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SPECIAL TILTING MODULES FOR ALGEBRAS WITH POSITIVE DOMINANT

DIMENSION

MATTHEW PRESSLAND AND JULIA SAUTER

Dedicated to Idun Reiten on the occasion of her 75th birthday.

Abstract. We study a set of uniquely determined tilting and cotilting modules for an algebra with
positive dominant dimension, with the property that they are generated or cogenerated (and usually
both) by projective-injectives. These modules have various interesting properties, for example that
their endomorphism algebras always have global dimension at most that of the original algebra. We
characterise d-Auslander–Gorenstein algebras and d-Auslander algebras via the property that the rel-
evant tilting and cotilting modules coincide. By the Morita–Tachikawa correspondence, any algebra of
dominant dimension at least 2 may be expressed (essentially uniquely) as the endomorphism algebra of
a generator-cogenerator for another algebra, and we also study our special tilting and cotilting modules
from this point of view, via the theory of recollements and intermediate extension functors.

1. Introduction

In [11], Crawley-Boevey and the second author associated to each Auslander algebra a distinguished
tilting-cotilting module T , with the property that it is both generated and cogenerated by a projective-
injective module. In this paper, we study more general instances of tilting modules generated by
projective-injectives, and cotilting modules cogenerated by projective-injectives. In contrast to the
case of Auslander algebras, we consider here tilting and cotilting modules of arbitrary finite projective
or injective dimension.

More precisely, let Γ be a finite-dimensional algebra with dominant dimension d (see Definition 2.1).
Then for every 0 < k < d, we explain how to uniquely determine a ‘shifted’ k-tilting module Tk and
a ‘coshifted’ k-cotilting module Ck (usually distinct, unlike the case of Auslander algebras) that
are generated and cogenerated by projective-injectives. The construction also allows for k = 0 or
k = d, although in this case the relevant module is either generated or cogenerated by projective-
injectives, but usually not both. We are also interested in the resulting shifted and coshifted algebras
Bk = EndΓ(Tk)op and Bk = EndΓ(Ck)op.

Finite-dimensional algebras with dominant dimension at least 2 are of particular interest. Any such
algebra is isomorphic to an endomorphism algebra EndA(E)op for a generating-cogenerating module
E over a finite-dimensional algebra A. In fact, assuming for simplicity that all objects are basic, the
assignment (A,E) 7→ EndA(E)op induces a bijection

{(A,E) : E generating-cogenerating A-module} ∼−→ {Γ : domdim Γ ≥ 2},

with objects considered up to isomorphism on each side [21,27]. This result is sometimes known [13,26]
as the Morita–Tachikawa correspondence. The following definition will be convenient throughout the
paper.

Definition 1.1. A Morita–Tachikawa triple (A,E,Γ) consists of a finite-dimensional algebra A, a
generating-cogenerating A-module E, and Γ ∼= EndA(E)op.

Thus, assuming as we usually will that all objects are basic, the set of Morita–Tachikawa triples is
the graph of the Morita–Tachikawa correspondence. Given a basic algebra Γ of dominant dimension
at least 2, it appears in the (unique up to isomorphism) Morita–Tachikawa triple

(A = EndΓ(Π)op, E = DΠ,Γ),
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where Π is a maximal projective-injective summand of Γ, and D is the usual duality over the base
field. The pair (A,E) in the above triple plays an important role in some of our results on the shifted
and coshifted algebras of Γ.

The structure of the paper is as follows. We give the definitions and preliminary observations in
Section 2, in which we also prove (Corollary 2.16) that

gldimB ≤ gldim Γ

whenever B is one of the algebras Bk or Bk associated to Γ. In Section 3, we investigate the modules
Tk and Ck in the context of higher Auslander–Reiten theory, which provides a wealth of examples of
algebras with high dominant dimension. The main result of this section is the following.

Theorem 1 (Theorem 3.9). Let Γ be a finite-dimensional algebra, and let d ≥ 1. Assume domdim Γ ≥
d+ 1, and write

T∗ = {Tk : 0 ≤ k ≤ d+ 1},

C∗ = {Ck : 0 ≤ k ≤ d+ 1}

for the sets of (isomorphism classes of) shifted and coshifted modules of Γ. Then the following are
equivalent:

(i) Γ is a d-Auslander–Gorenstein algebra,
(ii) T∗ = C∗, and

(iii) T∗ ∩ C∗ is non-empty.

The definition of a d-Auslander–Gorenstein algebra, due to Iyama and Solberg [18], is given in
Definition 3.1. One may replace ‘d-Auslander–Gorenstein’ in this theorem by ‘d-Auslander’ by assum-
ing additionally that Γ has finite global dimension, and so this result generalises [11, Lem. 1.1] for
Auslander algebras.

If Π is the maximal projective-injective summand of Γ, it is a summand of every tilting or cotilting
Γ-module. Thus if B is the endomorphism algebra of such a module, it has an idempotent given by
projection onto Π, yielding a recollement involving the categories B-mod and EndΓ(Π)op-mod; note
that if domdim Γ ≥ 2 then EndΓ(Π)op is the algebra A from the Morita–Tachikawa triple involving
Γ. In Section 4, we study these recollements for the shifted and coshifted algebras. In particular, we
give in Theorems 4.9 and 4.12 an explicit formula for the intermediate extension functor in such a
recollement; this functor is by definition the image of the universal map from the restriction functor’s
left adjoint to its right adjoint.

To obtain this description, we show that just as in [11], each shifted and coshifted algebra of Γ
can be described in terms of its Morita–Tachikawa partner (A,E). We construct for each 0 ≤ k ≤ d
explicit objects Ek and Ek in the bounded homotopy category Kb(A), and prove the following.

Theorem 2 (Theorem 4.4). Let (A,E,Γ) be a Morita–Tachikawa triple, with domdim Γ = d. Then
for all 0 ≤ k ≤ d, there are isomorphisms

Bk
∼= EndKb(A)(Ek)op, Bk ∼= EndKb(A)(E

k)op,

where Bk and Bk are the coshifted algebras of Γ.

In other words, we have for any algebra A and generator-cogenerator E the schematic

(A,E) EndA(E)op

EndKb(A)(Ek)op

tilt at Tk

and a similar picture for the coshifted module Ck.
A k-tilting or k-cotilting Γ-module with endomorphism algebra B defines k + 1 pairs of equivalent

subcategories in Γ-mod and B-mod; in the classical case k = 1, the two subcategories on each side
form torsion pairs. In Section 5, we give various descriptions of the relevant subcategories associated to
shifted or coshifted modules, many of which can be characterised in terms of generation or cogeneration
by certain projective or injective modules.
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In Section 6, we consider again the recollements involving B-mod and A-mod, where B is one of
the shifted or coshifted algebras of an algebra Γ in a Morita–Tachikawa triple (A,E,Γ). Recall from
general tilting theory that Bk, as a tilt of Γ by Tk, has a preferred cotilting module DTk. Similarly
Bk has the preferred tilting module DCk. We prove the following.

Theorem 3 (Theorems 6.5, 6.6). Let (A,E,Γ) be a Morita–Tachikawa triple and 0 < k < domdim Γ.
Denoting by ck and ck the intermediate extension functors in the recollements relating Bk-mod and
Bk-mod respectively with A-mod, we have

ck(E) = DTk, ck(E) = DCk.

We note that the shifted modules Tk appear briefly in a recent paper of Chen–Xi [9], where they are
called canonical tilting modules, and some results on the dominant dimensions of the shifted algebras
are obtained. Some of these ideas have also been studied independently in very recent work of Nguyen,
Reiten, Todorov and Zhu [23]. The second author presented results of this paper at ICRA 2016 in
Syracuse and at the workshop Representation Theory of Quivers and Finite Dimensional Algebras at
Oberwolfach in February 2017.

Throughout the paper, all algebras are finite-dimensional K-algebras over some field K, and, without
additional qualification, ‘module’ is taken to mean ‘finitely-generated left module’. Morphisms are
composed from right-to-left.

2. Shifted modules and algebras

Throughout this section, we fix a finite-dimensional algebra Γ, assumed for simplicity to be basic,
over a field K. The goal of this section is to characterise certain special tilting and cotilting Γ-modules
in the case that Γ has positive dominant dimension. We begin with the relevant definitions.

Definition 2.1. Let k be a non-negative integer. We say that Γ has dominant dimension at least k
and write domdim Γ ≥ k if the regular module ΓΓ has an injective resolution

0 Γ Π0 · · · Πk−1 · · ·

with Π0, . . . ,Πk−1 projective-injective; when k = 0, this condition is taken to be empty. As the
notation suggests, we write domdim Γ = d if domdim Γ ≥ d and domdim Γ 6≥ d+ 1.

Remark 2.2. As always, we refer to left Γ-modules in our definition of dominant dimension. However,
Müller [22, Thm. 4] has shown that the analogous definition using right modules is equivalent to this
one. As a consequence, a finite-dimensional algebra Γ has dominant dimension at least k if and only
if DΓ has a projective resolution

· · · Πk−1 · · · Π0 DΓ 0

with Π0, . . . ,Πk−1 projective-injective.

Definition 2.3. Let k ≥ 0. We say that T ∈ Γ-mod is a k-tilting module if

(T1) pdT ≤ k,

(T2) ExtjΓ(T, T ) = 0 for j ≥ 1, and
(T3) there is an addT -coresolution of Γ of length k, i.e. an exact sequence

0 Γ t0 · · · tk 0

with tj ∈ addT for 0 ≤ j ≤ k.

We say a k-tilting module T is P -special for a projective module P if there is a sequence as in (T3)
with tj ∈ addP for 0 ≤ j ≤ k − 1, in which case (T1) is superfluous.

Dually, we say that C is a k-cotilting module if

(C1) idC ≤ k,

(C2) ExtjΓ(C,C) = 0 for j ≥ 1, and
(C3) there is an addC-resolution of DΓ of length k, i.e. an exact sequence

0 ck · · · c0 DΓ 0

with cj ∈ addC for 0 ≤ j ≤ k.
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We say a k-cotilting module C is I-special for an injective module I if there is a sequence as in (C3)
with cj ∈ add I for 0 ≤ j ≤ k − 1, in which case (C1) is superfluous.

Proposition 2.4. Assume domdim Γ ≥ k, and let Π be a maximal projective-injective summand of
Γ. Then there is a basic Π-special k-tilting Γ-module Tk, and a basic Π-special k-cotilting Γ-module
Ck. These modules are unique up to isomorphism.

Proof. We prove the statements involving Tk, those for Ck being dual. Since domdim Γ ≥ k, there is
an exact sequence

(2.1) 0 Γ Π0 · · · Πk−1 T 0

with Πi projective-injective for 0 ≤ i ≤ k − 1. Let Tk be a basic module with addTk = add(T ⊕ Π).
Then Tk satisfies (T1) and (T3) by (2.1). A standard homological argument, involving the application
of the functors HomΓ(Tk,−) and HomΓ(−, Tk) to the short exact sequences coming from (2.1), shows
that ExtiΓ(Tk, Tk) = ExtiΓ(Γ,Γ) = 0 for i > 0, so Tk satisfies (T2).

Any two Π-special k-tilting Γ-modules are, by definition, k-th cosyzygies of the regular module
Γ. Thus if T ′ is an arbitrary k-th cosyzygy of Γ, it differs from Tk only by the possible removal of
projective-injective summands and addition of injective summands, so T ∈ addT ′. If T ′ is tilting then
we must also have Π ∈ addT ′, so Tk ∈ addT ′. If T ′ is basic, it then follows that T ′ ∼= Tk since all
tilting modules have the same number of indecomposable summands up to isomorphism. �

To give a slightly different characterisation of the modules Tk and Ck, we introduce the following
definitions, which will also be useful in Section 5.

Definition 2.5. Let A be an abelian category, and X ∈ A an object. For k ≥ 0, define genk(X) to
be the full subcategory of A on objects M such that there exists an exact sequence

Xk · · · X0 M 0

with Xi ∈ addX for 0 ≤ i ≤ k. Dually, cogenk(X) is the full subcategory of A on objects N such
that there exists an exact sequence

0 N X0 · · · Xk

with Xi ∈ addX for all 0 ≤ i ≤ k. When k = 0, we omit it from the notation and refer simply to
gen(X) and cogen(X). It is both natural and convenient to define

gen−1(X) = Γ-mod = cogen−1(X).

