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A CONFORMAL LOWER BOUND FOR THE SMALLEST 

EIGENVALUE OF THE DIRAC OPERATOR 

AND KILLING SPINORS 

1. INTRODUCTION In 1963 A.' Lichnerowicz [L] proved that on a Riemannian 

spin manifold the square of the Dirac operator D is given by 

(1.1) 

where ~ is the positive spinor Laplacian and s the scalar curvature. 

This formula implies 

THEOREM [L] On a compact Riemannian spin manifold (M,g) of positive 

scalar curvature, 

(i) there is no non-zero haPmonic spinor 

and 

(ii) any eigenvalue A of the Dirac operator satisfies 

(1.2) ,2 1 . f 
1\ >'4 ~n s 

M 

Part (i) together with the Atiyah-Singer index theorem applied to the 

Dirac operator for 4k-dimensional manifolds, gives a topological obstruction -

namely the vanishing of the ~-genus of Hirzebruch - for the existence 

of positive scalar curvature metrics on a compact spin manifold. 

N. Hitchin [H11 extended Licbnerowicz' result of the vanishing of 

the Ko-characteristic numbers defined by Milnor [M]. By introducting the 
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notion of enlargeable manifolds and combining it with the spin condition, 

M. Gromov and H.B. Lawson (GL1,2,3] obtained beautiful results for the 

non-existence (and existence) of positive scalar curvature metrics on 

certain compact (and non-compact) manifolds. It should be mentioned that 

in an earlier paper, R. Schoen and S.T. Yau [SY] used the technique of regular 

minimal hypersurfaces to prove that, in low dimensions, certain manifolds 

do not ,support positive scalar curvature metrics. 

2. MAIN RESULTS 

THEOREM A Let (M,g) be a corrpact Riemannian spin manifo1.d of dimension 

n ~ 3 • Any eigenvaZue A of the Dirac operator D satisfies 

(2.1) ,2 > n 
1\ ... 4(n-1) J.l 1 

where /J
1 

is the first eigenvaZue of the YarrKlbe operator L, 

(2.2) n-1 
L=4-

2
l!.+s 

n-

where l!. is the positive LapZacian acting on functions and s the scaZar 

CUI'Vature of (M, g) 

THEOREM B Let (M,g) be a compact RierrKlnnian spin manifold of dimension 

n ~ 3 • If there exists an eigenspinor fie Zd '¥ of the Dirac operator D 

for the eigenvaZue A1 ,with A~ = 4(~-1) J.l 1 ' then either i) 01' H) hoZds: 
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i) ~1 = 0 , then the~ exists a function c
1 

satisfying 

( 

. n-2 ) 
4 n-l A :-2-

c
l +. 

n-2 

n-2 
--2- c l 

se 

8uch that, with pespect to the metric 

o 

2c
1 

g = e g and its corresponding 

connection V, there exists a paraUeZ spincp field lP • In particular, 

the manifold (M,g) is Ricci-flat. 

A-
ii) ~1 > 0 , then V lqt == 0 , where for any peal function f and 

any vector field X, the modified connection V
f is dEfined by 

where "." denotes the Clifford rrrultiplication. In papticuZal', the 

manifold (M,g) is Einstein. 

It should be pointed out that Th. Friedrich [F1] proved that 

.,2 > n . f 
A - 4(n-1) l.n s 

M 

and that equality gives an Einstein metric. Indeed, it is easy to 

see that· J..I
1 
~ inf s (see Remark 5.8.(b) below). It is a well known fact 

M 
(cf. [KW

1
J, [A]) that the sign of, J..I 1 is a conformal invariant. In In-

equality (2.1), instead of J..I 1 ' one can put the Yamabe number which is 

another conformal invariant. 

