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Abstract

The paper consists of thrcc parts. In thc first part wc discuss types of stability.
In particular , the concept of stability with respect to a lief divisor is introduced. The
structllre of rigid and superrigid vector bllndles on smooth projective sllrfaces with
!lef anticanollica.l dass is stlldied in the second part. In particlllar, we prove that allY
stlperrigid bundle has thc 1I11ique exceptional filtratioll. In the last part we give a
constructible description or exccptional bUl1dles on these surraces.

Introduction.

This paper contains generalisation of the theory of rigiel (Ext1(E, E) = 0) anel exceptional
(ExtO(E, E) = C, Exti(E, E) = 0 for i > 0) sheaves on Dei Pezzo surfaces , originally
described in [11]. The main objects of this paper are rigid anel exceptional sheaves on a
slnooth projective surface 5' such that -1\"5 is nef.

Ir f{~ > 0 thcn such sUl'faecs ean be obtainecI from JP2 by suceessivc blowing up of
suceessive at lnost 8 points anel therefore are the natural extension of DeI Pezzo surfaee
dass.

For the first tilne the exeeptional sheaves appcared in [6] for the description the possible
ehern dasses which astahle bundle on JP2. Besides was proved in [7] that any rigid bundle
on thc projeetive plane is a dil'cct Slln1 of exccptional bllndles .

The author provcd the sanlC statement for all DeI Pezzo surfaces ([11]). But if -I(s
is nef then there exist indecolnposable anel nonsilnple rigid bundle; and their structure is
described in ternlS of exceptional collections. The description of this structure is the goal
of thc seeoncl part. The inforIllation a,bout superrigid bundles gives a convenient t11ethod
to study the exccptional sheaves.

The theory of cxceptiona.l bundles on Dei Pezzo surfaces llses the stability with rcspcct
to the anticanonical dass. Throughout this paper all sllrfaces have the nef anticanonical
dass. The following question is very interesting in this context. ls there a sufficient notion of
stability with respcct to nef divisor, anel which slope aXi01l1S are suffieient for constl'ucting
the having Dleaning stability theory? For example, when eloes the Garder-Narasinlhan
filtration exist? The answer to this question is the suhject of the first part.

Finally in the last part of this paper we prove the constructibility of exceptional hunellcs
on snl00th projective surfaces S over C with nef anticanonical dass anel I(~ > O. (Here by
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eonstructibility we 111ean that any exeeptiona! bundle ean be obtained froll1 a finite fixeel
eolleetion of exeeptional sheaves by a Hni te proeedu1'e.)

Notations.

Let X be a eomplete algeb1'aic manifold ove1' C;
1'(F),CI(F),C2(P),,,, denote the rank anel ehern classes of a eoherent sheaf Fon ){;
CJ x 01' CJ denote the tri vial line bundle on ~\';

Gy (for a closed submanifold Y in X) denote the structure sheaf
of sublnanifolel Y, which wc sonlcti mcs eonsider as a sheaf on X;
Ox(D) or G(D) denote the line bundle whieh eorresponds to divisor D;
!(x denote the canonieal dass of _\';
F(D) denote thc tensor produet of F anel O( D);
F- denote the dual shea.f, that is the sheaf of Ioeal hOl110nl0rphisll1S 'H01nox (P, 0 x);
Hom(E, F) denote the spaee of globall11aps frol11 E to P;
hi(E, F) denote the dilllcnsion of spaee Exti(E, F);
x( E, F) is the Euler eharacteristic of any two sheavcs, which equals L:( _l)ihi (E, F);
X(E) is the Euler charactcristic of a shcaf, which equals hi

( Ox, E)j
k

V'le denote thc direct StIIll EB Fi of k eopies of F (Vi I~ = F) by kP 01' V 0 F (where \I
i=l

is 30 vectot' space ovcr C and diln V = k).
vVe identify 30 bllndle with the shcaf of its ]ocal sections. $0111etilnes we will arrange

a. long cohol11010gy sequence associatcd to an cxact triple intü a, table. Für exanlple, the
application of functor Ext" (P, .) to thc exaet tri pIe

O-tA-+B-rC-tO

glves
k Exe'(F, A) --+ Exe"( F, B) --+ Extk(F, C)
0 * ? *
1 0 ? 0
2 * ? *

This table calculates Ext l (P, B) . In particular, Ext1(F, B) = O.

1 Axioms of Stability_

1.1 Definitions and Simple Properties.

Thc Gieseker and the l'vlulllforcl-Takenl0to stabilities are well known. RecentIy the notion
of the vector stability with rcspect to a collection of polarizations was introduceel in ((21]).
All these thcories tIse a slope anel sinlilar propcrties of stable anel senlistable sheaves. In this
section wc introduce severa.I slope axiOIllS and obta,in the basic properties of stable sheaves.

DEFINITION. Let I be a function fr0l11 the set of all torsion-free sheaves on a cÜlnplete
c0111pIex algebraic tnanifolel X to IR. n with the lexicograph ie order. Asslllne that f satisfies
thc following axiOlllS:



1.1 Definitions allel Sifllple Properties.

SLOPE.l. For any exact tripie of torsion-free sheaves

0----7F--+E--+G----70

the following equivalences hold

3

,(F) >,(E)

,(F) = ,(E)

,(E) < ,(G),

,(E) > ,(G),

,(E) = ,(G)j

SLOPE.2. For any two torsion-rree shcaves FeE the condition 7'(P) = r(E) implies that

then we say that , is a slope junclion and '1( E) is a ,-stope of E 01' silnply a slope of E if
it causes 110 confusion . ]f ,(E) E IRn then , is caJled a stope veeto7' f1tnciion.

DEFINITION. A torsion-frec sheaJ E on an algebraic n1anifold X is said to be ,­
(senü)stable 01' silnply (senü)stable if for any its subsheaf F with r( F) < r(E) the fol­
lowing inequality holels '1( F) < ,(E) (,( F) ~ ,(E) resp.). A subsheaf wh ich contradicts
(semi )stabili ty is called destabilizing.

1.1.1 REMA RIC 1. The t;orsion-free shea,l/es of rank 1 are stable with respect to any slopc,
since they halle no ra.nk 0 subsheaves.

2. Due to the lexicographic order on IR n the [unction I = (,1, ,2, ... "n) is the
slope i[ a.nd olll,Y i[ a.ll'i satis(v tbe slope axioIDs.

3. For the slopes '1 = ('1, ,2,· .. , '1n) and '11 = ('1, '12, ... ,In, '1n+I,· .. "m) the
following stat,enlel1ts are tTue

a) a I-stable sheal is '1'-st;able;
b) a, ,'-selnista.blc sheaf is ....(-Seln istable.

1.1.2 LEMMA. A torsioll-free sheaf E on a. lnani{old X is (sCfl]i)stable i[ [01' a.ny its subsheaf
F such that E / F has no torsion one has

,(F) < ,(E)

1.1.3 LEMMA. A {,orsion-free sheaf E is stahle (Sclllistablc) i{ and on!y if tlJe slopc of any
its torsion free quotient G satisfies tlJe inequa,lity:

('1( E) ~ ,(G)rcsp,).

The proor fo11ows fronl 1.1.2 anel SLOPE.l.

To study the stability propcrties wc lleecl the following
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1.1.4 REMARI<' By the definition o[ stabiJjty and SLOPE.2 we obtain thai. [ar any pair o[
torsion-free sheavcs FeE the senlist,abiJity of E ilnplies the inequa./ity ,(F) ::; ,( E)
(without thc ra,nk condition). Ir E is stahle then

,(F) = ,(E) ~ r(E) = r(F).

