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ABSTRACT. We show that a square zero, degree one element in W (V ), the Weyl algebra on a
vector space V is equivalent to providing V with the structure of an algebra over the properad
Cobar(coFrob).

1. INTRODUCTION

We fix a ground field k of characteristic zero. Let V be a graded vector space over k, let SkV
be the k-th symmetric product of V , let SV = ⊕∞k=0S

kV be the symmetric algebra of V , and
let ŜV denote the completion of SV. There exists a star product,

? : Hom(SV, ŜV )[[~]]⊗k[[~]] Hom(SV, ŜV )[[~]]→ Hom(SV, ŜV )[[~]]

which is an associative, noncommutative, degree zero map of k[[~]] modules. We call Hom(SV, ŜV )[[~]]
together with this star product the Weyl algebra of V and denote it by W (V ). The star product
is determined by its action on f, g ∈ Hom(SV, ŜV ) and decomposes in powers of ~ by

f ? g = f ◦1 g + ~f ◦1 g + ~2f ◦2 g + · · ·

We are interested in degree negative one elements H ∈ W (V ) satisfying H ? H = 0. Any
element H ∈ W (V ) in the Weyl algebra comprises a collection of operators

(
σ(g)

)j
i

: SiV →
SjV , g, i, j ≥ 0: decompose H into pieces H = σ(0) + ~σ(1) + ~2σ(2) + · · · where each

σ(g) : SV → ŜV and decompose each map σ(g) into operators
(
σ(g)

)j
i

: SiV → SjV . The

condition thatH?H = 0 summarizes an infinite collection of relations among the maps
(
σ(g)

)j
i
.

In this paper, we prove that a degree one element H ∈ W (V ) satisfying H ? H = 0 is
the same as affording the vector space V with the structure of an algebra over the properad
Cobar(coFrob). We make a technical assumption on H that

(
σ(g)

)j
i

= 0 if either i or j or both
are zero in order to avoid certain problems which arise in the theory of properads.

Roughly speaking, a properad [5] is a construct that models composable operations to and
from the tensor powers of a vector space. In the same way that operads govern algebras
with many-to-one operations, properads govern algebras with many-to-many operations, such
as Lie bi-algebras, and are built to accomodate the “higher genus” phenomena which may
arise from multiple compositions, such as the involutive relation possessed by certain biLie
algebras, or the Frobenius compatibility in Frobenius algebras. The homology of an algebra
over Cobar(coFrob) is a (commutative) Lie bialgebra satisfying the involutive relation, but at
present, is not known whether the Cobar(coFrob) properad is a resolution of the involutive Lie
bialgebra properad.
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It is no surprise that degree one, square zero elements of the Weyl algebra make up the
data of an algebra over a properad. The work about which we are reporting consists mostly of
identifying the properad precisely, and working through the signs and combinatorial factors. A
motivation for the work is that elements of square zero in the Weyl algebra appear in a number of
settings—they figure prominently in a mathematical interpretation of quantum field theory that
grew from the BV-quantization scheme [3]; and the deep compactification, gluing, and analysis
theorems and conjectures in symplectic geometry can be summarized as a square zero, degree
one element H in the Weyl algebra of a vector space defined by the Reeb orbits of a contact
manifold [2]. The involutive Lie bialgebra in homology is known to contact geometers [1], see
also [4].

2. REVIEW OF SYMMETRIC AND TENSOR ALGEBRAS

Much of the paper concerns signs and combinatorial factors, so we take pains to fix notation
and detail certain basic constructions in the symmetric and tensor algebra. For any element
v in the graded vector space V , let |v| denote the degree of v. Let TnV and TV denote the
corresponding tensor power and tensor algebra of V . The tensor product is denoted by ⊗ and
the symmetric product by �. The element v1 ⊗ · · · ⊗ vk ∈ T kV will be denoted by v̄.

If σ is in Sk, the symmetric group on k letters, then let ε(σ, v̄) be the Koszul sign, i.e. the
sign of the permutation induced by σ on the odd entries of v̄. Then there is a left Sk-action on
T kV defined as the linear extension of σ(v1 ⊗ · · · ⊗ vk) = ε(σ, v̄)vσ−1(1) ⊗ · · · ⊗ vσ−1(k). The
image of v̄ under the action of σ will be denoted σv̄.

The sign ε(φ, v̄) where φ is the permutation which reverses the order of v̄ appears occa-
sionally; denote it by ||v̄||. This sign depends only on the number of odd entries of v̄; if this
number is 0 or 1 mod 4, the sign is positive; if it is 2 or 3 the sign is negative. It also satisfies
(||ū||)(||v̄||)(||ū⊗ v̄||) = (−1)|ū||v̄|.

A k, ` shuffle σ is an element of Sk such that σ(1) < · · · < σ(`) and σ(`+ 1) < · · · < σ(k).
Let the set of shuffles be Sk,`. An unshuffle is an element of S−1

k,` . If τ is an unshuffle, then
v̄` and v̄k−` should be taken to mean the first ` and the last k − ` factors of τ(v̄), respectively.
The suppression of τ should not cause much confusion. Any permutation in Sk can be factored
uniquely as the composition of a k, ` shuffle with a permutation from S` ⊗ Sk−` and uniquely
as the composition of a permutation from S` ⊗ Sk−` with a k, ` unshuffle.

The space SkV can be obtained as the quotient of T kV by the subspace spanned by v − σv,
where v ranges over T kV and σ ranges over Sk. Let the symmetric class of an element v of
T kV be denoted [v]; let sk : T kV → SkV denote the projection v 7→ [v]. Also, in characteristic
zero, SkV can be embedded in T kV via the symmetrization map ιk : SkV → T kV defined by

ιk[v] =
1
k!

∑
σ∈Sk

σv.

The superscript k in ιk and sk will usually be suppressed. Observe that sι[v] = 1
k!

∑
[σv] = [v]

and ιs(v) = 1
k!