Let g be any metric in the conformal class of g and dEnote by 

V its Levi-Civita connection. The basic idea in the proof of Theorem A 

is to write the Lichnerowicz formula for a family of modified connections 

-f 
V ,and then to apply it to a spinor field lying in the kernel 
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of the corresponding modified Dirac operator. 

by 

(2.3) 

Now, define a map 

f 
Ric. r{TM 8I M) -> ra;M) 

f 
Ric. (x. \f) "" 

n f 
L x. • R X X '¥ 

i=l l. 'i 

where (X1' •.• ,Xn) is a local orthonormal frame of the tangent bundle 

TM and Rf is the curvature form of a family of modified connections 

~l and acting on sections of the spinor bundle I M • 

THEOREM C Let (M,g) be a Riemannian spin manifold of dimension n ~ 3 • 

The manifoZd (M,g) is Einstein with positive scalar cupvatuve s if 

and on7,y if for some non-trivial real funetion f and for any tangent vector 

x , the endomorphism R' f 
-tc.x is non-invertible. In this ease 

f 2 = n 
4(n-1) S • 

The paper is organized as follows: 

In Section 3 we prove Theorem C and deduce that the existence 

f of a non-trivial V -parallel spinor field (what is called a Killing 

spinal' in physics)implies that the metric is Einstein and f2 = n 
4 (n-1) 

In Section 4 we give the relation between the Dirac operators 

associated with two conformally related metrics (see [R1]), and in 

Section 5 we give the proof of Theorem A. 

In Section 6 we study the limiting case of the inequality (2.1). 

s . 

We start by proving Theorem B, according to which Killing spinors are characterized 
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as the eigenspinor fields associated with the limiting eigenvalues of 

the Dirac operator. Then we give some geometric consequences. In 

particular, we prove that in the limiting case, even-dimensional 

manifolds are Einstein non-Kahler. Finally we give some rigidity 

results in dimensions 4 and 6. 

The author wishes to thank J.P. Bourguignon and P. Gauduchon for their 

continuing help and encouragement without which this paper would not 

exist. 

This work is an extension of the author's "these de 3° cycle" 

prepared in the Ilcentre de Mathematiques de l'Ecole poly technique. 

3. SPINOR CHARACTERIZATION OF RIEMANNIAN POSITIVE EINSTEIN SPIN MANIFOLDS 

We start this section by the following computational lemma. 

LEMMA 3.1 Let 0 be an exterior k-form and ~ any non-triviaZ aompZex 

spinor. Then, the inner produat 

(0 • ~,'i' ) 
. {purelY 

1.,8 

reaZ 

imaginary for k = or 2 

for k = 3 or 4 

PROOF Take 0 to be of the form a = Xl' X2 ••• ~ , where 

{X
1
,x

2
,· •• ,X

n
} is an orthonormal basis. Then, 

(Xl • X2··~ • ~,'i') .. (_1)k{'i"~ •• 'X2 • Xl • 'i') 

k{k-1) 

mod(4) 

mod(4) 

k -z---= (-1) (-l) (If,X
1 

• X2 .. ··~ .~) 

k(k+1) 
=(-1) 2 (Xl X2·"~.'i',~). 

I 
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We consider a real function f on a Riemannian spin manifold 

(M,g) of dimension n ~ 3 • We then define a family of modified 

connections V
f by setting 

(3.2) f f 
V'¥sV'¥+-X·'¥ 

X X n 

for any vector field X and any spinor field '¥, where V denotes 

the Levi-Civita spinor connection and ".11 is the Clifford multipli-

cation. 

A direct computation using the definition of Vf and the com-

patibility of the covariant derivative with the Clifford multiplication, 

gives for any vector field X and any spinor field ~ the relation 

(3.3) lUc.f (X. '1') = -1. Ric(x) • '1' + 2(n;1) f2 X • '1' 
2 n 

1 
-- grad f • '1' - X(f)'Y n 

, 

where lUc.f is the operator defined by (2.3), Ric is the (1,1) Ricci-

tensor of the tangent bundle and X(f) is the Lie derivative of the 

function f in the direction of X. 