Proposition 2.6. Let Π be a maximal projective-injective summand of Γ, and k ≥ 0.

(a) The subcategory genk−1(Π) ⊆ Γ-mod contains a k-tilting object if and only if domdim Γ ≥ k.
When it exists, a basic such k-tilting object is isomorphic to the Π-special k-tilting module Tk
from Proposition 2.4.

(b) The subcategory cogenk−1(Π) ⊆ Γ-mod contains a k-cotilting object if and only if domdim Γ ≥
k. When it exists, a basic such k-cotilting object is isomorphic to the Π-special k-cotilting
module Ck from Proposition 2.4.

Proof. We prove only (a), since (b) is dual. If domdim Γ ≥ k, then the module Tk from Proposition 2.4
lies in genk−1(Π). Conversely, if T ∈ genk−1(Π) is k-tilting, it has projective dimension at most k,
and the minimal projective resolution of T is of the form

0 P Πk−1 · · · Π0 T 0

for Πi ∈ add Π and P projective. Without loss of generality, we may assume T , like Γ, is basic. Then
the number of indecomposable summands of P is the number of non-projective-injective summands of
T , which is the number of non-projective-injective summands of Γ. Thus there is an exact sequence

0 Γ Πk−1 ⊕Π · · · Π0 T 0,

from which it follows simultaneously that domdim Γ ≥ k and that T is Π-special, hence isomorphic to
Tk by Proposition 2.4. �
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Definition 2.7. We call the module Tk (respectively Ck) from Proposition 2.4 the k-shifted (respec-
tively k-coshifted) module of Γ, and the algebras

Bk = EndΓ(Tk)op, Bk = EndΓ(Ck)op,

are called respectively the k-shifted and k-coshifted algebras of Γ.

Remark 2.8. If domdim Γ ≥ k, then domdim Γop ≥ k by Remark 2.2. The K-dual of the k-coshifted
Γop-module is the k-shifted Γ-module.

It is well-known that if T is a k-tilting Γ-module, then the right derived functor of HomΓ(T,−) and
the left derived functor of D HomΓ(−, T ) are quasi-inverse triangle equivalences between the bounded
derived categories Db(Γ) and Db(EndΓ(T )op), cf. [10, Thm. 2.1]. In particular, an algebra of positive
dominant dimension is derived equivalent to all of its k-shifted and k-coshifted algebras.

We use the adjective ‘shifted’ by analogy with properties of self-injective algebras. If Γ is self-
injective, so any projective module is also injective, then the syzygy and cosyzygy Ω and Ω− induce
mutually inverse equivalences of the stable module category of Γ, with Ω− being the shift, or sus-
pension, functor on this triangulated category. The crucial property here is that, trivially by the
assumption on Γ, a projective cover of any Γ-module is injective, and similarly an injective hull is
projective. For more general algebras, there will still be some modules which have such projective
covers or injective hulls, and on such modules the syzygy and cosyzygy operations have many of the
same properties as for self-injective algebras.

By definition, domdim Γ ≥ 1 precisely when Γ itself has a projective injective hull, or equivalently
when DΓ has an injective projective cover. The proof of Proposition 2.4 illustrates that the shifted
and coshifted modules are related to Γ and DΓ analogously to the way in which an arbitrary module
over a selfinjective algebra is related to its shifts in the stable module category. Despite this analogy,
the case in which Γ is selfinjective does not provide any interesting examples of our constructions.

Remark 2.9. If Γ is selfinjective, then Tk ∼= Γ ∼= Ck for all k ≥ 0, since there are no other tilting or
cotilting Γ modules.

More interestingly, selfinjective algebras may even be characterised by the property that their shifted
modules fail to be pairwise non-isomorphic; cf. [4, Prop. 1.3].

Proposition 2.10. Let k ≥ 0 and k′ > 0, and let Γ be a finite-dimensional algebra of dominant
dimension at least k + k′. If Tk ∼= Tk+k′, then Γ is selfinjective. Dually, if Ck ∼= Ck+k′, then Γ is
selfinjective.

Proof. Let T ◦k
∼= T ◦k+k′ be the maximal non-projective-injective summand of Tk ∼= Tk+k′ . Let P be the

maximal non-injective summand of Γ. By the characterisation of Tk from Proposition 2.4, taking the
minimal injective resolution of P and truncating yields an exact sequence

0 P Π0 Π1 · · · Πk−1 T ◦k 0

with Πj ∈ add Π projective for all j, so this sequence is a minimal projective resolution of T ◦k . Con-
tinuing this minimal injective resolution of P , we obtain a second exact sequence

0 T ◦k Πk · · · Πk+k′−1 T ◦k+k′ 0,

again with Πj ∈ add Π for all j. Since T ◦k+k′
∼= T ◦k , taking the Yoneda product of the two sequences

yields another minimal projective resolution

0 P Π0 Π1 · · · Πk+k′−1 T ◦k 0

of T ◦k . Since minimal projective resolutions are unique up to isomorphism, we must have P = 0, and
so Γ is selfinjective. The dual statement is proved similarly. �

Remark 2.11. Just as in [4], an easy consequence of Proposition 2.10 is that the Nakayama conjecture,
that domdim Γ = ∞ if and only if Γ is selfinjective, holds for representation-finite algebras. One
also sees from the proof that the projective dimension of Tk is exactly k unless Γ is selfinjective, in
which case Tk = Γ has projective dimension zero, and similarly for the injective dimension of Ck.
Combining these observations, one sees that while selfinjective algebras have Tk ∼= Γ for all k ≥ 0,
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any counterexample to the Nakayama conjecture would behave very differently, with Tk 6∼= Tk′ for any
k 6= k′.

It is possible to identify those algebras that may be obtained as k-shifted or k-coshifted algebras
intrinsically, via the existence of cotilting or tilting modules with special properties. As usual, we
write ν = D HomA(−, A) and ν− = HomA(DA,−) for the Nakayama functors on A.

Lemma 2.12. Let T be a k-tilting Γ-module with endomorphism algebra B. By the Brenner–Butler
tilting theorem [7], C = DT is a k-cotilting B-module with endomorphism algebra Γ.

(1) If T is P -special for some projective Γ-module P , then C is IP -special for IP = D HomΓ(P, T ).
Dually, if C is I-special for some injective B-module I, then T is P I-special for P I =
HomB(C, I).

(2) Let Π ∈ addT be projective-injective. Then the projective B-module PΠ = HomΓ(T,Π) and the
injective B-module IΠ = D HomΓ(Π, T ) satisfy IΠ = νPΠ. Dually, if Π ∈ addC is projective-
injective, then the Γ-modules PΠ = HomB(C,Π) and IΠ = D HomB(Π, C) satisfy IΠ = νPΠ.

(3) If P is a projective Γ-module with P, νP ∈ addT , then IP := D HomΓ(P, T ) is a projective-
injective B-module. Dually, if I is an injective B-module with I, ν−I ∈ addC, then P I :=
HomB(C, I) is a projective-injective Γ-module.

Proof. As usual, we give the proof only for the first item in each pair of dual statements.

(1) This follows by applying D HomΓ(−, T ) to the exact sequence from (T3), using that T is
P -special.

(2) Since HomΓ(T,−) : addT → B-proj is fully faithful, we have

νP = D HomB(HomΓ(T,Π),HomΓ(T, T )) = D HomΓ(Π, T ) = I.

(3) Since νP ∈ addT , the module HomΓ(T, νP ) is projective. Since P ∈ addT , the Nakayama
formula implies that HomΓ(T, νP ) ∼= D HomΓ(P, T ) is also injective. �

Proposition 2.13. A finite-dimensional basic algebra B is isomorphic to a k-shifted algebra if and
only if there is an injective B-module I and an I-special k-cotilting B-module C with ν−I ∈ addC.
Under this isomorphism, C is the dual of the k-shifted module.

Dually, a finite-dimensional basic algebra B is isomorphic to a k-coshifted algebra if and only if
there exists a projective B-module P and a P -special k-tilting B-module T with νP ∈ addT . Under
this isomorphism, T is the dual of the k-coshifted module.

Proof. Let Tk be the k-shifted module of some algebra Γ with maximal projective-injective summand
Π. Then by Lemma 2.12(1), DTk is an IΠ-special k-cotilting Bk-module, where IΠ = D HomΓ(Π, T ).
By Lemma 2.12(2), ν−IΠ = HomΓ(Tk,Π) lies in add DT , since Π ∈ add DΓ.

Conversely, assume B, C and I are as in the statement, replacing C and I by basic modules with
the same additive hull if necessary. Then Γ = EndB(C)op has a basic k-tilting module T = DC, which
is P I = HomB(C, I)-special by Lemma 2.12(1). By Lemma 2.12(3), P I is projective-injective. If Π
is the maximal projective-injective summand of Γ, then Π is a summand of T since T is k-tilting, so
Π ∈ gen(P I) since T is P I -special. It follows that addP I = add Π, and so T ∼= Tk is the k-shifted
module of Γ by Proposition 2.4.

The second statement is proved dually, reversing the roles of Γ and B in Lemma 2.12. �

To close this section, we will show that if Bk is the k-shifted algebra of Γ, then gldimBk ≤ gldim Γ.
Thus we obtain a tighter bound on this global dimension than would be possible if Bk were replaced
by the endomorphism algebra of an arbitrary tilting Γ-module.

We use the following technical lemma, mildly generalising a result of Happel [14, Lem. III.2.7].
Given C ⊆ Γ-mod a full subcategory, we write K−,b(C) for the homotopy category of complexes with
terms in C, bounded below, with finitely many non-zero cohomology groups. We write Kb(C) for the
homotopy category of bounded complexes with terms in C.

Lemma 2.14. Assume Γ has finite global dimension. Let T be a Γ-module such that ExtiΓ(T, T ) = 0
for all i > 0 and idT = m. Then for any T • ∈ K−,b(addT ) with no non-negative cohomology, we
have T • ∼= T •1 ⊕ T •2 such that T •2 is acyclic and T i

1 = 0 for all i < 1−m.
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Proof. For j ≤ 0, write Kj = ker(dj). (As the upper index notation suggests, we use cohomological
conventions, so the differentials in T are di : T i → T i+1.) Since T • has no non-negative cohomology,
we have exact sequences

0 Kj T j Kj+1 0

for all j < 0. By writing K1 = T 0/K0 ∼= im d0, and K2 = T 1/ im d0, even though these spaces are not
kernels of the differential, we also get exact sequences above for j = 0 and j = 1.

Happel [14, Lem. III.2.7] proves, without the assumption on idT , that we can decompose T • almost
as required, except with T i

1 = 0 for i < 1 − n. The key step in this argument is to show that
Ext1

Γ(K2−n,K1−n) = 0, so that the sequence

0 K1−n T 1−n K2−n 0

splits, meaning K1−n ⊕ K2−n ∈ addT . With our additional assumption that idT = m, we will
in fact show that all of these statements hold with n replaced by m. Then construction of our
desired T •1 , T •2 and isomorphism T •

∼−→ T •1 ⊕ T •2 is exactly as in [14, Lem. III.2.7], so we simply
refer the reader to Happel’s proof. The rest of the argument given here is devoted to showing that
Ext1

Γ(K2−m,K1−m) = 0.
Since ExtiΓ(T, T ) = 0 for all i > 0, applying HomΓ(−, T ) to the sequences

0 Kj T j Kj−1 0

yields isomorphisms

ExtiΓ(Kj , T )
∼−→ Exti+1

Γ (Kj+1, T )

for all i > 0 and j ≤ 1. Since idT = m, it follows that

ExtiΓ(Kj , T )
∼−→ Extm+1

Γ (Kj+m+1−i, T ) = 0

whenever i > 0 and j ≤ 1 + i−m.
Now pick t ≤ 2. Applying HomΓ(Kt,−) to our sequences we get exact sequences

ExtiΓ(Kt, T j) ExtiΓ(Kt,Kj+1) Exti+1
Γ (Kt,Kj) Exti+1

Γ (Kt, T j)

for all i ≥ 0 and j ≤ 1. It follows that we have isomorphisms

ExtiΓ(Kt,Kj+1)
∼−→ Exti+1

Γ (Kt,Kj)

whenever i > 0, j ≤ 1, and t ≤ 1 + i−m. In particular

Ext1
Γ(K2−m,K1−m)

∼−→ Extn+1
Γ (K2−m,K1−m−n) = 0

since gldim Γ = n. �

Theorem 2.15. Assume gldim Γ = n, and let T ∈ Γ-mod be a k-tilting object with injective dimension
m. Let B = EndΓ(T )op. Then

n− k ≤ gldimB ≤ m+ k.

