EXCEPTIONAL AND RIGID SHEAVES ON SURFACES WITH

ANTICANONICAL CLASS WITHOUT BASE COMPONENTS

by

S. Kuleshov

Max-Planck-Institut

fiir Mathematik
Gottfried—Claren-Strafle 26
53225 Bonn

Germany

Algebra Section of Steklov Institute

of Mathematics

Vavilova 42

Moscow, 117333

Russia MPI 95-13



Exceptional and Rigid Sheaves on Surfaces with
Anticanonical Class without Base Components.

S. Kuleshov.

February 16, 1995

Abstract

The paper consists of three parts. In the first part we discuss types of stability.
In particular, the concept of stability with respect to a nef divisor is introduced. The
structure of rigid and superrigid vector bundles on smooth projective surfaces with
nef anticanonical class is studied in the second part. In particular, we prove that any
superrigid bundle has the unique exceptional filtration. [In the last part we give a
canstructible description ol exceptional bundles on these surfaces.

Introduction.

This paper contains generalisation of the theory of rigid (Ext'(E, E) = 0) and exceptional
(Ext’(E,E) = C, Ext'(E,E) = 0 for i > 0) sheaves on Del Pezzo surfaces , originally
described in [11]. The main objects of this paper are rigid and exceptional sheaves on a
smooth projective surface S such that —Ks is nef.

If K% > 0 then such surfaces can be obtained from P? by successive blowing up of
successive at most 8 points and therefore are the natural extension of Del Pezzo surface
class.

For the first time the exceptional sheaves appeared in [6] for the description the possible
Chern classes which a stable bundle on P2 Besides was proved in [7] that any rigid bundle
on the projective plane is a direct sum of exceptional bundles .

The author proved the same statement for all Del Pezzo surfaces ([11]). But if —Ks
is nef then there exist indecomposable and nonsimple rigid bundle; and their structure is
described in terms of exceptional collections. The description of this structure is the goal
of the second part. The information about superrigid bundles gives a convenient method
to study the exceptional sheaves.

The theory of exceptional bundles on Del Pezzo surfaces uses the stability with respect
to the anticanonical class. Throughout this paper all surfaces have the nef anticanonical
class. The following question is very interesting in this context. Is there a sufficient notion of
stability with respect to nef divisor, and which slope axioms are sufficient for constructing
the having meaning stability theory? For example, when does the Garder—-Narasimhan
filtration exist? The answer to this question is the subject of the first part.

Finally in the last part of this paper we prove the constructibility of exceptional bundles
on smooth projective surfaces S over C with nef anticanonical class and K% > 0. (Here by
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constructibility we mean that any exceptional bundle can be obtained from a finite fixed
collection of exceptional sheaves by a finite procedure.)

Notations.

Let X be a complete algebraic manifold over C;
r(F),e1(F),c2(I7), ... denote the rank and Chern classes of a coherent sheaf F' on X;
Oy or O denote the trivial line bundle on X;
Oy (for a closed submanifold ¥ in X') denote the structure sheaf
of submanifold ¥, which we sometimes consider as a sheaf on X
Ox (D) or O(D) denote the line bundle which corresponds to divisor D;
Kx denote the canonical class of X
F(D) denote the tensor product of /7 and O(D);
F~ denote the dual sheaf, that is the sheaf of local homomorphisms Homo, (F,Ox);
Hom( £, F') denote the space of global maps from E to F
Ri(E, F) denote the dimension of space Ext'(E, F);
X(E, F) is the Euler characteristic of any two sheaves, which equals $(=1)'h*(£, F');
X(E) is the Euler chalactcristic of a sheaf, which equals h'(Ox, E);

We denote the direct sum EB F; of k copies of F (Vi F; = F') by kF or V& F (where V

is a vector space over C and cllm V = k).

We identify a bundle with the sheafl of its local sections. Sometimes we will arrange
a long cohomology sequence associated to an exact triple into a table. For example, the
application of functor Ext'(F),-) to the exact triple

0—mA—B—C—70

gives
k| Ext®(F,A) - Ext*(F,B) — Ext*(F,C)
0 * ? *
1 0 ? 0
2 * ? *

This table calculates Ext'(F, B) . In particular, Ext'(F, B) = 0.

1 Axioms of Stability.

1.1 Definitions and Simple Properties.

The Gieseker and the Mumford-Takemoto stabilities are well known. Recently the notion
of the vector stability with respect to a collection of polarizations was introduced in ([21]).
All these theories use a slope and similar properties of stable and semistable sheaves. In this
section we introduce several slope axioms and obtain the basic properties of stable sheaves.

DEFINITION. Let v be a function from the set of all torsion-free sheaves on a complete
complex algebraic manifold X to R™ with the lexicographic order. Assume that v satisfies
the following axioms:
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SLOPE.1. For any exact triple of torsion-free sheaves

00— F—0F—0G—0

the following equivalences hold

Y(F) <~(E) = Y(E) < v(G),

Y(F) > ~(E) = Y(E) > (G,
Y(F) =~(E) = (E) = y(G);

SLOPE.2. For any two torsion-free sheaves ' C £ the condition r(#) = 7( £) implies that

Y(F) < 4(E),

then we say that v is a slope function and y(E) is a y-slope of E or simply a slope of E il
it causes no confusion . If ¥(E£) € R™ then ~ is called a slope vector function.

DEFINITION. A torsion-free sheal £ on an algebraic manifold X is said to be -
(semi)stable or simply (semi)stable if for any its subsheaf F' with r(F) < r(F) the fol-
lowing inequality holds y(F") < v(E) (y(F) < v(£) resp.). A subsheaf which contradicts
(semi)stability is called destabilizing.

1.1.1

1.1.3

REMARK. !. The torsion-free sheaves of rank 1 are stable with respect to any slope,
since they have no rank 0 subsheaves.
2. Due to the lexicographic order on R™ the function ¥ = {v1,7v2,...,7v,) is the
slope if and only if all v; satisfy the slope axioms.
3. For the slopes v = (71,72, .y ) and ¥ = (71,%2, - - s Yns Yak1s- - -, ¥m) bhe
following statements are true
a) a vy-stable sheaf is y'-stable;
b} a v'-semistable sheaf is v-semistable.

LEMMA. A torsion-free sheaf IJ on a manifold X is (semi)stable if for any its subsheal
F such that £/F has no torsion one has

1F) <A(E)  (v(F) S y(E)resp.).

LEMMA. A forsion-free sheafl I2 is stable (semistable) il and only if the slope of any
its torsion free quotient G satisfies the inequality:

Y(E) <A(C) (Y(E) < 7(G)resp.).

The proof follows from 1.1.2 and SLOPE.1.

To study the stability properties we need the following



1.1.4

1.1.5

1.1.6
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REMARK. By the definition of stability and SLOPE.2 we obtain that for any pair of
torsion-free sheaves I' C I the semistability of I implies the inequality v(F') < y(E)
(without the rank condition). If F is stable then

V) =7(E) = r(E)=r(F)

Similarly, if G is a quotient of a semistable sheal I then v(E) < v(G). If E is
stable then

VWG =~(E) = E=G.

LEMMA. Let E and F' be semistable sheaves. Suppose v(E) > y(F) then

Hom( [, £) = 0.

LEMMA. Let E and F' be semistable sheaves with v(E)=~v(F) and letp: B — F
be a nontrivial morphism. Then

a) E is stable — @ is an injection;

b) F is stable = @ is an epimorphism at a generic point.

LEMMA. A stable sheaf is simple that is any its endomorphism has the form X - id.

LEMMA. Let 0 — £ —» G — F — 0, be an exact sequence of torsion-free
sheaves such that y(E) = v(G) = v(F). Then G is semistable if and only if both E
and F are semistable. In particular, for any complex finite-dimensional vector space
V' and a divisor D on X the bundle V @ Ox(D) is semistable.

The Harder-Narasimhan Filtration.

The aim of this section is to construct the well-known canonical filtration of a torsion-free
. sheal. This filtration is trivial when a sheafl is semistable. Let us recall the main definitions
and notations.
The Gr(E) = (Gn,Gno1y ..., G)) means that the sheaf E has a filtration:

OZEn.}.lCEnC"'CEgCE]:E

and E;/E;y; = G;. The sheaves E; are called lerms of filtration and G; are quotients of
filtration. Note that G, = E, (since F,+, = 0).
DEFINITION. A filtration of a torsion-free sheaf E

Cr(E) = (G, Guery - .., G1)
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is called the Harder-Narasimhan filtration if all quotients G; are semistable and their slopes
satisfy the inequality:

7(G‘i+1) > W(Gi) (? =12,.,n— 1)

To construct this filtration we need another slope axiom and several lemmas.

1.2.1 LEMMA. Let E be a torsion-free sheaf on X and G be the set of all torsion-free
quotients of [£. Then there exists o such that v(G) > v for all G € G.
PROOF. Let us choose an ample divisor A on X. Then Serre’s theorem ([22]) implies
that there exists a natural number n such that the sheal E(nA) is generated by its global
sections. Hence we have the short exact sequence:

0 — F— HY(EnA)Q O =3 E(nA) — 0.
Therefore F is the quotient of the semistable bundle
HY(E(nA)) ® O(—nA).
If G is a torsion-free quotient of £ then there exists an epimorphism
HY(E(nA)) ® O(—nA) — G — 0.

Now the result follows from 1.1.3 .

1.2.2 LEMMA. Suppose that a slope function v satisfies the axiom:
SLOPE.3. Let vy be a value of the function v and M = {G,,G3,Gs,... } be
an ordered set of torsion-free sheaves with r(G;) < r for all 1. Then the condition

Y(Gi) > YGix1) 2 70 1 =1,2,3,...

implies that M is finite.
Then each torsion-free sheaf I has the quotient G with the minimal slope v(('),
i.e. for an other torsion-free quotient @ of E we have: y(Q) > v(G).
The proof follows from SLOPE.3 and the previous lemma.

1.2.3 PROPOSITION. If a slope function ~ satisfies the axioms SLOPE.1 — SLOPE.3
then there exists the Harder-Narasimhan filtration torsion-free sheaf E

Gr(E) = (GayGacry ..., GY).

Moreover, if Gr(L) = (G, G _,,...,G}) is another filtration with the semistable
quotients and the inequalities v((5) > v(Gi_,) hold for allv = 2,3,...,m thenm =n

and G; = G;.
PROOF OF THE EXISTENCE. A semistable sheaf has the trivial filtration. Suppose that
E is not semistable. Denote by G, the torsion-free quotient of 5, = £ with the minimal

v-slope and of maximal rank. Let E, be the corresponding subsheal in E:

0——}E2‘*‘—->E1—‘—}G1—3'0.
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If Fy 1s not semistable then let us choose a torsion-free quotient G of £; with the minimal
v-slope and the maximal rank. Denote by Fj3 the corresponding subsheaf in Fs, etc. Note
that all G; are semistable by construction. Let us check the inequality v(G;) < v(Giz1)
with the help of the following commutative diagram:

0
T
Gligy 0
T T
0 — Eyw — B — G — 0
T idp T t
0 — Fypo —m B — @ — 0
T T
0 Gig
T
0

We have that @ is the torsion-free quotient of £;. The codition 7(@) > r(G;) implies that
(@) > v(G;). Finally, using the axiom SLOPE.1, we get v(Gi41) > ¥(G;). This concludes
the proof of existence.

1.2.4 LEMMA. Let E. F be sheaves on X and Gr(E) = (Gn,Gn-1,...,G) be a filtration
of E. Then

a) Ext®(G;, F)=0 Vi — Ext*(E, F) = 0;
b) Ext*(F,G)) =0 ¥i = Ext*(#, £) = 0.

PRoOOF. This lemma can be proved with the help of cohomological long exact sequences.

1.2.5 COROLLARY. Let Gr(E) = (G,,Gnoy,...,G) be the Harder-Narasimhan filtration
of a sheaf £ and let I be a semistable sheaf. Then

a) y(I") < ~v(Gh) = Hom(FE, F)=0;
b) y(F) > v(Gr) = Hom(F, E) = 0.

The proof [ollows easily from the lemmas 1.2.4 , 1.1.5 and the definition of the Harder-
Narasimhan filtration.

1.2.6 LEMMA. If a sheal E has a filtration Gr(E) = (G, Gy-1,...,Gy) then G, s a
subsheaf of [ and Gr(E/G,) = (Gazyy ..., Gy).

Proor. Since the last quotient ol the filtration concides with its last term we get
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Gn C E . Now the statment follows from the following commutative diagram:

0 0 0
t T T

0 — En/G, — EJG, — G — 0
T T T

0 — Ei+1 — E,‘ — G,' — 0.
) T )

0 — G — G, — 0
T T
0 0

PROOF OF THE UNIQUENESS OF THE HARDER-NARASIMHAN FILTRATION,
Let

Gr(E) = (Gu, Gty G1) = (G Glyr o GY)

be two Harder-Narasimhan filtrations. Suppose y(Gy) # v(G}). For example, let v(G,) >
¥(G1). Then by corollary 1.2.5 and the semistability of G} one gets Hom(£, G) = 0. This
contradicts to the existence of an eptmorphism: I — G — 0. In the same way we get
1(Gn) = 2.

Denote by E! the terms of the second filtration. Let us show by induction on ¢ that G,
is a subsheaf in £]. For 7 = 1, there is nothing to prove.

By the inductive hypothesis we have the following commutative diagram:

nl

0 — £, — E — G — 0

T T @i T

0 -— G, — G, — 0.
)
0

By the snake lemma, kery; C £, ;. On the other hand, the slopes of semistable sheaves
G, G, and G satisfy the conditions: v(G,) = v(G,) > v(G:) if ¢ < m. Hence, ¢p; =0
and kerp; = G, (1.1.5 ).

Thus, G C El for 7 < m. In particular, G, C G7,.

In the same way we obtain that (i, C (/. Therefore, GI, = G,.

It follows from lemma 1.2.6 that

Gr{E[Gn) = (CGac1y...,G) = (Gl (..., G).

m—1?

Moreover, these are the Harder-Narasimhan filtrations of £/G,. Now the uniqueness of the
Harder-Narasimhan filtration follows easily by induction on the rank of F.
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1.3 Examples of Slopes and Types of Stability.

The motivation of the above slope axioms are the proporties of the following well-known
slopes.

The slope of a bundie on a curve: p(E) = Q‘?EET where degl is the degree of the
determinant of bundle;

the Mumford-Takemoto slope with respect to an ample divisor A on an n-dimensional

manifold X: pa(E) = E%’

the Gieseker slope w.r.t. an ample divisor A: y4(E,n) = x{E(nd)) E "A :
Let us check that these slopes and the slope py (L) = 3’-@)@)—— where H is nef, indeed
satisfy the above slope axioms. By definition a divisor A4 is nef if the number D - A™!
nonnegative for any effective divisor D onX.

We see that all the above examples of slopes except for v4 have the form v = d/r where

d is an Z-valued additive function on Ko(X) and r is the rank function.

1.3.1 LEMMA. Any slope function v of the form v = d/r satisfies the axioms SLOPE.1
and SLOPE.3.

PROOF. For any exact triple of torsion free sheaves
0 —F —=FE—G—0

we have that y(E) = f—%%i—f}%l Note that the sign of the determinant

d(F) d(G)
r(f) r(G)

corresponds to the comparison sign between the [ractions: %E% %%—% Besides,

d(F) d(G)
r(F) r(@)

This implies that v satisfies the first axiom.
To check the axiom SLOPE.3 note that |y(G1) —v(G2)| > 1/r? if the ranks of torsion-

free sheaves GGy and 3 do not exceed ».

1.3.2 COROLLARY. Let ¥ = (Yo, 1, .--,7¥s) be a vector function of Ko(X) such that each
v has the form d;/r where d; is an Z-valued additive function on Ko(X') and r is the

rank function. If the values of vy are lexicographically comparable then vy satisfies
the axioms SLOPE.1 and SLOPE.3.

As in the case of the Gieseker slope v, it is a polynomial of the degree dim X with
rational coefficients. So far as the inequality y4(E,n) > y4(F,n) holds true if it holds
for sufficiently large n, then the comparison y4-slopes is equivalent to the lexicographic
ordering of the coefficients of the polynomials.