3.4. Proof of THEOREM C 

If for all vectors X one can find a non-zero spinor '1' such 

that 
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then by taking X = grad f in Equation (3.3) we get 

(3.5) (2(~-1) f2 gradf -IRic(gradf»).'¥=n:llgradfI2 '¥. 
n 

Now, taking the inner product of this equation with '¥ and using the 

Lemma 3.1., we get 

I grad f 12 = ° 

The function f is then constant and equation (3.3) - applied, for 

each tangent vector X, to the appropriate spinor '¥ - implies that 

Ric (X) = 

hence g is an Einstein metric and s • 

I 

COROLLARY 3.6. If '¥~O 
f is such that V '¥ sO, then f is constant 

and the manifold is Einstein with f2 = 4(~1) s . In particular, if 

V'i' III 0, then the manifold is Ricci-flat. 

REMARK 3. 7 • On a compact 4-dimensional manifold the existence of a non-trivial 

parallel spinor field implies (cf. [H2]) that the manifold is either the 

flat torus or a K3 surface. 
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4. DIRAC OPERATORS OF CONFORMALLY RELATED METRICS 

In this paragraph we consider a conformal change of the Riemannian 

metric. Using the relation between the Levi-Civita connections on the 

tangent bundle corresponding to two conformally related metrics, we 

relate the two canonical spinor connections acting on two isometric 

spinor bundles. This enables us to compare the Dirac operators. 

4.1. Isometry of the spinor bundles associated with two conformally 

related metrics 

Let (M,g) be a Riemannian spin manifold of dimension n~3. 

Consider a metric g pointwise conformal to g, i.e., 2c g = e g for 

some real function c on M. We denote by SO M (resp. g 
SO...,M) 

g 
the 

space of g-orthonormal (resp. g-orthonormal) frames. Locally, to a 

section E = (X .•. X ) 
l' 'n of SO M 

g 
corresponds a section 

of SO-M. This isometry will be denoted by G 
g c 

Let y be a spin structure on (M,g) • We denote by Spin M the y 

Spin - principal bundle associated with it which is fiberwise a non
n 

trivial double covering of SO M • Thanks to the isomorphism Gone 
g c 

can define a spin str~cture y on (M,~) in such a way that the 

diagram 

'" G 
Spin M c 

~ Spin....M 
y y 

! G 1 
so M c SO_M ~ g g 

commutes. 
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To an irreducible representation t of 
n 

Spin one associates two 
n 

isomorphic spinor bundles tM and tM by taking the vector bundles 

associated with the isomorphic Spin
n 

- principal bundles, SpinyM and 

Spin.yM • 

For any section '¥ of 1: M , we write W s G '¥ • Clifford multic 

plication in t M is given, for a vector field X and a spinor field 

'¥ , by 

4.2. Comparison of the spinor connections 

PROPOSITION 4.2.1. The Levi-Civita spinor connections V and V acting 

respective lyon the sections of t M and tM , are re lated, for any 

vector fie ld X and any spinoI' fie ld '¥, by 

(4.2.2) = V 'if - 1 X • grad c· '¥ - 1 x(c) W X 2 2 

~here X(c) is the Lie derivative of the function c in the direction 

of x. 

PROOF e: = (Xl" •• ,X
n

) be a local g-orthonormal tangent frame 

field and denote by wand w , the connection forms corresponding to 

Let 

g and g . For all indices i, j and k in {1, ••• ,n}, we have 

(4.2.3) iii .. (Xk) = w .. eX_ ) + X. (c) ok' - X. (c) ok' 
1.J 1.Jk 1. J J 1. 
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Locally, the choice of £ in Spin M 
Y 

of image e: in SO M 
g 

determines a local frame field (°1" •• 'ON) of !M, where N::: 

such that for all indices i,j and k in {l,···,n} and A in 

{1, ••• ,N} the spinor covariant derivative of 0A is given hy 

(cf. [LM]) 

(4.2.4) 

With respect to g, we get 

Vx 0A ==t L (w •• (x.)+x.(c)ok·-X.(c)o'k)X,. X.· 0A 
k i <j ~J -It ~ J J J. ~ J 

= Vx. 0A + -2
1 L X.(c) X.· X • ° _1 1 x.(c) x.. x.· 0A 

-K i < k J. ~ k A 2 k<j JIt J 

hence, 

Vx 0A = V ° - 1 X • grad c·o - 1 X (c) 0A 
k ~A 2k A 2k 

4.3. Comparison of the Dirac operators 

PROPOSITION 4.3.1. Let (M,g) be an n-dimensionaZ Riemannian spin 

manifoLd. The Dirac operators D and D , respectively, associated with 

the metrics g and g = e 2cg and acting r>espectiveZy on the sections 

I 
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of the spinor bundles 1:M and L M , satisfy 

(4.3.2) 

for any spinor field 'i' of 1:M. 