∑
σv. If v ∈ T kV satisfies σv = v for all σ ∈ Sk, then ιsv = v. The following
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lemmas concern the effect of symmetrization part of a vector in the tensor algebra. The first
asserts that the outcome of symmetrizing part of a vector followed by symmetrizing the entire
vector is the same as simply symmetrizing the entire vector. It is straightforward to check and we
omit the proof. The second asserts that

(
k
`

)
(s` ⊗ sk−`)ι : SkV → S`V ⊗ Sk−`V approximates

a sum over unshuffles S−1
k,` , and

(
k
`

)
s(ι` ⊗ ιk−`) : S`V ⊗ Sk−`V → SkV approximates a sum

over shuffles Sk,`. It is also straightforward to check but we include the proof since it explains
the combinatorial factors.

Lemma 2.1. If ` ≤ k, sk(idk−`⊗(ιs`)) = sk

Definition 2.1. Let µk,`, νk,` : T kV → T kV be given by v 7→
∑
σv, where the sum is taken

over unshuffles S−1
k,` for µ and over shuffles Sk,` for ν.

Lemma 2.2. The following diagrams commute:

SkV

(k
`)(s⊗s)ι

��

T kV

µk,`

��

soo

S`V ⊗ Sk−`V T kVs⊗s
oo

S`V ⊗ Sk−`V
ι⊗ι //

(k
`)s(ι⊗ι)

��

T kV

νk,`

��
SkV ι

// T kV

Proof. Following the first diagram along the top and left gives(
k

`

)
(s⊗ s)ιs(v̄) =

1
`!(k − `)!

(s⊗ s)
∑
σ∈Sk

σv̄

=
1

`!(k − `)!
(s⊗ s)

∑
τ1∈S`

∑
τ2∈Sk−`

∑
ρ∈S−1

k,`

(τ1 × τ2)ρv̄

=
∑
ρ∈S−1

k,`

[v̄`]⊗ [v̄k−`]

= (s⊗ s)(µk,`v̄).

Similarly, for the second diagram, we get(
k

`

)
ιs(ι⊗ ι)([ū]⊗ [v̄]) =

1
`!(k − `)!

∑
ρ∈Sk,`

∑
τ1∈S`

∑
τ2∈Sk−`

ρ((τ1ι[ū])⊗ (τ2ι[v̄]))

=
∑
ρ∈Sk,`

ρ(ι⊗ ι)([ū]⊗ [v̄])

= νk,`(ι⊗ ι)([ū]⊗ [v̄]).

�

The maps µk,` and νk,` are defined in the tensor algebra, but by abuse of notation, we use
µk,` and νk,` to refer to the compositions

(
k
`

)
(s ⊗ s)ι and

(
k
l

)
s(ι ⊗ ι) defined in the symmetric

algebra as well.
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Definition 2.2. For i, j, k,m, n ≥ 0, there is a partial gluing map ◦k : Hom(TmV, TnV ) ⊗
Hom(T iV, T jV )→ Hom(Tm+i−kV, Tn+j−kV ) given byϕ◦kψ = (ϕ⊗id⊗j−k)◦(id⊗m−k⊗ψ).
There is also an induced partial composition map, by abuse of notation also denoted ◦k :
Hom(SmV, SnV )⊗Hom(SiV, SjV )→ Hom(Sm+i−kV, Sn+j−kV ) defined by

g ◦k f =
(
m+ i− k

i

)(
j

k

)
s((ιgs) ◦k (ιfs))ι

Remark 2.1. By convention, id⊗` = 0 when ` < 0, so that the partial gluing map ◦k is zero
when k > m or k > j.

Remark 2.2. Note that the definition of g ◦k f for maps g : SmV → SnV and f : SiV → SjV

extends to all of Hom(SV, ŜV ) since there are only finitely many contributions to ◦k.

Given maps between symmetric products of V , one can precompose with s and postcompose
with ι to obtain maps between tensor products of V . The following proposition indicates the
combinatorial factor introduced when comparing the result of the partial gluing prior to passing
from symmetric to tensor (the left hand side) and the partial gluing after passing from symmetric
to tensor (the right hand side).

Proposition 2.1. Let f : SiV → SjV and g : SmV → SnV . Then

(j + n− k)!k!
n!j!

ι(g ◦k f)s =
∑

σ∈S−1
i+m−k,i

τ∈Sj+n−k,j−k

τ((sgι) ◦k (sfι))σ

Proof. The proof is a commutative diagram. The composition along the righthand side of the
diagram below computes

∑
σ∈S−1

i+m−k,i

τ∈Sj+n−k,j−k

τ((sgι) ◦k (sfι))σ,

the righthand side of the equality in the proposition. It will be shown that the composition along
the top, lefthand side, and bottom of the diagram computes the lefthand side of the equality in



ALGEBRAS OVER Cobar(coFrob) 5

the proposition.

Si+m−kV

(id⊗f)µi+m−k,m−k

��

T i+m−kV

(id⊗fs)µi+m−k,m−k

��

soo

Sm−kV ⊗ SjV

id⊗((s⊗s)ι)
��

Tm−kV ⊗ SjV
s⊗idoo

id⊗ι
��

Sm−kV ⊗ SkV ⊗ Sj−kV

(s(ι⊗ι))⊗id

��

Tm−kV ⊗ SkV ⊗ Sj−kV
s⊗id⊗ idoo

id⊗ι⊗ι **TTTTTTTTTTTTTTTT T j+m−kV
id⊗s⊗soo

id
��

Sm−kV ⊗ T jV

ι⊗id

��

T j+m−kV
s⊗id

oo

s⊗id
��

SmV ⊗ Sj−kV

g⊗id
��

id⊗ι
00T j+m−kV

s⊗id // SmV ⊗ T j−kV

(ιg)⊗id

��
SnV ⊗ Sj−kV
νj+n−k,n

��

ι⊗ι // T j+n−kV

νn+j−k,n

��
Sn+j−kV ι

// Tn+j−kV

First, we check commutativity. The square and triangle near the middle of the diagram commute
by Lemma 2.1. The rectangles at the top and bottom commute by the construction of the shuffle
and unshuffle maps. Everything else commutes trivially. In order to see that the composition
along the lefthand side computes (j+n−k)!k!

n!j! f ◦kg, consider the following commutative diagram:

Si+m−kV

(id⊗ιfs)ι
��

Si+m−kV

(id⊗ιf)µi+m−k,m−k

��

(i+m−k
i )

oo

T j+m−kV
s⊗id //

ιs⊗ιs⊗id

((PPPPPPPPPPPP

s⊗id

��

Sm−kV ⊗ T jV

ι⊗(ιs)⊗s
��

T j+m−kV

s⊗idwwnnnnnnnnnnnn

id⊗s// TmV ⊗ Sj−kV

s⊗id
��

SmV ⊗ T j−kV
id⊗s //

s(ιg⊗id)

��

SmV ⊗ Sj−kV
νj+n−k,n(g⊗id)

��
Sj+n−kV

(j+n−k
n )

// Sj+n−kV

The left side of this diagram is g ◦k f and the right hand side is the left hand side of the previ-
ous diagram. Here everything commutes trivially except the triangle, which commutes due to
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Lemma 2.1. Since(
i+m− k

i

)(
j + n− k

n

)
=

(j + n− k)!k!
j!n!