The Hilbert polynomial x(£(nA)) is an additive function. Hence the Geaseker slope
satisfies the axiom SLOPE.1 ( see the proof of lemma 1.3.1 ).
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To check SLOPE.3 note that by the Hirzebruch-Riemann-Roch theorem (see. [22]),
the Euler characteristic of sheaf on a smooth manifold can be calculated as follows

X(E) = deg(ch(E) - td(Tx))n, (1)

where
deg(...)n means the component of degree n in the cohomology ring H*(X,Q) of X;
Tx 1s the tangent bundle of X;

Pi

1 1 1
Ch(E) =r+ Cy + ;(CT - 202) + E(C? - 3C|Cz + 3C3) + ﬁ(clll -_ 4CTC2 +4C|C3 + 2(.% - 4C4) + - 3

= I~

14

%(c1 4ctcy — 3ch — cpca 4 cq) + -

d(EY=14¢/2+ 1]—2(0? +c) + glz(c]cz) -
(where ¢; are the Chern classes of the sheaf £).

This yields that the denominators of the coefficients of the Hilbert polynomial x(£(nA))
do not depend of E£. After some modifications of the proof of lemma 1.3.1 | one can easily
show that the Gieseker slope v4(£) satisfies the axiom SLOPE.3.

All examples of slopes satisfy the axiom SLOPE.2 to some extent.

1.3.3 LEMMA. a) For any pair of torsion-free sheaves I C E with the same rank on a
manifold X and any nef divisor H the inequality py(F) < pg(E) holds. Moreover,
in this case the equality uy(F) = py(F) is possible only if

codimsupp(FE/F) > 1.

Provided a slope function satisfies this weakend version of axiom SLOPE.2, we call
it the weak slope;

b) for any pair of torsion free sheaves F' C E with the same rank on a manifold X
and any ample divisor A the following inequality holds pa(F) < pa(E). Moreover,
in this case the equality is possible only if :

codimsupp(E/F) > 2.

Provided a slope function satisfies this version of axiom SLOPE.2, we call it the
Mumford-Tukemolo slope;

c) for any pair of torsion free sheaves F C E with the same rank on a manifold
X and any ample divisor A the inequality v4(F) < v4(£2) holds. Moreover, in this
case the equality of slopes is equivalent to

E=F

Provided a slope function satisfies this version of axiom SLOPE.2 we call it the
Glieseker slope;
d) the slope u of bundles on a curve is the Gieseker slope.
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PRrOOF. The number ¢;(E)- D! (determined by a sheafl E on a n-dimensional manifold
and by a divisor D) is called the degree of a sheal with respect to D and is denoted by
degp(E).

Since the ranks of sheaves I£ and I coincide we see that the comparison of their slopes
is equivalent to the comparison of the degree degp, and the quotient () = E/F has the zero
rank. Hence ¢;(Q) = ¢1(E) — ¢1(F) is an effective or the zero divisor.

By the definition of a nef divisor deg;,{@) > 0. This proves the first statement of lemma.

Il Ais ample and ¢;(Q) # 0 then the Nakai-Moyshezon criterion ([22]) implies that
deg, (@) > 0. This yields the second statement of lemma.

If A is ample then by the Serre theorem ([22]) one hes x(@(nA)) > 0 for any nonzero
sheaf ) and for sufficiently large n. Therefore the third statement of lemma also holds.

Finally the degree of the effective divisor ¢,{@) on a curve is nonnegative and is equal
to zero only if ¢;(Q) = 0. This completes the proof.

The more precise conditions of SLOPE.2 allow to formulate the following statement
which is stronger than lemma 1.1.6 .

1.3.4 LEMMA. a) Let I and F be semistable sheaves with respect to the Mumlord-
Takemoto slope v, y(E) = y(F'), and F stable. Then the cokernel of any nonzero
morphism ¢ : E — F has the support C such that codimC > 2. In particular, ¢ is
an epimorphism if I is locally free.

b) Let E and F be semistable sheaves with respect to the Gieseker slope v,

Y(F) = ~(F) and F is stable. Then any nonzero map of I£ to F' is an epimorphism.

This lemma can be proved in the same way as 1.1.6 . Nevertheless, let us recall that
Ext'(Q, E) = 0 if E is locally free and codim supp(Q) > 2.

Note that the slope v = pa(F£) = (c1(E) - A ")/r(E) has the following property:
SLOPE.4. For any torsion-free sheaf E and a divisor D the equalities

Y(E7) = —(E),  +E(D) =(E)+~(0(D))

are satisfied.

1.3.5 LEMMA. Assume that the slope function v satisfies the axiom SLOPE.4; then a
torsion-free sheaf I is (semi)stable if and only if E(D) is (semi)stable; and the -
(semi)stability of a reflexive sheaf E (E™" = I} is equivalent to the vy-semistability
of the dual sheaf £*.

1.3.6 PROPOSITION. Any sheal E semistable w.r.t. the Gieseker slope (see 1.2.3 ) has the
filtration by isotypic quotients:

C:?’(E) = (Gn, G'n—lg ey Gl),
where each of G; has the filtration with Isomorphic quotients:

Gr(G) = (Qi, @iy ..+, Qi) (@) = ¥(Gh) =~(E)).
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Moreover, this filtration can be constructed in such a way that
Hom(F;, Gi—y) = Hom(G;, G-y ) = Hom(Gi—y, G5) = 0,

where E; are the terms of the filtration.

PROOF. For a stable sheaf this filtration is trivial. If a sheaf £ = F| is semistable then
it has a destabilizing torsion-lrec quotient @ (¥(Q) = v(£))). Ler us choose {rom the set
of all such quotients a sheaf @, of the minimal rank. Obviously, it is stable. Let E| be the
corresponding subsheaf. It follows from the exact sequence:

0 — E| — B — Q, — 0,

and the equality v(Q,) = v(£\) that £} is semistable and y(E}) = y(E) (see SLOPE.1,
1.1.8 ). Il Hom(E|,Q,) = 0 then £, = E] is the second term of the filtration and G, = @,
is its first quotient.

Conversely, there exists an epimorphism; E] — @, — 0 (1.3.4 ). Denote by £E? the
kernel of this epimorphism.

Continuing this procedure we get the semistable subsheaf £F such that

Hom(£F,Q,) = 0.

By definition, put £y = E¥ and G, = £,/F,. By construction, (¢} and F, are semistable,
Y(E2) = y(Gy) = v(EV), Gr(Gh) =(Q1,@1,...,Q1) and Hom(£E,, Q) = 0. Now using
the lemma 1.2.4 we obtain that Hom(£,, &) = 0.

By the inductive hypothesis we can assume that F, has the filtration by isotypic quo-
tients: Gr(E,) = (G, Gro1,...,(s). Let us show that the filtration

G'T'(E) = (Gn: G'n—l-; SRR G"Za G'l)

satisfies the assertions of the proposition.

[t remains to check that Hom(G4, (1) = Hom(G, G,) = 0. Since Hom( F, G) = 0 and
there exists an epimorphism E; — G2 — 0 the equality Hom(G5, Gy) = 0 trivially holds.

Suppose that there exists a nonzero morphism GG; — (5. Let us recall that Gr(G;) =
(@i, Qi,...,Qi). Therefore by 1.2.4 Hom(Q,,G2) # 0 and there exists a nonzero map
©: Q1 — Q2. It follows from (1.1.6 and 1.3.4 ) that ¢ is an isomorphism. This implies
that Hom(@,, ) # 0. But Q3 is a quotient of G2 and @, is a subsheaf of G;. Thus,
Hom(G,, Gy) # 0. This contradiction concludes the proof.

2 Rigid Sheaves.

2.1 Preliminary Information.

We will study sheaves on a smooth complex projective surface S such that A!(Os) =
0 and the anticanonical class H = —Kg has no base components. Note that the last
condition implies that H is nef. It is known that if S is a smooth projective surface over
an algebraically closed field with nef anticanonical class then we have one of the following
options

1. Kg= 0;
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2. S=P(Op @ Op:(2));

3. S = P(F)where Fis arank 2 vector bundle on an elliptic curve which is an extension
of degree zero line bundles;

4, S=P?or P! x P
5. S is obtained from P? by successively blowing up at most 9 points.
Let us recall some general facts which will be used later.
2.1.1 THEOREM. (The Riemann-Roch lormula for surfaces.) The [uler characteristic of

two coherent sheaves [ and F on a smooth projective surface X is given by the
following formula:

X(E, ) = r(EW(F) (x(Ox) + 5(un(F) = pn(E)) + a(F) + o( E) -

B (F)
where (B = ps(~Kx-a(B)),o() = L2

Note that in our case x(Og) = 1.

2.1.2 COROLLARY. Let E, F be two sheaves on a smooth projective regular (h'(Og) = 0)
surface with x(E, E) = x(F, ") =1, then

L cHE)+1 3
q(£) 2( 2(E) 1) and
v(E, F) = ﬂ_[_‘?.z;({‘_),(ﬁm([?) —up(E) + r2(113) + 7‘2(]}‘_‘) + ((;1((?)) — il((g)))z)

2.1.3 THEOREM. (Serre duality) For any coherent sheaves I and F' on a smooth projective
surface X the following equality

ExtF(E, F)* = BExt**(F, E(Ky))

holds.

The proof is contained in [22].

2.1.4 LEMMA. (Mukai} Let X be a smooth projective surface. Then
1. For any torsion-free sheaf IY on X we have

hY(E, ) > h'(E™, E™) + 2ength(E™ E).
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2. a) Suppose the sheaves G\, G, and I£ on X form the exact sequence
00— Gy — £E— Gy — 0,
and satisfy the condition Hom(G2, G1) = Ext?(G1,Gq) = 0 then
RYE,E) > RN Gy, Gy) + A Ga, Gl).
b) If moreover, h'(E, E) =0 then
h(E, E) = h%(G,Ch) + R%(Ga, Ga) + x(Gh, Ga),

KB, E) = h*(Gy,Ch) + h2(Ga, Ga) + x(Ga, G).

This lemma follows from the spectral sequence associated with the above exact triple.
See the proof in {14} and [11].

2.2 Exceptional Sheaves.

DEFINITION. A sheaf £ on a manilold X is called rigid whenever

Ext'(E, £) = 0.

The trivial examples of rigid sheaves are exceptional sheaves.

DEFINITION. A sheal £ on a manifold is called ezceplional, if Ext®(E, £) = C and
Ext'(E£,E)=0 Vi>0.

Using the results of S. Mukai ([14]), A. Gorodentsev ([4]), D. Orlov ([11]) and S. Zube
([8]) we provide the initial information about the structure of rigid and exceptional sheaves.

2.2.1 LEMMA. A rigid sheaf without torsion on a smooth projective surface is locally free.
This lemma follows from the Mukai lemma (2.1.4 ).

Recall that we consider a smooth complex projective surface S the anticanonical class
H = — K of which has no base components. Let & be a sheaf on S. Denote by TG its
torsion subsheafl and by 7°G the subsheal in TG such that T'G = T'G/T°C has no a torsion
subsheaf with 0-dimensional support.

2.2.2 LEMMA. (Gorodentsev-Orlov) Any sheaves (i and F' on a surface S satisfly the
following conditions:

a) the inequality
h(F, G > (G, F)

holds whenever the support of T°C/ has no common points with the base set of the
anticanonical linear system |I|;
b) the inequality
(G, G > G, G)
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holds provided that there exists a curve D € |H| such that D NsuppG # @. In
particular, this inequality is satisfied whenever r(G) > 0.

2.2.3 COROLLARY. Let G be a rigid sheal on S; then its torsion subsheaf T'(/ and torsion-
free quotient G' = G /TG are rigid sheaves. Moreover, 1T°G = 0.
2.2.4 LEMMA. Suppose E is an exceptional torsion sheaf on S then ¢?(E) = —1. Further-
more,
either E = O.(d) , where e is some irreducible rational curve with e? = ~1
or one of the components of the support of E has the zero cup product with Ks.
2.2.5 LEMMA. Suppose that I is an exceptional sheaf on S then the support of its torsion

has the zero cup product with KNs.
Combining 2.2.1 , 2.2.4 and 2.2.5 we can formulate the following proposition.

R}

.2.6 PROPOSITION. Suppose that I is an exceptional sheaf on S then we get one of the
following options
1) E is locally free;
2) E has a torsion subsheafl such that (suppTFE)- Ks = 0;
3) E = O.(d) for some rational curve e with e* = —1;
4) »(E) = 0 and the support of I contains an irreducible component Cyy such
that Cy- K5 = 0.

2.2.7 COROLLARY. (Orlov) If —Kg is ample (S is the Del Pezzo surface) then an excep-
tional sheaf on S either is locally free or has the form O.(d) for some rational curve
e with e = —1.

Now let us prove the stability of exceptional bundles on S with respect to the anticanon-
ical class H = = Ks.

2.2.8 LEMMA. (S. Zube) Let D be a smooth elliptic curve from |H| and E be an exceptional
bundle on S. Then the restriction of £ to D ( E' = El|p )is a simple bundle, i.e.
BExt’( £, B') = C.

Proor. Consider the exact sequence

0 — E"@ B(Ks) — E*®@ E — (E*® E)|p — 0.

By Serre duality,
Ext*(E, B(Ks))" = Ext**(E, E).

Since F is exceptional we obtain

Ext’(E,E)=C, Ext'(E,E)=Ext*(E,E)=0.
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Therefore the cohomology table associated with the exact sequence has the form:

k| Ext™(E, E(Ks)) — Ext’(E,E) — Ext* (L, E)
0 0 C 7
1 0 0 ?
2 ® 0 ?

[t implies that BExt®(£’, ') = C.

2.2.9 COROLLARY. Any exceptional bundle E on S is stable with respect to the slope
pr = (H - (E))/r(E) where H = —K5.

Proor. By the Zube lemma the restriction of £ to an elliptic curve D € | — Kgl is
simple. It is known that simple bundles on an elliptic curve are stable with respect to
the slope p(FE) = %ﬁ)l Besides, uy(F) = p(E') where £’ = E|p. Now suppose F' is a
subsheaf of E such that »(F) < »(E) and pg(F) > py(£). Without loss of generality we
can assume that £’ = F|p is locally free. Thus, p(F”) > p(£’). This contradicts to the
stability of £’. The corollary is proved.

2.3 Exceptional Collections.

The main results about rigid and superrigid sheaves are formulated in terms of exceptional
collections. The aim of this section is to study these collections on the surface 5.

DEFINITION. An ordered collection (), £, ..., E,) of exceptional sheaves is called
exceptional whenever

Extf(E;, £;)=0  fori>j and k=0,1,2.

An exceptional collection (£, F) is called an exzceptional pair.

By definition an ordered collection is exceptional if and only if all its pair are exceptional.
Thus we shall study exceptional pairs on 5.

Suppose (E, F') is an exceptional pair on a Del Pezzo surface. It is known that then we
have one of the following cases:

a pair (E, F') has the type hom (or in other words (£, I') is a hom-pair), that is

Ext'(E,F)=0 for i=1,2 and Hom(E,F)#0;
a pair (E, F) has the type ext (or in other words (F, F') is a ext-pair), that is
Ext'(E,F)=0 for i=0,2 and Ext'(E,F)#0;
a pair (£, I') has the type zero (or in other words (F, IF) is a zero-pair), that is
Ext'(E,F)=0 for i=0,1,2.

There exist exceptional pairs of a new type in our surfaces.
DEFINITION. An exceptional pair (£, I) is called singular if

Ext'(E,F)#0 fori=0,1 and  Ext}(£, F)=0.
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2.3.1 PROPOSITION. Let (E, F) be an exceptional pair of bundles on the surface S then
we have one of the following cases:

a) (E,F) is a hom-pair — pr(E) < pu(F);
b) (E,F) is an ext-pair — pa(E) > pp(F);
c) (E,F) issingular or a zero-pair = pu(E) = pu(F).

PRrROOF. Consider the restriction sequence to a smooth elliptic curve:
0 =L@ F(Ks) = E"@F — (E"@ F)|lp — 0.

Denote E[p and F|p by E' and [". Combining the Serre duality and the definition of
exceptional pairs, we get Ext'(E, F(Ks))® & Ext’*(F,E) = 0. Hence the cohomology
sequence associated with this exact sequence has the form:

E|Ext*(E,F(Ks)) — EBExt*(E,F) — Ext®(£,F")

0 0 * *

1 0 * *

2 0 * *
That is, ‘ .