PROOF. Take e: = (X ,'" ,X ) 1 n 
to be a local section of SO M and 

g 
- -c -c e: = (e X," eX) l' , n its image in under G . Locally, the 

c 

Dirac operator 0 is given by 

oW = 

Using Equation (4.2.2) we get 

(4.3.3) 

On the other hand, for any real function f , one has 

n(f'P) = f n1¥ + e-c gradf· 'i' 

n-l ---c 
which, with equation (4.3.3) and for f = e 2 , gives Equation 

(4.3.2). 

I 
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REMARK it is a classical result that the dimension of the space of 

harmonic spinors is a conformal invariant (cf. [Ht ]) • Indeed, by 
n-l 

--2- c _ 
Equation (4.3.2). if D 1JI = 0 • then DiP = 0 where <.p = e 1JI 

conversely. 

5. PROOF OF THE BASIC INEqUALITY (THEOR&~ A) 

It is clear that Inequality (2.1) is only of interest for the 

• and 

eigenvalues of D with the smallest absolute value, and on a Riemannian 

manifold for which is non-negative. This condition turns out to 

be equivalent to the existence of a conformally equivalent metric with 

non-negative scalar curvature (cf. [KW2). 

We first prove that for any positive function h , 

(5.1) 

then we take 

).2 ~ n inf (4 n-l h -1 Ah + s) 
4(n-O n-2 

M 

h = h 
1 

to be an eigenfunction for the first eigenvalue of 

the Yamabe operator Pl (it is known that the eigenspace of P
1 

is 

l-dimensional and contains functions which do not change sign) so we get 

For n;;: 3 , it is convenient to write the conformal change 

4 

(5.2) 2c n:2 
e = h for a positive function h. 
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It is well known that the scalar curvature of the metric 

2c ( n:2) g = e g _h g is related to the scalar curvature s of the metric 

g by 

n+2 
n-2 n-1 

sh h = 4 n-2 Ah + s h 

or equivalently 

4 

(5.3) 
n-2 n-1-1 

sh h = 4 n-2 h A h + s 

Now, let us consider the family of connections Vf defined by 

(3.2). The associated family of Dirac operators Df acting on a spinor 

field ~, is given by 

i: X,, 
1. i 

= (D-f)~ 

Taking the square of this operator, one gets 

2 2 2 
(D-f) If = D ~ - 2fD~ - grad f • ~ + f ~ 

By Lichnerowicz' formula (1.1) and a straightforward computation using 

the definitions of Vf and the corresponding Laplacian Af , we get 

(5.4) 2 f (s n-1 2) n-1 ( (D-f) '¥ =A '!' + "4 + -u- f ~ - -n:- 2fD'!' + grad f·'!') • 
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We consider now a conformal change of metric, 2c g = e g, and we take 

'.I' such that D'.I'=;"'.I' • By Equation (4.3.2) we get 

(5.5) 

n-l 

where 
--c 

<.1>= e 2 '.I' 

Equation (5.4) written with respect to the metric g and applied 

to ~ gives, after taking the g-global inner product on (M,g) , the 

Equation 

(5.6) f - 2- f_~f -f-) f(S n-12)-(--g«D-f) lP,tp) v_ = g(v lP,V q> v_+ "4 + - f g q>,q» v_ 
M g M gM n g 

n-l f - ( - - -c -) - - g 2fDq> + e grad f • q> ,q> v", 
n M 0 

We choose -c -f ::::Xe , so that uti>= fq>. The left hand side of 

equation (5.6) is then zero and by Lemma 3.1. the function g(gradf·q>,~) 

is purely imaginary, hence 

(5.7) f --f- -£- f(S n-1 2)---o = M g(V q>, V q» Vg + M "4 - n f g (q>,q» Vg 

with -c 
f = Ae • 

since the first term in (5.7) is non-negative, the second term must be 

non-positive. A necessary condition then is that, for any function c 

wbich combines with (5.2) and (5.3) to give the desired result. 