(
i+m− k

i

)
j!

(j − k)!k!

this computes the left hand side of the equation in the proposition, completing the proof. �

3. THE WEYL ALGEBRA

In this section we define the Weyl algebra of a vector space V over a field k. The coordinate
free definition that we give will be a k[[~]] algebra on Hom(SV, ŜV )[[~]].

Definition 3.1. We define the Weyl algebra of V to be the k[[~]] algebra (W (V ), ?) where

W (V ) = Hom(SV, ŜV )[[~]]

and

? : W (V )⊗k[[~]] W (V )→W (V )

is defined for f, g ∈ Hom(SV, ŜV ) by

g ? f = g ◦0 f + (g ◦1 f)~ + (g ◦2 f)~2 + · · ·

One frequently encounters this ? product for a finite dimensional vector space V and “in
coordinates.” Traditionally, elements of V are denoted by q’s and elements of its dual space
V ∗ = Hom(V,k) are denoted by p’s (position and momentum). If {q`} is a homogeneous basis
for V with dual basis {p`} of V ∗, elements of Hom(SV, ŜV ) are power series in the p`’s and
the q`’s. Maps f : SiV → SjV and g : SmV → SnV are expressed in a standard form with all
the p’s on the right

(1) f =
∑

f j̄
ī
qj̄p

ī and g =
∑

gn̄m̄qn̄p
m̄.

Here, j̄, ī, m̄, and n̄ are multi-indices, and we will use the same notational conventions that we
do for tensor products: j̄k and j̄j−k denote the multi-indices consisting of the first k indices of j̄
and the last j−k indices of j̄ respectively, and φ(j̄) will be the reverse of j̄. We distinguish vec-
tors in the tensor algebra from the symmetric algebra by using a tensor symbol in the subscript:
if, for example, j̄ = (5, 2, 8), then qj̄ = q5 � q2 � q8 ∈ SV and q⊗j̄ = q5 ⊗ q2 ⊗ q8 ∈ TV. The

symbol δj̄
ī

is zero unless ī = j̄, in which case δj̄
ī

= 1.
The function f in Equation (1) for instance maps qk̄ = [q⊗k̄] to∑

σ∈Sk

ε(σ, k̄)δφī
σk̄
f j̄
ī
[q⊗j̄ ]

Note that the p’s act in “reverse” order, which gives the standard signs when translated to a
tensor algebra context for a graded vector space. In other words,

f = i!f j̄
ī
[q⊗j̄ ]p

⊗īι
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Lemma 3.1. The product g ? f is the free product on the formal power series in the variables
{q`, p`} subject to the relations

[p`, q`′ ] := p`q`′ − (−1)|p
`||q`′ |q`′p

` = ~δ``′

[p`, p`
′
] = [q`, q`′ ] = 0.

Proof. We want to show that the ~k term of gf using the above commutation relations is g ◦k f .
Using the relations to put the result of gf back in standard form with p’s on the right is a process
that involves commuting all the pm’s in g with the qj’s in f . As pm is moved to the right, each
occurence of pmqj is replaced by the two terms qjpm and ~δmj . We need to show that the signs
and combinatorial factors are correct.

Moving a variable pm to the right as far as possible involves the sum of moving it past all the
qj with replacing it with ~δmj as it passes each qj . This process induces a recursive sequence of
choices, for each pm, of moving all the way to the end or replacing with an ~δmj on one of the
remaining qj . A term with an ~k coefficient will come from the choice of |m̄| − k of the pm

to move all the way to the end, with the remaining k of the pm interacting with some qj . This
further involves the choice of k of the qj and a permutation of Sk to govern which of the k pm

interacts with which of the k chosen qj . Then the ~k term of the product gf , put in standard
form, is the following sum over σ ∈ S−1

m,m−k, τ ∈ S−1
j,k , and ρ ∈ Sk∑

εδm̄k

ρj̄k
qn̄qj̄j−k

pm̄m−kpī

The signs ε will be reconciled at the end of the argument.
Let us evaluate the above expression on [q⊗v̄] ∈ Sm−k+i. First, q⊗v̄ is symmetrized, and then

p⊗m̄m−k is evaluated on the firstm−k factors of each summand of the symmetrization while p⊗ī

is evaluated on the following i factors of each summand. Using the unique representation of a
permutation in Sm−k+i as the composition of an element of Sm−k×Si with an (m−k+i,m−k)-
unshuffle, gf([q⊗v̄]) is the following sum over π ∈ S−1

m−k+i,m−k, η ∈ Sm−k, θ ∈ Si, and σ, τ, ρ
as before: ∑

εδm̄k

ρj̄k
δ
m̄m−k
ηv̄m−k

δīθv̄i
[q⊗n̄ ⊗ q⊗j̄j−k

]

Now, let us evaluate g ◦k f applied to the same element [q⊗v̄]. By definition,

g ◦k f =
(
m+ i− k

i

)(
j

k

)
m!i!s(ιsq⊗n̄p⊗m̄ιs) ◦k (ιsq⊗j̄p

⊗īιs)ι

To apply this to [q⊗v̄], we begin by symmetrizing q⊗v̄. Again, it is more convenient to view this
as an unshuffle followed by a product of permutations from Sm−k and Si. So we write

ι[q⊗v̄] =
1

(m− k + i)!

∑
q⊗ηv̄m−k

⊗ q⊗θv̄i

Next the second factor is resymmetrized, which has no effect since it is already symmetric, and
then ιsq⊗j̄p

⊗ī is applied to it, yielding

m!i!
(m− k + i)!