Similarly, ir C/ is a quotient o[ a semist;able sheaf E t'hen ,(E) ::; ,(Gf). If E is
stahle then

1.1.5 LEMtvIA. Let E and F he sClnistablc sheaves. S'uppose ,(E) > ,(F) then

Honl(E, F) = O.

1.1.6 LEM MA. [Jet E and F be sen]istable shea.ves with ,(E) = ,(F) and let <p : E ----7 F
be a nontrivial Inorphistn. Thcn

a.) E js stable ~ <p is an inject;ionj
h) F is stable ~ <p is an epiInorphistJl at a generjc point.

1.1.7 LEMMA. A stable shea.f is siInple that is any its endonl0rphistll has the [01'111 ,,\ . id.

1.1.8 LEMMA. Let 0 --+ E ~ G --+ F --+ 0, !Je an exact sequence o[ torsion-free
shea.ves sllch that ,(E) = ,(C/) = ,(P). Thcn G is seInistable i[ and on1y ir both E
and F are semistable. In parUcula.r, [ar an)' cOlnplex finite-dill1cnsional vector space
V and a divisor D on X thc bundle \10 O.x(D) is semistablc.

1.2 The Harder-Narasimhan Filtration.

The ainl of this section is to construct the well-known canonical filtration of a torsion-free
. sheaf. This filtration is trivial when a sheaJ is selnistable. Let llS recaJI thc Inain definitions

anel notations.
rrhe G1'( E) = (Gfn , (,'n-l, ... , GI) I11eanS that the sheaf E has a filtration:

and Eil Ei+1 = C;i. The sheaves Ei are called terms 01 jilt:ration and Gi are quotient.s oJ
filtration. Note that G'n = En (since En+1 = 0).

DEFINITION. A filtration of a torsion-fl'ee sheaf E
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is called the f1arder-JVarasiulhan fill'1'ation if a11 quotients Gi are semistahle ancI their slopes
satisfy the incquality:

( '-1') -1)1. - _ , .... , ... ,n _.

1'0 construct this filtration we nced another slope aXi0111 anel several lenltnas.

1.2.1 LEMrvtA. Let E be a torsion-free sheaf on X and 9 be the set of a11 torsion-free
quotien ts of E. Then thel'e cxists ,0 such that ,(Ci) 2 rO for all G E 9.

PROOF. Let us choose an aIllple divisor A on )(, Then Serre's theoreIll ((22]) ilnplies
that there exists a natural IIlltnber Tl, such that the shcaf E(nA) is gCllcrated by it~ global
sectiollS. Hencc we have thc short exact sequence:

o-+ F -+ HO(E(nA)) 0 CJ ~ E(nA) -+ O.

Therefore E is the quotient of the sCInistable bunelle

HO(E(nA)) 0 O( -nA).

If G is a torsion-frec quotient of Ethen thcre cxists an cpimorphisIll

HO(E(nA)) 0 O( -nA) -+ G' -+ O.

Now thc result füllows froll1 1.1.3 .

1.2.2 LEMMA. Suppose thai; a slope function , satisfies the axiom:
SLOPE.3. Let ,0 !Je a va/ue of the function , and J\/[ = {Cl, G2 , G3 , . .. } !Je

an ordered set o[ torsion-free sheaves with 7'( Gd ::; 7' for all i. Then the condit'ion

i = 1,2,3, ...

iInplies that 1\,/ is finit;e.
Then each f,orsion-(ree sheaf E has the quoticnt Ci with thc rniniInal slope ,(G),

i.c. for an other torsion-[ree quoticnt Q o[ E wc have: ,(Q) 2:: ,(G).
The prüof fo11ows froll1 SLOPE.3 anel the previous lClnma.

1.2.3 PROPOSITION. Ir a slope function , satisFies the axionls SLOPE.l - SLOPE.3
then thcre exist;s the Harder-1VarasiIl1han filtration torsion-free sheaf E

Gr(E) = (G'n,Gn-1, ... ,Gd.
l"loreover, if C,'1'( E) = (G'm, G''m-l , , .. 1 C;) is another filtration with the selJlistable
quotients and t;]w ineqllalities ,(Gi) > ,(Gi-I) hold for a11 i = 2, 3, ... ,1"11. then rn = n
and G~ = Gi.

PROOF OF THE EXISTENCE. A sctllistable shcaJ has .the trivial filtration. Supposc that
E is not selnistable. Denotc by G' I the torsion-free quotient of EI = E with the 11linin1al
,-slope and of maxilnal rank. Let E2 be the corresponding subsheaf in E:

o~ E2~ EI -+ GI -+ O.
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If E2 is not selnistable then let us choose a torsion-free quotient G2 of E2 with the Inininlal
,-slope anel the maxinlal rank. Dcnote by E3 the COl'l'csponeling subsheaf in E2 , etc. Note
that all Gi are seillistable by construction. Let us check the inequality ,(Gd < ,(Gi+d
with the help of the following COllHl1utative eliagranl:

0
t

C/i+ i 0

t t
0 -----t Ei+1 -----t E· --+ Gi --+ 0f

t id E t t
0 -----t Ei+2 -----t Ei --+ Q --+ 0

t t
0 Oi+l

t
0

vVe have that Q is the torsion-frcc quoticnt of Ei. Thc coeli tion r( Q) > r( Gd impl ics that
,(Q) > ,(Gd. Finally, using thc axioln SLOPE.l, we gct ,(Gi+d > ,(Gd. This concludes
the proof of existencc.

1.2.4 LEr--.HvIA. Let E~ F be slJeaves on )\' and G1'(E) = (Gn , Gn - 1 , .•. , Gd be a filtration
oE E. Then

a) Extk
( (,'i, F) = 0 Vi

b) Extk(F, Gi) = 0 Vi

Extk(E, F) = 0;

Extk
( F, E) = O.

PROOF. This lenl111a can be proved with the hclp o[ COholll0logica.I long exact sequences.

1.2.5 COROLLARY. Let, G1'(E) = (C;n, Gn - 1 , •.• , (,'d !Je the Hardel'-Narasirnhan filtration
oE a sheaf E and Jet F be a sen]istable sheaf. Then

a) ,(F) < ,(Gd

b) ,(F) > ,(Gn )

HOIn(E, F) = 0;

HOIll( F, E) = O.

Thc proof follows easily [roln the letllillas 1.2.4 , 1.1.5 anel the definition o[ the Hareler­
Narasitnhan filtration.

1.2.6 LEMMA. Ir a sheaf E hflS a fiUration G1'(E) = (Gn ,Gn - 1 , ... ,Gd then Gn is fi,

subsheafof E anel C;.,.(E/(,'n) = (Gn-1, ... ,Gd.
PIlOOF. Since the last quotient of thc filtrc'l.tion concieles with its last ternl wc get
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Gn CE. No\v thc statInent follo\'..'s from the following COIlllTIutative diagralll:

0 0 0
t t t

0 -t Ei+1 /Gn -t Ei/Gn -t Gi -t 0

t t t
0 --t Ei+1 --t E· -t Gi --+ 0I

t t t
0 -t Cr'n --t G'n -t 0

t t
0 0

PROOF OF THE UNIQUENESS OF THE HAR.DER.-NARASIMHAN FILTRATION.

Let

7

be two Harder-Narasil11hall filtrations. Supposc ,(Gr) -=1= ,( GD. For exmnplc, let ,(G'd >
f(G~). Then by corollary 1.2.5 and the SClllistability of G~ one gets HOIn(E, G~) = O. This
contradicts to the existellce of (Ln epimorphisIll: E -t G~ -t O. In the sanle way we get
,(Gn ) = ,(G~).

Denote by Ei the ternlS of the second filtration. Let us show by indllction on i that C-r'n
is a sllbsheaf in Ei- For i = 1, there is nothing to prove.

