) = I:~~C(x,w,z)<l'u jlX) e(u-,)udu = I:~~C(X,w,z)<l'u.5(s-a).
u -00 u
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The assertions about I~on follow immediately.
As for the residual part, we have now the commutative diagram of isomorphisms

/ EBRes C

It remains to identify the range of Res C and to transfer the scalal' product to

it. Since Rpo(e, s) is holomorphic on (~, 1 - ~], taking residues in the formula
in Lemma 19 affects only the second factor, which gives q(X, c, (T). The range of
RPo ( c, s) has been determined in section 1, and the assertions about scalar products
are easily checked. 0 .

6 THE GEOMETRIe SIDE-REGULAR PART

In the remaining sections we shall pl'ove the trace fol'mula undel' the assumption
that Zer, xl z = EId. Let fE Co(G,e), t E Sj(G, x). One calculates that

where

Kf,t(x,y) = L /(x-1ey)t(e)
€EZ\r

is absolutely uniformly convergent on compact sets and slowly increasing ([21, ch. 8J
applied to I/I and the finitely many cosets in r\ supp(t)). Given a r-cuspidal
P = N AZ, we similarly obtain

(1rP,X(f)Tpp(t)1/J)(X) = r J(P,/,t(x,y)'IjJ(y)dy
Jrnp\G·

in the notations of section 5, where

Being obtained from a subseries of Kj,t, integrated aver a compact set, Kp,j,t is
slowly increasing on CP,uo, too. When restricted to the diagonal x = y, Kp,j,t will
turn out to be the leading tenn of Kj,t on CP,uo as Uo ----+ 00. The trace formula
will be 0 btained by integrating the trace in V of

KJ,t(x,x) - LXp,uo(x)Kp,f,t(x,x)
P
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over r\G, where the surn is taken over all euspidal P (which rnakes it r-invariant).
Here we interpret

r cp(x)dx = lün r CP(X)(l- LXP,Ul(X))dx.
Jr\G Ul -00 Jr\G p

The disjoint union f = f reg U fsing gives an obvious deeomposition

K" T.",reg + T....sing
P,j,t = .L\ P,/,t .L\ P,i,t"

In the present seetion we shall obtain a geometrie expression for the regular part,
deferring the singular part to seetion 7.

To handle the eontribution from r reg n P, P = N AZ E ~ (which isabsent in the
ease t = X), we need sorne preparation.

Lelnlna 20. For u =1= 0,

L trt(~) = le- u -11 L tr(t(~)prP).
{e}rnNCrnap,uN €Efnap.uN/rnN

Note that ap,uN = {ap,u}N and that #(supp(t)nPjrnN) ~ #(supp(t)jr) <
00. Thus the right-hand side is finite and vanishes but for finitely many u.

Proof. Assume for simplieity that P = Po and multiply the right-hand side by

where 9 is in the Sehwartz spaee S(auN) ~ S(IR). Rewrite the result as

vol(fnN\N)-ll L tr(t(~)prP) j g(n-l~n'n)dn'dn
rnN\N €Ef'nauN/rnN N

with a futile integration over r n N\N. H the Fourier transform of 9 has suitable
eompaet support, this equals

by the Poisson summation formula (cf. [16], Lemma 7.9), or else

L tr(t(OprP
) j g(n-l~n)dn.

{e}rnNCrnauN N

After replaeing ~ by au in the integral we may divide it out, sinee it is nonzero for
suitable g.