Ext'(E, F) = Ext'(£', F') Vi,
Since £’ and [’ are stable bundles on the elliptic curve (see the proof of lemma 2.2.8 ) we
obtain that only one of the spaces Ext’(f’, F') and Ext'(£’, F') is nonzero wheuever
r ! f CIe E, l
pir(E) # e (F) (") = B = ().

Moreover, Ext®( £/, ') # 0 iff x(E, ') > 0 and Ext'(E’, F') # 0 iff x(£', F') < 0. In this

case xY(£', F') is the Euler characteristic of two sheaves on an elliptic curve ([10]):
X(E', FY) = v(EY(F") (n(F') — p(E)).

Finally, in both cases we have Ext?(£’, F*) = 0. This completes the proof.

2.3.2 LEMMA. Let (E, F') be an exceptional pair of bundles on S with puy(E) = uyu(F).
Let C denote ¢, (I} — ¢;(E). Then:

L r(E)=r(F).
2. C*=—-2and Ks-C =0.
3. Suppose (I, F) is a singular pair; then
(a) C is a connected curve;
(b) Ext®(E, F) = Ext'(E, F) = C;
(c) there exists an exact sequence
0 —F—F—¢—0,

where () is a torsion sheaf with ¢,(Q) = C.
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PRroOF. By the definition of an exceptional pair x(F, £) = 0. Substituting the discrete
invariants of [7 and F in the Riemann-Roch formula (2.1.2 ) for exceptional sheaves, we get

0= I 1 + (C](F) C](E))‘Z.

~E T T \NF) T )

Irom lemma 2.2.8 it follows that the restriction of an exceptional bundle to the elliptic
curve D€ |H]| is a simple bundle. Moreover,

nn(E) = p(Elp).
If L is a simple bundle on an elliptic curve; then (L) and deg(L) are coprime ([1]).
Hence the equality p(E|p) = p(F|p) implies that r(E) = »(F) = r.
Hence we obtain

0= 24 S(alF) —a(m)"

72

This means that

On the other hand,

()= BV alf)-H

(E) ()
Therefore, C - H =0, i.e., C - K's = 0. This concludes the proof of the first and the second
statements of the lemma.

3. Let (£, F) be a singular pair, i.e., there exists a nonzero map ¢ : £ — F. Since
exceptional bundles on S are py-stable it follows from lemma 1.1.6 that ¢ is an injection.
Moreover, the cokernel of ¢ has the zero rank. By definition, put @ = cokery. Since the
first Chern class is an additive function we get 1(Q) = ¢/(F) — ai(E) = C.

Consider the restriction sequence:

=puu(F) =

0 2 E"QF(Ks) > E"Q@F — (E*"® F)|p — 0.
We have the following isomorphisms: ‘
Hom(E, F) = Hom(E', F');  Ext!(E, F) = Ext' (£, F"); Ext*(E, F)=0,

where £’ = E|p and F' = F|p.

By assumption, Hom(E, F') # 0. Therefore there exists a nonzero map ¢' : B/ — F’.
Since I and F' are stable bundles on a curve and p(£') = p(F') we see that ¢’ is an
isomorphism. Further, all stable bundles are simple (1.1.7 ) and the canonical class of an
elliptic curve is trivial. It follows from Serve duality that Ext'(£’, F') = C. Thus we have
Ext'(E, F) = Ext®(E, F) = C.

Now we show that () is simple. Let us write the cohomology tables associated with the
exact sequence

0—F—0>F—5@—0

o
&
=
[
]
&=
=
o]
>‘
-

F(E,F) = Ext(E,Q)
?

D = O

C C ? ‘
0 C ? ’
0 0 ?
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k| Ext*(F,E) = Ext®(F,F) — Ext’(F Q)

0 0 C ? _

1 0 0 ? ’

2 0 0 ?

k| Ext*(@,Q) — EBExt®(F,Q) — Ext*(E,Q)

0 ? C 0

1 ? 0 C

2 ? 0 0

From the last table it follows that the quotient ) is simple. Hence C = supp@Q is connected.
In fact the group ol endomorphisms of ¢} contains projectors unless supp@) is connected.

2.4 Structure of Rigid Sheaves.

In the paper [11] it was shown that any rigid bundle on Del Pezzo surface is a direct sum
of exceptional bundles. At the same time there exist indecomposable rigid bundles £ with
Hom(E, E) # C in the case when H = —Kg is nef. For example, consider a —2-curve C
on S with C - Kg = 0. It can be casily shown that (Og, Os(C')) is an exceptional singular
pair. Denote by E a nontrivial extension of Og by Os(C):

0 —0C) — F— 0 —0.
It can be proved that E is rigid and Hom(FE, ) = C2.
In this section we prove that any rigid bundle on the surface S with the nel anticanonical
class and K2 > 0 has the similar structure. Unfortunately, the structure of rigid bundles
on S with K2 = 0 is not known. From now one assume that K% > 0.

DEFINITION. We say that a torsion-free sheaf F' has an ezceptional filtralion whenever
there exists a filtration of F

G'T‘(F) = (ilfnl_‘jn,.’l}n_lEn_l, e ,.’L'1E|),

where (£y, F,, ..., E,) is an exceptional collection of bundles such that py(E;) < py(Figy)
fort=1,2,...,n—1.

The aim of this section is to prove the following theorem:

2.4.1 THEOREM. Let 5 be a smooth complex projective surface the anticanonical class of
which has no base components and K% > 0. Then

1. Any torsion free rigid sheaf on S is a direct sum of py-semistable rigid bundles.
2. Any indecomposable rigid sheaf without torsion on S is pyy-semistable.

3. Any ppy-semistable rigid sheaf has an exceptional filtration. Moreover, all pairs of
associated exceptional collection have the zero or the singular type.
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We shall use the vector slope
ci(£) = 2¢(E)

:Y(E)= (#H(E)vﬂ'-‘t(E)v 7‘(E) )

where A is an ample divisor, H is the anticanonical class of S, and pp(F) = %(%%Q with
D= Hor A
[t can easily be checked that the stability with respect to this slope is the Gieseker

stability 1.3.3 . In particular, any J-semistable sheaf has the filtration by isotypic quotients
(1.3.6 ).
The slope puy(£) has the Mumford-Takemoto type and satisfy the axiom SLOPE.4.

2.4.2 LEMMA. Let F' be a ¥-semistable rigid sheal on S with K% > 0. Supposc F has a
filtration by ¥-stable isomorphic one to another quotients:

Gr(F) = (Gy,Gnor,-..,G1)  (Gi=E Vi)

Then I is the multiple of the exceptional bundle E, i.e FF =nf,
PRrROOF. Consider the spectral sequence associated with the filtration of F' which con-
verge to the groups Ext*(F, I). Its £)-term las the form:

B = @) BxiP(Gi, Gy
Since the quotients Gy & [ are ¥-stable we see that they are py-semistable (see remark

1.1.1 ). Hence it follows from lemma 1.3.5 that the sheaf E(Ks) is also uy-semistable. On
the other hand, the square of the canonical class of our surface is positive. Thus,

;LH(E(]\'S)) = [.LH(E) + [\!5 < H < H”(E).
Now, using Serre duality and lemma 1.1.5 we have
Ext*(E, E) = 0.

Thus, the F-term of the spectral sequence has the form:

q

* ¥ O
* ¥ O
* * O

*
* ¥
[
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This yields that Ext!(Gn,G1) = E, ™" = EL-™" . On the other hand,
Bl Ext!(F, F) = 0.

But, G; = E Vi. Consequently £ is a torsion-free rigid sheaf. It follows from lemma
2.2.1 that F is locally free. Besides, since F is J-stable we see that it is simple and
Ext*(E, E) = 0, wherchy E is an exceptional bundle.

Finally, since G; = F Vi and E is exceptional, we have

Ext' (G, G;) =0 Vi, ;.

This implies the equality:

F=@G; =nkE.

2.4.3 LEMMA. Suppose I is a rigid J-semistable sheaf on § then F is a direct sum of
exceptional bundles.
Proor. By proposition 1.3.6 it follows that F' has a filtration by isotypic quotients:

O=Fn+1CFnC"‘CF2CF1=F

where G; = F;/ F;;, are J-semistable and they have filtrations by isomorphic one to another
¥-stable quotients. Besides,

Vi ¥(Gi) =5(F),  Hom([Fii,Gy) =0.
Let us apply the Mukai lemma (2.1.4 ) to the exact sequence:
0——)[?,'4_1 —)F;—)Gi—>0.

It can be proved by induction on ¢ that (/; and Fjy, are torsion-free rigid sheaves.

Note that each G; satisfies the assumption of the previous lemma. Therefore we have
G; = z; E;, where E; are exceptional bundles.

Since all G; are ¥-semistable we see that they are py-semistable (1.1.1 ). Moreover,

Vi WG =3(F), = 1 (Gi) = pu(F).

Hence, by the same argument as belore, we get Ext*(G;,G;) =0 Vi, 7. Thus the Ej-term
of the spectral sequence associated with the filtration of F' has the same form as in the
proof of lemma 2.4.2 Therefore,

Ext! (G, G1) = 0.

But in this case the quotients of the filtration of I are different. To complete the proof we
need the information about the groups Ext'(G;, G;) for i < j.
Let us recall that G; = z;E;, where E; are the exceptional bundles. Hence,

Extl(Gn,Gl) S5 Extl(E’n, El) = 0. (2)



2.4 Structure of Rigid Sheaves. 21

By construction, the bundles E; are ¥-stable and (£;) = ¥(/) Vi. Since E; are J-stable,
it follows from lemma 1.3.4 that £, = E,| provided Hom(£,, E;) # 0 or Hom(FE,, E,) £ 0.
Suppose F, = E, then by (2) we have Ext'(E,, £,) = 0.
Assume that £, % FE; then we obtain
Ext’(E,, E,) = Ext®(E,, E,) = 0. (3)

Since ¥(Er) = Y(£,) we get pp(Ey) = ppu(E£n).
Combining the g y-stability ol exceptional bundles on S, Serre duality and the inequality
K% > 0, we obtain
EXL’Z(En, El) = Extg(El,En) = 0.

Combining this with (3) we get
X(Ey, Bn) = =hY(Ey Ea); x(By, B1) = —h'(En, By) = 0.

On the other hand, it follows from the Riemann-Roch theorem for exceptional sheaves
(2.1.2 ) and the equality uy(£,) = gy (F,) that x(E£y, E,) = x(E,n, E1). That is,

hvl(E“ En) = II»I(E,;, E[) = 0.

Thus we proved that Ext'(f,, E,) = 0. This yiclds that Ext'(G1,G,) = 0.
Note that the second term of the filtration (i.e. F3) satisfies the assumptions of our
lemma. At the same time

G?'(FQ) = (Gﬂ.y C"n—la ey G'Q)-

By the inductive hypothesis one can assume that

Fg - @G'j.

1=2

That is the sheaf F' is included in the exact sequence:

0 — PG — F— G — 0.

{=2
Since BExt!(G,G,) = 0 we obtain F' = ¥ @ G, where I is a 3-semistable rigid sheaf with

Gr(F) = (Gnory Gngy. .., Gh).

~ n=1
Using the inductive hypothesis again we have I = @ G,. That is,
1=1

n n
F= EDG, = @.’B.‘E{.
i=1 i=1
This completes the proof.
2.4.4 LEMMA. Any rigid py-semistable sheal F' on the surface S has an exceptional

filtration:
Gr(F) = (2mEm, Tm-1 Emo, ... 21 Ey)
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such that all exceptional pairs of collection (Ey, Es, ..., E,) are the singular or the
Zero-pairs.
PROOF. Suppose I is ¥-semistable; then by the previous lemma, I = @ =;£;, where
E; are F-stable exceptional bundles with equal one to another ¥-slopes. Without loss of
generality it can be assumed that ; 2 ) for ¢+ # 7. Using lemma 1.3.4 , we get
Ext®(Ei, E;) =0 Vi,7. (4)

On the other hand, the equality ¥(£;) = (£;) yields that gy (£;) = pu(F£;). Now the

equality
Ext* (£, B;) =0 Vi,j (5)

can be proved by the standard method for the surface S with K% > 0.

Finally, since /' is rigid we have

0= Extl(F, F) = Extl(@.’cglﬂi,@mjﬁfj) = EBEXU(E{, EJ'),
i i i

ie., Extl(E,-, EJ') = 0.

Combining this with equalities (4) and (5) we see that each pair of bundles in the

collection (Fy, Ea, ..., E,) is an exceptional zero-pair.
Now we suppose that F'is not J-semistable. Consider its Harder-Narasimhan filtration:

Gr(F) = (G, Gucry. .., GY)

(see proposition 1.2.3 ).
Since G; are F-semistable and (G;) > ¥(Gi-,) for all 7, we get

EXtO(G,', GJ') =0 Vi> . (6)

Note that lemma 1.1.8 and ppy-semistability of the sheaf F' imply ppy-semistability of
the quotients G; and the equality pg(G;) = pg(F'). Therefore, as before,

Ext}(Gy,G;) =0 Vi, j. (7)

Combining (6) and (7), we see that the £;-term of the spectral sequence associated with
the Harder-Narasimhan filtration of F' has the form:

q

o X O
(an i i es]
o ¥ O
=

*
¥ o
=

*
*¥ ¥ D
[
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This spectral sequence converges to the groups Ext*( F, F) of the rigid sheaf. Hence,
Ext'(Gi, G3) =0 ¥i> . (8)

In particular, all G; are rigid ¥-semistable sheaves. By the previous lemma G; =
@D zi Eix, where [ are exceptional bundles. Besides, any pair (Fy, Eis) has the zero
tgfpe.

Combining (6), (7) and (8), we obtain that Ext*(Ey, E;,) =0 fori > jand d =0,1,2.
In other words, the set of all bundles F;;. can be enumerated in such a way the collection
(£, Fa,..., Ey) is exceptional. It remains to note that all bundles E; have the py-siope
coinciding with gy (F). Thus it follows from 2.3.1 that each pair from this collection is
either the singular or the zero-pair.

The plan of the proof of the main theorem is clear now. We consider the spectral sequence
associated with the Harder-Narasimhan filtration of a rigid torsion-free sheal to obtain the
information about the groups Ext' (G}, G;) where (i; are quotients of this filtration. To do
this we need the following last statement.

2.4.5 LEMMA. Let (i) and G, be uy-semistable rigid sheaves on the surface S. Suppose
1 (Ga) > pu(Gh); then the equality Ext'(Gz, Gy) = 0 implies Ext' (G, Gq) = 0.
PRrRoOOF. It follows from lemma 2.4.4 that each of G; has the exceptional filtration:

GT'(C’]) = (.’Bn] E‘nla' . ,.’L‘]]E”); C’"I'(Gz) = (.'l:ng:,"g, ey $12E12).

Moreover, py-slopes of E;; do not depend on the first index, i.e, py(£y) = pu(Gy) and
i (Ej2) = pu(Gh).

Denote by G) the restriction of the sheaves G; to an elliptic curve D €| — Kg|. lt is
obvious that the sheaves G’ have the filtrations:

G?‘(G’l) = (."L‘n] E:ﬂ, Ve ’xllE;])a G?'(sz) = (me‘E:ng: ey IE[QE{Z),

where I7}; = Eii|p. Moreover, since Fy; are exceptional bundles we see that £}, are stable
with respect to the standard slope g on the curve (see lemma 2.2.8 ). Furthemore,

#(Ey) = pn(Eg) = pn(Gi) = p(GY).

Now by lemma 1.1.8 G are pg-semistable and p(G5) > p(GY). Thus from lemma 1.1.5 it
follows that Hom(G%, G) = 0.

Using the last equality and the long cohomology sequence associated with the exact
triple
0 — G5 @ Gi(Ks) — G500, — (G;@G1)|p — 0,
we obtain
Ext! (G, G1{(K,)) C Ext'(Gq, Gy).
Now the proof follows from Serre duality.

PROOF OF THEOREM 2.4.1 . Let F' be any torsion-free rigid sheaf on 5. Consider its
Harder-Narasimhan filtration by pg-semistable quotients

G‘I(F) - (Gn7Gn—la vevy G[)
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It follows from the inequalities g (G;) > pu(G;) for © > 7 that
Hom(G;,G;)=0fori>; and Ext’(G;,Gi)=0fori > j.