ßy thc inductivc hypotliesis we have thc following COIl111lutative cliagrall1:

0 ---+ E' -t E~ --+ GI. ---+ 0..:Ji+1 ~ 1

t t <Pi t
0 --+ Gn --+ Gn --+ 0

t
0

By the snake !Clll111a, ker 'Pi C Ei+ l' On thc othcr hand, the slopes of seIllistable sheaves
Gn , G~ anel Gi satisfy thc condit.ions: ,(Gu ) = ,(G~n) > ,(Gi) if i < 711,. Hence,!.pi = 0
anel kertpi = Gn (1.1..5 ).

Thus, C-r'n C Ei+l for i < 1"11.. In pa.rticula.r, Gn C C,'~n'

1n the sall1e way we obtain that G~n C Gn. Therefol'e, G~n = Gu.
It fo11ows froll1 lenl111a 1.2.6 that

Gr(EIGn ) = (Gn - 1 , •.. ,Gr) = (G'~_I,···,GD·

Nloreover, these are the Harder-Narasilnhan filtrations of EIG/n • Now the uniqu€ness of the
Hal'der-NarasiIllhan filtration fo11ows easily by induction on the rank of E.
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1.3 Examples of Slopes and Types of Stability.

The Il1otivation of the above slope axiOIllS are the proporties of thc following well-known
slopes.

Thc slope of a bunclle on a curve: 1'( E) = ~(~~ \'·,'here degE is the clegree of thc
dctenl1inant of bundle;

thc ~lltlll1ford-Takclnoto slope with l'espect to an atnple divisor A on a,n n-diIllensiona1
lllanifold X: 11. (E) = Cl (E)·An-1 .

rA r(E) ,

the Gieseker slore w.1'. t. an alnple divisor A: IA (E, n) = :d~l~~)).

Let us check that these slopes and the slope Il/{(E) = cd~t~n-J where H is nef, indeed

satisfy the above slope axiOlllS. By definition a divisor A is neJ if the nUIllber D . An-l is
nonnegative for any effective divisor D onX.

V/e see that all the ahove exalnples of slopes except for ,A have the fonn , = dir where
cl is an Z-val11ed additive functioll on !(o()() and l' is the rank fllflction.

1.3.1 LEMMA. Any sJope [unction I of the f01'l11 I = dll' satisfies the axiolJJs SLOPE.l
a.nd SLOPE.3.

PROOF. For any exact tri pie of torsion free sheaves

O--+F--+E--+G--+O

we have that ,(E) = ~~~~~~~g~. Note that the sign of the deternlinant

I
d(F) d(G) I
r( P) 1'(Ci)

corresponds to thc COlll parison sign between thc fractions: ;~~i d(G) B 'cl
r(G)' es} es:

I
d(F) d(G) I
r(F) ,(0) I

(d(F) +d(G)) d(G1

) I
(1'(F) + l'(G)) ,(G)'

This inlplies that , satisfies the first axioIll.
To check the axiOln SLOPE.3 note that h(G'd - I(G2)[ 2: 1/,2 if the ranks of torsion­

free sheaves G'1 anel G2 elo not excced 1'.

1.3.2 COROLLARY. Let I = ('0, ,I, ... "n) be a vector function of !(o()() such that each
li has the [onn dill' wlJel'e eh is an Z-vaJucd addit;ive {unction on !{o(X) and r is thc
rank (uncUon. IE the valucs oE, are Jexicogl'aphicaJJy cOInparable then I satisfies
the axionJs SLOPE.l and SLOPE.3.

As in the case of the Giesekcr slope ,A it is a polynolllial of the degree dirnX with
rational coefficients. So far as the inequality IA(E,n) > ,A(F,n) holds true if it holds
for sufficiently large n, thcn thc cOlnparison IA-slopes is cquivalent to thc lexicographic
ordering of the coefficients of the polynolnials.

The HilbCl·t polynornial x( E(nA)) is an additive fllnction. Hence the Geaseker slope
satisfies thc axiom SLOPE.1 ( see the proof of leUltlla 1.3.1 ).
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1'0 check SLOPE.3 note that by the Hirzebruch-Rielllann-Roch theorell1 (see. [22]),
the Euler characteristic of sheaf on a sl1100th lnanifold can be calculated as follows

x( E) = deg(ch( E) 'ld(Tx ))n,

where
deg(''')n lneans the C0I11pOnent of dcgree n in thc COhOIllo1ogy ring fI" (X, Q) of .X";
Tx is the tangent bundle of );;

(1)

(where Ci are the ehern classes of the sheaf E).
This yielels that the elenon1inators of the coefficients of the Hit bert polynornial x( B(nA))

do not depend of E. After SOIne I110difications of the proof of lell1111a 1.:3.1 , Olle can easily
show that the Gieseker slope rA (E) satisfies the axiOlll SLOPE.3.

All exarnples of slopes satisfy the axiorl1 SLOPE.2 to some extent.

1.3.3 LEMMA. a) For any pair of i;orsion-free sheaves FeE with the sa.nle rank on a.

!11a.ni[old )\' and any nef divisor [1 the inequa,lity PlI (F) ::; tlH (E) holds. iVloreovcr,
in this case (,he eqllitJity ltH(F) = ttn (E) is possibJe only if

codilllSUpp(EjP) 2: 1.

Provided a slope [unction satisfies this weakend version ofaxiorn SLOPE.2, we call
i t the weak slope;

b) [01' any pair o[ torsion frce shcavcs FeE with the sanle rank on a. mani[old X
and any anlple divisor A the following inequality holds tlA (F) ::; j1A (E). lVloreover,
in this case i,he equality is possible only if

coeli 111 supp( E / F) 2: 2.

Providcd a, slope fUIlction satisfics this version ofaxiolTJ SLOPE.2, we ca/l it the
!VfulnJord- Take·molo slopc;

c) [01' any pair of torsion frcc sheaves FeE with the sa.I11e rank on a. lnanifold
X anel any anlplc divisor A thc inequaJity rA(F) ::; rA(E) holds. l\1oreovcr, in this
case the equality of slopes is equivaJent to

E= F.

Pl'ovidcd a sJope funct;ioll saUsfies i,his vcrsion ofaxiorn SLOPE.2 we ca.l1 it the
Gieseker slope;

cl) the slope tt of bundles Oll Cl, curve is thc Giescker sJope.
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PROOF. The nUlnber Cl (E)· Dn-l (detcnnined by a sheaJ E on a n-elinlensionallnanifold
and by a divisor D) is called the degree of a sheaf with respect to D anel is denoted by
degD( E).

Since the ranks of sheaves E and P coincicle we see that the cOlllparison of their slopes
is equivalent to thc c0111parisol1 of the c1egree degD and the quotient Q = E/ F has thc zero
rank. Hence Cl (Q) = Cl (E) - Cl (F) is a.n effective 01' the zero divisor.

By the definition of a nef divisor degJ1( Q) 2:: O. This proves the first statement of leillina.
If A is anlple and Cl (Q) =j:. 0 then the Na,ka.i-IVloyshezon criterion ([22]) ilnplies that

degA (Q) > O. This yields the second statcrncnt of lcnl111a.
If A is alllpie then by the Serre theorelll ([22]) one hes x(Q(nA)) > 0 for any nonzero

sheaf Q alld for sufficiently large n. Therefol'e the third statclnent of lenl1na also holds.
F'inally the degree of the effcctive c1i visor Cl (Q) on a curve is llonnegative anel is equal

to zero only if Cl (Q) = O. This c0111pletcs the proof.

The 1110re precise conditions of SLOPE.2 allow to fonllulate the following state111ent
which is stronger than lell1111a 1.1.6 .