∑
εδīθv̄i

q⊗ηv̄m−k
⊗ ιsq⊗j̄
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We view each summand permutation in the symmetrization of j̄, again, as the composition of
product permutations with a (j, k)-unshuffle. We will sum over ρ ∈ Sk and (j, k)-unshuffles τ ,
but incorporate the Sj−k permutations with ι and s. So this is

(j − k)!
j!(m− k + i)!

∑
εδīθv̄i

q⊗ηv̄m−k
⊗ q⊗ρj̄k ⊗ ιsq⊗j̄j−k

Applying ιs to symmetrize the first two factors corresponds to first symmetrizing each one
individually and then shuffling them with an (m,m − k)-shuffle σ−1. Since they are both
already symmetric, this gives

(j − k)!(m− k)!k!
m!j!(m− k + i)!

∑
εδīθv̄i

σ−1(q⊗ηv̄m−k
⊗ q⊗ρj̄k)⊗ ιsq⊗j̄j−k

Applying ιsq⊗n̄p⊗m̄ to the first factor gives

(j − k)!(m− k)!k!
m!j!(m− k + i)!

∑
εδīθv̄i

δm̄σ−1ηv̄m−k⊗ρj̄kιsq⊗n̄ ⊗ ιsq⊗j̄j−k

=
(j − k)!(m− k)!k!
m!j!(m− k + i)!

∑
εδīθv̄i

δ
m̄m−k
ηv̄m−k

δm̄k

ρj̄k
ιsq⊗n̄ ⊗ ιsq⊗j̄j−k

By Lemma 2.1, symmetrizing this whole expression means that we can ignore the symmetriza-
tions on n̄ and j̄j−k. Including the combinatorial factor

(
m+i−k

i

)(
j
k

)
m!i!, we obtain∑

εδīθv̄i
δ
m̄m−k
ηv̄m−k

δm̄k

ρj̄k
[q⊗n̄⊗j̄j−k

]

just as before.
Finally, we check equality of the signs. ε(π, v̄), ε(η, v̄m−k), ε(θ, v̄i), ε(τ, j̄), ε(ρ, j̄k), and

the sign ε(σ, m̄) are all on both the right and left-hand side. On the left side, there are also the
signs (−1)|j̄j−k||m̄m−k|, ||m̄k||, and ||v̄||, the first from commuting the noninteracting qj and pm

past one another and the second and third the induced sign of applying a tensor product of p’s
to a tensor product of q’s. These are not literally the correct signs, but they coincide whenever
the corresponding δ functions are nonzero. On the right, there are the signs ||̄i|| and ||m̄|| for
the same reason, along with the sign (−1)|f ||v̄m−k| from applying f to the tensor factors on the
right. Expanding either side with the relations

||m̄m−k|| ||m̄|| ||m̄k|| = (−1)|m̄k||m̄m−k|

||v̄i|| ||v̄|| ||v̄m−k|| = (−1)|v̄i||v̄m−k|

along with noting that |m̄k| = |j̄k|, |m̄m−k| = |v̄m−k|, and |v̄i| = |̄i| when the corresponding δ
functions are nonzero yields the equality of the two signs. �

Remark 3.1. The significance of the p-q description of the Weyl algebra is that the symplec-
tic nature of the situation is illuminated: Hom(SV, ŜV ) can be viewed as (a completion of)
the polynomial functions on the symplectic vector space V ⊕ V ∗. As usual, the set of such
functions forms a Poisson algebra. In the notation of this paper, f ◦0 g defines a graded
commutative associative product and the Poisson bracket {f, g} has the expression {f, g} =
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f ◦1 g − (−1)|f ||g|g ◦1 f . The star product corresponds to a deformation quantization of this
Poisson algebra. We have the expected relations; e.g., {f, g} = lim~→0

f?g−(−1)|f ||g|g?f
~ .

4. THE FROBENIUS COPROPERAD

The main reference for this section is [5]. A properad is, roughly, an algebraic structure
that models composable operations to and from the tensor powers of a vector space. In the same
way that operads govern gebras with only many to one operations, properads govern gebras with
many to many operations, such as Frobenius and biLie algebras. The dual notion of a properad is
a coproperad, and there are a number of ways to obtain a coproperad from a given properad, and
vice versa. The most naive uses finite dimensional pieces of a properad and dualizes each piece
individually. Starting from the properad P, this yields the coproperad coP. A more conceptually
elegant method of dualization is the bar or cobar construction. The main result of this paper,
again, is that degree one elements of square zero in the Weyl algebra W (V ), as discussed in the
previous section, are in one to one correspondence with Cobar(coFrob)-algebra structures on
V .

To describe algebras over Cobar(coFrob), we first define the Frobenius coproperad coFrob,
then the cobar construction, and give a presentation of the properad Cobar(coFrob). Finally,
we will define algebras over a properad and obtain the relations on an algebra over the particular
properad in question.

4.1. Preliminaries; Notation. We now recall the notions of properad and coproperad, and
algebras over properads, cf. [5].

Definition 4.1. A finite n-level directed graph G consists of a triple ({Vi}, {Fv}, {ϕi}), given
by the following data:

(1) A finite ordered set Vi of vertices on level i, for i ∈ {0, . . . , n + 1}. V0 and Vn+1 are
called the incoming and outgoing vertices of the graph G, respectively.

(2) For each vertex v ∈
⋃
Vn, two finite sets F in

v and F out
v of directed incoming and outgo-

ing half-edges incident at v, with |F in
v | = 0 and |F out

v | = 1 for v ∈ V0, and |F in
v | = 1

and |F out
v | = 0 for v ∈ Vn+1. We denote by Fv = F in

v t F out
v the disjoint unit of the

incoming and outgoing half-edges.
(3) For i ∈ {0, . . . , n}, a bijection

ϕi :
⋃
v∈Vi

F out
v →

⋃
v∈Vi+1

F in
v

that joins outgoing half-edges of one level and incoming half-edges of the next. ϕ0 and
ϕn reorder the overall incoming and outgoing edges of the graph.

Two graphs ({Vi}, {Fv}, {ϕi}) and ({Uj}, {Gu}, {ψj}) are equivalent if there are order-preserving
bijections on the vertices on each level and bijections of the incoming and outgoing-half-edges
which respect the joining bijections ϕ and ψ. A L,R labelling of a graph is a pair of bijections
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from the set L to the incoming level one half-edges, and a bijection from the outgoing level n
half-edges to the R.