Thus it only remains to show that the left-hand side of the asserted identity does
not change if we replaee t(e) by t(~)prP. It is obvious at least that we may replace
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t(~) by t(~,) for any , Ern N, since this only permutes the (r n N)-conjugacy
classes in f' n an N. Linear combination now yields

L tr(t(~)p(X(,o) - Id)) = 0
{e}rnN crnap,u N

for any polynomial p over C, where ,0 is a generator of r n N. Choosing p with
p(O) = 0 and p(). -1) = 1 for every eigenvalue A -I- 1 of X( '0), we get p(X(;o) - Id) =
prP - Id. D

Multiplying both sides of the identity in Lemma 20 by an integral as in the proof
and transforming the right-hand side in the same way, we see that

1 L g(n-l~n)trt(Odn = 1 L g(~n)tr(t(~)prP)dn,
rnN\N eEf' reg nAN rnN\N eEf'r,,~nAN

now for any 9 E Co(AN). Applied to g(y) = f(x-1yx), this shows, after integration
over a compact set, that

1 (L f(x-l~x)t.rt(~)- trl(~~,t(x,x))XP,uo,ul(X)dX = 0,
rnP\G eEZ\f"r"p;np

where XP,UO,Ul = XP,uo - XP,Ul' One can check that both terms depend linearly on
1l] - 1l 0 • In view of Kr:g1 P f t ( x, x) = I(~egf t ( ,x, ,x) and the similar property of"Y ,., , ,

XP,uo, sUIIlluing the last equation over P E ~ gives

Letting U] -+ 00, we see that

the integral heing at least conditionally convergent in the obvious sense.
The regular part of the geometrie side of the trace formula now becomes

l\G tr(J{f~f(x,x) - ~ XP,uo(x)J(~~~,,(x,x)) dx

L trt(~)1 f(x-l~x)(l- L xp,uo(x)) dx,
{e}rCz\r reg r e\0 P3e

where redenotes the centralizer of ~ in r.

34



The evaluation of the terms for the various conjugacy classes {~}r depends on
the type of~. If ~ doesn't belong to any cuspidal P, then

{

vol(re\G,;) pA( )

1 2 . huf au

f(x- 1~x) dx = SIn '2
re\G vol(re\Ge)PI«k )

2i sin B f (J,
depending on whether ~ is conjugate to au with u > 0 01' to k(J.

Let us turn to the remaining case ~ E P. We may choose the representative
~ in such a way that P E ~ and ~ E AN. FrOln [19, Lemlna 8.1] it follows that
there exist Q E ~ and , Ersuch that ~ E ,-IQ, =1= P and hence , E r QP(w).
Moreover, since Ge = Zn-e1 Ane für a unique ne E lV, r e= Ge n pn r = Z. In this
situation, the lemlna just cited teils us that P -=I- Q. If Q = N' A'Z is the Langlands
decomposition üf Q, then G,e,-l = Zne -1 A'nefor a unique neE N'. ThllS, in the
notation of Proposition 11,

I -1 -1 (), = ne gQ wQP , algpne,

where I = HQP(,) is uniquely determined by ~, even independently of the choice
of P in view of H PQ ( ,-1) = HQP( ,).

The contribution fronl {~}r now becomes trt(~) times

r f(x-l~x)(l- Xp,uo(x) - X,-lQ"uo(x))dx
}Z\G

= r j !(k-1n-1ap,unk:) r ((1- XP,uo(a) - XQ,uo(,an-e1n ))dadndk,
}Z\K N }nzlAUe

where ap,u = ne~nel. The inner integral equals

L(1- xp,uo(a) - XQ,uo(ge/wQp(-y)a/gpan)) da.

Here the first characteristic function is nonzero for H(gpa) > Uo, and the second one
for H(algpan) > uo. So the integral equals 2uo + I +H( kpn), and the contributioll
from {~}r can be transformed to

tr t(~) ( A A). I I (2uo +1)Pf (au)+Tf (au) .
2 8111h ~

If f is smooth and ](-finite, Proposition 6 iOlplies

2Tt(au ) = IjO( au ) + 1[0 (a_u ) + (1 - O~'~l) e~,t (f)

- -2
1

p.V. [00 (e-irHp(€l + e-irHp ({)) tr(-Il'.,t+ir(J)J(e, ~ + i,.)-I J'(e, ~ + ir)) dr,
1r i-co

where J = J PoPo' The ternlS containing spectral data 01' the truncation paraIneter
Uo have to be rewritten so that they will finally cancel against analogous tenns on
the spectral side. First of all, by [16, Lemma 8.1], {~}r np = {~}rnp, and the only
cuspidals in \J which intersect {~}r are P and Q. Thus,