1.3.4 LEMMA. a.) Let E a,nel F be sen1ista.ble sheaves with respec(; to Uw .l\1wJ1[ord­
Ta.ke1noto slope " ,(E) = ,( F), and F sta.ble. Then tbe cokernel of any nonzero
morphism c.p : E --t F has the support; C such f;ha,t codi111C 2: 2. In pa.rticula.r, c.p is
an epirnorphisnl i[ E is locaJJy free.

h) Let E a.nel F be se1nistable sheaves witb respect f,o tlle Gieseker slope "
,(E) = ,(F) and F is stahle. Then any nonzcro lnap of E to F is an epiInorphism.

This lenlnla can be proveel in the sanle way as 1.1.6 . Nevertheless, let us recall that
Ext I (Q, E) = 0 if E is locally free anel codinl supp( Q) 2:: 2.

Note that the slope , = 11 A (E) = (cd E) . An-l ) /1'( E) has the followi ng property:
SLOPE.4. For any torsion-free shcaf E anel a divisor J) the equalities

,(E(D)) = ,(E) + ,(O(D))

are satisfieel.

1.3.5 LEMrvIA. AssllIne thaf; Ule slope [uncUOl] , satisfies tbe axionl SLOPE.4j t,hen a
torsion-free sbeaf E is (sc1ni)st'able if and only if E(D) is (semi)stahlej and the ,­
(se1ni )sta.biJj ty of a reflexive sheaf E (E·· = E) is eq uiva.len t to the ,-se1nistabiJity
of the dual shcaf E"'.

1.3.6 PROPOSITION. AIlJ' sheal E sernistable w.r. t. the Gieseker slope (see 1.2.3 ) has the
filtra.tion by isotypic quotients:

where ea.ch of G j has the filtraUon wit;}] iSOl110rphic quotients:
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A1oreover: this filtration can be consLructed in such a wa)' that

where Ei are the tenns of the filtration.
PROOF. For astahle sheaf this filtration is trivial. If a sheaf E = EI is selnistable then

it has a clestabilizing t.orsion-frcc quotient Q (,(Q) = ,(Ed). LeI' us choose frolll the set
of all such quotients a. shcaJ Ql of thc n1initnal rank. ObviouslYl it is stable. Let EIl be thc
corrcsponeling subshcaf. It follows from thc cxact scqucnce:

allel the equality ,(Qd = ,(Ed that. EI is sClnistable anel ,( Ei) = ,(Ed (sec SLOPE.l,
1.1.8 ). lf HOln(Ef 1Qd = 0 thcn E2= EI is the second tenn of the filtration and (/1 = QI
is its first quotient.

ConverselYl therc exists an cpilllorphisIn; EI ---+ Ql ---+ 0 (1.3.4 ). Denote by E? the
kernel of this epi1110rphisI11.

Continuing this proccdure wc get the setnistable subsheaf Ef such that

HOln(E~,Qd = o.

By definition, put E2 = E~ and G\ = E1 / E'2' By construction, GI anel E2 are sen1istable,
,(E2 ) = ,(Gd = ,(Ed, G1'(GIl) = (Ql' Qb'" 1Q1) and HOln(E21 Qd = o. Now using
t.he lC111111o. 1.2.4 we obtain that H0I11( E21 G'd = o.

By the inductive hypothesis we can assulne that E2 has the filtration by isotypic qua­
tients: Gr(E2 ) = (C,'n, Gn - i 1'" ,G'2). Let us show that the filtration

satisfies the assertiol1s of the proposition.
It relnains to check that Horn(C;2, Gll) = HOln(G\, G12) = O. Since H0I11(E2 , Gd = 0 and

there exists an epin10rphisl11 E2 ---+ G2 ---+ 0 the equality H0111( G2 , Gd = 0 trivially holels.
Suppose that there exists a nonzel'O 1110rphisll1 GI ---+ (,'2. Let us recctll that (,'1'( Gi) =

(Qi, Qi, ... , Qi)' Therefore by 1.2.4 H0I11(Qll (,'2) i= 0 anel there exists a nonzero 11la.p
'P : QI ---+ Q2' lt follows froll1 (1.1.6 anel 1.3.4 ) that 'P is an iS0111orphislll. This in1plies
that Honl(Q2, Gd # O. But Q2 is a quotient of O2 anel Ql is a subsheaf of GI. Thus,
H0111(G21 Gd # O. This contradiction conclueles the proof.

2 Rigid Sheaves.

2.1 Preliminary Information.

"Ve will study sheaves 011 a Sl1100th c0111plex pl'ojective su rface 5' such that h1(Os) =
o anel the anticanonical dass fl = -[{s has 110 base C0I11pOnents. Note that the last
condition ilnplies that H is nef. lt is known that if S is a S11100th projective surface over
an algebraically closeel fielel with nef anticanonical dass then we have olle of the following
options

1. !{s = 0;
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2. 5 ~ P(GI?I EB GI? 1 ( 2) ) j

3. S ~ P( F) whel'e F is a rank 2 vector bundle on an elli ptic curve which is an extension
of clegree zero line bundles;

5. S is obtained fron1 p 2 by successively blowing up at I110St 9 points.

Let us recall SOl1le general facts which will be used later.

2.1.1 TH EOIlEM. (The RieIl1ann-Roch [onnula [01' sur[accs.) Thc Eulcl' characteristic o[
two coherent sheaves E and F on a sInooth projective sur[ace )( is given !Jy thc
following fornlltla,:

where fll/(E) = _1_(-f\x . c}(E))
r(E) ,

Note that in our case X(Os) = 1.

2.1.2 COROLLARY. Let E, F !Je two sheaves on a sInooth projecUve regular (h1(Os) = 0)
surfa,ce with X(E, B) = X(F, F) = 1 ,. then

q(E) = ~(c~(E) + 1 -1) and
2 1'2(E)

2.1.3 THEOREM. (SeITe duality) For any coherent sheaves E and F on a sl1looth projective
surface)( the following equality

holds.
The proof is containecl in [22).

2.1.4 LEMrvlA. (l\tlukai) Let )( !Je a snl00th projective surface. 'Then
1. For a.ny torsion-fl'ce shcaf E on X wc havc

hl(E, E) ~ hl(E~\ E--) +2Ienglh(E**j E).



2.2 Exceptional Slleaves.

2. a) Suppose t;}w shea1/es (,' I, G2 and E on X (ornl the exact sequencc

o ---+ G'2 ----+ E ---+ GI ---+ 0,

and satis(y the condition HOIn(G'2, G.) = Ext2(G't, ( 2 ) = 0 then

b) Ir I110reover, hI (E, E) = 0 then

hO(E, E) = hO(G'I, (,'d + hO(021 G'2) + X(G1 , (,'2),

h2
( E, E) = h2

( GI, (,'d + h2
( G21 ( 2) + X( (,'2, Gd.

13

This lelluna follows fronl the spcctra,l SCql1ClICC associated with the abovc cxact tripIe.

See the proof in (14] and [11].

2.2 Exceptional Sheaves.

DEFINITION. A slleaf E on a 111anirold X is called rigid whenever

Extl(E,E) =0.

Thc trivial exalnples of rigid sheaves are exccptional sheaves.

DEFINITION. A shcaf E on a 11lani fold is called cxcepUonal, if ExtO
( E, E) = C and

Exti(E,E)=O Vi>O.

Using thc results of S. ~\.'ll1kai ([14]), A. GOl'odentsev ([4]), D. Orlov ([11]) anel S. Zube
([8]) we provide thc initial infol'lnation ahout thc structure of rigid and exceptional sheaves.