I 
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REMARK 5.8 (a) In fact one can prove that indeed, 

(5.9) J.l1 = sup inf (4 n-1 h -1 6. h + s) 
h>O M n-2 

To see this, take hl > 0 to be an eigenfunction for 1J 1 of the Yamabe 

operator (2.2) and consider for all functions h> 0 , the number 

{( 
n-1 -1 ) (n-1 -1 )} i~f 4 ~ h 6. h + s - 4 n-2 h 1 A h 1 + S 

To prove that this number is non-positive, it is sufficient to prove 

that the integral of (h- l 6.h - h~1Ahl) with respect to some positive 

measure \l is non-positive. We take \l = h; Vg • so that 

(b) Taking h to be a constant in (5.9), one gets J.l
1 
~ inf s. 

}I 

6. THE LIMITING CASE OF THE INEQUALITY 

In this section we will be concerned with the properties of compact 

Riemannian spin manifolds of dimension n ~ 3 , which admit a spinor field 

IjI such that D'¥ = Atlj/ , with 
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6.1. Proof of Theorem B 

Consider Equation (5.7) for the metric 
_ 2c

1 g := e g where is 

the function corresponding to a positive eigenfunction hl associated 

with the first eigenvalue ~1 for the Yamabe operator (2.2). Since 

A~ := 4(:-1) ~1 ' the second term in (5.7) vanishes, hence 

(6.1.1) f 
- 1 -V q:l=O with 

Now two cases can occur: 

U) 

the manifold 

If ~1 == 0 (A
1 

:;; 0) , then viP == 0 • By Corollary 3.6., 
2c

1 (M,g :;; e g) is Ricci-flat. 

(ii) If J.l
1

>0 (A
l 

1- 0) ,again by Corollary 3.6., Equation 

(6.1) implies that c 1 must be constant. Using Equation (4.2.1) we get 

A 
'V lIP =: 0 

hence by Corollary 3.5., the manifold (M,g) is Einstein. 

I 

PROPOSITION 6.2. Let (M,g) be a aompaat Riemannian spin manifoZd of 

dimension n ~ 3 • Let '¥ be an eigenspinor fierd assoaiated ?Uith A1 

suah that , then t~o aases aan oaaur: 
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(i) J.l = 0 , then with respect to the metric 
1 

2c
1 

g = e g t the 

space of harmonic spinors is stabZe under CZifJord muZtipZication by 

harmonic forms. 

(ii) JJ 1 > 0 , then any harmonic form ki Us the eigenspinor '¥. 

PROOF Let S be a homogenous k-form, then 

Des • '¥) = EX. • "l (S· If) 
• 3. X. 
1. 3. 

= E X .• "l S· If + E X. • S • "l If' . ]. X. . 3. X. 
1. ]. 3. 3. 

hence 

(6.2.1) D(S • If) «d + 0)13) • '¥ + ~ Xi • 13· "lX.If' 
1 3. 

where d is the exterior differential and 0 its adjoint • 

Case (i) JJ = 0 1 
• We consider Equation (6.2.1) for the metric 

n-l 2c
1
' 

g = e g 
---c 

and apply it to the spinor field (p = e 2 1 W 

Theorem BCi) in order to conclude (i). 

and use 

Case (ii) JJ 1> 0 • Then by Theorem B (ii), for any vector field X, 

one has 

= -AlXolf 
n 

By a direct check one sees that for a homogenous k-form S , 
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k-l 
I: X. • 8· x. = (-1) (n-2k)8 
• 1 1 
1 

hence Equation (6.2.1) gives 

If 8 is harmonic, then the spinor field 8· '¥ if non-zero would be 

an eigenspinor field for the eigenvalue (-1) kA (1 - 2k) which, for 
1 n 

At ~ 0 , has absolute value less than At • Thus 8· '¥ = 0 • 

REMARK If e is a harmonic 1-form, tl1en e· '¥ = 0 implies that 

8 = 0 , i.e.,the first Betti number is zero (this is a known result since 

the manifold is Einste~n with positive scalar curvature). 