Therefore the E)-term of the spectral sequence associated with this filtration has the

form:

q

O ok #*
[en R R
[an TS S 3

* ¥ O

Since the sequence is convergent to the groups Ext*(F, F) of the rigid sheaf, we obtain

0=E"" =BT = @B Ext! (G, Giy),

0=E%=EgM= @EXEI(G,‘,G{),
That is G; are rigid pp-semistable sheaves and Extl(G,-, Gi—1) = 0.
By the previous lemma the groups Ext'(G;_;, G;) are also trivial. In particular,
Ext'(G),Gq) = 0.
Let F3 be the first term of the filtration Gr(F), i.e.,
0— R —F— G —0. (9)

Note that Gr(F2) = (Gh,...,G2) is also the Harder-Narasimhan filtration and py(Gz) >
pi(Gy). Taking into account corollary 1.2.5 we obtain Hom( £, ;) = 0. In addition, the
sheaves Fy and () have no torsion. Hence we can apply lemma 2.2.2 to these sheaves and
get Ext2(Gl, ) =0.

Now applying the Mukai lemma to (9) we ohtain

RUF, FY > BN, Fy) + h'(Gh, GY).
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That is the sheafl F} is also rigid. The number of its Harder-Narasimhan filtration quotients

is less then n. Hence by the inductive hypothesis we have F, = @ G, and
=2

0> PG — F— G —0.
=2

Let us recal that Ext'(Gy,Gy) = 0. Therefore, F = F & G, where F'is a torsion-free rigid
sheaf. We apply again the inductive hypothesis to the sheaf F' to obtain

F = @G
i=1

Thus any rigid sheaf without torston on S is a direct sum of p¢y-semistable rigid sheaves.
They are locally free by 2.2.1 . In particular, if F' is indecomposable then it is gy-semistable.
This concludes the proof of the first and the second theorem statements. The last is equiv-
alent to lemma 2.4.4 .

2.4.6 COROLLARY. Any torsion-free rigid sheaf on a Del Pezzo surface X Is a direct sum
of exceptional bundles.

Proor. Since the anticanonical class of a Del Pezzo surface is ample we see that excep-
tional pairs on X cannot be singular (see 2.3.2 ). On the other hand, we have proved that
any indecomposable torsion-free rigid sheaf on S (in particular, on X') has an exceptional
filtration. Besides, all pairs in associated exceptional collection are singular or zero. Thus
the quotients of the exceptional filtration of any torsion-free rigid sheaf on X arc its direct
summands.

2.5 Structure of Superrigid Sheaves.

In the previous section we have proved that any ppy-semistable sheal has the exceptional
filtration and any torsion-free rigid sheaf is a direct sum of jy-semistable rigid bundles.
Therefore for classifying rigid bundles we need a description of exceptional bundles and
collections of ones. This description is the subject of the next part. To start it we need the
following theorem.

2.5.1 THEOREM. Let § be a smooth complex projective surface the anticanonical class H
of which has no base components and H* > 0. Then the following statements hold.
1. For any exceptional collection of bundles (Ey, E,,...,E,) on S such that

w () < up(Eiyq) Vi there exists a superrigid bundle E

(Ext!'(£, E) = Ext*([, E) = 0)

such that Gr(E) = (xn Epy Tnc1 Eney, .., 218y ). We say that this bundle is associated
with the exceptional collection.
2. Any superrigid torsion-free sheafl I/ has the exceptional filtration

CGr(E) = (znbn,@no1 Ency,y .o 3 By,
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i.e. the collection (E\, E,, ..., E,) is exceptional and the pg-slopes of bundles F;
satisfy the inequalities: py(E;) < pu(Eiyy) Vi
3. Suppose a superrigid torsion-free sheaf I! has two exceptional filtrations:

G7(E) = (:L'nEnaan-lEn—h- - -,-’UIEI) = (yml;‘maym-lF’m—la- -y Y Fl);

then m = n and the exceptional collection (Fy, Fa, ..., F,,} can be obtained from
(E\, E,, ..., E,) by mutations of neighboring zero-pairs (E;, Eiy1).

Note that this theorem is obvious provided S is a Del Pezzo surface (see 2.4.6 ). But if
— K5 is nef then the statement is nontrivial and its proof is difficult.
Let us first state and prove several lemmas.

2.5.2 REMARK. Suppose a sheaf F' has a filtration Gr(F) = (G, Gaz1, ..., G)) such that
Gr(Gi) = (Fi,- . ., Ei); then there exists the filtration

G?‘(F) =(Enkn,...,Enh...,E[kl,...,E“).

And back to front, the neighboring quotients can be ”join”.

2.5.3 REMARK. Suppose Gr(F') = (Gy,Gno1,...,G)) is a filtration of a sheal F' such that
Ext'(Gy, Giyy) = Ext'(Gig1, Gi) = 0 for certain i; then the sheaf I has the filtration
G?'(F) = (Gn, Gn—le ey G‘,', C"i+la v Gl)

2.5.4 LEMMA. Suppose F is an indecomposable rigid bundle on S with K% > 0; then I
has the following filtrations:

&.) G"’“R(F) = (Qna Qn—h DERS Ql) such that Vi Qi = ® yisE:'s; Eia are exceptional
bundles, the collection (Fvy, ..., Eim,,. .., Ba1, ..., Enm, ) is exceptional and for each
bundle Eyy (1 = 1,...,n — 1) there is i1y such that the pair (E;, Eiq k) is
singular.

b)Gri(F)=(Gn,Guzty...,Gy) such that Vi G; = @i y; iy are exceptional
bundles, the collection (Ev1, ..., Evkyy...y by ..., Euk,) is exceptional and for each
bundle E;, (: =2,...,n) there is E;_y, such that the pair (E;_y,, E;;) is singular.

PROOF. Let us construct the first filtration. The second one is constructed similarly.
By the theorem about rigid bundles (2.4.1 ) the sheaf F' has the exceptional filtration

Gr(F) = (o bn,n1 Baeyy .2 B,
Let us subdivide the exceptional collection
(L, Byl B,
associated with this filtration into subcollections
(Ei,_ 41, Eiy 52,5 By,

where 1o = 0 such that the following conditions hold.
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PART.1: Any pair of each subcollection has the zero type whenever this subcollection
contains more than one bhundle.
PART.2: For the last bundle E;, of each subcollection there exists I); in the next
subcollection such that the pair (F; , E;) is singular.
There exists at most one singular pair in this collection since the bundle /7 is indecompos-
able. This implies that this partition exists.
Denote by @) the direct sum

@ .'Ejl.’jj

J=ta—1+1

ol exceptional bundles from the subcollection with the index s. By remark 2.5.2 F has the
filtration Gr(F) = (Qr, Qx—1,- .., Q1) where k is the number of all subcollections. Note that
this filtration coincides with Grg if and only if the collection decomposed into subcollections
satisfies the conditions PART.1 and the following

PART.2R.: for any bundle E; of each subcollection there is a bundle

E; in the next subcollection such that the pair (E;, E;) is singular.

To construct the required collection we shall intermix the bundles of subcollections and
move sometimes bundles from subcollection to the next subcollection.

Suppose there is a bundle £, in the first subcollection such that for all bundles Eg
in the second one all (£,, Fg) are zero pairs. Let us shift £, to the second subcollection.
Since this shift can be realized by permutations of members in neighboring zero-pairs we get
that the obtained collection is exceptional. Besides, it satisfy the conditions PART.1 and
PART.2. Tt is clear that after a (inite number of such shifts we get the exceptional collection
decomposed into subcollections such that for each bundle I, of the first subcollection there
is [95 in the second one such that (E,, Fj) is a singular pair. Let us mention that one can
do the some thing with an arbitrary pair of neighboring subcollections. This process will
be called the displacement.

Let us do the displacement with each pair of the neighboring subcollections, starting from
the first one. The number of the subcollections does not change during the process. The
number of the bundles in the first subcollection can only decrease. Two latter subcollections
will satisly the condition PART.2.R. But since we moved the bundles from the left to the
right one can find now two neighboring subcollections (with the numbers ¢ and s + 1, for
example) satisfying the lollowing conditions. Any pair (£, ;) with E; belonging to the s-th
subcollection and F£; belonging to the (s + 1)-th subcollection has the type zero. Moreover,
one can guarantee that two latter subcollection satisly the condition PART.2R only.

Let us unite (if it is necessary) the neighboring subcollections to satisfy the conditions
PART.1 and PART.2.

Let us do the displacement with each pair of neighboring subcollection and join all what
1s possible to join, ets...

This process cannot be repeated ad infinitum. Indeed there exists ky € N such that for
any k > ko the number of the subcollections will not change after the k-th step consisting
of "the displacement and the join”. After some successive step the number of bundles in
the first subcollection will not change, ets... Thus, the number of the subcollections and
the number ol the bundles in each subcollection will not change since some moment. That
means that any bundle does not go from one subcollection to another. Hence we are done.
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2.5.5 LEMMA. Let I be an indecomposable torsion-free rigid sheaf on the surface S.
Assume that

Gr(F) = (znbn, a1 Encyy o 21 E0) = (Y Fony Y1 Fnm1y - n FY)
are two exceptional filtrations of F, 1.e. the collections
(Ey, Eey..., ) and (I, Fa.. .., F)
are exceptional. Suppose

(B = pu(Fy) = pu(l) Vi, g, (10)

then m = n and the collection (E,, I;, ..., IF,) can be obtained from (I, F,..., [},)
by mutations of the neighboring zero pairs. 7

Proor. It follows from proposition 2.3.1 that each pair of these collections has the zero
or the singular type. Let us show that any such collection can be ordered by the #F-slope
using the permutations of the neighboring zero pairs members only. In this case the lemma
follows from the uniqueness of the Harder-Narasimhan filtration (1.2.3 ).

The possibility of such ordering is obtained by induction on the number of the terms in
the collection by the following arguments.

Suppose that (£, ) is a singular pair; then it follows from lemma 2.3.2 that ranks of
the sheaves F and /' coicude and ¢;(F") — ¢;(E£) = C is an effective -2-divisor. (Recall that
the ¥-slope is the vector ,

-2
CI_T__C_Q)’
where py = Elr"—"‘, and A is an ample divisor.) Since A is ample, we get pa(E) < pa(F). By
assumption we have py(E) = py(F). Therefore, 3(£) < F(F).

(ats pras

2.5.6 LEMMA. Suppose that (E, I') is an exceptional singular pair on S and G is a torsion-
free sheaf; then the following implications hold
a) Ext*(G,E)=0 = Ext)G,F)=0;
b) Ext®(G,F) =0 == BIxt®(G,E)=0;
c) Ext%(E,G)=0 = Ext’(F,G)=0;
d) Ext}(F,G) =0 = Ext*(E,G)=0;

Proor. The lemma follows from the cohomology tables associated with the exact triple
0— F— F—@—0,
where @) is a torsion sheaf. Moreover, since () has the zero rank and (' is torsion free we
get that Hom(@, G) = 0. Furthemore, using Serre duality, we get Ext*(@, Q) = 0.
2.5.7 LEMMA. Let F be a jiy-semistable rigid bundle. Let
Gr(F) = (@nEn, a1 Bneyy. . a1 By)

be its exceptional filtration and G be a torsion-free sheaf. Then
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a) Ext'(G,F)=0VYi <= Ext'(G,E) =0Vik;
b) Ext'(F,G)=0VYi <= Ext'(E,G)=0Vik.
Proor. Without loss of generality it can be assumed that ' is indecomposable. Con-
sider its filtration Grgp(F) = (Qm,@m=1,.-.,&1) from lemma 2.5.4 . By 2.5.5 we can
assume without loss of generality that

si41=1
Q; = @y,—E; =85 <8< - <8y < Spmy1 =1+ 1.
i=s;
To prove the first statement of our lemmait is sufficient to check the following implication

Ext(G,F)=0¥i == Ext'(G,Ey)=0Vi,k

(The second implication follows from 1.2.4 .} Let us apply the functor Ext'(G, ) to each of
the sequences:

0— Fjpg — F; — @, — 0,
where F; are terms of the filtration Grg(F'), Iy = F and F, = Q.. We see that the spaces
Hom(G, F;) =0 for j = 2,3,...,n. In particular, Hom(G, @,) = 0.

Step 1. Let us show that Hom(G, E;) = 0 for all 2.

By the equality Hom(G, @,) = 0 we get Hom(G, £;) = 0 for s, <7 < n. By the
construction of the filtration Grr(F') for each direct summand £, of the bundle @,_, there
exists a bundle Eg with s, < 8 < n such that (E,, Eg) is a singular pair. Applying lemma
2.5.6 to this pair we get Hom((/, [Z,) = 0.

In the same way using the properties of the filtration Grgr(F') and 2.5.6 we conclude
the first step.

Step 2. Let us check that Ext*(G, E;) = 0 for all 7.
Now let us intermix the bundles in collection (£, 2, ..., E,) to obtain the filtration
Gr(F). Without loss of generality we can assume that

s;41—1

G;= @y;Ei =51 <8< <8y < Sppyr =1+ 1.

are quotients of Grp(F).
Applying the functor Ext (G, -) to the exact triple
0 — Fp— F — Gy — 0,

where F} is the first term of the filtration Grp(F) we get Ext?(G, G1) = 0. This means that
Ext*(C, E;) = 0 for any direct summand of the bundle .
As before, using the properties of the filtration Gry(F) and lemma 2.5.6 , we have

Ext}(C, E;) =0 Vi.

Thus it is proved that for any quotient £; of the exceptional filtration of the bundle F
the groups Ext®(C, ;) and Ext*(G, E;) are trivial. Hence, x(G, E;) < 0 Vi. Since the
Euler characteristic of sheaves is an additive function we have

Z:I:;X(G, E,‘) = X(G', F) = 0.

1=1
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Moreover all z; are positive integers. Thus, x(G, ;) = 0 Vi. The first statement of the
lemma was proved. Similarly the second statement is proved.

PRrOOF OF THEOREM 2.5.1

1. First we assume that all pairs of the collection (£, K, ..., E,) have the zero or
singular type. The proof is by induction on the number n of bundles in the collection. For
n = 1, there is nothing to prove.

By the inductive hypothesis there exists a superrigid bundle £’ such that

GfT'(E’) = (Ena Eﬂ_l, ey Eg)

Suppose the pair (£, ££;) has the zero type for any ¢ then £ = E' @ F| is a superrigid
bundle (see 1.2.4 ).

Suppose there is an index z such that (F,, £;) is singular then Extk(El, E;) = C for
£k =0,1and

Ext?(Ey, E;) = Ext*(E;, E\) =0 Vi, k.
Therefore, Ext*(E’, Ey) = 0 Vk and

ExtO(El, E')Y=V #0, Extl(El, E'Y =W #0, Extz(El, EY =0.
Consider the universal extension:
0—F —L—WQREFE, —0.

Using the cohomology tables let us show that £ is superrigid. The first table has the form:

k| Bxt™ (B, E) — Bxt"(E,E) - W®BExt"(E,, E)
0 % ? W
1 W 0
2 0 0

Since the extension is universal, we see that the coboundary homomorphism
W — Ext!'(Ey, £

is isomorphism. Hence
Ext'(E, E) = Ext}(E,, E) = 0.

The next tables have the form:

k| Ext* (B, E') — Ext®(E'E) — W ®Ext*(E' E)
0 * ? 0

1 0 7 0 ’
2 0 0

k| W-@Ext* (E\,E) — Ext*(E,E) — Ext"(E',F)
0 * ? *

1 0 ? 0

2 0 ? 0




Thus, £ is a superrigid bundle.
Now assume that (Fy, Fq, ..., F,) is an arbitrary exceptional collection of bundles such
that
pa(B) < pu(By) < - < pp(E,).

Let us subdivede it into subcollections of bundles with equal py- slopes. Since all pairs
in obtained subcollections are the singular or the zero pairs we see that there exists su-
perrigid bundles G, Gy, ..., G constructed by these subcollections. Moreover, iy (Gy) <
pr(Gigr). Now let us recall that a pair (£, £;) of bundles has the type hom provided
wa(E:) < pu(E;), ie. Ext¥(Ei, £;) = 0 for k = 1,2 and Ext®(£;, £;) = 0 for £ =0,1,2.
This yields that the bundle £; @ E; is superrigid . Thus, @ G is the required bundle.