2.2.1 LEM M A. A rigicl sheaf w i thou t torsion on a, smooth p1'0jecti\Te sUfraCe is loeally {ree.
This le111111a follows [rom thc i\1ukai lel111na (2.1.4 ).

Recall that we consider a sl1100th cOinplex projective surface 5' tbc anticanol1ical dass
11 = - [{s of which has 110 base componcl1ts. Let C' be a sheaf on 5'. Denotc by TC its
torsion subshcaf ancl by TOG thc subshea.r in TC' such that Tl G' = TG/ToG has no a torsion
subsheaf with O-dilllensional support.

2.2.2 LEMMA. (Gorodentsev-Orlov) Any sheaves G' and F on a. slll'face S' satis(y tlJC
following condi tions:

a) the ineqllality
hO(F, G) ~ h2 (G, F)

holds whellcver l;he support 01' TOG !las no C01111110n points witb the base set of the

antica.nonical linear systenl If11;
b) the ineqlla./ity
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holds provided that thcre exists a CUI'\'e DEIHI such thaI, D n suppG =f:. 0. In
particular, this inequaJity is saUsfied whellever r( G) > O.

2.2.3 COROLLARY. Let. C; be a rigid sheaf on Si then its torsion subsheafTG and t,orsion­
free quotient G' = C;ITe,' are rigid shcavcs. lVlol'eovel', TaG = O.

2.2.4 LEMMA. S'uppose E is an excepUollal t,orsion sheaf on .) tllen ci(E) = -1. Further­
Il]Ore,

eithcr E = Oe(d) , whel'c e is sonlC il'l'educible rational curvc wit;h e2 = -]
01' one of thc conJponents of the support of E has the zero cup product with [{so

2.2.5 LE!vIMA. S'uppose that E is an exceptional sheaf on S then the support of its torsion
has the zero cup product with [(So

COInbining 2.2.1 ,2.2.4 anel 2.2.5 we can ronnulate thc rollowing proposition.

2.2.6 PR.OPOSITION. S'uppose t;hat E is an exceptional shcaf on 8 then we get one of the
foJ1owing options

1) E is iocally free,-
2) E has a t;orsion sllbsheaf sllch t;hai (suppTE) . /(5 = 0,-
3) E ~ Oe(d) for SOI1Je rational CUl've e with e2 = -1;
4) 1'( E) = 0 and tJw support of E contains an irreduciblc cOlnponent Cu such

that Co . /(5 = o.

2.2.7 COROLLARY. (OrIov) If -[(5 is aIlJ]Jlc (8 is the Dei Pezzo surface) then an excep­
tional sheaf on 8 either is locaJ1y free or }las the fOrln Oe( d) fol' sonlC ra.tional curve
e with e2 = -1.

Now let HS prove thc stability of exceptiollal bunelles on S with respect to the anticanon­
ical dass H = - [(so

2.2.8 LEMMA. (5. Zube) Let D be a slllooth cl/iptic CUl've fronl IHI and E be an exceptionai
bundie on S. Then the restriction o[ E to D ( E' = EID )is a. siJJJple bundje, i.c.
ExtO(E' , E') = C.

PROOF. Consider the exact sequence

o-+ E· @ E([(s) -+ E'" 0 E -+ (E· @ 8)ID -+ O.

By SeITe duality,

Since E is exceptional we obtain

ExtO(E, E) = C, Exe(E, E) = Exe(E, E) = O.



2.3 Exceptiona.J Collect.'ions.

Therefore the cohornology table associatecl with the exact sequence has the fonn:

k Extk(E, E(/(s)) ---+ Exe':(E, E) ---+ Extk(E', E')
0 0 C ?
1 0 0 ?
2 C 0 ?

It inl plies that ExtO
( E', E') = c.
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2.2.9 COROLLAIlY. AllY except.'iona.l bundle E on S is sta.hle with respeet, to t,he slope
f.lH = (11· c,(E))/1'(E) where ff = -[(so

PROOF. By thc Zube leIllIna the l'estrictioll of E to an elliptic curve DEI - l(sl is
silnple. It is known that silnple bunclles on an elliptic curve are stable with respect to
the slope Il(E) = d~r1~). Besicles, IlH(E) = p(E' ) wherc E' = EID. Now slIppose P is a

subsheaf of E such that r(F) < r(E) and IlH(F) > IlH(E). \'Vithout loss of generality we
can assuI11e that P' = FID is locally free. Thus, Il( F' ) > J1( E'). This contradicts to thc
stability of E'. The corollary is pl'ovecl.

2.3 Exceptional Collections.

The 111 ai 11 l'esults about rigid anel superrigid sheaves are fonnlilateel in tern1S of exceptional
collections. The ain1 of this sectioll is t.o stuely these collections on the surface S.

DEFINITION. An ol'elereel collection (EI, E2 , • .. ,En ) of exceptiona.l sheaves is called
e:r;cept,ional whenevel'

for i > j an eI k=0,l,2.

An exceptional collcction (E, 11') is callcd all cJ:ceplio1'lal pair.

By definition an ol'del'ed collection is exceptional if anel only if all its pair are exceptional.
Thus we shall study exccptional pairs on S.

Supposc (E, F) is an except.ional pair on a Dei Pczzo sllrfacc. Tt is knowIl that then we
have olle of the following cases:

a pair (E, P) has thc type hout (01' in othe1' words (E: F) is a hOHl-pair), that is

Exti(E,F) = 0 for i = 1,2 an eI HOIn( 8, F) -# 0;

a pair (E, F) has the type exl (01' in other woreIs (E ~ F) is a ext-pair), that is

Exti(E, F) = 0 for i = 0,2

a pair (E, F) has the type zero (01' in other words (E, F) is a zero-pair), that is

Ext i
( E, F) = 0 for i = 0, 1,2.

There exist exceptiona.l pairs of a new type in our surfaces.
DEFINITION. An exccptiollal pair (E, F) is calleel singular if

Exti(E,F)=j=O fOI"i=0,1 anel Exe(E, F) = O.



16 2 RIGID S'HEAVES.

2.3.1 PROPOSITION. Let (E, F) be an exceptioI1a.l pair of bundles on the surface S then
we have one of thc following cases:

a) (E,F) is a hOlll-pair
b) (E, F) is an ext-pair
c) (E, F) is singular or a zero-pair

{lH(E) < tlH(F)j
f.lH(E) > ttH(F)j
tlH(E) = tlH(F).

PROOF. Consieler the restrietion sequcnce to a. sl1100th elliptic curve:

o ---+ E* 0 F(l\'-s) ---+ E* 0 F ---+ (E* (9 F)ID ---+ O.

Dcnote EID anel FID by E' anel F'. COlnbining the SeITe duality anel thc definition of
exceptional pairs, we get Ext i (E, F( [(5)t ~ Ext2

-
i (F, E) = O. Hence the caho1l101agy

sequellce associated with this exact sequellce has the fann:

k Extk(E, F(/\s)) -+ Extk(E, F) -+ Extk(E', F ' )
0 0 * *
1. 0 * *
2 0 * *

That is,
Exti(E, F) ~ Ext i ( E', F' ) Vi.

Since E' anel F' are stable bundles Oll the elliptic curve (see thc prüüf üf lc111n1a 2.2.8 ) we
obtain that on1y onc üfthe spaces ExtO(E',F' ) anel Extl(E',F') is nonzero whellever

( ( }11/) _ eleg( E') _ (;'))
p ~ - r( E') - PH L .

Morcüver, ExtO
( E', F' ) =f 0 iff x( E', F') > 0 anel Ext I (E', F' ) =f 0 iff x( E', F' ) < O. In this

case x( E', F' ) is the Euler characteristic of two sheaves on an elliptic curve ([10]):

x( E', F' ) = r( E')r( F' )(J-l( F' ) - {l( E')) .