The set of finite n-level directed graphs up to equivalence is denoted by G (n).

Definition 4.2. The geometric realization of a graph ({Vi}, {Fv}, {ϕi}) is the topological space,
defined as the quotient of the disjoint union(

qv∈S
Vi
∗v
)
t
(
qf∈S

v Fv
If

)
,

where ∗v denotes a one point space and If denotes a copy of the unit interval [0, 1], divided by
the equivalence relation generated by

(1) 0f ∼ ∗v if f ∈ Fv.
(2) 1f1 ∼ 1f2 if ϕi(f1) = f2 for some i.

G is called connected if its geometric realization is connected. The set of finite connected
n-level directed graphs with k incoming and ` outgoing edges is denoted G

(n)
c (k, `), and let

G
(n)
c = tk,` G

(n)
c (k, `).

An S-bimodule in the category of graded vector spaces (chain complexes) consists of a set of
graded vector spaces (chain complexes) {P (m,n)} for m,n ≥ 0 with commuting left Sm and
right Sn actions. The category of S-bimodules is denoted by C . There is a functor

�c : C × C → C

which acts on two S-bimodules P and Q by taking

P �c Q(k, `) =
⊕

G
(2)
c (k,`)

⊗
v∈V2

P (|F out
v |, |F in

v |)⊗
⊗
v∈V1

Q(|F out
v |, |F in

v |)
/
∼,

where |X| denotes the number of elements of a finite setX , and the equivalence relation consists
of the following two parts. For one, we divide out by

(
⊗

pi ⊗
⊗

qj){{Vi},{Fv},{ϕ0,ϕ1,ϕ2}}

∼ (
⊗

σipiρi ⊗
⊗

τjqjηj){{Vi},{Fv},{ϕ0(
Q
η−1),(

Q
τ−1)ϕ1(

Q
ρi),(

Q
σi)ϕ2}}

This construction does not have the appropriate S-bimodule structure, so we must tensor over∏
v∈V2

Svout with
∏
v∈V3

Svin and similarly with the incoming. The other equivariance relation is

(
⊗

pi ⊗
⊗

qj){{Vi},{Fv},{ϕ0,ϕ1,ϕ2}}

∼ (σ−1
(⊗

pi

)
⊗ τ

(⊗
qj

)
){{Vi},{Fv},{τ−1ϕ0,σϕ1τ,ϕ2σ−1}}

where the action of τ and σ in the compositions with the ϕ should be taken as acting on blocks
of size equal to the number of outputs or inputs of pi or qj as appropriate. The actions on the pi
and qj themselves have signs as usual.
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In words, P �c Q(k, `) consists of connected two-level graphs with elements of Q labelling
the vertices on the first level and elements of P labelling the vertices on the second level. The la-
belling elements should be chosen from the pieces P (k′, `′) so that k′ is the number of incoming
flags at the vertex and `′ the number of outgoing flags.

Definition 4.3. Let I be the S-bimodule which has I(1, 1, 0) = k and I(n,m, χ) = 0 otherwise.

The functor �c, along with the identity object I , makes C a monoidal category. This means
that there is a natural transformation expressing the associativity of �c and two more expressing
that I is a left and right identity for �c.

Definition 4.4. A properad P is a monoid in the category C . This data comprises two mor-
phisms:

(1) A composition morphism µ : P �c P→ P, and
(2) A unit morphism ι : I → P.

Composition must satisfy associativity up to the natural transformation for associativity of �c

as well as left and right unit properties (e.g., µ ◦ (ι � id) ∼ id via the natural transformation
between I � P and P).

Definition 4.5. A coproperad C is a comonoid in the category C . This data again comprises
two morphisms:

(1) A decomposition morphism ∆ : C→ C �c C, and
(2) A counit morphism η : C→ I .

Decomposition must satisfy coassociativity (up to the natural transformation for associativity of
�c) as well as left and right counit properties dual to the unit properties.

Example 4.1. If (V, d) is a chain complex (whit differential of degree |d| = 1), then T kV
has the induced structure of a chain complex where d(v̄) = dv1 ⊗ v2 ⊗ · · · ⊗ vk + · · · +
(−1)|v1|+···+|vi−1|v1⊗· · ·⊗vi−1⊗dvi⊗· · ·⊗vk+· · · . If (V, d) and (V ′, d′) are chain complexes,
then Hom(V, V ′) has the induced structure of a chain complex with differential f 7→ d′f −
(−1)|f |fd. Thus, if (V, d) is a chain complex, then End(V )(m,n) := (Hom(TmV, TnV ), D)
is a chain complex, where D is the induced differential. There are commuting left Sm and right
Sn actions and the obvious composition maps, so End(V ) is a properad. Note that in the graded
context, the symmetric actions respect the grading, so that, for example, ψσ(v̄) = ψ(σv̄).

Definition 4.6. By definition, (V, d) has the structure of an algebra over the properad of chain
complexes P, if there is a properad morphism P→ End(V ).

Explicitly, this means that there are degree zero maps P(m,n) → Hom(TmV, TnV ) which
are equivariant with respect to both the Sm and Sn-actions, and such that composition in P
corresponds to actual composition of maps between tensor powers of V . Furthermore, the
differential d in P(m,n) corresponds to the differential D in the Hom complex.
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4.2. The coFrob coproperad. We define an object {coFrob(m,n, χ)} in the category C of
S bimodules and morphisms η : coFrob → I and ∆ : coFrob → coFrob �c coFrob as
follows:

(1) Form, n ≥ 1 and χ ≥ m+n−2 and of the same parity asm+n, we set coFrob(m,n, χ) =
k. This corresponds to the unique m to n Frobenius algebra operation of “genus”
χ−m−n

2 . For all other choices of m, n, and χ, coFrob(m,n, χ) = 0.
(2) All the Sm and Sn actions are trivial.
(3) The map η is projection onto the factor coFrob(1, 1, 0).
(4) The map ∆ is more involved to describe, and will be done below.