2. 1t follows from theorem 2.4.1 that a torsion-free superrigid sheaf is a direct sum of
m

pr-semistable rigid bundles I = @ F;. Without loss of generality we can assume that
J=1

i (Fy) < pu(Fipa) Vi

Since F' is superrigid we see that Ext*(F;, F;) = 0 for k = 1,2 and for any pair 7, j. Besides,
it follows from the pp-semistability of F; and the last inequality that Hom(Fj;, F;) = 0 for
Jj >

Taking into account theorem 2.4.1 we obtain that each F; has the exceptional filtration

Gr(F;) = (vg;-1 51,y Ta;_ By ).

Using the previous lemma and the already proved fact that Ext*(Fy, ;) = 0 for § > i and
k = 0,1,2 we see that the collection of the direct summands of all bundles F; (with the
some order) is exceptional. This concludes the proof of the second statement.

3. Since any torsion-free rigid sheafl is locally free and direct summands are uniquely
determined we see that it is sufficient to prove the third statement in the case when F is
an indecomposable superrigid bundle. But this case is already settled in 2.5.5 .

This completes the proof of the theorem.

3 Constructibility of Exceptional bundles.

3.1 Introduction to the Helix Theory.

In this section we recall following [19], [5], [2], and [4] the general concepts and facts related
to the exceptional sheaves on manifolds (see the definition of exceptional sheaves in 2.2)
and exceptional objects in the derived category.

The notion of exceptional bundles was introduced in the paper [6]. The main result of
that paper is the description of Chern classes of semistable bundles on P? . Exceptional
bundles appeared there as some kind of boundary points.

Later the exceptional bundles and the exceptional objects in the derived category of
sheaves were studied on the Rudakov’s seminar in Moscow. [t became clear that the ex-
ceptional objects (sheaves) organized in the exceptional collections can generate the whole
derived category ol sheaves. Therefore, there exists a spectral sequence of Beilinson type
associated with an exceptional collection. Let us note that for the first time a spectral



32 3 CONSTRUCTIBILITY OF EXCEPTIONAL BUNDLES.

sequence of such type in the case of P2 appeared in [7]. But the general result was obtained
by A. L. Gorodentsev ([5]) independently on [7] .

The existence of this spectral sequence is the serious reason to study the exceptional
sheaves. Moreover, the exceptional bundles are interesting as bundles with the zero-
dimensional moduli space.

Another application of the exceptional bundles is the description of moduli spaces of
semistable bundles. There exists such description in the case of the projective plane ([6])
and of the smooth 2-dimensional quadric ([21]).

The helix theory is connected with number theory. Namely, A. A. Markov, studied in
particular, solutions of the following Diophantian equation:

z? + 4?4 2 = 3ayz. (11)

(This equation is called now the Markov equation and its solutions are called the Markov
numbers.) It was proved that the Markov numbers coincide with the ranks of the exceptional
bundles on PZ (which form a foundation of a helix).

A. A. Markov formulated the following conjecture:

Any triple of natural solutions of the equation (11) is uniquely delermined by its mazimal
element.

This conjecture can be reformulated in terms of the exceptional bundles in the following
way.

Suppose E and F are exceptional bundles on P? with equal ranks; then either E = F(n)
or E* = F(n) for some natural n.

More details can be found in [18].

Now let us return to the helix theory. The definition of a helix and the first results
about helices appeared in [18]. The definition of a helix is due to A. L. Gorodentsev and
A. N. Rudakov. The word "helix” and the idea of considering a helix as an infinite system
of bundles with some form of periodicity is due to V. N. Danilov.

Now we following [19], formulate the axioms of the helix theory.

We consider pairs of objects of a category U or elements of a set il .

DEFINITION. A pair (A, B) is called left admissible if a certain pair (LB, A) is defined.
The pair (LaB, A) is called a left mutation of (A, B) and the object L4 B is called a left
shift of B. Similarly, a pair (A, B) is right admissible if a certain pair (B, RgA) is defined.
The pair (B, RgA) in this case is called a right mutation of (A, B) and the object RgA is
a right shift of A.

The axioms are the following.

(1L) If (A, B) is left admissible then (LB, A) is right admissible and RaLaB = B.

(1R) If (A, B) is right admissible then (B, RgA) is left admissible and LgRgA = A.

(2L.) Let (A, B, C) be such a triple that the pairs (B, C), (A, LgC) and (A, B) are left
admissible. Then the pairs (A, C), (B, LAC) are left admissible where B’ = LB and
LalgC = LpLaC.

(2R) Let (A, B, C) be such a triple that the pairs (B, C), (A, B) and (RgA,C) are right
admissible. Then the pairs (A,C),(licA, B’) are right admissible, where B’ = R¢B and
RcRBA = RBIR(;A.

The equalities in the axioms (2L) and (2R) are usually called the triangle equations.
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It will be convenient to denote the object L4 LgC, which appeared in (2L) by L*C and
also toset RMA = RoRgA. In the same way if (Ao, A1, Az, ..., A,) is asystem of objects we
put LOA, = A, LMA; = Ly, A, ..., LWA, = L4, L~V A, with the condition that the
resulting pairs are left admissible. Analogous notation will be used for the right mutations.

DEFINITION. A collection {A;} i € Z} will be called a heliz of period n if for all s the
following condition holds:

HEL: The pairs (A,—1, A,), (Agea, LA o (Agonyr, LD A,) are left admissible
and LO-DA, = A,_,..

Further we shall assume that (1L}, (1R), (2L) and (2R) are satisfied. Then HEL is
equivalent to

HEL’: The pairs (Ay—n, Ascngr )y (R A, Agenga)s -, (R A, AL) ave right ad-
missible and R~V A,_, = A,.

Each collection of the form {A;, Ajpy, ..., Aisn1} is called a foundalion of the helix
{A;}. Note that a helix is uniquely determined by any of its foundations.

A collection {B;| 1 € Z} with

B;=LA;;, for i=m— l(modn),
Bi=A;_, for i=m(modn),
B; = A; for 1% m,m — 1(mod n),

is called a left mutation of the helix at A,, and is denoted by L.
A collection {C;| 1€ Z} with

C; = RA,_, for i=m-+ l(mod n),
Ci= A for i =m(modn),
Ci = A; for 7 Zm,m+ 1(mod n),

is called a right mutation of the helix at A, and is denoted by R,..
The basic fact about helices is the following statement.

3.1.1 THEOREM. The right or the left mutation of a helix is a helix.

All applications of helices are based on this theorem.

Looking at the triangle equations we see that the mutations of helices define the action
of the braid group on the set of all helices. One of the main questions in the helix theory
is to define the number of orbits of this action. of this action.

Let us return to the exceptional sheaves on surfaces and define the mutations of an
exceptional pair of sheaves. (The definition of exceptional pairs and their types can be
found in section 2.3.)

LEMMA-DEFINITION. 1. Let (£, I") be an exceptional hom-pair of sheaves. Consider
the canonical homomorphisms

Hom(E,F)®@ £ =% F  and E = Hom(E, FY" @ F.
If lean is an epimorphism then the pair (£, F') is left admissible and

LgF = ker(lcan).
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Besides, the sheaf Lg I is exceptional and the pair (LgF, E) 1s also exceptional.
The pair (£, F') is right admissible provided rcan is a monomorphism. In this case,

Ry £ = coker(rcan).

Besides, the sheaf RpE and the pair (F, R £) are also exceptional.

In both these cases the mutation of the pair (E, F') is called regular.

Suppose [can is a monomorphism then the left shift of /' is defined as Lg F' = coker({can).
(The pair (LgF, ) is exceptional as well.)

The right shift of £ is defined as RpE = ker(rcan) whenever rcan is an epimorphism.
(In this case the pair (I, RplY) is exceptional as well.)

2. The ext-pair (£, I} is both left and right admissible. The following universal exten-
sions define the mutations of the ezt-pair.

0— F~— LgF — Ext(E,F)®@ E — 0,
0 — Ext"(E,F)*®@F — Rl — E — 0.
In this case as before, Lg F and Rp F arve exceptional and (LgF, F), (F, Rp E) are hom-pairs.

3. Both the left and the right mutation of a zero-pair is permutation of the entries of
the pair.

It follows from this lemma that there are cases when the left or the right mutation of a
hom-pair is not defined. Moreover, there are not mutations of a singular pair of sheaves.

To overcome these limitations let us pass following ([4]) to the bounded derived category
(Db(S)) of sheaves on the surface S . Exceptional objects and collections in this category
are defined in the same way as in the basic category of sheaves.

LEMMA-DEFINITION. Let (£, F') be an exceptional pair in D°(S). Objects LgF and
Rp E which complete the canonical morphisms

LpF — RHom(L, F)®@ E — F and E — RHom(E,F)*"@ F — Rpl

up to the distinguished triangles are exceptional just as the pairs (LgF, F), (I, RpF),.

The category of sheaves is imbedded into D*(S) by the morphism 6. Any exceptional
sheaf stands exceptional under this imbedding. Mutations in the base and in the derived
category are related in the following way. If an exceptional pair of sheaves (F, F') is left
admissible then the left shift of §( /") in the derived category is quasiisomorphic to §(LgF).
That is, it is a complex with a unique nonzero cohomology coincided with LgF, and vice
versa. The similar statement holds in the case of the right mutation. Thus we can assume
that any exceptional pair of sheaves is both left and right admissible.

3.1.2 THEOREM. (Gorodentsev-Orlov) Any exceptional object of D*(S) is quasiisomorphic
to an exceptional sheafl provided S is Del Pezzo surface. That Is, all mutations of
exceptional pairs of sheaves belong to the base category.

3.1.3 THEOREM. {Rudakov-Gorodentsev) I. The mutations of sheaves above defined and

the exceptional objects of the derived category satisfy the axioms (1L),(2L),(1R) and
(2R).
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2. An exceptional collection remains exceptional whenever some its pair of neigh-
boring sheaves is replaced by a mutation of this pair. This procedure is called the
mutation of a colleclion.

DEFINITION. Let o = (Fy, [y, ..., ) be an exceptional collection of sheaves or objects
of D*(S). It is full provided Db(S) is gencrated by o, i.e. the set of all objects of D¥(S) can
be obtained from the elemets of o by taking the direct sums, tensoring and forming cones
of all possible morphisms.

[For example, the following collection of line bundles on P?
(Op21 O]P“(l)1 O[FD?(Q))

is the full exceptional collection.

3.1.4 THEOREM. (Bondal) Let o = (E\, E,, ..., F,) be an exceptional collection of sheaves
or objects of the derived category on a manifold X. Then the following statements
are true.

1. If o is full then its left and right mutations are full collections.
2. The collection of the form

Too = {Ei‘fEZ, Et:+an = Ei(_SI\'A’)}
is a helix of period n if and only if o is full.
We see that full collections are closely connected with helices.

To write the spectral sequence mentioned at the beginning of this section let us define
dual collections.

Let o = (E), [, ..., E}) be an exceptional collection. The following collection

(VE_k,...,VE_\,YEp), where

VEBy=FEg,YE_, = LE,,VE_ = L(Z)Ez,...,vE_k = W,
is called the left dual to 0. The collection (£, EY_,,..., Ey), where
E(\}/ = R(k}ED, E;/ = R(k_l)Ela Ezv = R(k_z)f.’jz,-..,E;: = [

is called the right dual to o.
In these notations the following theorem is valid.

3.1.5 THEOREM. (Gorodentsev) Let @} he an exceptional object belonging to the subcat-
egory generated by an exceptional collection (Fy, By, Fa, ..., Ex). Then there exists
a spectral sequence

EP = HP(Q),

the F-term of which has the form

EP" = €D Hompug)(Eip, Q) @ H*(VEx_p).

r4-s=q
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In this case we say that the spectral sequence is associated with the left dual collec-
tion. ‘

Similarly, one can write the spectral sequence associated with the right dual
collection.

3.1.6 COROLLARY. Let (Fy, E|, Es, ..., E) be an exceptional collection of sheaves on the
surface S. Suppose the left dual collection belongs to the base category, i.e. each
element of the left dual collection is a sheaf; then for any sheaf Q@ belonging to the
category generated by this collection there exists a spectral sequence E™? with the
F-term of the form

B} = Bxt™(E,, Q) © ¥ By,

where A, is the number of nonregular mutations needed for constructing the sheaf
VE_,. Besides, there exists a spectral sequence EP? with E\-term
EP? = Bxt*1(Q, B_,)" ® EY,,
where A, is the number of nonregular mutations needed to construct the sheaf EY .
Both these sequences converge to ¢ on the main diagonal, i.e. [EP? = 0 for
p+q#0and
Gr(Q) = (B0, BN, .. B0,

The helix theory has the following basic open problems.

1. Do there exist full exceptional collections on a given manifold?

2. How many orbits has the action of the braid group on the set of all helices? We
say that all helices (or full exceptional collections) are constructible provided the orbits are
unique.

3. Does an arbitrary exceptional collection belong to a foundation of a helix? In other
words, is there a full exceptional collection containing a given exceptional collection? We
say that the exceptional sheaves are constructible whenever the answer of the second and
the last problems are positive.

4. We can consider the action of the braid group on the set of exceptional collections
which generate one and the same derived subcategory of D*(X). How many orbits has this
action?

5. Description of stable subgroups of the braid group action.

Full collections were found on P*, Del Pezzo surfaces, G(2,4). Besides the following
result was proved by D. Orlov in [17].

3.1.7 THEOREM. (Orlov) 1. Let P(E) — M be the projectivisation of a vector bundle on
a manifold X. Suppose there is a {ull exceptional collection on X then there exists
such collection on P(E).
2. Let X be obtained from X by blowing up a smooth regular submanifold Y.
Suppose that there exist full exceptional collections on X and on Y then there exists
a full exceptional collection on X as well.
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In the papers [18], [20], [11] it was proved that all exceptional sheaves and all helices on
Del Pezzo surfaces are constructible. The constructibility of helices on the ruled surfaces
with the rational base and on P? was proved in ([15]).

In the last part of our paper we shall prove the lollowing theorem.

3.1.8 THEOREM. 1. Let ¢ be an exceptional collection of bundles on a smooth projective
surfaces S with anticanonical class without base components and K% > 0. Suppose
that the rank of each bundle of this collection is greater than 1 then there is a full
exceptional collection T such that o is a subcollection of T. Moreover, T can be
obtained by mutations from the basic full collection. In other words, all helices on
S are constructible.

2. The condition about ranks can be omitted provided K} > 1.

3.2 Restriction of Superrigid Bundles to an Exceptional Curve.

L.et us recall that we deal with the surface S the anticanonical class H = —K's of which has
no base components. This means that H is nef.

In the beginning of section 2.4 we restricted the class of considered surfaces by the
condition K% > 0. Using the description of surfaces with numerically effective anticanonical
class from section 2.1, we see that the surfaces satisfying this condition are the following:
P?, P! x P!, F, or surfaces obtained from P? by blowing up at most § points.

Furthermore we can assume that the surface 5 satisfies the following conditions.

1. K> 0.

2. There exists a blowing down of S onto P%

Suppose S is obtained from P? in the following way

[+ ' T T
S 248, L 2y g By 5 = PP

where o; is a blow up of a point pi_; € S;_, and d < 8. By definition, put e; = a7 ' (pi1).
It is clear that e; are exceptional —1-curves for all ¢+ and ¢4 is irreducible. We see that
eq is a smooth rational curve.
It is known that the divisors h,ey,...,eq generate the group Pic(S) (here h is the
preimage of a line on P?). Besides

he; =eje; =0 for i#3 and ef = -1,

d
Kg=-3h+ Ze,-.

3.2.1 REMARK. The divisor h is numerically effective.
PROOF. In fact, a line on P? has no base points. Hence its preimage is base set frec as
well. Therefore, the cup product h with any curve on S is nonnegative.
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3.2.2 LEMMA. Let E and F be exceptional bundles on S with the equal py-slopes and let
e = eq4 be an irreducible exceptional curve. Suppose £ = F or ¢i(E) — ¢;(F)=C is
a —2-curve; then
either Ext*(E, F(—e)) =0
or K2 = 1 and (E, I) is an exceptional pair of the form (OS(D), OS(D+8+I\"S)),
where D is some divisor of Pic(5).
Proor. By Serre duality theorem,

Ext?(E, F(~e))" = Hom(F, E(e + Ks)).
Suppose A2 > 1 then
,Lty(E(e + lr\"g)) = ;I.H(E) —Kg-e— [\"g < MH(E) = ,LLH(F).