Proof. It is well-known, see for example [14, Prop. III.3.4], that

n− k ≤ gldimB ≤ n+ k,

so gldimB is finite, and we need only prove that gldimB ≤ m+ k.
Let M ∈ B-mod, and let P • be a minimal projective resolution of M . Since gldimB is finite,

P • ∈ Kb(projB). Precisely, the width of P • is pdM + 1, which we want to bound. In fact we will,
equivalently, bound the width of the complex T ⊗B P

• ∈ Kb(addT ).
By the general theory of tilting modules [14, Lem. 2.8], we have mutually inverse triangle equiva-

lences T ⊗B − : K−,b(projB) → K−,b(addT ) and HomΓ(T,−) : K−,b(addT ) → K−,b(projB). Since
P • was chosen to be minimal, P • has no non-zero acyclic summands, and it follows from the above
equivalences that the same is true of T ⊗B P

•.
We have Hi(T ⊗B P

•) = TorB−i(T,M) = 0 for i < −k, since T has projective dimension at most k as
a right B-module by [14, Lem. III.2.4]. Thus T • = T ⊗B P

•[−k− 1] has no non-negative cohomology.
By construction, T i = 0 for i > k + 1. By Lemma 2.14, we can write T • = T •1 ⊕ T •2 , with T •2 acyclic
and T i

1 = 0 for i < 1−m. But T • has no non-zero acyclic summands, so T •2 = 0 and T • = T •1 . Since
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T i = 0 for i > k+ 1 and i < 1−m, we conclude that T • has width at most m+ k+ 1. Thus the same
is true of P •, and so pdM ≤ m+ k. �

Corollary 2.16. Assume domdim Γ = d, let 0 ≤ k ≤ d and let Bk be the corresponding shifted algebra.
Then

gldim Γ− k ≤ gldimBk ≤ gldim Γ.

Proof. Writing n = gldim Γ, we have id Γ ≤ n. Since Tk is a k-th cosyzygy of Γ, it follows that
idTk ≤ n− k. Thus, by Theorem 2.15

n− k ≤ gldimBk ≤ n− k + k = n. �

A dual argument, using that Ck is k-cotilting with pdCk ≤ n−k, shows that if Bk is the k-coshifted
algebra of Γ, then gldim Γ− k ≤ gldimBk ≤ gldim Γ.

3. Shifting and coshifting for d-Auslander–Gorenstein algebras

In the context of [11], Crawley-Boevey and the second author considered the 1-shifted and 1-
coshifted modules for Auslander algebras, and noted that these two modules in fact coincide. In
this section, we will consider a more general situation in which the families of shifted and coshifted
modules of Γ coincide with each other, namely when Γ is a d-Auslander–Gorenstein algebra, as defined
by Iyama–Solberg in [18] and recalled below. We will in fact show that the property of shifted
and coshifted modules coinciding leads to another characterisation of such algebras, generalising [11,
Lem. 1.1] for Auslander algebras.

Definition 3.1. Let Γ be a finite-dimensional K-algebra, and let d ≥ 1. We say Γ is d-Auslander–
Gorenstein if

id Γ ≤ d+ 1 ≤ domdim Γ,

and that it is a d-Auslander algebra if

gldim Γ ≤ d+ 1 ≤ domdim Γ.

Remark 3.2. Our definition of d-Auslander–Gorenstein agrees with Iyama–Solberg’s definition of
minimal d-Auslander–Gorenstein [18, Defn. 1.1], but we will follow their convention in the bulk of
their paper and drop the word ‘minimal’. The definition of a d-Auslander algebra is due to Iyama [17]
(see also [15, Defn. 4.1] for more general versions), generalising Auslander for d = 1 [2].

Note that any d-Auslander algebra is d-Auslander–Gorenstein, and a d-Auslander–Gorenstein alge-
bra is a d-Auslander algebra if and only if it has finite global dimension [18, Prop. 4.8]. A selfinjective
algebra is d-Auslander–Gorenstein for all d, and so is a d-Auslander algebra for all d if and only if it is
semisimple. On the other hand, by [18, Prop. 4.1], any d-Auslander–Gorenstein algebra Γ that is not
selfinjective satisfies id Γ = d+1 = domdim Γ, so d is uniquely determined. Similarly, any d-Auslander
algebra Γ that is not semisimple has gldim Γ = d+ 1 = domdim Γ.

If Γ is a d-Auslander–Gorenstein algebra for some d ≥ 1, then in particular domdim Γ ≥ 2, and so Γ
is part of a Morita–Tachikawa triple (A,E,Γ) (recall Definition 1.1). We can translate the conditions
on Γ from Definition 3.1 into conditions on the A-module E. Given a subcategory C of A-mod, write

C⊥n = {X ∈ A-mod : ExtiA(C,X) = 0 ∀ 1 ≤ i ≤ n, C ∈ C},
⊥nC = {X ∈ A-mod : ExtiA(X,C) = 0 ∀ 1 ≤ i ≤ n, C ∈ C}.

Definition 3.3. Let d ≥ 2, and let A be a finite-dimensional algebra. A subcategory C of A-mod is
called d-precluster-tilting if

(i) C is generating and cogenerating,
(ii) C⊥d−1 = ⊥d−1C,
(iii) ExtiA(C,C) = 0 for all 1 ≤ i ≤ d− 1 and C ∈ C, and
(iv) C is functorially finite.

The subcategory C is d-cluster-tilting if the two subcategories in (ii) are also equal to C, in which
case conditions (i) and (iii) follow automatically. An A-module E is called d-precluster-tilting or
d-cluster-tilting if the corresponding property holds for the subcategory addE.

For d = 1, we replace condition (ii) by the requirement that C is closed under the Auslander–Reiten
translations τ and τ−, and (iii) becomes vacuous. The unique 1-cluster-tilting subcategory is A-mod.
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Remark 3.4. This definition of a d-precluster-tilting subcategory is equivalent to Iyama–Solberg’s
[18, Defn. 3.2], by [18, Prop. 3.7(a)]. The definition of a d-cluster-tilting subcategory is due to Iyama
[16, Defn. 2.2], who originally referred to such subcategories as maximal (d− 1)-orthogonal.

Similar to our observation for d-Auslander–Gorenstein algebras, it follows from condition (i) that
any d-precluster-tilting module is part of a Morita–Tachikawa triple. We are now able to relate
Definitions 3.1 and 3.3 via these triples.

Theorem 3.5 ([18, Thm. 4.5], [17, Thm. 2.6]). Let (A,E,Γ) be a Morita–Tachikawa triple. Then Γ
is d-Auslander–Gorenstein if and only if E is a d-precluster-tilting A-module, and Γ is a d-Auslander
algebra if and only if E is a d-cluster-tilting A-module.

Remark 3.6. The statement that if Γ is d-Auslander–Gorenstein then E is d-precluster tilting also
follows from a more general result of Chen–Koenig [8, Thm. 1.3], giving properties of E whenever Γ
is a Gorenstein algebra with d + 1 ≤ domdim Γ and id Γ ≤ d + 1 + m. In their language, they show
that in this case E is a (d− 1)-rigid, (d− 1,m)-orthosymmetric generator-cogenerator, which reduces
to E being d-precluster-tilting when m = 0.

We now give the first part of our characterisation of d-Auslander–Gorenstein algebras via shifted
and coshifted modules.

Proposition 3.7. Let Γ be a d-Auslander–Gorenstein algebra. Then the shifted and coshifted modules
of Γ coincide; more precisely, Tk = Cd+1−k for all 0 ≤ k ≤ d+ 1.

Proof. By assumption, id Γ ≤ d+ 1. By the assumption on domdim Γ, a minimal injective resolution
of Γ has the form

0 Γ Π0 · · · Πd I 0

with each Πj projective-injective. Then the number of indecomposable summands of I is equal to the
number of non-injective indecomposable summands of Γ. Without loss of generality, we may assume
Γ is basic, and so I has as summands one copy of each indecomposable non-projective injective Γ-
module. It follows that we have DΓ = I ⊕ Π for Π the maximal projective-injective summand of Γ.
Thus, by adding the identity map Π→ Π to the right-hand end of the above injective resolution, we
obtain a sequence

0 Γ Π0 · · · Πd DΓ 0

in which each Πj is projective-injective. This is simultaneously an injective resolution of Γ and a
projective resolution of DΓ with the appropriate number of projective-injective terms for computing
shifted and coshifted modules, so these modules must coincide as claimed. �

Remark 3.8. Note that if Γ is selfinjective, then all shifted and coshifted modules are equal to Γ,
as we observed in Remark 2.9. Thus the ambiguity of d in this case does not cause any issues with
the identification Tk = Cd+1−k, and indeed the proof given remains valid. As already remarked, in all
other cases, d is uniquely determined [18, Prop. 4.1].

Our characterisation of d-Auslander–Gorenstein algebras may now be stated as follows.

Theorem 3.9. Let Γ be a finite-dimensional algebra, and let d ≥ 1. Assume domdim Γ ≥ d+ 1, and
write

T∗ = {Tk : 0 ≤ k ≤ d+ 1},

C∗ = {Ck : 0 ≤ k ≤ d+ 1}
for the sets of (isomorphism classes of) shifted and coshifted modules of Γ. Then the following are
equivalent:

(i) Γ is a d-Auslander–Gorenstein algebra,
(ii) T∗ = C∗, and

(iii) T∗ ∩ C∗ is non-empty.

Proof. Assume Γ is d-Auslander–Gorenstein, let Π be the maximal projective-injective summand,
and pick m,n ≥ 0 with d = m + n − 1. By construction, the m-th shifted module Tm is m-tilting
and lies in genm−1(Π), and the n-th coshifted module Cn is n-cotilting and lies in cogenn−1(Π). By
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Proposition 3.7, we have Tm = Cn, and so we see that (i) implies (ii). Since (ii) trivially implies (iii),
it remains to show that (iii) implies (i).

Assume there is some T ∈ genm−1(Π)∩ cogenn−1(Π) that is m-tilting and n-cotilting. Note that Π
is a summand of every tilting and cotilting module, and so in particular of T , and that the number of
indecomposable summands of T is equal to that of Γ. Since T ∈ genm−1(Π) and pdT ≤ m, a minimal
projective resolution of T has the form

0 P Πm−1 · · · Π0 T 0,

where Πj ∈ add Π for each j < m. By minimality, P has no injective summands, and so by counting
we see that P has as summands one copy of each indecomposable non-injective projective Γ-module,
and hence Γ = P ⊕ Π. Thus by adding the identity map Π → Π to the left-hand end of the above
resolution, we obtain a sequence

0 Γ Π0 · · · Πm−1 T 0

with Πj ∈ add Π for each j. Similarly, using that T ∈ cogenn−1(Π) and that T is n-cotilting, we obtain
a sequence

0 T Πm · · · Πn+m−1 I 0,

with Πj ∈ add Π for each j and I injective. Taking the Yoneda product of these two sequences
produces a sequence

0 Γ Π0 · · · Πn+m−1 I 0,

which shows that id Γ ≤ n+m ≤ domdim Γ, i.e. that Γ is (m+ n− 1)-Auslander–Gorenstein. �

Corollary 3.10. An algebra Γ is d-Auslander–Gorenstein if and only if for some (or equivalently
every) m,n ≥ 0 such that d = m + n − 1, there is a Γ-module in genm−1(Π) ∩ cogenn−1(Π) that is
m-tilting and n-cotilting, where Π is the maximal projective-injective summand of Γ.