We first examine coFrob �c coFrob. This consists of all connected two-level trees labeled
by elements of coFrob of the appropriate grading, up to equivalence. Since the symmetric
group actions are trivial, only the information of the number of edges between two vertices is
important in a two-level graph, but not the actual combinatorics of how the flags are connected.
Therefore, a two-level tree with m inputs and n outputs marked with elements of coFrob up to
equivalence consists of:

(1) Partitions of {1, . . . ,m} and {1, . . . , n} into nonempty sets ui and vj , where ui denotes
the vertices on the first level and vj the vertices on the second level. This is taken up to
reordering of the vertices, with the induced sign.

(2) For each pair (u, v) from V1×V2, a nonnegative number e(u, v) of edges from u to v so
that the total number of edges e(u) =

∑
v e(u, v) and e(v) =

∑
u e(u, v) are positive.

(3) A weight χ for each u which is of the same parity and at least |u| + e(u) − 2, and
likewise for v.

Furthermore, the geometric realization of the graph must be connected. Then the decomposition
map ∆ takes coFrob(m,n, χ) ∼= k into the direct sum over such two level graphs of a tensor
product of coFrob(m′, n′, χ′). It is just the zero map on any zero summand and a combinatorial
factor ηG times the canonical isomorphism of k with k⊗i on the summand spanned by a graph
G where each factor of the tensor product is k. We define the combinatorial factor ηG as the
product over pairs (u, v) of vertices from V1 × V2 of 1

e(u,v)! .

Remark 4.1. coFrob can be interpreted in some sense as the naive dual of the Frobenius prop-
erad or as the Koszul dual of a commutative, rather than skew, version of the involutive biLie
properad. We thought it more expedient to define it directly, rather than introduce an additional
level of duality.

Theorem 4.1. The data (coFrob,∆, η) defines a coproperad.

Proof. We have to check coassociativity for ∆, and the left and right counit properties for η. To
see that ∆ is coassociative, consider coFrob�c3. This is the vector space spanned by three-level
graphs marked by coFrob. Let edges between the first and second level of vertices generate
an equivalence relation on vertices; then let the equivalence classes be the top level of vertices
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of a new graph, with incoming flags the disjoint union of the incoming flags of the constituent
vertices in the upper level of the equivalence class and outgoing flags the disjoint union of the
outgoing flags of the constituent vertices in the lower level of the equivalence class. Let the
grading of an equivalence class be the sum of the gradings of its member vertices. Let the third
level of vertices of the original graph be the bottom level of vertices of this new graph; then the
old (three level) graph is part of the image of the new (two level) one under ∆ �c Id. If the
original graph is G, call this graph G12.

Given a vertex [v] in the first level of G12, that is, an equivalence class of vertices of G, we
construct a two level graph marked by coFrob denoted Hv. Let the vertices on the first and
second levels of Hv be the vertices of G in [v]; let the incoming flags, the vertex weights, and
the edges between the first and second levels be induced by the corresponding data in [v]. Let
the number of outgoing flags be determined by [v]; however [v] does not induce a labelling,
so choose an arbitrary labelling for the outgoing vertices. Intuitively, Hv represents [v] as an
independent graph.

A similar construction can be performed for the second and third level of the graph G and
will yield a two-level graph G23 which has the old graph as part of its image under Id �c ∆.
We similarly get Hv for [v] in the second level vertex set of G23.

BothG12 andG23 are part of the image under ∆ of the graphG123 obtained from the original
by collapsing all of the vertices and internal edges to a single vertex. Let πG denote the linear
projection onto the one dimensional subspace spanned by G. Then πG(∆ �c Id) ◦∆[G123] is
equal to πG(∆ � cId) ◦ πG12 ◦ ∆[G123] because no other two level graphs can yield G under
expansion of the vertices on the first level. The cognate statment is true for G23.

So to show coassociativity, it is enough to show that for a marked three-level graph G,

πG ◦ (∆ �c Id) ◦ πG12 ◦∆[G123] = πG ◦ (Id�c ∆) ◦ πG23 ◦∆[G123].

No signs are introduced in either of the applications of ∆, so in order for this equality to be true,
it is only necessary that the combinatorial factors agree. If V12 is the vertex set of the first level
of G12, the level consisting of equivalence classes, and likewise V23, then the above equality is,
at the level of combinatorial factors,

ηG12

∏
[v]∈V12

ρvηHv = ηG23

∏
[v]∈V23

ρvηHv

where for [v] in V12, ηHv is the product 1
e(u,w)! for u,w in [v], and ρv counts the number of

two-level graphs which are similar enough to the graph Hv that the projection of ∆[v] on the
summand spanned by them contributes to this projection on the G-summand.

The product of the ηHv over [v] in V12 is the product of 1
e(u,w)! over all pairs of vertices from

the first and second levels ofG; for pairs where the two vertices come from different equivalence
classes, e(u,w) must be zero, so the contribution from such pairs is 1. ηG12 is the product of

1
e([v],z)! for [v] in V12 and z in the third level of G, where e([v], z) =

∑
w∈[v] e(w, z).
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To see this equality, consider G12. Fix a labelling on the incoming flags of the second level
vertices. Then there is some finite number ρv of relabellings of the outgoing flags of Hv which
are compatible with the given labelling, in the sense that if such relabellings are chosen for each
[v], then connecting the relabelled Hvs along the identity permutation to the labelled incoming
flags of the second level vertices of G12 yields a graph isomorphic to G as a three-level graph
with vertices marked by coFrob.

To justify the notation, the ρv must be independent of one another; this occurs because distinct
[v] correspond to distinct subsets of the incoming flags of G so that each incoming flag of
the second level of G12 must be connected to a unique [v]. So the outgoing flags from each
relabelled Hv can be considered seperately, meaning the equality is well-defined.

It remains to calculate ρv. This counts the number of ways of relabelling the outgoing flags
of Hv to be consistent with the incoming flags of the third level vertices of G. By equivalence
and by the trivial symmetric action on a vertex w in the second level of G in [v] ∈ V12, any
relabelling is equivalent to one where the order of the outgoing flags at w respects a fixed order
of the third level vertices of G.

Now consider a vertex z on the third level of G and a vertex [v] ∈ V12. To be consistent, a
relabelling must associate the incoming flags of z associated to [v] to the specific outgoing flags
of the constituent w determined by the order in the previous paragraph. Two relabellings from
[v] to z are equivalent if they differ only by a permutation of the outgoing flags of w. Also, if
there is an isomorphism of G that interchanges w and w′, then two relabellings interchanging
the labels of their outgoing flags are equivalent.