Finally, in both cases we have Ext2
( E', F' ) = O. This cOlnpletes the proof.

2.3.2 LEMMA. Let. (E, F) be an cxceptional pair of bund/es on S with J-l11(E) = ttn(F).
Let C denotc Cl (F) - Cl (E). Then:

.1. r ( E) = l' ( F) .

2. C2 = -2 and !{s . C = O.

.3. Suppose (E, F) is a. singular pair; then

(a) C is a connectcd curve;

(h) ExtO(E, F) = Exe(E, F) = C;

(c) tlJel'e exists an cxact. sequcIlce

o ---+ E ---+ F ---+ Q ---+ 0l

where Q is a, torsion sheaf with Cl (Q) = C.
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FnOOF. By thc definition of an cxceptional pair x( F, E) = O. Substituting the discrete
invariants of E anel F in the Ricrnantl-Roch fonTIula (2.1.2 ) for cxceptional sheaves, we get

Fronl leIllIlla 2.2.8 it follows that thc restrietion of an cxceptional bundle to thc c1liptic

curve DEI [li is a silllpie bundle. IVJoreover,

pl/(E) = fl(EID).

lf L is a, simple bundlc on an elliptic curvej then 1'(L) and deg(L) are coprimc ([1]).
Hence the equali ty p( EI D) = 1'( FID) iInplies that 1'( E) = r( F) = r.

Hence we obtain

This Ineans that

On the other hand,

Cl (E) . H CI (F) . fl
Il H ( E) = r ( E) = tl l/ ( F) = r ( F) .

Thercfore, C . H = 0, i.c., C . /{s = O. 'I'his concludes the proof of the first and thc second
statenlcnts of the IC111ma.

3. Let (E: F) be a singula,r pair, i.e.: there exists a, nonzero n1ap c.p : E ---+ F. Since
cxceptional bundlcs on S are I-lu-stahle it follows from lcrnrna 1.1.6 that r.p is an injcction.
!vloreover, the cokcrnel of c.p has thc zero rank. By definition, put Q = cokerr.p. Since thc
first ehern dass is an additive fUl1ction we get cdQ) = c](F) - cl(E) = C.

Consider the rcstriction seqllcnce:

o---+ E* 0 F(b...s ) ---+ E* 0 F ---+ (E* 0 F)ID ---+ O.

"Ve have thc following isorllorphisll1S:

Hon1(E, F) ~ HOll1(E', F' ); Exe(E, F) ~ Extl(E /, F'); Ext2 (E, P) = 0,

where E' = EID and F ' = FID.
By asstunption, HOIn( E, F) :/= O. Thereforc there exists a nonzero ll1ap c.p' : E' ---+ F'.

Since E' anel F' are stable bllndles on a cllrve and p( E') = ll( F') we sec that r.p' is an
isornorphisll1. Further: 0.11 sta.ble bund les a.re sinlple (1.1. 7 ) anel the canonical dass of an
elliptic curve is trivial. It [ollows fr0111 Serrc duality tha.t Exe (E', F' ) = C. Thus we have
Ext l

( E, F) ~ Exto( E, F) = C.

Now we show that Q is sinlple. Let us write the COh01l1010gy tables associated with the
exact sequence

o ---+ E ---+ F ---+ Q ---+ O.

k Extk(E,E) ---1- Ext k
( E, F) ---1- Extk

( E, Q)
0 C C ?

1 0 C ?
2 0 0 ?
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k Extk
( F, E) ---+ Exe'(F, F) ---+ Extk(F, Q)

0 0 C ?
1 0 0 ?

2 0 0 ?

k Extk(Q, Q) ---+ Extk( F, Q) ---+ Extk(E, Q)

0 ? C 0
1 ? 0 C
2 ? 0 0

FrOlll the last table it follows that the quotient Q is sinlple. Hence C = suppQ is cOllnected.
In fact the group of endoll1orphislllS of Q conta,ins projcctors unlcss suppQ is connccted.

2.4 Structure of Rigid Sheaves.

In the paper [11] it was shown that any rigid bundie on DeI Pezzo surface is a direct sunl
of exceptional bundles. At the same tillle thcre exist indeco111posablc rigid bundles E with
HOlll( E, E) :/= C in thc case when H = - /1.:s is neL For exalllple, consider a -2-curve C
on S with C· !(s = O. It can bc casily shown thai; (tJs,tJs(C)) is an exceptionaJ singular
pair. Denote by E a nontrivial extension of Os by tJs(C):

o----+ 0 (C) ----+ E ----+ 0 ----+ O.

lt can be proved that E is rigid anel HOIll(E, E) ~ C?
In this section we prove that any rigid bunelle on the surfacc S with thc Hef anticanonical

dass and !{~ > 0 has the silnilar strucLure. Unfortunately, the structure of rigid bundles
on S with f(~ = 0 is not known. Fronl now olle assullle t.hat 1(1 > O.

DEFINITION. \Ve say that a torsion-free sheaf F has an exceptiona/ filtration whenevcr
there exists a filtration of F

where (EI, E2 , ... , En ) is an exceptional collcction of bllndies such that !LH (Ei) ::; !LlI (Ei+d
for i = I, 2, ... , 17, - 1.

The ainl of this section is to pl'ove the following theOrCl11:

2.4.1 THEOREM. Let 5' be a slnooth cOlnplex projective surface thc anticanonical dass of
which has no basc cOlnponents allel f{~ > O. Thcn

1. Any torsion (rce rigid sheaf on S is a direct SUIT1 of IlH-scmistable rigid bundles.

2. Any indecOInposa!Jle rigid shcaf withouf; torsion on S is flH-sclnistable.

3. Any J-LJI-selnistablc rigid shcaf hns an cxcepf;iona.l filtra.tion. Moreover, a11 pairs o[
associated exceptional colJection have i,he zero 01' the singular type.
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\Ve shall use the vector slope

-(E) = ( (E) , (E) c;(E) - 2c2 (E))
f J-lR, PA , 7'( E)

where A is an al11ple divisor, Ef is the anticanonical dass of 8, and J-lD( E) = CI~f1jD with
D = 11 01' A.

It can easily be checked that the stabilit.y with rcspect to this slope is the Gieseker
stability 1.3.3 . In particular, any 1'-sclnistable shcaf has the filtration by isotypic quotients
(1.~t6 ).

The slope IlH( E) has thc ~II ulnford-Takelnoto type and satisfy the aXi0l11 SLOPE.4.

2.4.2 LEMMA. Let F be a. i-sernistable rigid shca[ 011 8 wif;h 1\] > O. Supposc F hös a.

filtra.tion by )'-stable isoDJorphic one to another quotients:

Then P is the nlll1tiplc of (;he except.'ional bundle E, i.e F = nEo
PROOF. Consider the spectral sequence associated with the filtration of F which con­

verge to the groups Extk (F, F). Hs EI -tern1 lias the f01'ln:

Epq - ffi E 1- p+q (GI. GI.)
.J) - \J7 x, -'1, Tp+1 •

I

Since thc quoticnts Gi ~ E are .:y-stable we see that they are I.lH-sernistahle (see renlark
1.1.1 ). Hence it follows fro111 leI11I11a 1.3.5 that the sheaf E( f\'s) is also {lH-sclnistable. On
thc othcr hand, the square of the canonical dass of our surface is positive. Thus,

Now, using SelTe duality and le111111a, 1.1..5 we have

Ext2
( E, E) = O.