PROPOSITION 6.3. Let f be a non-trivial real funation on an even

dimensional spin manifold. If there exists a non-trivial vf - paralle l 

spinor field 'l', then the rrr:mifold is Einstein non-Kahler. 

I 

PROOF By Corollary 3.6., vf
,¥ E 0 implies that the manifold is Einstein 

and f 2 = n h 4(n-1) s, ence '¥ is an eigenspinor field of the Dirac 

f h · 1 '\ . h ,2 n operator or t e e1genva ue At ' W1t Al = 4(n-1) Pl 

Suppose that the manifold is Kahler and denote by Q its Kahler 

form. Since n is harmonic, by Proposition 6.2. (ii). we get Q. '¥ = 0 • 

It is a direct check that 

n·n·'¥ = mAm· '¥ - nil' 
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Since n • n'¥ = W 1\ n) • '¥ = 0 and '¥.,. 0 , there is a contradiction. 

I 

On an even-dimensional spin manifold the spectrum of the Dirac 

operator is symmetric about O. In fact, in these dimensions, any spinor 

field '¥ splits as the sum of a positive spinor IJI+ and a negative 

spinor IJI- • So, if 

THEOREM 6.4. Let 

+ -D '¥ = A '¥ , then tp == IJI - '¥ 

(M,g) be a oompaot Rierrr:mnian 

is such that np '" - Aql • 

spin manifoZd of dimension 

4 • If there exists an eigenspinor fieZd IJI for Al 

4 then the manifold (M,g) is isometrio to (8, can), 

2 jJ1 
with A 1 ;:: 3" > 0 , 

This theorem has been proved by Th. Friedrich [F2] using a different 

method. 

PROOF By Theorem B (ii) we have that the Ricci tensor field is given by 

Ric ;:: ~ Id • We write 
4 

6.f :0: ~ f 
3 

and consider + -
ql -= IJI - IJI • The 

A -A 
The straightforward proof relies on the fact that V l1J1 = V lq> == 0 • 

Now, the Obata-Lichnerowicz theorem says that if on an n-dimensional 

compact Riemannian manifold there exists a non-zero function f and a 

positive constant k such that, 

Ric ~ kId and 6.f 
n 

:0: -kf 
n-1 
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then the manifold is isometric to (Sn ~ can). 

In orde~ to apply this theorem we need only to prove that the function 

f a (~,~) does not vanish identically. One can see this as follows: 
A1 -A 

using V ~ = V lq>;s 0 , for any vector field X, one has 

X(f) 

Let us consider now the a-linear injective map 

(6.4.1) TM---> EM 

X 
+ --....-'> X· 'lI 

where r M is the space of negative spinors. In a 4-dimensional spin 

manifold, one has 

hence TM is isomorphic to E-M and there exists X i 0 such that 

+ -
(X • 'lI , 'lI ) " 0 

which implies that f ;j 0 . 

• 
PROPOSITION 6.5. Let (M,g) be a 6-dimensionaZ compact Riemannian spin 

manifoZd. If the eigenspinor space of A1 ,with A~ = 1
3
01-1

1
> 0 , is 2-dimen-

6 sional, then (M,g) is isometric to (8, can). 
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PROOF As in Theorem 6.4. it is sufficient to prove that the function 

is not identically zero, where ~ is such that 

. For a 6-dimensional manifold, we have 

dima:L-M = 4 • If for all vectors X, the spinor X·~+ lies in a 2-dimensional 

complex space there will be a contradiction with the fact that the map 

(6.4.1) is injective, so f 'fo 0 . 

I 
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