L =~L L
{e}rCz\r par PE~ {e}rnN crregnAN

Using Lemma 20, we finally we obtain
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Lemma 21. For K-finite fE Cü(G,e) and tE S)(G, X),

1 tr(Kf~f(x,x) - 2:xPluo(X)I(~"t(x,x)) dx
r\G P

" tr t(~)vol(re\ Ge) F A() " tr t(~)vol(re\ Ge) FJ((k )
L.J 2 . huf au + L 2· . 8 f 8_ Sln '2 _ l Sln

{OrCZ\rnyp {OrCZ\feil

" tr t(~) (A Po Po )+ L 4sinh.!! 21Fj (a u )+Ij (au)+If (a_ u )

{e}rCZ\f'p4r 2

+ L 2: tr(t(OprP)Ge- HPW /2 (1 - 8.,.,)0.,t(J)
PE'J eEf r"gnAN/fnN

+ 217rp.vL:e-(1/2+ir)HP(€) tr(7r.,!+ir(J)(Uold-~J(I':,~ + ir)-l J'(I':, ~ + ir)))dj,

wbere P = N AZ, and ~ (suitably chosen mod Z) detennines (), u and l as follows:
{~}G = {ke}G or {~}a = {aula, u > 0, and I = HQp(,), where, E rQP(w) and
P =f=. Q are tbe cuspidal subgroups containing~.

7 THE GEOMETRIe SIDE-SINGULAR PART

In this seetion we shall ealeulate the singular part of the geometrie side of the
trace formula. As before, let f E C~ (G, € ), t E S) (G, X) with X as in seetion 6. Since
f'sing = Up(f' n ZN), where P runs through all cuspidal subgroups and N is the
unipotellt radical of P ([16, Proposition 7.2]), the singular part can be transfonned
as

i\G tr (J(ji,~g(x, x) - ~ XP,Uo (x )J(~,'i~t(x, x)) dx - vol(f\G)f(l) tr t(l)

= 2: lim r (1- XPlUl(X»( 2: f(x-lex)trt(~)
PE;J Ul -00 Jrnp\G €Ef'nN

e#l

-Xp,uo(x)vol(f n N\N)-I L tr(t(Opr P
)1f(x-1nx) dn) dx

eErnN/fnN N

= L (J!.,(I) +u!~ool (1- XP,Ul(X)) L f(x-l~x)tr(t(~)(Id - prP))dx)
PE'S fnp\G eEf'nN

e#l

whith

J!.t(s) = 2: tr(t(OprP)1 (vOI(r nN\N) 2: f(x-l~,x)
eEf'nN/fnN N Z\G -yEfnN

ei'#1

- xp,uo(X)iN f(x--: I nx) dn) e(l-s)(Hp(X)+UP)dx,
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the exterior sum heing finite. With the help of the Poisson sumulation formula oue
can prove (see [16, Proposition 10.2]) that the integralover NZ\G ~ A x Z\K is
absolutely convergent to a hololllorphic function for ~s > o. Moreover, the second
term of the integrand is integrahle for ~s > 1:

Hence the first term of Jrt(s), nalllely,

ylt(S) = r '2.: f(x-l~x)tr(t(~)prP)e(1-s)(Hp(x)+uP)dx,
Jrnp\G {ef'nN

€#l

also has a merorllorphic continuation to »?s > 0, whose only possible pole is a simple
one at 8 = 1 with residue

~f y[t(s) = 2.: tr(t(~)prP)Ft(l).
{EfnN/rnN

Clearly, J~t( 1) equals the differcnce of the constant terms in the two Laurcnt series:

We may rewrite

Y!.,(s) = 2.: tr(t(~)prP) 1 ['" f(k-lap,_u~ap,uk)e-S(U+UP)du dk
eEf'nN Z\I< -00

e#l

= 2.: tr(t(np,v)prP )1 j'X> f(k-la_unvauk}e-SUdu dk
np v Er Z\K -00

v#o

= 2.: tr(t(np,v)prP)lvl- S r r f(k-1nvlk)lv'l''i-1dv' dk.
Er- JZ\K lvi /v>o

np,v

v:;to

If we define
(C±(s) = 2.: tr(t(np,v)prP)lvl-&

uPvEf'
±~>o

and recall from section 2 that
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we get another expression

for the residue of Y!.t. Comparing both, we see that

~~f(r±(s) = l: tr(t(~)prP).
eEf'nN/rnN

It is now easy to calculate that

lirn dd ((s - l)Yf
P

t (s)) = ! '" tr(t(~)prP)TfA(l)
s-l 8 ' 2 _ LJ

eErnNjrnN

+ 2
1

. Ern dd C8 -l)((i+Cs)Ff
K (k+ o) - (i_(s)FfK(k-o)).

?TZ -'-1 8' ,

We may express ([± in terms of the generalized zeta-function

((5, v) = l:(n +v)-",
n=O

namely,

c~±(s) = L tr(tCE)prP)((s,vt),
eET'nNjrnN

where vt is as in section 4. The well-known formula

lim (c(5, v) - _1_) = -1/;(v)
.'1-1 s-l

implies that

for ~v > 0

The remaining constit uent of the singular part, besides vol(r \G)f (1) tr t(1) +
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LPE;J Jft(l), is the surn over all P of

lim r (l-XP,ul(x)) L f(x-l~x)tr(t(~)(Id-prP))dx
Ul -<Xl Jrnp\G eErnN

e#l

= lirn r 1<Xl L tr(t(E)(Id - prP))f(k-lap,_u~ap,uk)e-(u+uP)dudk
Ul-oo JZ\J< Ul eEf'nN

e#l

= Um r 1<Xl L tr(t(np,v)(Id - prP))f(k-la_unvauk)e-Ududk
Ul -<Xl JZ\J< Ul -

np,vEf
v#O

= lim r j<Xl L tr(t(np,v)(Id - prPnlvl-1 f(k-1nvlk) dv' dk
Ul -<Xl JZ\J< -00 -

np,llEf
Vi /v>e-U1

= ~ L tr(t(np,v)(Id - prP
)) (Ivl-1Ft(1) + (27riv)-1 (FfCk+o) + Ff(Lo))),

np,vEr
v#O

where we were ahle to pass to the lilnit under the integral by clominated cünvergence.
With the notations of section 4 our expression hecomes

~ L ((trtt(Of(-ei"~ +trt~(Of(-e-i"t)Ft(1)
2 ~ n+v n+v

eefnNjrnN n=O e n=O e
aE( -1r,1r)

The first two series can be expressed in terms of ß1 für the last one we need

Lemma 22. If a E (-7r,rr), v E IR, v ~ Z, then

<Xl (_eio)n 7re- ivo

L n + v - -s-ln-1T-v-
n=-<Xl

Consequently,
00

nn=-<Xl
n#O

Proof. Substituting t- I for t in the second term, we get, for 0 < ~v < 1,

ß(v, _ei,,) + e- i " ß(l - v, _e- i ") = 100

t v - 1 (1 + ei"t) -I dt

= e-iv" l t V
-

1 (1 +t)-I dt = e- iV"B(v,l- v). 0

Let us collect the results of this section.
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Lemma 23. For K -finite f E cgo(G, c) a.nd t E 5)(G, X),

r tr (I{j:~g(x, x) - L XP,Uo (x )K~,f~t (x, x)) dx = vol(r\G)f(l) tr t(l)
Jr\G P

+ L L tr(t(OprP)GIJ"(1) - 2~i (t/J(vt)Fj«k+o) - t/J(ve)Ff(Lo)))
PE'J eEf'nN /fnN

+ L [~ _L ((ß(vt, _e
io

) trtt(O + ß(ve,_e-
io

) tr t~(mFt(1)
PE';} eEfnN/fnN

aE( -1T,11") ettrnN . +
+e-w.e ~ trtt(€) (pK (k+ o) +pK(k-o)))