Thus, the EI-tenn of the spect.ra.l scquence has the [orIll:

Cf

0
cl

* 0 -
* * 0

* *
* 0 p

* * 0

* *
*
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This yields that Ext 1(Gn, Gd = E{ -n,n = E~-n,n . On thc other hand,

E~-n,n C Ext 1(F, F) = O.

But, G'i ~ E Vi. Conscquently E is a torsion-free rigid sheaf. It follows fronl lenllna
2.2.1 that E is 10cally free. ßesides, since E is i-stable we see that it is siInple anel
Ext 2

( E, E) = 0, whercby E is an exceptional bunelle.
Finally, since C;i ~ E Vi anel E is exceptional, we have

This i111plies the equality:

F = EBGi = nEo
i

2.4.3 LEM MA. Suppose F i5 a, rigid i-selnistable shea,f on S then F is a dircct 5t11n of
exccptional bu ndles.

PROOF. By proposition 1.3.6 it follows that F has a. filtration by isotypic quotients:

where Gi = Fd Fi+1 are i-senlistablc anel they have filtrations by iSOl110rphic Ol1e to another
,:y-stable quotients. Besielcs,

Vi :

Let us apply the ~1ukai lenlI11a (2.1.4 ) to the exact sequence:

lt can be proved by incluction on i that Gi ancl Fi+1 are torsion-frce rigid sheaves.
Note that each Gi satisfies thc assulnption of thc prcviolls lem111a. Thereforc we have

Gi = Xi Ei, where Ei are exceptiona.l bundles.
Since all Gi are i-selnistable we see that thcy are J--lu-selnistable (1.1.1 ). Moreover,

Vi :

I-Ience, by the salne argluncnt as beforc, we gel; Ext2(Gi , Gj ) = 0 Vi,j. Thus thc EI-term

of the spectral sequence associated with the filtration of F has the SrUlle fornl as in the
proof of leIl111la 2.4.2 Therefore,

But in this case the quotients of thc filtration of F are different. Ta c0111pletc thc proof we
necd the infarI11ation about the groups Ext1(G'i, Gj ) for .z < j.

Let llS recall that Gi = XiEi, where Ei are the exceptional bundles. Bence,

(2)
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By construction, the bundles Ei are i-stahle alld i( Ei) = i(F) Vi. Since Ei are i-stahle,
it [ollows [roln lelnlna 1.3.4 that E n ~ EI providecl HOIn(En , EI) #- 0 or HOln(E1 , En ) =I o.

Su ppose En ~ EI then by (2) we have Ext l (EI, En ) = O.
Asslune that En '1- EI then we obtain

Since i(Ed = i(En ) we gel p1dEd = pI/(En ).

COlnbin ing the Illl-stahi li ty of exceptiolla.I bundles on S', SCITe d ua.lity a.nd the incquality
!('§ > 0, wc obtain

Ext2(En ,Ed = Ext2(E1,En ) = O.

COlnbining this with (3) wc get

On the other hand, it [ollows [roln the Riclnann-Roch theorenl for exceptional sheaves

(2.1.2 ) anel the equality JlH(Ed = /lH(En ) that X(EI, En ) = X(En , Ed. That is,

11.
1(EI, En ) = 111 (En , Ed = O.

Thus we proveel that Ext l (EI, En) = o. This yiclds that Ext 1(G1: G'n) = O.
Note that the second tenn of the filtration (i.c. F2 ) satisfies the assulllptions of our

lenlnla. At the salne tilne
G1'(F2 ) = (Gn ,Gn - 1 , ••• ,G2 ).

By thc inductive hypothesis one can aSSUlne that

n

F2 = EBG'i .
i=2

That is thc sheaf F is included in thc exact sequence:

n

o-t EBG i -t F -r GI -t O.
i=2

Since Ext l (G'l , Gn) = 0 we obtaill F = Fffi G'n wherc F is a i-senlistablc rigid shcaf with

G1'(F) = (Gn - I , Gn - 2 , ••• , GI)'

_ n-I

Using the inductivc hypothesis again wc have F = EB Gi. That is,
i=1

n n

F = EBGi = ffiXiEi'
i=1 i=I

This c0l11pletes the Pl'oof.

2.4.4 LEIvtrvlA. Any rigid /-l'!I-seIJ1ist,a.ble sheal F on the surface S' has an exceptional
{j ltra,tion:
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such that all exceptional pairs of collection (EI, E2 , ... ,En ) are the singular 01' tl1e

Zero-piJ.1rs.
PROOF. Suppose F is )'-seIllistable; then by the previous leIllIlla, F = EB XiEi, where

i
Ei are )'-stable exceptional bllndlcs with equal one to another )'-slopes. \tVithout loss of
generality it can be asstlll1ed that Ei ~ Ej for i f:. j. Using lenlnla 1.3.4 , we get

Ext.°(Ei , Ej ) = 0 Vi,j. (4)

On the other hand, the equali ty )'( Ed = )'(Ej ) yields that J-lH (Ei) = J1H( Ej ). Now the
equality

Ext2(Ei ,Ej )=O Vi,j

can be proved by thc standard ll1ethod for thc surface S with J(~ > O.
Finally, since F' is rigid wc have

0= Ext 1(F, F) = Ext1(EfJXiE'i, EfJxjEj ) = EBExt 1(Ei, Ej),
i i i,j

(.5 )

i.c., Extl(Ei , Ej ) = O.
COIllbining this wi th eq llali tics (4) and (5) we see that each pair of bllndles in the

collection (Eil E2l • .• , En ) is an exceptional zero-pair.
Now we suppose that F is not )'-semistable. Considcr its Harder-NarasiInhan filtration:

Gl'(F) = (Gn,Gn- h . .. ,Gd

(see proposition 1.2.3 ).
Sincc Gi are i-semistablc and 1(C;d > i(Gi-d for all i, we get

ExtO(G'i,Crfj ) = 0 V-i> j. (6)

Note that lemnla 1.1.8 and flH-senlistability of the sheaJ F inlply I'H-senlista,bility of
the quotients Gi and thc equality IlH( Gi) = flfl( F). Therefore, as before,

Ext2 (G i ,Gj )=O Vi,j. (7)

COlnbining (6) and (7), we see that the EI-tenn of thc spectral scquence associated with
thc Harder-Narasilnhan filtration of F has thc fOl'ln:

q

0
d* 0 -

0 * 0
0 *

0 0 p

* * 0

* *
*
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This spectral sequence converges to thc groups Extk
( F, F) of the rigid sheaf. Bence,

23

(8)

In particular, all Gi are rigid l'-sell1istable shcaves. By the previous lenlll1a Gi =
EB XikEik, whel'c Eik are cxccptional bundlcs. Besides, any pair (E ik , Eis) has the zcro
k

type.
COll1bining (6), (7) and (8), we obtain that Extd(Eik , Ej~) = 0 for i > j anel d = 0,1,2.

In other \Yords, the set of aU bundles Eik ean be cl1ul11eratecl in such a way the eollection
(EI, E2l ... , Ern) is exeeptional. It rCI11ains to note that all bundles Ei ha,ve the IlH-slope
eoineicling with Pli (F). Thus it follows fron1 2.3.] tha.t each pair frolll this eollection is
either the singular 01' the zero-pair.

Thc plan of the proof of thc Inain thcorCll1 is eIear now. \Ve eonsider the spectra.l scquenee
associated with the Harclcr-Nal'asilnhan filtration of a rigid torsion-free sheaf to obtain the
inforn1ation about thc groups Ext 1(Gi, Gj ) where Gi are quotients of this filtration. To do
this wc need the following last statcll\Cnt.

2.4.5 LEivIMA. Let (,'1 allel G2 be Jlll-semistable rigid shcaves on UJe surfaee S. Suppose
IlH(C/2 ) > IlH(Gd; thell the equality Ext l (G2,Gd = 0 ill1plies Ext 1(G1l G2 ) = O.