Hence the equality Hom(F, E(e + Kg)) = 0 follows from the ey-stability of exceptional
bundles on S and 1.1.5 .

Now suppose 3 = 1 and Hom(F, E(e+ Ks)) # 0. 1t follows from the equality pg(F) =
p(E(e+ Kg)) and 1.1.6 that there exists an exact triple:

00— F— Ele+ Ks) — Q — 0, (12)

where () is a torsion sheaf. Denote by » the rank of the bundles £ and F. (Let us recall
that »( ) = r(F')). We get

a(@)=a(l)—a(F)+r(e+ Ks) =C+r(e+ Ks).

Recall that the first Chern class of a torsion sheaf must be "nonnegative”, i.e. either efleciive
or trivial. Assume that £ = I then one gets ¢,(Q) = r(e + Kg). But this is impossible
since this divisor is ineffective.

Assume that £ # F. Then, by the assumptions of the lemma C = ¢;(E) — ¢/ (F) is
—2-divisor such that C' - K's = 0 (recall that puy(F) = py(F) and »(£) = r(F)). Such
divisors were described by Yu. I. Manin in [12]. Using his results we can state that if
C =ah— i bie; then |a| < 3. Moreover C' = 3h —¢; — i e; whenever a = 3.

1=1 =1
We assume that sequence (12) exists. In this case the divisor C'+ (e + Ks) is effective.

d
Whereby, the cup product h-(C+r(e+Kg)) is nonnegative (3.2.1 ). Thus, C = 3h—e; -3 ¢
i=1

and r = 1.
We have C + r(e + Ks) = 2e4 — 2¢; (recall that e = e4). The curve ey is irreducible.
Hence, 2e4 — 2¢; is ineffective if 7 # d. Therefore, ¢4 = ¢; and C = —Ks —¢. Thus the pair

(2, F) is equal to
(0s(D),05(D + ¢ + Ks)).

This concludes the proof.

3.2.3 COROLLARY OF THE PROOF. Suppose C is -2-divisor with C - Ks = 0 and e = ey;
then the divisor C + e + Kg is nonpositive.



3.2 Restriction of Superrigid Bundles to an Exceptional Curve. 39

3.2.4 LEMMA. Let (I, F') be an exceptional pair of bundles on S with pug(E) < pu(F)
and e = e4 be the irreducible exceptional curve. Then

Ext*(E, F(—e)) = 0.
Proor. By Serre duality theorem we have
Ext?*(E, F(—=e))" & Hom(F, E(e + Ks)).

But,
pa(Ele+ Kg))=puu(E)+1 — l\’?; < pa(E) < pug(F)

and the proof follows from the puy-stability of exceptional bundles on 5 and lemma 1.1.5 .

3.2.5 LEMMA. Suppose that E and [I” are rigid j1yy-semistable bundles on S§. Assume that
they have exceptional filtrations

G?(E) = (mnEn-;mn-—lEn—ly Ce ,."L']EI), GT(F) = (ymFm,ym—lFm—l,- . .,ylF;).

In addition we assume that the following conditions hold.

L Ext*(F.Ey=0 Vk=0,1,2.

2. pu(E) <pu(F) < pu(E)+ KE

3. Provided K% =1 the exceptional collections (Ey, Eq, ..., E,), (F1, Fay ..., Fy)
have no pairs of the form (OS(D), Os(D+e+ ]\’5)) where D € Pic(S) and e = ¢4 is

an irreducible exceptional curve.
Then the restrictions of F and F to e have the form

E'=FEl.=a0.(s = 1)®BO(s), F'=Fle=790:(s = 1) B0 (s) D eO,(s + 1)

where o, 3,4, 6, ¢ are nonnegative integer with ye = 0.
Proor. It follows from the assumptions of the lemma and 2.4.1 that all pairs (£;, E;)
and (£}, £;) for ¢ < j are exceptional singular or zero pairs. By proposition 2.3.2 we have

i (E:) = i (Ey), pn(Fy) = pn(Fy)
and the differencies of the first Chern classes

ci(E;) — e (E) and e (I7) — ()
are —2-divisors. Since among these pairs there are no pairs of the kind

(0s(D), 0s(D + e + Ks))
(in the case K% = 1), it follows from lemma 3.2.2 that
Ext?(E;, £;(—e)) = Ext*(E;, Ei(—e)) = Ext}(F}, Fi(—¢)) = Ext*(F}, Fj(—¢)) = 0

for any pair 7,7. Thus the equalities

Ext’(E, E(=e¢)) = Ext}(F, F(—e)) =0



40 3 CONSTRUCTIBILITY OF EXCEPTIONAL BUNDLES.

follow from 3.2.2

Since the bundles ££ and F are rigid using the exact triples
0 —=FE"@FE(—e) > E"Q@F — (E"® F)|l. — 0,

00— F"@F(—e)— F"QF — (F"® F)l. — 0

we get Ext'(E', B') = Ext'(F', F') = 0.

By the Grothendieck theorem [16} any bundle on a projective line (in particular, E’ and
[’ on e) is a direct sum of line bundles. IFrom the rigidity of £’ and F and Bott’s formula,
which calculating the cohomology of line bundles on the projective line ([3]) we obtain

E'=Fl.=a0,(s—1) @ pO.(s), F' =Fle=~v0.(s"—1)DsO.(s).
Using the first and the second conditions of the lemma let us show that
s<s <s+41.

Note that it follows from the condition 1 and proposition 2.3.1 that each pair (£, F}) is
exceptional. Besides,

pr(E) < pn(Fy) < pu(E) + K.

Applying lemma 3.2.4 to the pairs ( E;, ;) we get Ext*(E;, Fj(—e)) = 0. This means that
Ext*(E, F(—e)) = 0.

By virtue of the inequalities on the py-slopes and 2.3.1 the pairs (£;, F;) have the
type hom. In particular Ext'(E;, F;) = 0. Hence we have Ext'(E, F') = 0. Now it follows
from the long exact cohomology sequence associated with the restriction sequence to the
exceptional curve

0= E"@F(—e) > E@F — (E"®@F)l.—0

that Ext'(E’, F') = 0.

By Serre duality and the first condition of the lemma we get
Ext®(E, F(Ks))=0 for k=0,1,2
The second condition of the lemma yields the inequality

pr(F(Ks)) < pu(E) < pu(F(Ks)) + K3,

“
N

Repeating the reasoning for rigid bundles F(K's) and E we get that Ext'(F(Ks)|e, E)
Note that F(Kg)|. = F'(=1), i.e. Ext'(F'(=1), £') = 0. Now the inequality (s <
s + 1) follows from Bott’s formula. This completes the proof.

0.
<

3.2.6 COROLLARY. Assume that an ordered collection of uy-semistable rigid bundles
(Ey, Fay. o, By)

satisfies the following conditions.
L Ext*(E;,E;)=0forj >4, k=0,1,2.
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2. ug(E) < pp(By) < - < pup(En) < pu(E) + KE.

3. Provided K% =1 the exceptional collections corresponding to the exceptional
filtrations of all E; have no pairs of the form (OS(D), Os(D+ed- [\’S)) where ¢ = ey
is an irreducible exceptional curve.

Then there is a number @ such that

(B:® @ B @ E(~Ks) @+ @ Bimy (= Ks))]e = a0.(s) ® BO(s +1).

ProOOF. We say that an ordered pair of rigid pggy-semistable bundles (£, F') on S has
the zero type of decomposition whenever

(E@ F)|. = aO.(s) ® BO(s +1).

It has the first type of decomposition whenever

E
with o -8 # 0.

I'rom the previous lemma it follows that each pair from our collection has either the
zero or the first type of decomposition.

We see that the above statement holds provided the pair (£, £;) has the zero type of
decomposition for all 7.

In the opposite case denote by 7 the minimal number such that the pair (/,, E;) has the
first type of decomposition. Note that in this case Vy <2< k the pair (£;, £¢) has the first
type of decomposttion and the pair (E,, [) has the zero type of decomposition whenever
1< s<lors<!<1i. Besidesifa pair (£, ') has the first type of decomposition then the
pair (£, E{—Ks)) has the zero type of decomposition.

Thus, each pair of the collection

(Bi@ - @ B & Bi(~Ks) &+ @ Eiy(—Ks))

e =a0,.(s) @ BOLs + 1), Fl,=70.(s+1)®60.(s +2)

has the zero type of a decomposition. This completes the prool.

3.3 Equivalence of Collections and the Key Exact Sequence.

DEFINITION. We say that an exceptional collection ¢ = (E,, £y, ..., E) (of sheaves or
of objects in D*(S)) on S is constructible whenever there is a full exceptional collection
(Ey,. .., By Egta, ..., B2,) containing o such that it is obtained from the basic collection

0o = (061 (_1)7 o ,Ocd(—l),OS, OS(h‘)a OS(Qh))

by mutations. Here /i is the preimage of a line on P? and ¢; are the blow up divisors. (It
follows from [17] that the basic collection is exceptional and full.)

We say that an exceptional collection o is equivalent to an exceptional collection 7
whenever the following condition holds. The collection o is constructible if and only if 7 is
constructible.

3.3.1 LEMMA. a) Suppose an exceptional collection ¢ is obtained from an exceptional
collection T by mutations; then these collections are equivalent.
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b} An exceptional collection (Ey, Es, ..., Ey) is equivalent to the following collec-
tions:

(Ek(l’\"s),[fl,...,Ek_l) and (Eg,...,Ek,El(-—KS)).

PROOF. a) Assume that an exceptional collection ¢ = (Ey, Es, ..., E}) is obtained
from v = (Fy, F3,..., Fi) by mutations. Since all mutations of collections are invert-
ible (see the axioms of the helix theory), we can assume that 7 is also obtained from o
by mutations. Suppose o is constructible, i.e. there exists a full exceptional collection
o' =(FEy, ..., Ex, Exrry- ..y E,) obtained from the basic collection by mutations. Then the
exceptional collection 7" = (Fy,..., Fk, Frt1, ..., £2,) is also obtained from the basic collec-
tion by mutations. Therefore 7/ is full (3.1.4 ). Besides the basic collection and 7' belong
to one and the same orbit of the braid group action. Thus 7 is also constructible.

b) In order to prove the second statement it is sufficient to check that the collections
o= (E\, L, ...,Ey) and (E,, ..., E, Ei(—Kg)) are equivalent. Suppose o is constructible
and oy = (£, ..., By, Exga, ..., Ey) 1s a full exceptional collection corresponding to o. By
theorem 3.1.4 if follows from the fact that the collection oy is full that it is a foundation of
a helix and E,(—Rs) = R* ' E;. That is, the collection

J2 = (E27 SRR Ekka+17 - '!EH’E](_K'S))

is equivalent to oy. Now we shift each of the sheaves F,, F,_\,..., Kxy to the right by
E(—Ks) to obtain the full collection

7 = (Bay..., Ex, Ey(—Ks), RExp1, RExpa, . .., REW),

equivalent to o;. Thus 7 is constructible as well.
Since all operations are invertible we see that the collection ¢ is equivalent to 7.

NOTATION. Let o = (Ey, £y, ..., Ex) be an exceptional collection of bundles. Denote

p-{o) = min{pun(E)}, py(o) = max{pu(E)}.

3.3.2 LEMMA. For any exceptional collection of bundles o = (F,, £, ..., E}) there exists
an exceptional collection of bundles T = (F\, Fy, ..., F}) equivalent to o such that

p-(o) S p(r) = pu(F) <. < pa(Fi) = pe(r) < i (o).

Furthermore we say that exceptional collection of bundles (Fy, £y, ..., F,) is a hom-
colleclion whenever

pa(E) <pp(F) < < up(Fh).

PROOF. Let s be the minimal number such that py(F£,) > pg(£11). It follows from
proposition 2.3.1 that the exceptional pair (£, [2,41) has the type ext. Consider the left
mutation of this pair

0 — Eoyy — L, Byt — Ey ® Ext'(E,, Eyyr) — 0.
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Since the sheaves F; and F,y, are locally free we get that Lg, F,y is also locally free. By
the py-stability of exceptional bundles we have

pr(Esr) < pni(Lig, Eopr) < pu(Ey).

Now suppose that uy(Lg, Eya) < p(F,-1) then we apply the left mutation of this
ext-pair, etc...

It is clear that after a finite number of mutations we shall obtain an exceptional collection
o’ equivalent to the original one and such that

p-(o) < p_(o) < pi(0’) < py (o).

Moreover, if we denote by &’ the minimal number such that

tn(Ey) > un(Byyy)

then s’ > s. This implies the necessary statement.

3.3.3 LEMMA. For any exceptional collection of bundles o = (F,, E,, ..., E}) there exists
an exceptional hom-collection of bundles 7 = (I, Iy, ..., Fi) equivalent to ¢ such
that

p(7) — p-(7) < KE.
PRrROOF. By definition, put Au(o) = ui(0) — u_(o). Assume that Ap(c) > Ki. By
lemma 3.3.2 , without loss of generality it can be assumed that o is a hiom-collection. We
have

p-{o) = pun(Er),  plo) = pu(En).

-
1

Since Ap(o) > K% and ug (1 (—Ks)) = pn(E)) + K2 we see that there exists a number s
such that

p(Eany) S pu(EV(—Rs)) < pu(Es).

The collection oy = (£, ..., Ea, E1(—Ks),..., £,1(—Ks)) is equivalent to o and it has
the following limits of the py-slope:

ho(01) = prn(Br (= 5)) = jn(E2) + K2,
iy (o) = max{pn(Es (—Ks)), pu(EL)}-
Suppose py(o1) = pp(Es—1(—Ks)) then s > 1 and

Ap(or) = pu(Eey) — pu () < I\’g.

Hence ordering the collection o as in 3.3.2 we obtain the hom-collection & equivalent to
the original one and such that Agu(o,) < K2

Suppose py(o1) = pun(En) = pi(o) then ordering the collection oy by the pp-slopes
we obtain the hom-collection o3 equivalent to the original one and such that Au(es) <
Ap(o) — KE.

Repeating this operation several times we finally obtain a hom-collection equivalent to
o with Au < KZ.
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Now let us assume that Ap(c) = KZ. Denote by s the minimal number such that
p(Ey) < pp(Fe41). Consider the equivalent collection

T = (Espry- ooy Bny Ex(=Ks), ..., Es(=Ks)).
By the choice of s we have
pe(7) = pu(Bn) = pu(B(=K,)) = ... = pu(Ey(—Ks)) = pi (o),

and (1) = pur(Bot) > (o).

In other words, 7 is the hom-collection with Au(r) < K2. This completes the proof.

3.3.4 LEMMA. Let o = (E1, Eq, ..., E}) be an exceptional collection of bundles on a surface
S with K} > 1. Assume in addition that in the case K% = 1 this collection has no
pairs of the form (Os(D),Os(D + e + Ks)) where D is some divisor and e = ¢4 is
the exceptional rational curve.

Then there exists an exceptional hom-collection (Fy, [, ..., F}) equivalent to o

such that the superrigid bundle F (G’r(F) = (epFhy. ., 2y Fl)) associated with it is
included in the exact sequence

0= G > F— Hom(F,O0.(=1)) ®@ Oc(~1) = 0, (13)
where G is a superrigid bundle with
Ext*(G,O0,(-1)) =0 V&,

ProOOF. By lemma3.3.3 thereexists a hom-collection 7 = (E'y, £y, ..., E't) equivalent
to the original one and such that py (1) — pu_(7) < K&.

We will split this collection into groups of bundles with equal py-slopes. Using these
groups we construct a set of superrigid py-semistable bundles &;,&,,...,&, (see theorem

2.5.1).
We have Ext*(£;,&) =0for j >4, k=0,1,2 and
pu(€r) < pu(&e) < - < pp(En) < pu(€r) + KE.
By corollary 3.2.6 there exists a number 7 such that

(8; b---D f,'m @ Sl(—[\"g) @D '5,'..1(—1\"5)”5 = Q’Oc(d - 1) & ﬁ(’)e(d).

Hence there is a number j such that the superrigid bundle F' associated with the hom-
collection

= (E,.. . B BY(=Ks), ..., Bl (= K5))

satisfies the condition

Flo = a0.(d — 1) @ BOL(d).