2z Sln ?TV+ f fe

- ~i~~ m~ (log(2 cos ~ )Ft(1) + 4: (Fj«k+o) +Ff (Lu)))]

+ L L tr(t(~)prP)O(1- S",,)El.,t(J)
PE'J eEf'nN/fnN

+ LPovL: tr(..-•. !+ir(J)(uold - ~J(t:, ~ + ir)-l J'(t:, ~ + ir))) dr),

where m~ is the multiplieity of _eia as a.n eigenvalue oE x(np,l)'

The geometrie side of thc trace formula is obtained by adding the farmulae frol11
Lemmas 21 and 23. The last terms of these fonTIulae may be written as sums over
rreg n PIr n P and rsing n PIr n P, respective1y, and since

cpp(t, 1, c, s) = L c(zpp(~)-l )e-8Hp(e)t(~)prP,

eEf'np/rnp

2~PovL:trc(t, 1,t:, ~ + ir) tr(..-•. !+ir(f)(uold - ~J(t:, ~ +ir)-l J'(t:, ~ + ir))) dr,

where J = JPo Po' This term will acenr on the speetral side as well, thus will be
canceled.

8 TUE SPECTIlAL SIDE

Suppose that f E C~(G,c) is J{-finite and t E S)(G, X) as before. Dur aim in
this section is to obtain an expression for

in spectral terms, where the integral is at least conditionally convergent as explained
in the beginning of section 6.
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By our assumption on X, Hx = Hx(e). As one knows, 7f~iS(f)T~is(t) is of trace
dass (we shall see this for nl0re general f in the proof of Theorem 25 below), while
7f~on(f) T~on (t) := pcon 7fX (f)TX(t) has an explici t description by Proposi tion 18:

where, for shortness, 7f~~;(x) = 7r~,8 (X ) 0 Id V~C&t. Using the fact that C(t, 1, .)7f~~.t (f)
is an integral operator in H~ 0 v~cst with kernel

belonging to 1t(~l€),(8ll-s)®Endv~cst "'J ('H~lS®V~cst)0 (1t~lS®V~cst)* (cf. Lemma 2),
one shows by a formal manipulation [16, Prop. 5.2] that 7r~on(/)T~on(t)is an integral
operator with kernel

Kf~t(x, y) = 4
1

. r E(t ® X, (8,1 - 8)Kf,t,~,s, (x, V»~ d8,
7rZ J~h=l/2

where E(tl ® t21 (81,82),4>10 4>2,(Xl,X2) = E(tl,<Pt,8J, X1) 0 E(t2,4>21821X2) is
the Eisenstein series for r x f\G x G. Since f is li-finite, ](/,t'~l8 is a finite linear
combination of terms 4> 04>', and Lemma 17 implies that

r (A U1 0Aul)trE(t0x,(8,1-s)'[(/lt'~I~,(X,X»dx
Jr\G

= 2Ul tr(C(t, 1, s )7r~:;(f») - tr(C' (X, w, 1 - 8 )C(t, w, s }7r~:; (f»)

+ 2s ~ 1 (e(28-I)U, tr (C(t, w, 1 - s)7r~~I -8 (J)) - e(1-28)U, tr(C(t, w, s)7r~::(J)) ) .

Inserting this, we get

r (AU1 0 AuJ tr [(IOt(x, x) dx = 2
U1 100

tr(G(t, 1, ! + ir)7rcSi+· (f)) dr
Jr\G ' 7T -00 ~, 2 Ir

- ..!-jOO tr(C'(x,w, t - ir)C(t,w, ~ + ir)7rcS\+. (f») dr47r -00 ~, '! Ir

1 JOO ( 1](c,-r) -1](c,r) sin2ruJ )+ 47r -00 cOS(2rul) tr 2ir + 2r tr(1](c, r) + 1](€ 1 -r») dr,

where, for shortness, T]( € 1 r) = C(t, w, -2
1 +ir )7T CS

\ +. (I), an operator of finite rank.
~ l '! Ir

The other contribution to ](/,t is

](dis = K t _ [(conf,t /, f,t'

which is, of course, the kernel of 7T~iS(f)T~iS(t). Thus,

r trI<1::(x,x)dx = tr(7rclxiS(f)TxcliS(t»).
Jr\G '
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It reluains to consider ](P,f,t. Denoting again XP,UO,Ul = XP,Ul - XP,uo, then