Proof. This follows from the equivalence of (i) and (iii) in Theorem 3.9, using the characterisation of
shifted and coshifted modules from Proposition 2.6. �

Remark 3.11. In the proof of Theorem 3.9, we could have arranged that I = DΓ, just as we were able
to replace P by Γ. However, unlike the replacement of P , this was not necessary for the argument; the
asymmetry arises from that in the definitions of dominant dimension and d-Auslander–Gorenstein,
which favour properties of the projective generator Γ over, for example, equivalent dual properties of
the injective generator DΓ. One viewpoint on Corollary 3.10 is that it provides a more symmetric
definition of d-Auslander–Gorenstein, without such favouritism. Indeed, to recover the usual definition,
one can set m = 0, forcing T to be a projective generator. Setting n = 0 forces T to be an injective
cogenerator and recovers the dual definition of Remark 2.2.

As an additional corollary, we get a characterisation of d-Auslander algebras, both generalising and
strengthening a characterisation of (1-)Auslander algebras due to Crawley-Boevey and the second
author [11, Lem. 1.1].

Corollary 3.12. Let Γ be a finite-dimensional algebra, and let d ≥ 1. Assume domdim Γ ≥ d+ 1 and
gldim Γ <∞. In the notation of Theorem 3.9, the following are equivalent:

(i) Γ is a d-Auslander algebra,
(ii) T∗ = C∗, and

(iii) T∗ ∩ C∗ is non-empty.

Proof. This follows from Theorem 3.9 together with the previously noted fact that d-Auslander alge-
bras are precisely d-Auslander–Gorenstein algebras of finite global dimension [18, Prop. 4.8]. �

Corollary 3.13. An algebra Γ is a d-Auslander algebra if and only if gldim Γ <∞ and for some (or
equivalently every) m,n ≥ 0 such that d = m+n−1, there is a Γ-module in genm−1(Π)∩cogenn−1(Π)
that is m-tilting and n-cotilting, where Π is the maximal projective-injective summand of Γ.
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4. Recollements and homotopy categories

4.1. Idempotent recollements. Let B be a finite-dimensional algebra, let e ∈ B be an idempotent
element and write A = eBe for the corresponding idempotent subalgebra (sometimes called the corner
or boundary algebra). We obtain from e a diagram

(4.1) B/BeB-mod B-mod A-modi e

q

p

`

r

of six functors, defined by

q = B/BeB ⊗B −, ` = Be⊗A −,
i = B/BeB ⊗B/BeB − e = HomB(Be,−)

= HomB/BeB(B/BeB,−), = eB ⊗B −,
p = HomB(B/BeB,−), r = HomA(eB,−).

Such data is known as a recollement of abelian categories, and can be defined in abstract, but we will
only consider recollements of module categories determined by idempotents as above (cf. [24]). For a
Γ-module M , one obtains the same A-module eM either by applying the functor e in this diagram,
or by multiplying on the left by the idempotent e, hence the abuse of notation.

Since ` and r are left and right adjoints of e respectively, and e` ∼= er ∼= 1, there is a natural
isomorphism

HomΓ(`M, rM)
∼−→ HomA(M,M),

functorial in M , and so determining a canonical map of functors ` → r. This map is equivalently
described as the composition of the counit of the adjunction (`, e) with the unit of the adjunction (e, r).
Taking its image yields a seventh functor c : A-mod→ Γ-mod, called the intermediate extension [19],
which, like ` and r, is fully faithful. In the sequel, we will implicitly use the natural epimorphism
`→ c and monomorphism c→ r composing to the natural map `→ r.

Since `, r and c are fully faithful and er ∼= 1 ∼= e`, we also have ec ∼= 1, and we obtain three induced
equivalences of categories

im `

im c A-mod

im r

`

c

r

with quasi-inverses given by the respective restrictions of the functor e. On the other side of the
recollement, the functor i embeds Γ/ΓeΓ-mod into Γ-mod, and since pi ∼= 1 ∼= qi we see that the
restrictions of q and of p to im i are both quasi-inverse to i.

The recollement (4.1) determines a TTF-triple inB-mod, meaning a triple (X ,Y,Z) of subcategories
such that both (X ,Y) and (Y,Z) are torsion pairs, by

TTF(e) = (X (e),Y(e),Z(e)) := (ker q, ker e, ker p).

We now give some alternative descriptions of the kernels and images of the functors in our recollement
(4.1), including the categories ker q and ker p appearing in this TTF-triple, in terms of the categories
genk(X) and cogenk(X) associated to X ∈ B-mod as in Definition 2.5.

Lemma 4.1. For B and e as in (4.1), write P = Be and I = νP = D(eB). We have

ker q = gen(P ), im ` = gen1(P ),

ker p = cogen(I), im r = cogen1(I).

Moreover, the image of the intermediate extension c = im(`→ r) is given by

im c = ker p ∩ ker q = gen(P ) ∩ cogen(I).
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Proof. For the equalities im ` = gen1(P ) and im r = cogen1(I), see [3, Lem. 3.1]. By [11, Lem/Def. 2.4],
if X ∈ ker q then the counit map `eX → X is an epimorphism. Take a projective cover Q → eX;
since ` preserves epimorphisms we obtain an epimorphism `Q → `eX → X. Since `A = P , we have
`Q ∈ addP and thus X ∈ gen(P ). Conversely, gen(P ) ⊆ ker q since qP = q`A = 0 and q preserves
epimorphisms. Using instead [11, Lem/Def. 2.3], one similarly proves that ker p = cogen(I). Finally,
the equality im c = ker p ∩ ker q is the first statement of [12, Prop 4.11]. �

Now let (A,E,Γ) be a Morita–Tachikawa triple, with Π the maximal projective-injective summand
of Γ. Recall from the Morita–Tachikawa correspondence that A ∼= EndΓ(Π)op. If T is any tilting
(or cotilting) Γ-module, we must have Π ∈ addT . It follows that there is an idempotent e ∈ B =
EndΓ(T )op, given by projection onto the summand Π of T , such that

eBe = EndΓ(Π)op ∼= A.

Thus we get a recollement as in (4.1). In particular, this holds for the shifted and coshifted algebras
Bk and Bk of Γ. In this section, we explain how these different recollements are related, for different
values of k, and give an explicit formula for the intermediate extension functor in each case.

4.2. Recollements for shifted and coshifted algebras. We first introduce some notation for our
preferred idempotents. Let Γ be a finite-dimensional algebra with dominant dimension d and maximal
projective-injective summand Π, and let 0 ≤ k ≤ d. We denote by ek the idempotent of the k-th
shifted algebra Bk of Γ given by projection onto Π ∈ addTk, and by ek the idempotent of the k-th
coshifted algebra Bk given by projection onto Π.

Remark 4.2. The reader is warned that while we have natural isomorphisms B0
∼= Γ ∼= B0, the

idempotents e0 and e0 are typically not equal. Rather, e0 is the idempotent indicated by the top of
Π, and e0 that indicated by the socle, so that Γe0

∼= Π ∼= D(e0Γ).

The algebras ekBkek and ekBkek are all isomorphic to A := EndΓ(Π)op, so A-mod appears on
the right-hand side of all of our recollements. In the case of the quotient algebras Bk/BkekBk and
Bk/BkekBk appearing on the other side of the recollements, we have the following.

Lemma 4.3. For all 0 ≤ k ≤ d we have isomorphisms

Bk/BkekBk
∼= Γ/Γe0Γ,

Bk/BkekBk ∼= Γ/Γe0Γ,

induced by taking syzygies and cosyzygies.

Proof. The idempotents ek are chosen such that there is an isomorphism

Bk/BkekBk
∼= EndΓ-mod/ add Π(Tk).

Moreover, since Π is projective-injective, [5, Thm 5.2] provides mutually inverse equivalences

Ω: gen(Π)/ add Π
∼←→ cogen(Π)/ add Π: Ω−,

where Ω(X) is the kernel of a minimal projective cover of X, and Ω−(Y ) is the cokernel of a minimal
injective hull of Y ; when X ∈ gen(Π), a minimal projective cover coincides with a minimal left add Π-
approximation as referred to in [5, Thm. 5.2], and the corresponding statement holds for Y ∈ cogen(Π).

We now prove the first set of isomorphisms, involving the shifted algebras, by induction on k,
noting that when k = 0 there is nothing to prove. Let 1 ≤ k ≤ d. Then, by construction, Tk−1 lies in
cogen(Π) and Ω−(Tk−1) agrees with Tk up to a projective-injective summand, i.e. an object of add Π.
We therefore obtain isomorphisms

Bk/BkekBk
∼= EndΓ-mod/ add Π(Tk)

∼= EndΓ-mod/ add Π(Ω(Tk))

∼= EndΓ-mod/ add Π(Tk−1) ∼= Γ/Γe0Γ,

the last by the induction hypothesis. The second statement is proved similarly, using that Ω−(Ck) =
Ck−1 in cogen(Π)/ add Π for 1 ≤ k ≤ d. �
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It follows from Lemma 4.3 that the families of shifted and coshifted modules each provide a family
of recollements, such that the left-hand side of the recollement is constant in each family, and the
right-hand side is constant across both families. More precisely, for each 0 ≤ k ≤ d = domdim Γ, we
get a pair of recollements as follows.

(4.2)

Γ/Γe0Γ-mod Bk-mod

A-mod

Γ/Γe0Γ-mod Bk-mod

ik

ek

qk

pk
`k

rk

`k

rk
ik

ekqk

pk

4.3. Homotopy categories. We now turn to the problem of computing the intermediate extension
functor in each recollement from (4.2). To do this, it will be useful to give a new description of
the shifted and coshifted algebras as endomorphism algebras in the bounded homotopy category of
A-modules, rather than in the category of Γ-modules, generalising a result of Crawley-Boevey and the
second author in the case that Γ is an Auslander algebra.

We begin with the following very general considerations. Let A be a finite-dimensional algebra,
E ∈ A-mod, and Γ = EndA(E)op. The bounded homotopy categories Kb(Γ-proj) and Kb(Γ-inj) of
complexes of projective and injective Γ modules respectively admit tautological functors to Db(Γ),
equivalences onto their images, which we treat as identifications. These subcategories may be charac-
terised intrinsically as the full subcategories of Db(Γ) on the compact and cocompact objects (in the
context of additive categories) respectively. Extending the Yoneda equivalences

HomA(E,−) : addE
∼−→ Γ-proj,

D HomA(−, E) : addE
∼−→ Γ-inj

to complexes, one sees that both of these subcategories of Db(Γ) are equivalent to the full subcategory
thick(E) of Kb(A), i.e. the smallest triangulated subcategory of the homotopy category Kb(A) closed
under direct summands and containing (the stalk complex) E.

Now let F : T ∼−→ Db(Γ) be any equivalence of triangulated categories. It follows from the intrinsic
description of Kb(Γ-proj) and Kb(Γ-inj) above that F induces respective equivalences from the sub-
categories of compact and cocompact objects of T to these subcategories of Db(Γ), and thus allows us
to realise thickE as a full subcategory of T (in two ways). This holds in particular when T = Db(B)
for some algebra B derived equivalent to Γ, such as the endomorphism algebra of a tilting or cotilting
Γ-module.

Whenever B is derived equivalent to Γ, it follows from Rickard’s Morita theory for derived categories
[25] that the image in Kb(Γ-proj) of the stalk complex B ∈ Kb(B-proj) is a tilting complex with
endomorphism algebra B, inducing the derived equivalence. The preimage of this tilting complex
under the Yoneda equivalence is an object of thickE ⊆ Kb(A), again with endomorphism algebra
B. Similarly, the image of DB ∈ Kb(B-inj) in Kb(Γ-inj) is a cotilting complex, and its preimage
under the dual Yoneda equivalence is another object of thickE with endomorphism algebra B. Our
conclusion is that when Γ is the endomorphism algebra of an A-module E (or more generally an object
E ∈ Kb(A)), any algebra B derived equivalent to Γ must also appear as an endomorphism algebra in
thickE ⊆ Kb(A). In general, B need not be an endomorphism algebra in A-mod.

When E is a generator-cogenerator and B is one of the shifted or coshifted algebras of Γ, we may
compute the relevant objects of thickE explicitly, and obtain a particularly straightforward answer.