Thus the superrigid bundle I constructed from the exceptional hom-collection

" = '(dKs) = (Ei(dKs),. .., E(dKs), B{((d = 1)Ks),..., Ei_,((d — 1)Ks))
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restricts to the curve e in the following way:
Fle = a0.(-1) & BO..

One can easily show that the collection 7" is equivalent to the original o.
The following equalities can be obtained by direct calculations.

o for 1=0

hi(F, Oe(_l)) :{ 0 for 21>0 "

W(Ou(~1), F) ={ o i

Consider the canonical map:
F =3 Hom(F, O —1))* ® O(=1).

Since the restriction of this map to the curve e is an epimorphism we see that exact sequence
(13) is valid.

The sheaf GG from this sequence, as a subsheaf of a bundle has no torsion. In order to
calculate its cohomology let us consider the cohomology tables corresponding to the exact
sequence (13). Denote by L the torsion sheal O.(—1).

k|Hom(F, L)@ Ext* (L, L) — Ext*(F,L) — Exi*(G,L)
0 Hom(F, L)@ C Hom(F, L) 7

1 0 0 ?

9 0 0 ?

k1 Hom(F, L)@ Ext* (L, F) — Ext*(F,F) — Ext*(G,F)
0 0 * ?

1 * 0

2 0 0

k| Ext®(G,G) — Ext®(G,F) — Hom(F,L) ®Ext*(G, L)
0 ? * 0

1 ? 0 0

2 ? 0 0

This concludes the lemma proof.

The idea of the construction of the exact sequence (13) on Del Pezzo surface with an
exceptional bundle like F' belongs to D. O. Orlov ([11]).

3.4 Category Generated by a Pair.

In the previous section we constructed starting from an exceptional collection ¢ of bundles
the hom-collection T = (Fy, I, . .., F}) equivalent to ¢ and such that the superrigid bundle
associated with 7 is included in the exact sequence (13). In the next section we shall shwo
using double induction that this sequence implies the constructibility of the collection .

Here we check the base of one of the inductions. Namely we prove the following propo-
sition.
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3.4.1 PROPOSITION. Suppose that a superrigid sheaf I on the surface S is included in
the exact sequernce

00—y, — F — yolGo — 0,
where (Go, Gy) is an exceptional pair y; are positive integer and Gy is a bundel; then

1. If Gy is locally free then F has a unique (up to permutations of quotients) exceptional

filtration
Gr(F) = (z1Fy, 20 F0) (@; > 0).

Moreover,
(a) the pair (Fo, IF\) is obtained from the pair (Gy, G1) by mutations,
(b) r(Fo) +r(F1) 2 r(Go) + r(Gh) whenever zg - 2y # 0,
(c) r(Fo) 2 r(Go) + r(G) provided x; = 0,
(d) the equality of the sums of ranks holds if and only if F; = G; fori =1,2.
2. Assume that Go = O,(—1) for the exceptional rational curve e = e, then
FZIUIFlea.’EQFO (’L‘,EO)
Moreover,

(a) the exceptional pair (Fy, I) is obtained from the pair (Go,G) by mutations,
(b) r(Fo) +r(F1) > 7(Go) + (Gh) whenever xo - ©; # 0,

(c) r(Io) = r(Go) + r(Gy) provided z, = 0,

(d) Fy is locally free.

To prove this proposition, we need several lemmas.

3.4.2 LEMMA. Let A and B be sheaves on a manifold X and let o : V@A — W ® B be
a morphism of sheaves. Then

1. The canonical map lcan : Hom{A, B)® A — B is an epimorphism provided that ¢
is also an epimorphism.

2. The canonical map rcan : A — Hom(A, B)* ® B is a monomorphism provided that
@ is also a monomorphism.

PROOF. In view of symmetry of statements it is sufficient to check the first of them.
At first consider the case of the one-dimensional space W, i.e.

p: VA — B—0.

Recall that the canonical map lcan is determined by the element of Hom( A, B)*®@Hom(A, B)
corresponding to the identical morphism Hom(A, B) — Hom(A, B). Denote by lcan this
element as well. Let us define a line map v : V. — Hom(A, B) such that

Y @ idhom(a,B) : lcan = .



3.4 Category Generated by a Pair.

This leads to the following commutative diagram

Hom(A,B)®@ 4 4 B
vids T idp T
Ve A “ B — 0

)

This diagram shows that {can is an epimorphism.
Now suppose

p:VRA—WB—N0.
Then

Hom(A, W @ B)@ A X% W ®@ B — 0.

We see that there is a commutative diagram

0 0

T T
Hom(A, B) @ A Loy B — 0,
TelQid 4 T T T

Hom(A,W@B)®A 2 We@B — 0

where 7 is a projection W@ B — B — 0.

3.4.3 LEMMA. Let I be a rigid sheaf and (A, B) be an exceptional hom-pair of sheaves
on the surface S. Then the following statements hold.

1. If the sequence

00— F—02zA—0yB—0

is exact for positive integers x and y then

(14)

(a) the left mutation of the pair (A, B) belongs to the basic category and it is regular;
(b) either ' = wA @ zL 4B or there exists an exact sequence
0= F e 2L — wA — 10
for some nonnegative integers z and w.
2. If the sequence

0 —2A—yB—F—0
is exact for positive integers © and y then

(15)

(a2) the right mutation of the pair (A, B) belongs to the basic category and it is
regular;

(b) either ' = wB & zRpA or there exists an exact sequence

0 — wB — zRgA — F — 0

for some nonnegative integers z and w.

47
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PRrOOF. Since the statements of the lemma are dual it is sufficient to check the first of
them.

The regularity of the left mutation of the hom-pair (A, B) follows from its definition,
sequence (14) and lemma 3.4.2 . Note that in this case the pair (L4B, A) has also the
hom-type.

Sequence (14) yields that the sheal I belongs to the category generated by the pair
(A, B). Therefore there exists a spectral sequence £ (3.1.6 ) converging to F on the
principal diagonal. Its F;-term has the form:

ETV = Bxt!(B, F)® LaB % E®' =Ext'(A,F)@ A
ETY = Ext®(B, F)® LaB -4 E° =Ext(A,F)®@ A

The exact sequence (14) and the fact that the pair (A, B) is exceptional imply that the
group Ext®(B, F) is trivial. Hence the spectral sequence splits into two exact triples:

0 — C — Ext'"(B,F)® LaB — Ext'(A,F)@ A — 0,

0 — Hom(A, F)@A — F — C — 0.

Assume that Hom(A, F') # 0. Consider the cohomology table corresponding to the first
of these triples:

LIV @Ext*(A,A) - WQRExt*(LsB,A) - Ext*(C,A)
0 * * ?

1 0 0 ? i
2 0 0 ?

where Ext'(A, F)" = V, Ext'(B, F)* = W. The first and the second columns are filled in
using the properties of the pair (L4 B, A).
From the table the equality Ext'(C, A) = 0 follows. This means that

F =C@&Hom(A, F)® A.
Since F' is rigid we get Ext'(A,C) = 0 and Ext'(A, A) = 0. Hence, Ext'(A4, F') = 0. Thus,
C = Ext'(B, F)® LB

and F is the direct sum of multiplicities of the sheaves A and L4 B.
Assume that Hom(A, F') # 0 then the spectral sequence degenerates into the exact triple

0— F— Ext"(B,F)® LaB — Bxt'(A, F)@ A — 0.

This concludes the proof.

3.4.4 LEMMA. Let (Fqy, I)) be an exceptional ext-pair of sheaves on a manifold X' with
X(Fo, Ey) < —1. Assume in addition that for each positive integer n the following
sheaves are determined:

Eopy = Re, Eay, E_(nyry = LE_, F1_y.
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Suppose that for a given sheaf I and for any positive integer n there exist positive
integers Ty, Ynzn, Wy such that the following exact sequences

0 — F—z,l0_(ny1) — ynb_n — 0,

0 — zn by — wp by — F— 0

are valid then the Euler characteristic x(I', F') is nonpositive.
Proor. Denote by e, the images of E, in Ko(X). The module Ap(X) inherits the
bilinear form x(-, ). Denote it by (-, ).
Using the assumptions of the lemma we get

(60,60):(81,81):], (61,80) :0, (80,61): -—h< -1.
By definition of the mutations of an ext-pair we get
e_1 = e, + hey, es = he; + eg.

It follows from the exact sequences and our assumptions that all pairs (£,, Eu41) for
n € Z~ have the hom-type and both mutations of these pairs (except for the left mutation
of (Fy, E;) and the right one of (E_,, Ey)) are regular (3.4.2).

The following formulae are easily obtained from the definition of mutations of ext- and
hom-pairs.

e_n = hei_p, — €2_p (n>1),
ep=he,_y —e,_s (n>2),
YnezZ: (en,en) =1, (ént1,€n) =0
and for n #0 (€ns€ns1) = h.
Denote by @, and z,_; coordinates ol the vector e, (n > 0) with respect to the basis
{e1,e0} : €n = Tn€) + Tn_1€9. The recurrence relations
2o = 0, =1, Tap1 = ha, — 20y

are proved by induction on n.
Note that the vectors e_, (n > 0) are expressed through the same numbers, namely

€on = Tn_1€1 + Tnep.

Let V be a 2-dimensional vector space over Q generated dy eg,e;. Let us choose an
affine map U in P(V) containing the image of ¢y as the origin.

T
rey +yep ~+ —ep+ €.
(]

We preserve the notations for the images of e, on U. Let us calculate the coordinates /..
and {_ of limit points eq.eo = limy_e0 €n. €co = lIMpee €y on U.

. - Tn-2
{y = lim =h — lim =h-—-I_=h-1/l,.
+ n—oc Thn-1 n=r0o Thnoa / +
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Hence, [, and I_ are the roots of the equation {* —hl+1 =0, i.e.

_ h+vVht =4
=

Ly

(by assumption, i > 2). Taking into account the exact triples from the assumptions we see
that the point f on U corresponding to the sheaf F has the coordinate z € [{_,14].

On the other hand, the sign of x(F, F) is determined by the sign of (eo + ze;)? =
x? — hz + 1. Now the proof follows from the inequality

2 —hz+1<0 for x € [0

3.4.5 COROLLARY. Under the same assumptions as in the previous lemma we haver(E,)
r(Eo) + r(Ey) (for n # 0 and n # 1). Moreover, r(E,) > r(Ey) + r(E,) forn #
and n # 1 whenever both Il and E, has a positive rank.

PROOF. In fact, we see that the image of the sheaf £, in Ko(X) has the form: e, =
aeq + be; for some positive integers « and b. Thus our statement follows from the additivity
of the rank function.

2
0

ProOF OF THE PROPOSITION 3.4.1.  Suppose that G; are locally free. If the pair
(Go, G1) has the zero- or hom-type then h'(Go,G1) = 0 and F = yoGo B y1Gh.

If the pair (Go, Gy) is singular then py(Go) = pu(Gy) and the proof follows from the
uniqueness of the exceptional filtration (2.5.1).

Now, suppose Gy is a torsion sheaf and Gy is a bundle then the pair (G, G) is necessarily
the ext-pair.

Thus, let (Go, (1) be an exi-pair. Following traditions take

Gn+1 = RG,, Gn_l and C"—n = LG1_., Gz_n.
STEP 1. One of the following possibilities holds
F =0, €9~’52G2,

0 — IE[Gl —_— :EQG'Q ~— FF— 0.
Consider the spectral sequence converging to /7 and constructing by the right dual collection
(GY,Gy) (3.1.6). (Recall that GY = G and Gy = Rg,Go = G2.) Since the right mutation
of the pair (Go, G1) is nonregular we get
Ag=1 and B =Ext™(F,Go)" ® Gs.
In addition, we do not mutations to obtain the sheaf GY. Hence, A; = 0 and
Er = Ext' (R G) @G,
Thus we see that the [£-term of the spectral sequence has the form
B = ExtO(F, G\ ® G,
El_l'o = Eth(F‘, ‘111 )* ® Clrl
E;b™' = Ext}(F,G1)" @ Gy
0

0
B = BxtO(F,Go)* @ G,
EY™ = Ext'(F,Go)" @ Gy
BT = Bxt?(F,CGo)" ® Gy

NN
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Using the cohomology tables corresponding to the exact sequence from our assumptions:

0—)y1G1 —>F—>y06'g—>0,

let us calculate the groups Ext*(F,G;).

ywExt*(Go,G) — Ext®(F,.Gy) — wBExtf(Gy,G))

o — O

0 ! *
* ? 0
0 ? 0

yoBxt*(Go, Go) — Ext*(F,Go) — yiBxt*(G1, Go)

= O

* ? 0
0 ? 0
0 ? 0

Whereby, the spectral sequence splits into two exact triplies:

0 — Ext'(F,G))"® G, — Ext®(F,Go)"® G, — C — 0,

0 — C —» I — Ext®(F,G))"®G, — 0.
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Now as in the proof of lemma 3.4.3 using the first of these triples it is easily shown that

Ext' (G, C) = 0. Therefore, if Ext®(F,G,) # 0 then F is a direct sum

the sheal F'is included in the exact sequence.

STEP 2. One of the following possibilities holds

I"'=2_,G_1 @ 206Gy,

00— F — .’L'..]Gf_l — .’BDG'O — 0.

. In the opposite case

This step is checked in the same way as the first one by using the spectral sequence associated
with the left dual collection (G/_y, Go).

SteEP 3. The sheaf ' is decomposed into the direct sum:

F= -'En—lc'rn—l S, 33716‘71

for some n € Z and nonnegative integers x,—y, ©,. (That is £y = G, and F} = G, in the
formulation of the proposition.)

Using the first two steps and lemma 3.4.3 it can be stated that for any n > 0 the
following exact triples

0— .’l:nCrrn — .’L'ﬂ+lG'u+1 — N — O,

0 — F —a_,G_, — 21_.G 1=, — 0

hold unless F' = ¢ Gy ® 2,G .
Let us show that these triples contradict the assumptions.
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Suppose h'{Go, ) > 1 then it follows from these sequences and lemma 3.4.4 that
X(F, F'} < 0. This contradicts the fact that I is rigid.

Suppose h'(Go, ) = 1 then the series of the exceptional sheaves G, is formed by
Glo, G, G In fact in this case both the right and the left mutation of the ext-pair (G, Gy)
is described by the sequence

0—)6'1 ——>G2—>G0——>U.
Whence, Lg,(/y = (7 and Rg, Gy = Go. Hence there are exact triples:
0—>y]G1 — F—>y0Gg—)0,

0—>.’E2G2—)3L‘0G0——>F—)0.

Since (/g is indecomposable, it follows from the second sequence that A'(F,G3) # 0. We
apply the functor Ext'(-, G3) to the first triple to obtain

yQEth(Go,G'Q) — Extl(F, Gg) — ylEth(Gl,Gg).

Since the pair (Gq,Go) is exceptional we get Ext'(Go, Gy) = 0. Besides, since (G, G5) is a
hom-pair, we obtain Ext' (G, G2) = 0. Thus, h'(F,G4) = 0. This contradiction proves the
3-th step.

STEP 4. Suppose Gy is a bundle and Go = O, (—1) then F is locally free or Fy is a
bundle and Fy = O.(-1).

By assumptions the sheaf I is included in the exact triple:
0 — G, — F — y0.(—1) — 0.

Since [ 1s nigid we see that F is locally free whenever /7 has no torsion (2.2.1). Therefore
its direct summands are locally free as well.

Assume that F has a torsion T'F'. Since G is locally free we obtain the following
commutative diagram:

0 0 0
T T T
0 — ué&, — F — @ — 0
T T T
0 — G, — F — ngc(—l) — 0,
T T o
60 — TF — TF — 0
T T
0 0

where F" is torsion free. Since T'F is a subsheafl of yO.(—1) and the curve e is isomorphic
to the projective line we get

T = @ z;Oe(8:)-
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Hence,

Q= [@-wjoe(dj) & 7",

where 1'% is a torsion sheaf with a zero-dimensional support.

Consider the upper row of the above diagram. Assume that 7° # 0. Since G is locally
frec and the support of T is zero-dimensional, we get Ext'(7°, y,G,) = 0. Hence 7° is the
direct summand of F”. But this contradicts to the fact that F’ has no torsion. For the same
reason,

Ext!(O.(d),G1) #0 V5.