Then we are counting partitions of e([v], z) into pieces of size e(w, z), up to simultaneous
relabelling of the partitions corresponding to w and w′ for all z if there is an isomorphism of G
interchanging them. The number of ordered partitions is determined by a familiar combinatorial
formula:

e([v], z)!∏
w∈[v] e(w, z)!

.

So the number of relabellings ρv is the product of these factors for all z divided by permuta-
tions of second level vertices along isomorphisms of G. Suppose the vertices on the second
level of Hv are divided into equivalence classes W1, . . . ,Wr, where w and w′ are in the same
equivalence class if there is an isomorphism of G interchanging them. Note that if there is an
isomorphism interchanging any two vertices on the second level of G, then they must be in the
same equivalence class in V12 and in V23. Then we obtain

ρv =
∏
z e([v], z)!∏

w∈[v],z e(w, z)!
∏r

1 |Wi|!
.
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Now the left hand side of the equality that will prove coassociativity is

∏
([v],z)

1
(e([v], z)!

∏
[v]

∏
z e([v], z)!∏

w∈[v],z e(w, z)!
∏r

1 |Wi|!
∏
u,w

1
e(u,w)!

=
∏
w,z

1
e(w, z)!

∏
u,w

1
e(u,w)!

∏
Wi

1
|Wi|!

where the products are taken over pairs w, z from the second and third levels of G, pairs u,w
from the first and second levels of G, and all equivalence classes of second level vertices of G.

A similar calculation shows that the right hand side is the same, showing coassociativity.
To see that coFrob is counital, note that one factor of the decomposition of any element x of

coFrob is the two-level graph with x on top and only copies of coFrob(1, 1, 0) on the bottom.
Applying id �cη to this yields x. On the other hand, any other factor of the decomposition will
have something other than coFrob(1, 1, 0) on the bottom, and id �cη will yield 0. A similar
argument applies for the left counit property. �

4.3. The Cobar construction. Next it is necessary to discuss the cobar construction, which be-
gins with a coproperad C and generates a properad Cobar(C); cf. [5, section 4]. This properad
is freely generated on the constituent spaces of the associated S-module C̄[−1], which in this
context can be interpreted as Cm,n,g/C1,1,0 with a shift in grading, putting all the generators in
degree negative one.

This free generation is under properadic composition and the symmetric group actions (sub-
ject to the associativity and equivariance relations), as a properad of graded vector spaces. The
decomposition maps ∆k,g′

m′,n′ enter the picture in terms of a differential d on Cobar(C)m,n,g
which makes this into a properad of chain complexes.

A generic basis element of the free properad on an S-module V is a tree labelled by elements
of V . So fixing an order on the vertices of the tree, and on the edges connecting two vertices,
it is a tensor product of elements from V (m,n). Specifying an element with homogeneous
grading, it is a tensor product of elements from V (m,n, χ). The differential acts on this space
as a derivation, meaning that up to sign, it is determined by its action on V itself:

d(v1 ⊗ · · · vk) = dv1 ⊗ · · · vk + · · ·+ (−1)|v1|+···+|vk−1|v1 ⊗ · · · dvk

The differential acts on V as a restriction of the decomposition map ∆. Call vertices in a graph
labelled with the identity trivial vertices (in this case this is any vertex with m = n = 1 and
χ = 0). There is a quotient map on V �c V which kills any graph with more or fewer than
two nontrivial vertices. Note that because the grading of the identity map is even, we can also
forget the ordering on the vertices on each level, as their permutation will not introduce a sign.
The composition of this quotient with decomposition gives the action of d on V in the cobar
construction. Coassociativity and the shift in the grading guarantee that d2 = 0.
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4.4. The properad Cobar(coFrob). Now we describe the properad Cobar(coFrob). First,
without the differential, it is just the free properad on the reduced version coFrob, i.e. an
element of the (r, t, χ) piece is a connected properad composition of elements of coFrob of
grading (ri, ti, χi) with total grading (r, t, χ) under the rules for the composition.

The only relations, other than those of equivariance and associativity, are those imposed by
d. Thus, we need to determine how d acts on Cobar(r, t, χ). Its image is contained in two-level
graphs with appropriate total grading and only one nontrivial vertex on each level. The r inputs
and t outputs need to be divided between the two non-trivial vertices. There needs to be some
positive number of output flags from the first vertex connected to input flags from the second.
Finally, any remaining grading must be shared between the two vertices. Therefore, we take a
sum over 1 ≤ i ≤ r, 1 ≤ k ≤ 1

2(χ −m − n) + 2, k ≤ j ≤ t + k − 1, i + j ≤ χ1 ≤ χ − 2k,
(r, r − i) shuffles τ , (t, t − j) unshuffles σ, along with m, n, and χ2 which are induced as
i+m− k = r, j + n− k = t, χ1 + χ2 = χ. Using this sum, we have

d(1r,t,χ) =
∑ 1

k!
τ(1m,n,χ2 ⊗ 1i,j,χ1)σ

The bounds on i, j, k, χ1 ensure that all of the indices here have the appropriate size. If χ1 or χ2

has the wrong parity then the term is zero. Since the order of the vertices on each level doesn’t
matter and the symmetric actions are trivial, we can fix a convention without introducing signs,
namely that on the first level, all of the trivial vertices precede the nontrivial vertex; on the
second level the nontrivial vertex precedes the trivial ones.

At this point it is convenient to regrade by “genus” instead of by “Euler characteristic.” This
means that we replace the grading χ, which is at leastm+n−2 and of the same parity asm+n

with g = 1
2(χ + 2 −m − n), which is then just nonnegative. With this regrading, properadic

composition of two vertices along k flags has degree k − 1 instead of 0. Rewriting d with this
grading we get

d(1r,t,g) =
∑ 1

k!
τ(1m,n,g2 ⊗ 1i,j,g1)σ

where 1 ≤ k ≤ g + 1 and 0 ≤ g1 ≤ g + 1 − k, while i, j, σ, and τ are taken over the same
range as before. Now g1 + g2 + k − 1 = g.

4.5. Algebras over Cobar(coFrob). We now state and prove our main theorem.

Theorem 4.2. There is a one to one correspondence between algebra structures over Cobar(coFrob)
on V and elements H of degree −1 in W (V ) such that H ?H = 0.