Proposition 4.4. Let (A,E,Γ) be a Morita–Tachikawa triple with all objects basic, and let 0 ≤ k ≤
domdim Γ. We denote by Bk and Bk the k-th shifted and coshifted algebras of Γ respectively.

(a) Write

Ek = (Pk−1 → · · · → P0 → E)⊕A[k] ∈ Kb(A),
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where the first summand denotes the complex whose non-zero part is given by the first k terms
of a minimal projective resolution of E, with E in degree 0, and the second denotes the stalk
complex with A in degree −k. Then

Bk ∼= EndKb(A)(E
k)op,

with the idempotent e ∈ Bk given by projection onto Π corresponding under this isomorphism
to projection onto the summand A[k].

(b) Write

Ek = (E → Q0 → · · · → Qk−1)⊕DA[−k],

where the first summand denotes the complex whose non-zero part is given by the first k terms
of a minimal injective resolution of E, with E in degree 0, and the second denotes the stalk
complex with DA in degree k. Then

Bk
∼= EndKb(A)(Ek)op,

with the idempotent e ∈ Bk given by projection onto Π corresponding under this isomorphism
to projection onto the summand DA[−k].

Proof. As usual, we only prove (a), since (b) is dual. By definition, Bk is the endomorphism algebra of
the k-cotilting Γ-module Ck, so that the image of DBk in Kb(Γ-inj) is given by an injective resolution
of Ck. By construction, there is such an injective resolution of the form

(4.3) 0 Ck Πk−1 ⊕Π Πk−2 · · · Π0 DΓ 0,

where

Πk−1 Πk−2 · · · Π0 DΓ 0,

begins a minimal projective resolution of DΓ, and Π is as usual the maximal projective-injective sum-
mand of Γ. Recall that Π = DE = D HomA(A,E), and Πi ∈ add Π. Thus the representative of
Ck ∈ Kb(Γ-inj) given by the resolution (4.3) has as preimage under the (dual) Yoneda equivalence
D HomA(−, E) the complex Ek (up to a degree shift), and the desired isomorphism follows. The
claimed relationship between idempotents follows since the summand Π of Ck contributes the sum-
mand consisting of the stalk complex Π to its representative in Kb(Γ-inj), and this summand has
preimage given by the stalk complex A (in the correct degree). �

Remark 4.5. The assumptions of minimality of the projective and injective resolutions in Propo-
sition 4.4 are necessary since Bk and Bk are, by construction, basic algebras. However, one can
remove these assumptions from the statement at the cost of replacing the isomorphisms by Morita
equivalences.

Remark 4.6. When Γ is an Auslander algebra, so A is representation-finite and addE = A-mod,
the category addE1 is equivalent to the category H from [11, §3], and so Proposition 4.4(a) recovers
[11, Prop. 5.5] in this case.

Recall that ek and ek denote the idempotents of Bk and Bk given by projection onto Π. As a
consequence of Theorem 4.4, we may identify the corresponding recollements with

(addEk/DA[−k])-mod (addEk)-mod A-modik ek

qk

pk

`k

rk

in which ek is given by restriction of functors from addEk to add DA[−k], and

(addEk/A[k])-mod (addEk)-mod A-modik ek

qk

pk

`k

rk

in which ek is given by restriction of functors from addEk to addA[k], and ek by restriction from
addEk to add DA[−k]. Note that both A[k] and DA[−k] have endomorphism algebra A in Kb(A).
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4.4. Intermediate extensions. We now describe `k, rk and ck in the preceding recollement, and
state the dual results for `k, rk and ck. By using the identification of Bk-mod with (addEk)-mod, we
are able to give a particularly clean formula for ck.

Lemma 4.7. For X = (Xk
f−→ Xk−1 → · · · → X0) in addEk and M ∈ A-mod, we have

`k(M)(X) = HomKb(A)(X,A[k])⊗A M,

rk(M)(X) = HomA(ker f,M)

= HomDb(A)(X,M [k]),

where Db(A) is the bounded derived category of A.

Proof. Since the functor ek is given by restriction to the subcategory addA[k] of addEk, we may use
the general form of adjoints to this restriction (see [11, Lem. 2.6] and the discussion preceding this
lemma) to see that

`k(M)(X) = HomKb(A)(X,−[k])⊗A-proj M

and

rk(M)(X) = Hom(A-proj)-mod(HomKb(A)(−[k], X),M),

where we abuse notation somewhat, and use M to denote both an A-module and the equivalent data
of a functor in (A-proj)-mod.

Converting the functors M , HomKb(A)(X,−[k]) and HomKb(A)(−[k], X) on the right hand side of
these expressions into more traditional A-modules by evaluating on A, we see in the first case that

`k(M)(X) = HomKb(A)(X,A[k])⊗A M,

as claimed. In the second case we may compute HomKb(A)(A[k], X) = ker f , and so

rk(M)(X) = HomA(ker f,M)

as required. Since X ∈ addEk, it follows from the definition of this object that X ∼= ker(f)[k]
in the bounded derived category Db(A), and so we may also compute that HomA(ker f,M) =
HomDb(A)(X,M [k]) as claimed. �

Proposition 4.8. In the notation of Lemma 4.7, if k ≥ 2 then

`k(M)(X) = coker(HomA(Xk−1,M)
f∗−→ HomA(Xk,M)) = HomKb(A)(X,M [k]).

Proof. Let P1 → P0 → M → 0 be a projective presentation of M , from which we obtain the exact
sequence

HomKb(A)(X,A[k])⊗A P1 HomKb(A)(X,A[k])⊗A P0 HomKb(A)(X,A)⊗A M 0.

We have HomKb(A)(X,A) ⊗A M = `k(M)(X) by Lemma 4.7, and there are natural isomorphisms

HomKb(A)(X,A[k])⊗A Pi
∼−→ HomKb(A)(X,Pi[k]) since the Pi are projective, and the right A-module

structure on HomKb(A)(X,A[k]) comes from the identification A ∼= EndKb(A)(A[k])op. Thus `k(M)(X)

may be identified with the cokernel of the map HomKb(A)(X,P1[k])→ HomKb(A)(X,P0[k]).

For any N ∈ A-mod, we may compute HomKb(A)(X,N [k]) via the exact sequence

HomA(Xk−1, N) HomA(Xk, N) HomKb(A)(X,N [k]) 0.
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From this observation and our projective presentation of M , we may construct the commutative
diagram

HomA(Xk−1, P1) HomA(Xk−1, P0) HomA(Xk−1,M) 0

HomA(Xk, P1) HomA(Xk, P0) HomA(Xk,M) 0

HomKb(A)(X,P1[k]) HomKb(A)(X,P0[k]) HomKb(A)(X,M [k]) 0

0 0 0

with exact columns. The second row is exact since Xk is projective, by the definition of Ek. Moreover,
Xk−1 is also projective by the assumption that k ≥ 2, so the first row is also exact. Now a variant
of the snake lemma implies that the third row is exact, and so `k(M)(X) = HomKb(A)(X,M [k]) as
claimed. �

Theorem 4.9. Keeping the notation of Lemma 4.7, the intermediate extension ck(M) is given by

ck(M)(X) = im(HomA(Xk,M)→ HomA(ker f,M))

= coker(HomA(im f,M)→ HomA(Xk,M))

= ker(HomA(ker f,M)→ Ext1
A(im f,M)).

Proof. Applying HomA(−,M) to the exact sequence 0 → ker f → Xk → im f → 0 gives an exact
sequence

0 HomA(im f,M) HomA(Xk,M) HomA(ker f,M) Ext1
A(im f,M) 0,

from which we obtain canonical isomorphisms between the three spaces on the right hand side of the
statement. Denote by f∗ the map HomA(Xk−1,M)→ HomA(Xk,M) induced by f .

By [11, Lem. 4.2], c1(M)(X) = coker(HomA(X0,M)→ HomA(X1,M)), and im f = X0 in this case
by the definition of E1, giving the desired result. Assume now that k ≥ 2, so that `k(M)(X) = coker f∗

by Proposition 4.8.
The map f∗ : HomA(Xk−1,M) → HomA(Xk,M) factors through the inclusion HomA(im f,M) →

HomA(Xk,M). Therefore the canonical map `k → rk factors as

`k(M)(X) = coker f∗ � HomA(Xk,M)/HomA(im f,M) ↪→ HomA(ker f,M) = rk(M)(X),

and the image is given by im(HomA(Xk,M)→ HomA(ker f,M)), as required. �

The corresponding dual results, for `k, rk and ck, are as follows.

Lemma 4.10. For Y = (Y0 → · · · → Yk−1
g−→ Yk) in addEk and M ∈ A-mod, we have

`k(M)(Y ) = D HomA(M, coker g)

= D HomDb(A)(M [−k], Y ),

rk(M)(Y ) = HomA(HomKb(A)(DA[−k], Y ),M).

Proposition 4.11. In the notation of Lemma 4.10, if k ≥ 2 then

rk(M)(X) = ker(D HomA(M,Yk)
Dg∗−−→ D HomA(M,Yk−1)) = D HomKb(A)(M [−k], Y ).

Theorem 4.12. Keeping the notation of Lemma 4.10, the intermediate extension ck(M) is given by

ck(M)(X) = im(D HomA(M, coker g)→ D HomA(M,Yk))

= ker(D HomA(M,Yk)→ D HomA(M, im g))

= coker(D Ext1
A(M, im g)→ D HomA(M, coker g)).
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Using the descriptions

`k(M)(X) = HomKb(A)(X,M [k]),

rk(M)(X) = HomDb(A)(X,M [k])

of `k and rk when k ≥ 2, we see that the canonical map `k → rk agrees with that coming from the
Verdier localisation functor Kb(A) → Db(A). Indeed, the isomorphism of HomKb(A)(X,M [k]) with

HomA(Xk,M)/ im f∗ identifies the set of maps factoring through an acyclic complex, which is the
kernel of the Verdier localisation functor, with HomA(im f,M)/ im f∗. In the dual case, the canonical
map `k → rk agrees with the dual of that from Verdier localisation.

5. Subcategories associated to shifted modules

In the context of tilting theory, and of recollements, it is natural to consider various subcategories
of the relevant module categories. In this section we give alternative descriptions of some of these
subcategories associated to shifted and coshifted modules, using the highly explicit construction of
these modules.

We start by considering a finite-dimensional algebra Γ with idempotent e, yielding the recollement

(5.1) Γ/ΓeΓ-mod Γ-mod A-modi e

q

p

`

r

analogous to (4.1), in which A = eΓe. We also use this idempotent to fix a projective module P = Γe
and an injective module I = D(eΓ).

5.1. k-idempotents and isomorphisms on Ext-groups. Since i is an exact functor, we have
induced linear maps

ExtjΓ/ΓeΓ(X,Y )→ ExtjΓ(i(X), i(Y ))

for all X,Y ∈ Γ/ΓeΓ-mod and j ≥ 0. We recall the following definition and results of Auslander–
Platzek–Todorov [3], indicating that the categories genk(X) and cogenk(X) from Definition 2.5 play
an important role in our discussion.

Definition 5.1. Let 0 ≤ k ≤ ∞. The idempotent e is called a (k + 1)-idempotent if the maps

ExtjΓ/ΓeΓ(X,Y )→ ExtjΓ(i(X), i(Y )) are isomorphisms for all X,Y ∈ Γ/ΓeΓ-mod and 0 ≤ j ≤ k + 1.

Theorem 5.2 ([3, Thm. 2.1’]). The idempotent e is a (k+1)-idempotent if and only if ΓeΓ ∈ genk(P ).

The proof of this theorem involves the following characterisations of genk(P ) and cogenk(I).

Proposition 5.3 ([3, Prop. 2.4, Prop. 2.6]). Let 1 ≤ k ≤ ∞. Then

genk(P ) =
k⋂

j=0

ker ExtjΓ(−, i(DΓ/ΓeΓ)) and cogenk(I) =
k⋂

j=0

ker ExtjΓ(i(Γ/ΓeΓ),−).