Let us show that this yields the inequality d; < —1.
Indeed, by assumption, (O.(—1), ) is an exceptional pair. Therefore it is easily follows
from the calculation of cohomology that (G1)|. = r(G1)O.. Thus,

Ext'(Ou(d;), G1)" 22 Bxt! (G, Ou(d;) ® Ks) = r(G1)Ext" (O, Ou(d; — 1)) £ 0

and the inequalities d; < —1 hold for all 3.

On the other hand, @ is a quotient of ygO.(—1). Hence, d; > —1 Vj. From these
inequalities it follows that d; = =1 Vj and @ = wO.(-1).

We see that TF = z0.(~1).

Now, the exact sequence

0 — G — "' — wO,(—1) — 0

implies that Ext'(F/,0.(=1))=0,1e. F = F' @& z0.(-1).

By the previous step F' = z,-1Ghoy @ 2,G,. Therefore F = 21G_y @ 200,(—1) or
F=z_,G_1® 200.(—1)® x(. Since (O.(—1),G) is the ext-pair and F' is a superrigid
sheal we see that the last relation is impossible. On the other hand, F’ is locally free, as
rigid sheaf without torsion (2.2.1). Thus the sheaf z¢Fy = z_,G_;, = F’ is locally free as
well.

STEP 5. r(Fy) + r(F1) > v(Go) + r(G)) for o - zy # 0, and r(Fy) > v(Go) + r(G,) for
T = 0.

Since I and Iy are direct summands of a superrigid sheal we obtain that the pair
(I, 1) 1s exceptional and it has the hom-type. Therefore it does not coincides with the
pair (Go,Gh). In view of this the first inequality follows from corollary 3.4.5.

Suppose 7 = zglp then Fy # Go, Gy. By the same argument, r(f5) > r(Go) + r(G).
The equality of ranks is possible here only if Fy = (/1 and Gy = O.(—1) = 0. This completes
the proof.

3.5 Proof of the Main Theorem.

It follows from lemma 3.3.4 that for any exceptional collection of bundles on the surface S
satisfying the conditions ol the main theorem there is a hom-collection

T = (F(], F'],f‘-'g,...,i?k)
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equivalent to the original one such that the superrigid bundle F' associated with 7 is included
in the exact sequence (13):

0 — G — F — Hom(F,O0.(-1))" ® O(—-1) — 0,

where (7 is a superrigid bundle with Ext*(G,0.(=1)) =0  Vk = 0,1,2. (Further
we denote by B(Fy, Fy, Iy, ..., F}) the superrigid bundle associated with the hom-collection
(Fo, Fy, Foy o0 FY))

In particular, we sce that G|, = sO,. Therefore there exists a superrigid bundle G’ on
the surface S’ obtained from S by blowing down the curve e {0 : § — §’) such that
o™ (G") =G.

Since G’ is superrigid we see that there exists its exceptional filtration:
f i ! 1]
Gr(G") = (YnGhs Yn1 Gy - n GY).

Using the induction on the number of blow up divisors on § we can assume that the
exceptional collection of bundles (G'y,G",,...,G’,) is constructible. That is it includes in
some full exceptional collection obtained from the basic collection

(Oer(=1),.. ., Oryl, (1), 05, Os(h), Os(2h))

by mutations. (Note that A2, = K%+ 1 > 1. Therefore the constructibility of the collection
(G'1, "2, .., G",) does not depend on the ranks of the G} (see theorem 3.1.8 )).

Let us recall that the base of the induction, i.e. the case of the projective plane, has
been settled in the paper [18)].

Since o*(G') = G we obtain that the bundle ¢ has the exceptional filiration

C"?‘(G) = (ynGn: Yn—1 G‘n—l s Y1 C’rl )3

where G; = 0™(G?). Morcover, the collection 7/ = (O.(~1),{,, ..., G,) is exceptional (the
triviality of the groups Ext*(Gi, O.(=1)) follows from the fact that G;|, = s;0.). Further-
more, the constructibility of the collection (¢, (5, ..., G",) implies the constructibility of

.

Now to prove theorem 3.1.8 it suffices to show that the collection 7 is included in an
exceptional collection obtained from 7’ by mutations.

Let us illustrate the procedure of this inclusion for the projectivisation of K5(5)@Q = K.
Assign to each sheaf £ on S the vector [F] in K. 1t is obvious that vectors corresponding to
sheaves from an exceptional collection are linearly independent. Recall that the nonsingular
bilinear form (-, -) is well-defined on & . It corresponds to the Euler characteristic of sheaves
x(£, F). Since all exceptional sheaves satisfy the equation y(F, E) = 1, we see that the
corresponding vectors are nonproportional. Let us consider the projectivisation of K. In
this case, the vectors corresponding to sheaves of an exceptional collection are projected to
vertices of some simplex.

The key exact sequence implies that the vector [F] maps onto the simplex with the

vertices [O.(—1)], (G1], ..y [G)-
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(e (]

[Go]

Let us project the point [F] to the edge ([O.(—1)],[G1]). Note that this projection

corresponds to a superrigid sheal, and the exceptional pair (G, (/1) associated with it is

obtained by mutations of the pair (O.(—1),G). As the result, we get a smaller simplex
containing [F]. Next let us project [F] to the face ([G1], [G2],- .., [G4]), ete... It remains to
show that this process is finite.

Let us prove two statements about projections.

3.5.1 LEMMA. Let
0 —CG—F—5F—0 (16)

be an exact sequence of superrigid sheaves on the surface 5. Let
Gr(E) = (Y By ys—1 Birs - 0 B,

C;T(C;) = (yme, ym—le.—l; e 3yk+16'k+1)

be exceptional filtrations of E and G such that the collection
(B, By Grgry oo, G

is exceptional. Let us split the filtration of the sheaf G into two groups

1t

0—G —G—0"—0, (17)
where (7 and G" are the sheaves with the exceptional filtrations

CI"T'( "”) = (yme,ym—1Gm—1, Ceey ys+1Gs+l)7

1t

G?‘( ") = (ysGssys—le-l, .- -,y.l.-+1Gk+1)-
Then
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1. G' and G" are superrigid;
2. End(G") 2 Bom(G', F);
3. Ext'(G", F) = 0 for i > 0;
4. Ext*(F,G") = 0;

5. There is an exact sequence:

0 —G — F—E —0, (18)
where E' is a superrigid sheaf included in the exact triple
0 —=G"— F — E—0. (19)

Besides, Ext'(G', ') =0 Vi.

PROOF. By the definition of an exceptional collection Ext®(G;, G;) = 0 for § > 7 and
all k. Therefore, Vk:  Ext*(G’,G") =0 (1.2.4 ). Hence it follows from lemma 2.2.2 that
Ext*(G",G") = 0. We apply the Mukai lemma to exact sequence (17) to obtain that G’ and
G" are rigid. Since the collection (Giy1, ..., Gy) is exceptional we see that Ext*(G;, G;) =0

for any pair 7,7. This implies Ext?(G’, G’) = Ext®(G"”,G”) = 0. Thus the first statement
holds.

We saw that Ext"’( G =

0 Vk. Whence, using exact triple (17) and the fact that
(" is superrigid we have

Hom(G', G) = End(¢") Ext'(G',G) =0 fori> 0.

and
Besides, in view of the definition of the sheaf G’ and the fact that the collection

(Ela“-,Ek:G'k-*-lu"'aGm)

1s exceptional the following identities are valid.
Ext'(G',E) =0 Vi; Ext*(E,G") = Ext}(G,G') = 0.

Consider two cohomology tables corresponding to sequence (16).

k| Ext™(G",G) — EBExt*(G',F) — BExt"(G",E)
End(G) 7 0
0 ? 0
0 ? 0

EIBxt*(E,G) — Ext*(FG) — Bxt(G,G)

The statements 2, 3 and 4 follow from these tables.

*
*

0

?
7
?

*
¥

0
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Exact triples (16) and (17) give the following commutative diagram:

0

T
C"”

t

0 — G

T

0 — ¢

T
0

It yields exact sequences (18) and (19).

—

—

e i T S e Sl =)

Now in order to prove the lemma it remains to check that the sheaf £ is superrigid and

for all ¢
associated with sequence (18)

Ext'(G', E') = 0. All these facts follow from the following cohomology tables

k Extk( G = Extk(G’,F) - Exi;k(G’, E")
End(G") Hom(G', F) ?
0 0 ?
0 0 ?

k| Ext*(F,G"Y — Ext*(F,F) — Ext"(F, £
* ?
* 0 ?
0 0 ?

k{Ext*(E',E"Y — Ext*(F,E') — Ext*(G’, E")
? * 0
0 0
0 0

This completes the proof.

The dual statement can be proved by the same argument.

3.5.2 LEMMA. Under the assumptions of the previous lemma let us split the filtration of

the sheaf E into two groups:

0—E — E— E"—0,

where E' and E" are sheaves with the exceptional filtrations

GT(E,) = (ykEka Yk-1 Ek—la ..

Then

-y Y1 E.H-I),

GT(E”) = (yaEa: ys—lE.s—la cen

aylEl)-
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1. E' and E" are superrigid;

[A]

Snd(E") = Hom(F, F");
3. Ext'(F,E")y =0 fori > 0;
4. Ext}(E", F)=0;
5. There exists an exact sequence:
0 oG — F— E"—0,
where G’ is a superrigid sheaf included in the exact triple:
0—G— G — E'—0.

Moreover, Ext'(G", E") =0 Vi,

3.5.3 REMARK.

1. Lemma 3.5.1 is also valid provided £ = y,O.(—1) for the exceptional rational curve
€ = €4;

2. lemma 3.5.2 holds provided E = y, F\ @ y, I3, where E, is an exceptional bundle and
E‘Z = Oe(—l);

3. the procedure described in 3.5.1 is called the transfer of the collection (Glryy, ..., Gy)
to the right, and the similar procedure from 3.5.2 is the transfer of the colleclion
(Esgry..., Er) to the left.

Now let us prove a proposition concluding the proof of the main theorem.

3.5.4 PROPOSITION. Suppose a superrigid bundle I' = B(Fy, I\, Fa, . .., Iy) on the surface
S with K% > 0 is included in the exact sequence

0 —>G—F—F—0, (20)
where (G is a superrigid bundle with an exceptional filtration
CGr(G) = (UnGny Un1 Gty oo YsGs)s
and I is a superrigid sheaf. In addition we assume that E is either locally free and
G?‘(E) = (ya-—le-lzys-2G'a—2a N e

or £ = yolGlo = yoOc(—1); but the collection (Go, Gy, Go, ..., Gy) is exceptional in
all cases. Then

1. k< ny
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2. the collection (Fy,...,Fy) Is included in an exceptional collection obtained from
(Go, Gy, Ga,...,0,) by mutations;

3.3 r(F) 2 3 r(Gy) ;

t1=0 =0

k n
4. If E is locally free then the equality 3 r(I7) = ¥ r(G;) vields the equality k = n .
=0 ]

Moreover, in this case we have I'; = G; after some mutations of the neighboring zero
pairs.

PrOOF. The proof is by induction on the number of sheaves in the collection
(Go, G, Gay. .., G
The case n = 1 has been checked in the previous section.
STATEMENT. It can be assumed without loss of generality that £ and G is locally free.

Proof. Suppose £ = yoGo = yO.(—1). Following remark 3.5.3 , let us apply the
transfer of (/) to the right. Namely, let us denote by ¢ the bundle B((y, G5, ..., G, ) and
let us consider the exact sequences

0 —G —F— E —0,

0— ylGl — F — yoGo — 0.

Taking into account lemma 3.5.1 and proposition 3.4.1 we obtain that £’ is a superrigid
bundle such that E' = 2oLy @ x1 F] (or [2' = z¢F] ), where the exceptional pair (£}, £7)
(or E§) is obtained by mutations of the pair (Go, G)). Moreover, Ef is locally free and

r(E) + r(By) 2 7(Go) +1(Gh)  (1(£g) 2 7(Go) + r(Gh)).

Let us show that the collection (£g, F1, G, ..., Gy) 1s exceptional. From lemma 3.5.1 it
follows that Ext*(G", EY=0 Vk. But, F' = 2B @« L] and G’ = B(G2, G, ..., Gh).

Provided E! is locally free, the triviality of the groups Ext*(G;, Ef) for j = 2,...,n
follows from lemma 2.5.7 . Let us check this property for the case E] = O.(—1). Since
Ext*(G',0.(=1)) = 0 Vk, we see that the restriction of G’ to the curve e is trivial. There-
fore there exists a superrigid bundle L on the surface 5’ obtained from S by blowing down
the curve e (¢ : § — &) such that ¢*(L) = G".

Since L is superrigid, we see that it has the exceptional filtration

CGr(L) = (zmblm, 2mar Lne1y - - -y 22L2).

Besides, Gr(G") = (zm0™(Lm), 2m-10"(Lm=1), . - ., 220™(L2)) is the exceptional filtration of
the bundle G'. Now by theorem 2.5.1 m = n and G; = o*(L;). Thus the collection
([5, EY, Ga, ..., Gy) is exceptional.
Our statement is correct in the case £ = yol5].
Assume that £’ = xo £y @ x £] for some positive zg, ;. Let us apply the transfer of F|
to the left:
0— G — F— 2B, — 0,
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0— G —G—xE —0.

Using lemma 3.5.2 and the inductive hypothesis we obtain that Gisa superrigid sheaf with
the exceptional filtration Gr(G) = (2], G, 201 Gryy -+ -, @1 GY). In addition, the collec-

tion (G,...,GL,) is included in an exceptional collection obtained from (£}, G,...,Gh)

by mutations and
S r(Gh) 2 S (G + ().

Note that the sheal ' has no torsion, as a subsheaf of a bundle. Since G is rigid we
see that it is locally free. It can be checked as above that the collection (£j, G,...,G7 ) is
exceptional. This completes the proof.

We shall name bounding the collection (G, Gy, G, ..., G,) from the formulation of our
proposition and all collections obtained from it by mutations.

Now, consider exact sequence (20). We shall use the transfer of the bundle G5 to the
right and to the left. Recall that in this procedure the sum of ranks of the bounding
collections do not decrease.

Since the sum of ranks of the bounding collections is less than or equals to the rank
of the bundle F' we see that this process cannot continue ad infinitum. Hence starting
with some moment the sum of ranks is a constant. We study this moment in the following
statement. '

STATEMENT. Assume that under the assumptions of our proposition the sum of ranks
of bundles from the bounding collection does not change after the transfers of the bundle
G, to the right and to the left. Then k = n and

(Fo, Iy, oy oo Fr) = (Go, Gh,L, Gy o, G,
up to mutations of neighboring zero-pairs.
Proof. After the transfer of the bundle ¢/ to the right one gets two exact sequence:
0 — B(Gyyyy...,G,) — F— B(Co, G, Gy ., G) — 0,

0— y,G’, — B(G’(),G’I, G’Q, Ce ,Ct"l) — B(Gu, G|,G2, Cey 6'3_1) — 0.

Since Go,...,Gs_1,G, are locally free we obtain that the inductive hypothesis and the

relation
{ g

> (G = (G

t=0 i=0
imply that { = s and G; = G! (up to mutations of neighboring zero-pairs). Therefore there
exists an exact sequence

00— B(Cr',.;.l, ceey Gn) — F— B(G'o, G‘l, G'z, ey G‘_,) — 0.
Morcover, (Go, Gy, Gy, ..., () is the hom-collection. Whereby, puy(G:) 2 uu(G;) for s >
1> 7.
Now let us do the transfer of the bundle & to the left (by assumption, the sum of ranks
does not change as well):

0 —)B(G:,...,G’”)—) F— B(GU,Gl,GQ,...,G3_1) — 0,

m
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0 — B(Gypr,...,Gr) — B(GY,...,G1) — y,Gy — 0.

As before, by inductive hypothesis, we obtain that the collection (G”, ..., G ) coincides with
the collection (Gs,...,G,) up to mutations of neighboring zero-pairs. Hence (G, ..., G,)
is the hom-collection and sy (G;) < pp(G5). for s <7 < 4.

As a result we obtain that the all bounding collections (Gg, Gy, Go, ..., Gy) are the
hom-collections. Thus we can construct the exceptional filtrations of the bundle

F=B(F0,FI1F21"'1F}~‘)

from the exceptional filtrations of the bundles £ and (' in sequence (20).
Now the proof follows from the uniqueness of the exceptional filtration.
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