[ LXP,UO,Ul (x) tr !(P,j,t(X, x) dx = L r xP,UO,Ul (x) tr !(P,f,t(X, x) dx
}r\G P PE;l }rnp\G

= L tr(x P,UO,Ul Tpp(t, 1)7fp,x(f»).
PEtt

Here we have to take the trace of an operator in EB PE;J Hp,x' After Fourier trans

form (cf. section 5) the corresponcling operator in L2(! + iIR, g~) 0 H~ 0 v~cst

is convolution with the Fourier transform of XP,UO,Ul times multiplication with
G(t, 1, s)7f~~~(f). Integrating the kernel of this operator over the diagonal, we get

_U_l_-_u_o100

tr(C(t,l, ~ + ir)7fCSi+, ,Cf») d7'
27r -00 ~':2 n

(cf. [16, Lemma 6.3]). Combining aur results, we now obtain the spectral side of
the trace formula:

[ tr(!(f,t(X,X) - LXp,uo(X)!(P,f,t(x,x») dx = [ trK1,i~(x,x)dx
}r\G P }r\G

+ Ern r ((Aul 0 AuJ tr !Cj~t(x,x) - L XP,UO,Ul (x) tr !(P,j,t(x, x») dx
Ul-OO}r\G P

= tr (1l"~is(J)T~iS(t)) - 4~I: tr (C' (x, w, ~ - ir )C(t, w, ~ + ir )1l"~~~+ir(J)) rlr

+ ~ tr(G(i, w, ~ )7rcSl (f») + Uo 100

tr(G(i, 1, t + i7') 7rcsl+, (f») dr
4 t:':2 27r -00 t:':2 Ir

(cf. [16, Prop. 6.4J). Differentiation of the functional equatian for C yields

C(X,w, 1- s)C'(X,w,s) = C'(X,w, 1- s)C(X,w,s).

Thus we may transform Olle of the integrands as

tr(C'(x,w, l - s)G(t,w,s)7r~:;(f») = tr(G(x,w, 1- s)C'(X,w,s)7r~:;(f)G(t,1,s»)

= tr(C(i, w, 1 - s)C'(X, w, s)7r~:;(f»).

vVith the help of Lemma 19 we may express C in terms of R and C 01' in tenns of
J and c:

G(t, w, s)11lt:0v~c.t = Jto(6, s) ® c±(t,w, c, s),

where J~o is connected with JPo Po like R~o is with R Po Po' (In the adelic pieture, C
splits into a tensor product of local intertwining operators at a11 places of Q, anel
J is just the contribution from the infinite place.)
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+

Lelnma 24. If f E Cö (G, e) is ](-finite, t E .fJ(G, X), then

r tr(KI,t(X, x) - L Xp,uo(x)I(p,J,t(x, x)) dx
Jr\G P

= -~p.v.lOO tr(c(t,w,e, ~ - ir)c'(x,w,e, ~ + ir))e~,!+ir(f)dr
411" -00

+ tr(lI"~i·(f)T~i.(t)) + ~ tr c+(t, w, E, !)((1 - 0.,.,) 0., t (f) + 20. ," 0., (f))

+ ~p.v.1CX) tr c(t, 1, e, ~+ir) tr(11"t 1 +ir(f)(uold - ~J(e, ~+ir)-1JI(e, ~+ir))) dr.
211" -00 'l 2

Comparing the geometrie side (Lemlnas 21 and 23) with the spectral side of
the traee formula just derived, we see that the terms containing the truncation
parameter Uo and the logarithmic derivative of the intertwining operator J cancel.
All other terms are invariant distributions not depending on the choice of !(.