Theorem 5.4 ([3, Lem. 3.1, Thm. 3.2]). Let X ∈ genk(P ) and Y ∈ cogen`(I) for some k, ` ≥ −1.
Then for every j ≤ k + `, the natural map

ρjX,Y : ExtjΓ(X,Y )→ ExtjA(eX, eY )

is an isomorphism. Furthermore, if X ∈ gen(P ) or Y ∈ cogen(I), then ρ0
X,Y is a monomorphism.

We have already shown, via Lemma 4.1, that e : gen1(P ) = im ` → A-mod and e : cogen1(I) =
im r → A-mod are equivalences. The following result describes e(genk(P )) and e(cogenk(I)) for
higher values of k, in terms of the A-modules E = eΓ = DI and E = D(Γe) = DP .

Proposition 5.5 ([3, Prop. 3.7]). For k ≥ 1, we have

e(genk(P )) =
k−1⋂
j=1

ker ExtjA(−, E) and e(cogenk(I)) =
k−1⋂
j=1

ker ExtjA(E,−).
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5.2. Equivalences of subcategories induced by tilting and cotilting modules. Now let T ∈
Γ-mod be k-tilting. We set B := EndΓ(T )op and note that DT is a k-cotilting left B-module. Consider
the functors

Φ := HomΓ(T,−), Ψ := D HomΓ(−, T ) : Γ-mod→ B-mod.

Note that Φ is right adjoint to Φ′ = D HomB(−,DT ) = T ⊗B −, and Ψ, which can also be written as
DT ⊗Γ −, is left adjoint to Ψ′ = HomB(DT,−). Moreover, we may compute

Φ(DΓ) = DT, Ψ(Γ) = DT,

Φ(T ) = B, Ψ(T ) = DB.

We also define subcategories

Ti(T ) :=
⋂
j 6=i

ker ExtjΓ(T,−) and Ci(DT ) :=
⋂
j 6=i

ker ExtjB(−,DT ),

which we refer to collectively as the tilting subcategories associated to T . It is immediate from the
definition that Ti(T ) = Ci(DT ) = 0 if i > k. The following result is due to Miyashita.

Theorem 5.6 ([20, Thm. 1.16]). For 0 ≤ i ≤ k, the functor ExtiΓ(T,−) : Ti(T ) → Ci(DT ) is an
equivalence of categories with quasi-inverse D ExtiB(−,DT ) : Ci(DT )→ Ti(T ).

When T is a classical tilting module, i.e. when k = 1, we obtain a torsion pair (T0(T ), T1(T )) (cf.
[6, Ch. 1]) in Γ-mod, where

T0(T ) = gen(T ) = ker Ext1
Γ(T,−)

is the torsion class, and

T1(T ) = ker HomΓ(T,−)

is the torsion-free class. Similarly, (C1(DT ), C0(DT )) is a torsion pair in B-mod, where

C1(DT ) = ker HomB(−,DT )

is the torsion class, and

C0(DT ) = cogen(DT ) = ker Ext1
B(−,DT )

is the torsion-free class. The torsion class in each torsion pair is equivalent to the torsion-free
class in the other, with equivalences given by HomΓ(T,−) : T0(T ) → C0(DT ), with quasi-inverse
D HomB(−, DT ), and Ext1

Γ(T,−) : T1(T ) → C1(DT ), with quasi-inverse D Ext1
B(−,DT ). These are

the four equivalences from the Brenner–Butler tilting theorem [7] (see also [1, §VI.3]).
For arbitrary k, we observe that T,DΓ ∈ T0(T ), DT,B ∈ C0(DT ), and there are inclusions

Ω−k(Γ-mod) ⊆ T0(T ),

Ωk(B-mod) ⊆ C0(DT ).

5.3. The four torsion pairs for 1-(co)shifted modules and their duals. We now focus on the
special case of k-shifted and k-coshifted modules, so assume domdim Γ = d > 0. As usual, denote by
Π a maximal projective-injective summand of Γ.

Since pdT1 ≤ 1 and idC1 ≤ 1, we obtain torsion pairs (T0(T1), T1(T1)) and (C1(C1), C0(C1)) in
Γ-mod, and their Brenner–Butler equivalent counterparts (C1(DT1), C0(DT1)) and (T0(DC1), T1(DC1))
in in B1-mod and B1-mod respectively.

For higher values of k, since Π is a summand of Γ, DΓ and Tk, we see that Ik := D HomΓ(Π, Tk) is
both an injective Bk-module and a summand of DTk, and that Pk := HomΓ(Tk,Π) is both a projective
Bk-module and a summand of DTk. Similarly, Ik := D HomΓ(Π, Ck) is an injective Bk-module and
P k := HomΓ(Ck,Π) a projective Bk-module, and both are summands of DCk.

Fix k, and let Φ = HomΓ(Tk,−) and Ψ = D HomΓ(−, Tk) be the tilting functors associated to Tk
in Section 5.2. Then by definition and the Nakayama formula, we have

Φ(Π) = Pk, Ψ(Π) = Ik,

Φ(νΠ) = Ik, Ψ(ν−Π) = Pk.

Similar identities, involving P k and Ik, hold for the corresponding functors associated to Ck.
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Recall from Remark 4.2 that in this context we have two preferred idempotents e0 and e0 of Γ,
depending on whether we view Γ as a the 0-shifted or 0-coshifted algebra, defined by

Π = Γe0 = D(e0Γ).

We also have preferred idempotents ek of Bk and ek of Bk given by projection onto the summand
Π of Tk and Ck respectively; this means that Pk = Bkek, Ik = D(ekBk) = νPk, P k = Bkek and
Ik = D(ekBk) = νP k. In particular, P0 = Π = I0, and hence I0 = νΠ and P 0 = ν−Π. The
rest of Section 5 is concerned with applying the preceding general results on idempotent recollements
and (co)tilting modules to the case of the (co)shifted modules and algebras, with these preferred
idempotents.

We begin by considering the TTF-triples of the recollements. Recall from Lemma 4.1 that

TTF(ek) = (gen(Pk), ker HomBk
(Pk,−), cogen(Ik)),

TTF(ek) = (gen(P k), ker HomBk(P k,−), cogen(Ik)).

By the Nakayama formula, we may also write

ker HomBk
(Pk,−) = ker HomBk

(−, Ik),

ker HomBk(P k,−) = ker HomBk(−, Ik).

We see that Φ (being left exact) maps the second torsion pair in TTF(e0) to the second torsion pair
in TTF(ek), that is

Φ(ker HomΓ(Π,−)) ⊆ ker HomBk
(Pk,−), Φ(cogen(νΠ)) ⊆ cogen(Ik).

We also see that Ψ (being right exact) maps the first torsion pair in TTF(e0) to the first torsion pair
in TTF(ek), that is

Ψ(gen(ν−Π)) ⊆ gen(Pk), Ψ(ker HomΓ(−,Π)) ⊆ ker HomBk
(−, Ik).

We may as usual obtain similar dual results involving TTF(ek).
For T1 and C1, the tilting subcategories from Section 5.2 have the following descriptions, which,

at least for the subcategories of Γ-mod, may also be expressed in terms of higher shifted or coshifted
modules.

Lemma 5.7. For 1 ≤ k ≤ d one has

T0(T1) = gen(Π) = gen(Tk), C1(DT1) = ker HomB1(−, I1),

T1(T1) = ker HomΓ(Π,−) = ker HomΓ(Tk,−), C0(DT1) = cogen(I1),

C1(C1) = ker HomΓ(−,Π) = ker HomΓ(−, Ck), T0(DC1) = gen(P 1),

C0(C1) = cogen(Π) = cogen(Ck), T1(DC1) = ker HomB1(P 1,−).

Proof. We give the proof only for the first torsion pair, the other three cases being similar. First we
describe T0(T1). By construction, Π is a summand of Tk ∈ gen(Π), so we have gen(Π) = gen(Tk) for
all k. Since T1 is 1-tilting, we also have T0(T1) = gen(T1), and our claimed equalities follow.

Just as for the first pair of equalities, since T1 is 1-tilting, we have T1(T1) = ker HomΓ(T1,−), and it is
only necessary to show that ker HomΓ(Π,−) = ker HomΓ(Tk,−) for all 1 ≤ k ≤ d. As Π is a summand
of Tk, we have ker HomΓ(Tk,−) ⊆ ker HomΓ(Π,−). For the converse, since Tk ∈ gen(Π) there is an
epimorphism ΠN → Tk for some N , yielding a monomorphism HomΓ(Tk,−) → HomΓ(ΠN ,−). It
follows that

ker HomΓ(Π,−) = ker HomΓ(ΠN ,−) ⊆ ker HomΓ(Tk,−). �

Miyashita’s result, stated here as Theorem 5.6, provides equivalences involving the tilting subcate-
gories Tj(Tk) for higher values of j and k. Hence we would also like to give easier descriptions of these
categories, which is the content of the next subsection.
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5.4. Tilting subcategories for higher shifted modules. As in the previous section, we assume
that domdim Γ = d > 0, so we have a family of shifted modules Tk for 0 ≤ k ≤ d. Define Ki =
ker Ext1

Γ(Ti,−), so in particular K1 = T0(T1).

Proposition 5.8. For 1 ≤ k ≤ d, we have

Tj(Tk) =


⋂k

i=1Ki, j = 0,

ker HomΓ(Π,−), j = k,

{0}, otherwise.

Proof. By construction, for any 1 ≤ i ≤ k we have an exact sequence

0 Ti−1 Πi Ti 0

with Πi ∈ add Π. Passing to the long exact sequences of functors, and using that Πi is projective, we
see that ExtiΓ(Tk,−) = Ext1

Γ(Tk−i+1,−), so ker ExtiΓ(Tk) = Kk−i+1. Our description of Tj(Tk) now
follows directly from the definition of this subcategory.

The above calculation also shows that

Tk(Tk) = ker HomΓ(Tk,−) ∩
k⋂

i=2

Ki.

By Lemma 5.7, we have ker HomΓ(Tk,−) = ker HomΓ(Π,−), so Tk(Tk) ⊆ ker HomΓ(Π,−). Conversely,
we show that ker HomΓ(Π,−) ⊆ Ki for 2 ≤ i ≤ k. Assume HomΓ(Π, X) = 0, and apply HomΓ(−, X)
to the sequence

0 Ti−1 Πi Ti 0

above to obtain
Hom(Ti−1, X)

∼−→ Ext1(Ti, X).

Since i ≥ 2, there is an epimorphism Πi−1 → Ti−1 with Πi−1 projective injective, and hence a
monomorphism Hom(Ti−1, X) → Hom(Πi−1, X) = 0. Thus Ext1(Ti, X) ∼= HomΓ(Ti−1, X) = 0, so
X ∈ Ki, completing the proof that Tk(Tk) = ker HomΓ(Π,−).

As calculated at the start of the proof, we have

ExtkΓ(Tk,−) = Ext1
Γ(T1,−),

and so Tj(Tk) ⊆ ker Ext1
Γ(T1,−) = T0(T1) when j 6= k. Using again that

Tj(Tk) ⊆ ker Hom(Tk,−) = ker Hom(Π,−) = T1(T1)

for j 6= 0, we see that Tj(Tk) ⊆ T0(T1) ∩ T1(T1) for j different from 0 and k. However, since
(T0(T1), T1(T1)) is a torsion pair, this intersection is {0}. �

By combining the calculation in Proposition 5.8 with Miyashita’s theorem [20, Thm. 1.16] (stated
above as Theorem 5.6), we obtain the following.

Corollary 5.9. Let 1 ≤ k ≤ d, and let DTk be the k-cotilting Bk-module induced by the k-shifted
module Tk. Then Cj(DTk) = 0 for j different from 0 and k, and there is an equivalence of categories

Ck(DTk)
∼−→ C1(DT1). Furthermore, if k ≥ 2 there is a fully faithful functor C0(DTk) → C0(DTk−1)

sending DTk to DTk−1.

Proof. The first two statements are immediate from Theorem 5.6 and Proposition 5.8. For the third,
we obtain the desired fully faithful functor from the inclusion

T0(Tk) = T0(Tk−1) ∩ Kk ⊆ T0(Tk−1)

which follows from Proposition 5.8, by applying the equivalences HomΓ(Ti,−) : T0(Ti)
∼−→ C0(DTi) for

i = k, k − 1. The resulting functor maps DTk to DTk−1, since these are the images of DΓ under the
preceding equivalences. �

We now give another, more direct, description of the tilting subcategories T0(Tk). Recall that we
write Ik = D HomΓ(Π, Tk) ∈ Bk-mod, and A = EndΓ(Π)op.