Proof. The properad Cobar(coFrob) is quasifree, meaning that every relation among two or
more generators involves d. These relations were summarized above. Therefore the structure
of a Cobar(coFrob)-algebra on V is equivalent to a collection of graded symmetric maps
ϕr,t,g : TmV → TnV (with no ϕ1,1,0) which satisfy the relations above. We can define ϕ̃r,t,g :
SrV → StV as ϕ̃r,t,g := sϕr,t,gι, where s and ι are the maps from section 2.
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Because the ϕr,t,g are symmetric, they can be recovered from ϕ̃r,t,g as ϕr,t,g = ιϕ̃r,t,gs. This
can be seen as follows:

ιϕ̃r,t,gs(v̄) =
1
r!

(ιs)ϕr,t,g(
∑
σ∈Sr

σv̄) =
1
r!

∑
σ∈Sr

(ιs)ϕr,t,g(σv̄) = (ιs)ϕr,t,g(v̄)

Since σ applied to ϕr,t,g(v̄) ∈ T tV is σϕr,t,g = ϕr,t,g, (ιs) is the identity on ϕr,t,g(v̄).
Now let us examine the relations involved in a Cobar(coFrob)-algebra. This is a structure

consisting of a degree −1 differential d and a collection of degree −1 maps ϕr,t,g : T rV →
T tV along with a symmetry condition, which can be expressed by saying that they come from
the symmetric maps ϕ̃r,t,g instead. These maps are subject to coherence relations. All these
relations involve only Dϕr,t,g and compositions of two ϕr,t,g indexed by a two-vertex tree with
k edges between the two vertices.

D(ϕr,t,g) =
∑ 1

k!
τ(ϕm,n,g2 ◦k ϕi,j,g1)σ

But Dϕ(v̄) = d(ϕ(v̄)) + ϕ(dv̄), where d here is extended as a derivation (d ⊗ id⊗ · · · ) ±
(id⊗d⊗ · · · )± · · · . This is d ◦1 ϕ+ϕ ◦1 d, so defining ϕ1,1,0 = −d, the relations are precisely∑ 1

k!
τ(ϕm,n,g2 ◦k ϕi,j,g1)σ = 0.

Now, let (V, {ϕr,t,g}) be an algebra over Cobar(coFrob). DefineH ∈W (V ) as
⊕ 1

t! ϕ̃r,t,g~
g.

Then the ~g part of Hom(SrV, StV ) in H ?H is∑ 1
n!j!

ϕ̃m,n,g2 ◦k ϕ̃i,j,g1 ,

where the sum ranges over m+ i− k = r, n+ j − k = t, and g1 + g2 + k − 1 = g. If this is
applied to [v̄], then its injective image under ι is equal to∑ 1

k!t!
τ(ϕm,n,g2 ◦k ϕi,j,g1)σ = 0.

This shows that a Cobar(coFrob)-algebra defines an element of square zero in the Weyl alge-
bra. On the other hand, suppose that we have such an element H of square zero in the Weyl
algebra of a graded vector space V . Then (H1 (0)

1 )2 = 0, so we can take it to be a differential d
on V . Then, by definining ϕr,t,g = n!Ht (g)

r , the reverse equality holds, namely,∑ 1
k!
τ(ϕm,n,g2 ◦k ϕi,j,g1)σ = t!ι(

∑
Hn (g2)
m ◦k H

j (g1)
i )[v̄] = t!ιH ? H(v̄) = 0.

�

5. THE HOMOLOGY OF ALGEBRAS OVER Cobar(coFrob)

The homology of a properad is again a properad and if V is an algebra over a properad P,
then HV is an algebra over the properad HP. To see this, recall from Section 4.5 that an
algebra V over a properad P is a collection of chain maps satisfying equivariance and com-
patibility with composition from P(m,n) to Hom(TmV, TnV ). The induced maps on ho-
mology still satisfy equivariance and compatibility, so that there is a properad morphism from
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HP(m,n) to HHom(TmV, TnV ). There is a natural isomorphism HHom(TmV, TnV ) →
Hom(TmHV, TnHV ), hence a properad morphism HP(m,n)→ Hom(TmHV, TnHV ) af-
fording HV with the structure of an algebra over HP.

For the properad Cobar(coFrob), grading by genus one identifies symmetric generators
µ ∈ Cobar(coFrob)(2, 1, 0) and ∆ ∈ Cobar(coFrob)(1, 2, 0) which are closed under the
differential because their decomposition is trivial in coFrob. By general arguments on the
cobar construction, µ and ∆ can be seen not to be boundaries, and therefore pass to nonzero
classes [µ] and [∆] in homology. Considering the boundaries of the generators in the (3, 1, 0),
(1, 3, 0), (2, 2, 0), and (1, 1, 1) spaces of Cobar(coFrob) we see that in homology, [µ] satisfies
the Jacobi relation

[µ] ◦1 [µ](1 + σ + σ2) = 0

or, rewritten with µ as a bracket, more familiarly, this is

[[a, b], c] + (−1)(|b|+|c|)|a|[[b, c], a] + (−1)(|a|+|b|)|c|[[c, a], b]]

[∆] satisfies the coJacobi relation

(1 + σ + σ2)[∆] ◦1 [∆] = 0

and [µ] and [∆] together satisfy the five term compatibility relation

[∆] ◦ [µ] + (1 + τ)[µ] ◦1 [∆](1 + τ) = 0

or, applied to a⊗ b,

[∆][a, b] + (−1)|a|([µ]⊗ id)a⊗ [∆]b+ (−1)|a||b|+|b|([µ]⊗ id)b⊗ [∆]a

+ (−1)|a||b|(id⊗[µ])b⊗ [∆]a+ (id⊗[µ])[∆]a⊗ b

and the involutivity relation

[µ] ◦ [∆] = 0

This shows that the homology HV of a Cobar(coFrob)-algebra V is a (commutative as op-
posed to skew-commutative) involutive biLie algebra, but we have not argued that our computa-
tion of the homology is complete. We conjecture that the homology of the properad Cobar(coFrob)
is the involutive bi Lie properad, but at present we do not have a proof—there remains the pos-
sibility that there are additional nonzero homology operations.
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