Theorenl 25. Let f E C1(G,e) and t E .fJ(G,X), where Zer, xl z = eId. Tben
we bave tbe following equality of absolutely convergent integraJ-series:

vol(r\G)f(l) tr t(l) + L tr.t~)u (2/Ft(au) + IJ"(au) + IJ"(a_ u))
4S1n 2"

{e}rCZ\f"plLf

'" trt(e)vol(re\Ge) pA() '" trt(e)vol(re\Ge)pK(k )
6 2 sinh ~ I a u + 6 2i sin 8 I ()

{e}rCZ\f'hyp 2 {e}rcz\f\u

+ L L tr(tCOprP )GI?(I) - 2~i (,p(vt)F[Ck+o) - ,p(ve)Ff(Lo)))
PE;j eErnN/rnN

+ L [~ L ((ß(vt,-eiC»trtt(~)+ß(ve,-e-i")trt~(mFt(l)
PE'J eEfnN/rnN

aE( -rr,rr) er;.rnN . +
+ e-w.e ~ trtt(e) (FK(k+o) + FK(k_o)))

2z Sln 11"V+ I Ie
tr t (1) P ( a A a ( K K) ]- dimV 1na log(2cos 2" )FI (1) + 411" FI (k+o) +PI (k- o))

= - 4~p·vL: tr(c(t, W,E,! - ir)c'(x, W,E, ~ + ir))0.,Hir(l) dr

+ ~ (1 - 0.,.,) tr(c(t, w, E, !) - c(t, 1, E, m0.,t (f) + ~o.,., tr c+(t, w, E, ! )0., (I)

+ tr(11"~iS(f)r~iS(t)),

where u, 8, I depend on the corresponding ~ as explained in Lemmas 21 and 23,
and tbe notations are as there.

Proof. We shall show that all ternlS are absolutely convergent for f E C~ (G, e) (ef.
the remark after Lemma 1). Since the formula is true for K-finite f E Cü(G,e),
it extends by continuity.
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We have seen in section 2 that Ft(a), F[(k), Ff(k±o) andlfO(a) are tempered

distributions. Moreover, Ft is a continuous map from C2
( C l e) to the Schwartz

space on A, whence e~ l+ir is continuous from C2 (G,e) to the Schwartz space on
,~

~ + iR by Lemma 2. With the estimate from Proposition 16 this iUlplies that
the integral on the spectral side i8 a tempered distribution, too. Note that the
embedding C~(G, e) -+ C2 (G, e) i8 continuous.

Next we show that 1r~i8(/) = 1r~U8(/) + 1r~es(/) is of the trace dass for f E

C~(C, e). This is well-known for 1r~US(/) (see [OvV]). By Theorem 12, 'H~es is a
finite direct SUffi of spaces G-isomorphic to 'H~,!J or its invariant subspace·for SOlne
.5 E [0, 1], so our assertion follows from Lemma l.

As #(r\ suppt) < 00, all sums except that over I'hyp are finite. The remaining
one equals

f L I(x-l~x)trt(~)dx,
Jr\G tEr

.. hyp

which i8 absolutely convergent for f E Cü (C, e) by the way it arose. The methods
of [22], Lemma 11.4, would only imply convergence for 1 E CP(G,e), °< P < 1,
so we proceed differently. Since all the other terms extend to continuous linear
functionals on C~ (C, c), so does this Olle. In particular, let to be the characteristic
function of any double r-coset in f' and 10 E C~(G') a universal majorant for all
elements ofC~(C,c) (for its existence, see [22], p. 95). Then, for any monotonely
increasing sequence {/k }k::l C Cü (Gf

) of positive functions tending to /0 in C~(G'),

where v is a continuous seminOlTIl on C~(G'). By the theorem of B. Levi, the SaIne
is true for k = 0, which was to be proved. 0
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