Proposition 5.10. For 1 ≤ k ≤ d, we have



SPECIAL TILTING MODULES FOR ALGEBRAS WITH POSITIVE DOMINANT DIMENSION 21

(i) T0(Tk) = genk−1(Π), and

(ii) C0(DTk) = cogenk−1(Ik) .

Combining this with Theorem 5.6 yields an equivalence HomΓ(Tk,−) : genk−1(Π)→ cogenk−1(Ik).

Proof. (i) Assume X ∈ genk−1(Π), so we have an exact sequence

0 Y Πk−1 · · · Π0 X 0

with Πi ∈ add Π. The standard homological argument with long exact sequences shows that
for j ≥ 1 we have

ExtjΓ(Tk, X) = Extk+j
Γ (Tk, Y ) = 0,

so X ∈ T0(Tk).
We prove the converse by induction on k. The case k = 1 is already dealt with in Lemma 5.7,

so assume k ≥ 2 and genk−2(Π) = T0(Tk−1). Let X ∈ T0(Tk). Since T0(Tk) ⊆ T0(Tk−1) =
genk−2(Π), we have an exact sequence

0 Z Πk−2 · · · Π0 X 0,

with Πi ∈ add Π, and so we only need to see that Z ∈ gen(Π) = T0(T1). We claim

Ext1
Γ(T1, Z) ∼= ExtkΓ(Tk, Z) ∼= Ext1

Γ(Tk, X) = 0.

The first isomorphism follows from the construction of the shifted modules, and the second
follows from the above long exact sequence connecting X and Z. Finally Ext1

Γ(Tk, X) = 0
since X ∈ T0(Tk). Thus Z ∈ ker Ext1(T1,−) = T0(T1), as required.

(ii) The case k = 1 was dealt with in Lemma 5.7, so we may assume k ≥ 2. Consider the functors

e0 = HomΓ(Π,−) : Γ-mod→ A-mod,

ek = HomBk
(Pk,−) : Bk-mod→ A-mod,

Φ = HomΓ(Tk,−) : Γ-mod→ Bk-mod.

Recalling that Pk = ΦΠ, we have ek ◦ Φ = e0, and so we have the following commutative
diagram.

T0(Tk)

e0T0(Tk)

C0(DTk)

e0

Φ

ek

By [20, Thm. 1.16] (stated here as Theorem 5.6), Φ is an equivalence. By part (i) of
this proposition, T0(Tk) = genk−1(Π) ⊆ gen1(Π), so e0 is fully faithful by [3, Lem. 3.1] (see
Theorem 5.4 for ` = −1, noting that we use k ≥ 2 at this point). It follows that ek is also fully
faithful, with image e0T0(Tk). Recalling that ` = Π⊗A − : A-mod→ Γ-mod is the left adjoint
of e0, and that e0 ◦ ` = 1, we see that the restriction of Φ ◦ ` to e0T0(Tk) is quasi-inverse to ek.

Since Pk = HomΓ(Tk,Π), it is naturally a right A-module. Moreover, the functors `k =
Pk ⊗A − : A-mod → Bk-mod and Φ ◦ ` are naturally isomorphic when restricted to addA.
Note that `k is right exact, and Φ ◦ `, being an equivalence, is right exact when restricted to
e0(T0(Tk)). Moreover, A = e0Π ∈ e0T0(Tk), so we may use projective presentations to see that
`k and Φ ◦ ` are isomorphic on this subcategory. It follows that C0(DTk) = `ke0T0(Tk) is a full
subcategory of im `k = cogen1(Ik) (Lemma 4.1).

By [3, Lem. 3.1], ek is fully faithful on cogen1(Ik), which contains both cogenk−1(Ik), since
k ≥ 2, and C0(DTk), by the above argument. Thus to see that C0(DTk) ⊆ cogenk−1(Ik), we
can use ek to transport the problem to A-mod and instead show that

ekC0(DTk) = e0T0(Tk) ⊆ ek(cogenk−1(Ik)) =
k−2⋂
j=1

ker ExtjA(ekBk,−),
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with the last equality following from [3, Prop. 3.7], stated here as Proposition 5.5. Observe
that e0Tk = ekΦTk = ekBk as A-modules. If X ∈ T0(Tk) = genk−1(Π) then by [3, Lem. 3.1,
Thm. 3.2] (see Theorem 5.4), we have

0 = ExtjΓ(Tk, X) ∼= ExtjA(e0Tk, e0X) = ExtjA(ekBk, e0X)

for 1 ≤ j ≤ k − 2, so e0X ∈
⋂k−2

j=1 ker ExtjA(ekBk,−).

Conversely, the inclusion cogenk−1(Ik) ⊆ C0(DTk) can be seen directly, as follows. Let
M ∈ cogenk−1(Ik), so there exists an exact sequence

0 M J0 · · · Jk−1 N 0

with each Ji ∈ add Ik. Recalling that DTk is Ik-special, so ExtjBk
(Ji,DTk) = 0 for all i and all

j ≥ 1, it follows by a standard homological argument that

ExtjBk
(M,DTk) ∼= Extj+k

Bk
(N,DTk) = 0,

for j ≥ 1 since id DTk ≤ k. Thus M ∈ C0(DTk), as required. �

Naturally, one can make dual arguments for the coshifted modules, and obtain the following dual
description, where P k = Hom(Ck,Π) ∈ Bk-mod.

Proposition 5.11. For 1 ≤ k ≤ d, we have

(i) C0(Ck) = cogenk−1(Π), and
(ii) T0(DCk) = genk−1(P k).

Combining this with Theorem 5.6 yields an equivalence D HomΓ(−, Ck) : cogenk−1(Π)→ genk−1(P k).

6. Tilting modules as intermediate extensions

As usual, let Γ be a finite-dimensional algebra with domdim Γ = d > 0, let Π be a maximal
projective-injective summand, and let A = EndΓ(Π)op. In this section, we consider the intermediate
extensions in our preferred recollements involving the shifted and coshifted algebras Bk and Bk, which
we denote by ck and ck respectively.

Our main result is that when (A,E,Γ) is a Morita–Tachikawa triple, and 0 < k < d, the distin-
guished cotilting module DTk for the k-th shifted algebra Bk of Γ is the intermediate extension ckE.
Similarly, ckE = DCk is the distinguished tilting module for the coshifted algebra Bk.

We first give some general results, for arbitrary tilting or cotilting modules.

Proposition 6.1. Let Γ be a finite-dimensional algebra with tilting module T , cotilting module C and
maximal projective summand Π, and write B = EndΓ(T )op and B′ = EndΓ(C)op. Let e and e′ be the
idempotents of B and B′ given in each case by projection onto Π. Then

eDT = DΠ = e′DC.

In particular, if Γ is part of a Morita–Tachikawa triple (A,E,Γ), then

eDT = E = e′DC.

Proof. Writing Φ = HomΓ(T,−), we have Be = Φ(Π) and DT = Φ(DΓ). It follows that

e(DT ) = HomB(Φ(Π),Φ(DΓ)) = HomΓ(Π,DΓ) = DΠ,

since by [20, Thm. 1.16] (here Theorem 5.6) Φ is fully faithful on the subcategory T0(T ), which contains
all injective Γ-modules. Writing Φ′ = D HomΓ(−, C), we have D(e′B′) = Φ′(Π) and DC = Φ′(Γ). It
follows that

e′(DC) = D HomB′(Φ
′(Γ),Φ′(Π)) = D HomΓ(Γ,Π) = DΠ,

since by [20, Thm. 1.16] again, Φ′ is fully faithful on the subcategory C0(C), which contains all
projective Γ-modules. The final statement follows since the module E in a Morita–Tachikawa triple
is always given by DΠ, where Π is a maximal projective-injective summand of Γ. �
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Maintaining the notation of Proposition 6.1, consider the B-modules

P := HomΓ(T,Π),

I := D HomΓ(Π, T ),

noting that P is projective, I is injective and νP = I. Furthermore, since Π is a summand of both Γ
and DΓ, we have P ⊕ I ∈ add DT . In terms of the idempotent e, we have P = Be and I = D(eB).
Our aim is now to characterise when the cotilting B-module DT is in the image of the intermediate
extension functor c associated to this idempotent.

Proposition 6.2. In the context of the preceding paragraph, let m,n ≥ 0, and denote by Ω and Ω−

the usual syzygy functors associated to Γ.

(i) The following are equivalent:
(a) Γ ∈ cogenm−1(Π) and Ext1

Γ(Ω−iΓ, T ) = 0 for 1 ≤ i ≤ m, and
(b) DT ∈ cogenm−1(I).

(ii) The following are equivalent:
(a) DΓ ∈ genn−1(Π) and Ext1

Γ(T,ΩiDΓ) = 0 for 1 ≤ i ≤ n, and
(b) DT ∈ genn−1(P ).

Moreover the conditions in (i) and (ii) both hold for some m,n ≥ 1 if and only if DT is in the image
of the intermediate extension functor c associated to e, and in this case DT = c(DΠ).

Proof. Since conditions (a) and (b) are vacuous for m = 0 and n = 0 respectively, we may assume
m,n ≥ 1. We will also use the following straightforward observations, which hold for modules over an
arbitrary algebra. Given an exact sequence

X• = ( · · · Xi−1 Xi Xi+1 · · · ),

let Zi = ker(Xi → Xi+1) for each i ∈ Z. Then for any module Y ,

(1) if Ext1(Y,Zi−1) = 0, then Hom(Y,X•) is exact at Hom(Y,Xi), and
(2) if Ext1(Zi+2, Y ) = 0, then Hom(X•, Y ) is exact at Hom(Xi, Y ).

The proof now proceeds as follows.

(i) Assume Γ ∈ cogenm−1(Π), so there is an exact sequence

0 Γ Π0 · · · Πm−1 X 0

with Πi ∈ add Π. Thinking of this as an infinite complex with Πi in degree i and defining Zi

as above, we can apply the functor Ψ = D HomΓ(−, T ) and use observation (2) above to see
that the resulting sequence

0 ΨΓ ΨΠ0 · · · ΨΠk−1

is exact, since Ext1
Γ(Zi, T ) = Ext1

Γ(Ω−iΓ, T ) = 0 for 1 ≤ i ≤ m. Since Ψ(Γ) = DT and
Ψ(Π) = I, it follows that DT ∈ cogenm−1(I).

Conversely, assume DT ∈ cogenm−1(I), and take an exact sequence

0 DT J0 J1 · · · Jm−1 Y 0

with each Ji ∈ add I, viewed as an infinite complex with Ji in degree i, and define Zi as above.
Then a standard homological argument using the above sequence shows that

Ext1
B(DT,Zi) = Exti+1

B (DT,DT ) = 0

for 0 ≤ i ≤ m − 1. So by observation (1) we can apply the right adjoint Ψ′ = HomB(DT,−)
of Ψ, which satisfies Ψ′(DT ) = Γ and Ψ′(I) = Π, to get an exact sequence

0 Γ Π0 · · · Πm−1 Ψ′Y 0.

It follows that Γ ∈ cogenm−1(Π). This is also a projective resolution of Ψ′Y , so we can use it
to compute D Exti(Ψ′Y, T ) by applying the right exact functor Ψ. However, on applying Ψ′Y
we recover the part

0 DT J0 J1 · · · Jm−1
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of the original exact sequence, since the natural map ΨΨ′(DT )→ DT is an isomorphism and
I ∈ add DT , so the cohomology of this complex vanishes in degrees i ≤ m − 2. On the other
hand, the cohomology in degree −1 ≤ i ≤ m− 2 computes

D Extm−1−i
Γ (Ψ′Y, T ) = D Extm−1−i

Γ (Ω−mΓ, T ) = D Ext1
Γ(Ω−(i+2)Γ, T ),

and so Ext1
Γ(Ω−iΓ, T ) = 0 for 1 ≤ i ≤ m as required.

(ii) Recall that the functor Φ = HomΓ(T,−) satisfies Φ(DΓ) = DT and Φ(Π) = P , and its left
adjoint Φ′ = D HomB(−,DT ) satisfies Φ′(DT ) = DΓ and Φ′(P ) = Π. The rest is analogous to
(i).

If DT = cDΠ, then DT ∈ im c = gen(P ) ∩ cogen(I) (Lemma 4.1), so the conditions in (i) and (ii)
hold for m = n = 1. For the converse, note that these conditions become stronger as m and n
increase, so it suffices to show that if they hold for m = n = 1 then DT = cDΠ. In this case we have
DT ∈ gen(P )∩ cogen(I) = im c, so DT = ceDT . But by Proposition 6.1, we have eDT = DΠ, and the
result follows. �

Remark 6.3. For the conditions of Proposition 6.2(i) to hold, it is necessary that P ∈ add DT ⊆
cogen(I). Since I = νP , this means that the support of the top of P is contained in the support of
its socle. Similarly, the conditions of Proposition 6.2(ii) may only hold if the support of the socle of I
is contained in the support of its top.

Similarly, again in the context of Proposition 6.1, we can describe when the tilting B′-module DC
is in the image of the intermediate extension c′ associated to the idempotent e′. We define

P ′ := HomΓ(C,Π),

I ′ := D HomΓ(Π, C),

noting again that P ′ is projective, I ′ = νP ′ is injective, and P ′ ⊕ I ′ ∈ add DC. We then have the
following analogous statement to Proposition 6.2, by swapping the roles of the two algebras.

Proposition 6.4. In the context of the preceding paragraph, let m,n ≥ 0.

(i) The following are equivalent:
(a) DΓ ∈ genm−1(Π) and Ext1

Γ(C,ΩiDΓ) = 0 for 1 ≤ i ≤ m, and
(b) DC ∈ genm−1(P ′).

(ii) The following are equivalent:
(a) Γ ∈ cogenn−1(Π) and Ext1

Γ(Ω−iΓ, C) = 0 for 1 ≤ i ≤ n, and
(b) DC ∈ cogenn−1(I ′).

Moreover the conditions in (i) and (ii) both hold for some m,n ≥ 1 if and only if DC is in the image
of the intermediate extension functor c′ associated to e′, and in this case DC = c′(DΠ).

We now apply these results to the shifted and coshifted modules and algebras of an algebra Γ with
dominant dimension d and maximal projective-injective summand Π, to show that for 0 < k < d we
have

ck(DΠ) = DTk, and ck(DΠ) = DCk,

where ck and ck are the intermediate extensions in the recollements involving Bk and Bk respectively
(4.2). Note that for our result to have any content we must assume d ≥ 2, so Γ is part of a Morita–
Tachikawa triple (A,E,Γ) and DΠ = E.

Theorem 6.5. Let Γ be a finite-dimensional algebra of dominant dimension d ≥ 2, with maximal
projective-injective summand Π, and let 0 < k < d. Write Tk and Bk for the k-th shifted module and
algebra of Γ, and let ck be the intermediate extension functor from the recollement in (4.2) involving
Bk. Then for Pk = HomΓ(Tk,Π) and Ik = D HomΓ(Π, Tk) we have

DTk ∈ gend−k−1(Pk) ∩ cogenk−1(Ik).

In particular,

DTk = ckE,

where E is the A-module from the Morita–Tachikawa triple (A,E,Γ).
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Proof. Since 0 < k < d, we have

Γ ∈ cogend−1(Π) ⊆ cogenk−1(Π),

DΓ ∈ gend−1(Π) ⊆ gend−k−1(Π).

To apply Proposition 6.2, it is therefore enough to check that

Ext1
Γ(Ω−iΓ, Tk) = 0 = Ext1

Γ(Tk,Ω
jDΓ), 1 ≤ i ≤ k, 1 ≤ j ≤ d− k,

so fix i and j satisfying these constraints. Since 0 < i, j < d, the standard homological argument
shows that

ExtnΓ(Ω−iΓ,−) = Extn−iΓ (Γ,−) = 0,

ExtmΓ (−,ΩjDΓ) = Extm−jΓ (−,DΓ) = 0

for all n > i and m > j, using that the relevant syzygy and cosyzygy can be computed using projective-
injective covers and envelopes. By the construction of Tk from Proposition 2.4, we then have

Ext1
Γ(Ω−iΓ, Tk) = Ext1+k

Γ (Ω−iΓ,Γ) = 0,

Ext1
Γ(Tk,Ω

jDΓ) = Ext1
Γ(Ω−kΓ,ΩjDΓ) = Ext1+d−k

Γ (Ω−dΓ,ΩjDΓ) = 0

by the above calculations, noting that 1 +k > i and 1 +d−k > j. Our desired conclusions now follow
directly from Proposition 6.2. �

Dually, we obtain the following result for coshifted algebras from Proposition 6.4.

Theorem 6.6. Let Γ be a finite-dimensional algebra of dominant dimension d ≥ 2, with maximal
projective-injective summand Π, and let 0 < k < d. Write Ck and Bk for the k-th coshifted module
and algebra of Γ, and let ck be the intermediate extension functor from the recollement in (4.2) involving
Bk. Then for P k = HomΓ(Ck,Π) and Ik = D HomΓ(Π, Ck) we have

DCk ∈ gend−k−1(P k) ∩ cogenk−1(Ik).

In particular,
DCk = ckE,

where E is the A-module from the Morita–Tachikawa triple (A,E,Γ).

We close by characterising, in the context of Theorem 6.5, when DTk additively generates the
category gend−k−1(Pk) ∩ cogenk−1(Ik) that it must be contained in. The characterisation is in terms
of the module E in the Morita–Tachikawa triple, and we have a similar dual result in the context of
Theorem 6.6.

Proposition 6.7. Keep all the notation and assumptions of Theorems 6.5 and 6.6, and let E be the
module from the Morita–Tachikawa triple (A,E,Γ) involving Γ. Then

(i) add DTk = gend−k−1(Pk) ∩ cogenk−1(Ik) if and only if

addE =
k−2⋂
j=1

ker ExtjA(−, E) ∩
d−2⋂

j=k+1

ker ExtjA(−, E),

and
(ii) add DCk = genk−1(P k) ∩ cogend−k−1(Ik) if and only if

addE =

k−2⋂
j=1

ker ExtjA(E,−) ∩
d−2⋂

j=k+1

ker ExtjA(E,−).

Proof. We prove only (i), the proof of (ii) being completely analogous. Recall that Ik = D(ekBk) and
Pk = Bkek. By [3, Prop. 3.7] (stated here as Proposition 5.5) we have

ek(gend−k−1(Pk)) =
d−k−2⋂
j=1

ker ExtjA(−, ekDBk),

and
ekDBk = D HomΓ(Tk,Π) = e0Tk.
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Since e0 is an exact functor, we can use the definition of Tk to obtain an exact sequence

0 e0Γ e0Π0 · · · e0Πk−1 e0Tk 0

with Πi ∈ add Π. As e0Π = D(e0Γe0) = DA is injective and e0Γ = E we have ExtjA(−, e0Tk) ∼=
Extj+k

A (−, E) for all j ≥ 1. It follows that

ek(gend−k−1(Pk)) =
d−k−2⋂
j=1

ker Extj+k
A (−, E) =

d−2⋂
j=k+1

ker Extj(−, E).

On the other hand ek◦Φ = e0, for Φ = HomΓ(Tk,−), as in the proof of Proposition 5.10. This propo-
sition together with [20, Thm. 1.16] (here Theorem 5.6) shows that Φ: genk−1(Π)→ cogenk−1(Ik) is
an equivalence, so by [3, Prop. 3.7] again we see that

ek(cogenk−1(Ik)) = e0(genk−1(Π)) =
k−2⋂
j=1

ker ExtjA(−, E),

here using that Π = Γe0 and e0DΓ = E. We conclude that

k−2⋂
j=1

ker ExtjA(−, E) ∩
d−2⋂

j=k+1

ker ExtjA(−, E) = ek(gend−k−1(Pk) ∩ cogenk−1(Ik)).

As calculated in Theorem 6.5, we have DTk ∈ gend−k−1(Pk) ∩ cogenk−1(Ik). Moreover, by Propo-
sition 6.1 we have ek(DTk) = E. Since d ≥ 2, the functor ek is fully faithful on gend−k−1(Pk) ∩
cogenk−1(Ik) by [3, Lem. 3.1], and so is an equivalence onto its image, which is thus equal to addE if
and only if gend−k−1(Pk) ∩ cogenk−1(Ik) = add DTk. �

7. Examples

Example 7.1. Let A be the path algebra of a linearly-oriented quiver of type A3, and take E basic
with addE = add (A⊕DA). Then Γ = EndA(E)op is isomorphic to the quotient of the path algebra
of the quiver

1 2 3 4 5

by paths of length 3, and has global dimension 3. We have

Π = Γ(e1 + e2 + e3) =
1

2
3
⊕ 2

3
4
⊕ 3

4
5
,

and
T1 = Π⊕ 3 ⊕ 3

4

so we may compute B1 to be the path algebra of

2

1 5 3

4

modulo the commutativity relation on the square. We see that gldimB1 = 2 (cf. Corollary 2.16). We
can compute that, as B1-modules, we have

`1(E) = 1 ⊕ 1
4 2

5
⊕

1
4 2

5
3
⊕ 2

5
3
⊕ 3 ,

r1(E) = 1 ⊕ 1
2 ⊕

1
4 2

5
3
⊕ 4 2

5
3
⊕ 3 ,

so the image of the universal map is

c1(E) = 1 ⊕ 1
2 ⊕

1
4 2

5
3
⊕ 2

5
3
⊕ 3 = DT1,
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as claimed in Theorem 6.5.

Example 7.2. A simple but instructive family of examples is the following. Let A be the path
algebra of a linearly oriented An quiver modulo the radical squared, and take E basic with addE =
add(A⊕DA). Then E is (n−1)-cluster-tilting, and so Γ = EndA(E)op is an (n−1)-Auslander algebra,
with dominant and global dimension n, and its families of shifted and coshifted algebras coincide by
Theorem 3.9.

We compute that the k-th coshifted algebra Bk may be presented as the path algebra of a linearly
oriented An+1 quiver, with vertices labelled

1 2 · · · n+ 1

modulo all paths of length 2 except that passing through the vertex k + 1. It follows that

gldimBk = max{n− k, k}.

Since A is an (n− 1)-Auslander algebra, the shifted and coshifted algebras coincide, with

Bk
∼= Bn−k.

Example 7.3. The following example demonstrates that the conclusion of Theorem 6.5 may not hold
when k = d. Consider the algebra

Γ =

1 2

3 4

b

d a

c

with relation ab = cd,

defined over a field K. Then domdim Γ = 1, the maximal projective injective summand is Π = P (1) =
I(4), and

T1 = I(2)⊕ I(3)⊕ I(4)⊕ 1
3 2 and C1 = P (1)⊕ P (2)⊕ P (3)⊕ 3 2

4

B1 =

2

3 1′ 4

and B1 =
1 4′ 2

3

Now, projection onto the summand Π in T1 (resp. in C1) corresponds to e4 ∈ B1 (resp. e1 ∈ B1).
Since we have e4B1e4 = K we conclude that im c1 = addS(4) for the corresponding intermediate
extension c1. Since DT1 /∈ addS(4), the conclusion of Theorem 6.5 does not hold in this case.

Example 7.4. It can happen that the dominant dimension of a shifted algebra is again positive,
allowing us to iterate sequences of shifts and coshifts. We illustrate this on the Auslander algebra

Γ =

•

• •

• • •

of the path algebra of a linearly oriented A3 quiver. We may compute that the first shifted algebra is

B1 =

•

• •

• • •
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(noting the absence of relations in the lowest row) and then use Theorem 3 to see that B1 ∼= B1,
B2
∼= B0 ∼= Γ and B2 ∼= B0

∼= Γ. Since domdimB1 = 1, we can shift again to obtain

B1,1 =

• • • •

• •
which also has dominant dimension 1; note in particular that B1,1 6∼= B2. Shifting once more, we find

B1,1,1 =

• • • • •

•
which has dominant dimension 0, so the sequence ends.
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