PROOF. It follows froll1 ]enlJna 2.4.4 that eaeh of G'i has the exeeptional filtration:

G'1'( (,'1) = (Xnl Enl , ... ,:1:11 EIl); C/7'( G'2) = (X m 2 Em2,' .. ,X12 E12 ).

~10reover, p'H-slopes of Eij do not dcpend on the first index, i.c, Iln(EiI) = IIH(Gd and
IlI1(Ej2 ) = IlH(G2 ).

Denote by G'~. thc l'estriction of the shcavcs Gi to an elliptie eurve DEI - [(s I. It is
obvious that thc sheaves G'~ havc the riltrations:

GI _(GII ) - (}I'I , E')71 '2 - X m 2.Jm 2l·",XI2 12'

wherc EL = Ekdv. ~10reovcr, since Eki are execptional buncllcs wc see that E~i arc stable
with respect to the standard slope p. on the eUl've (see lcnllna 2.2.8 ). Furthe1l10re,

Now by lenllna 1.1.8 c;~ arc p-selnistable and p( G'~) > Il(C;). T'hus froll1 ler1l11la 1.1..5 it
follows that HonJ(G~,G;) = O.

Using the last equa.lity anel the long eohotllology sequencc assoeiated with thc exaet
tripie

WC obtain
Ext 1 ((,12l (,\ (/'"s)) C Ext 1(G2 , Gd.

Now the proof f01l0ws fr0111 Serre duality.

PROOF 01" THEORErvl 2.4.1 . Let F be any torsion-free rigid shcaf on S. Consider its
Harder-Narasin1han filtration by PH-sclnistablc quotients
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It follows from the inequalities J.LH(G i ) > ItH(G j ) for i > j that
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H0J11(G i , G j ) = 0 for i > j and Ext2 (Gj, Gd = 0 for i ~ j.

Therefol'c thc EI-tenn of thc spcctral sequence associated with this filtration has the
fonn:

q

*
* *

cl-
0 * *

0 *
0 0 p

* * 0

* *
*

Since thc sequencc is convergcnt to thc grollps Ext i (F, F) of thc rigid sheaf, we obtain

O- E- I ,2 - E- 1,2 - ffi E '1,1(Cl C' )
- 00 -..11 - Q7 x, 'i, -'i-l ,

i

O- EO,1 - EO,1 - ffi Ext 1 (GI. Go)
- 00 - 1 - Q7 TI, I,

t

That is Gi are rigid ftH-sell1istahle shcavcs anel Ext1(Gi, Gi-d = O.
By the previous lenl1l1a the groups Ext l (Gi-I, Gi) are also trivial. In particular,

Let F; bc thc first tcrnl of thc filtration Gr( F), i.e.,

o--+ F2 --+ F --+ GI --+ O. (9)

Note that C,'1'(F2) = (GIn, ... , ( 2) is also thc Harder-Narasinlhan filtration and J-LIJ(G'2) >
ftH(Gd. Taking into account cOl'ollary 1.2 ..5 we obtain HOln(F2,Gd = O. In addition, the
sheaves F2 anel GI1 havc no torsion. Hence we can apply lcnlllla 2.2.2 to these sheaves anel
get Exe(Ci l , F2 ) = O.

Now applying the t\-1ukai lelllina to (9) we obtain
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That is the sheaJ F2 is also rigid. The Ilutnber of its Harder-Narasinlhan filtration quotients
n

is less then n. Henee by thc inductive hypothesis we havc F2 = EB Gi, anel
i=2

n

o-t EB Gi ---t F --t GI -t O.
i=2

Let us recal that Extl(C/I , (;2) = O. Thcrefore, F = F ffi G2, where [:, is a torsion-free rigid
sheaf. '.;Ve apply again the induct.ive hypothesis to the sheaf F to obtain

n

F=EBG'i.
i=l

Thus any rigid sheaJ without torsion on S is a direct SUlll of JlH-scrnistable rigid shcaves.
They are locally free by 2.2.1 . In partieular, if F is indecoIllposable then it is J-lH-Selnistable.
This conelndes the proof of the first and the second theorem statenleJÜs. The last is equiv­
alent to IeIllma 2.4.4 .

2.4.6 COROLLARY. Any torsion-free rigid sheaf on a. DeI Pezzo sut[a,ce X is a direct. SUDl
of exceptionaI bundJes.

PnOOF. Since the anticanonical dass of a. DeI Pezzo surfacc is atnple wc see that excep­
tional pairs on )( cannot be singular (see 2.3.2 ). On the other hand, we have proved that
any indecol1lposable torsion-frec rigid sheaf on S (in particular, on X) has an cxceptional
filtration. Besidcs, all pairs in associatcd exceptional collection are singular 01' zero. Thus
the quotients of the exeeptional filtration of any torsion-free rigid shcaf Oll )( arc its direet
sUll1lllands.

2.5 Structure of Superrigid Sheaves.

In the prcvious section we havc pl'ovcd that any Ilu-sernistable sheaf has the exceptional
filtration and any torsion-frec rigid shcaf is a direct sun) of 1ll1-Selnistahle rigid bunclles.
Therefore for classifying rigid bundles we nccd a. descl'iption of exceptional bundles and
collcctions of oncs. This descl'iption is thc subject of the ncxt part. To start it we necd thc
following theoren1.

2.5.1 THEOREfvl. Let. S' be a slnooth COIl1pIcx projective surface the anticanonicaI dass H
of which has HO base components and rr2 > O. Then thc folJowing statenlent'S hold.

1. For an,Y exceptionaI coJIcction of bundJes (EI, E2 , ••• , En ) on S' such that
{ll1(Ei ) ::; Ilu(Ei+d Vi thcre exists a superrigid bundIc E

such tha,t C,'1' (E) = (;z;71 En , .1: n -1 En - I , ... , Xl E J ). \rVe say t;hat th is bundJe is flssociated
with the cxceptional colleetion.

2. An,}' superrigid torsion-frec sheaf E has the excepUonaJ filtration

C.,.(E) = (xnEn,Xn-IEn-I, ... ,XIEd,
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i.e. the collection (Eil E21 ••• ,En) is exccptional and the ItH-slopes of bundles Ei
sa,tisfy t.he incquaJities: ltH(Ed ~ ttH( Ei+1) Vi .

.3. Suppose a superrigid torsion-free sheaf E has two exceptionaJ filtrations:

UJCn 1n = n anel the exceptional coJJection (FI , F2 , ... , J~n) ca.n be obtail1eel !rom
(EI, E21 ••• ,En ) by 111utaUons of neighboril1g zero-pa,irs (Ei, Ei+d.

Note that this thcOrCI11 is obvious providcd S' is aDel Pezzo surface (sec 2.4.6 ). But if
-1\.'s is nef then the staternent is nontrivial a,nd its proof is difficlilt.

Let lIS first state and prove scveral lenlInas.

2.5.2 REMARIC Suppose a sheaf F has a filtration G'r(F) = (G'n, Gn- I, ... , GI) such that
01'(Gd = (Eiki , ... , Eid; then therc exists the filtration

Anel back to front, the neighboring quotients can be "join".

2.5.3 R.ErvtA RK. Suppose G1'( F) = (Gn: G'n- h ... , Gd is a filtra.tion of a. sheaf F such that
Ext l (Gi, G'j+l) = Ext l (G'i+l, Gi) = 0 for cCl'tain i; tbcn tbc sheaf P has the filtration
G'r(F) = (G'n,Gn- 1 : ••. ,G'j,Gi+11 ... Gd.

2.5.4 LEMMA. Suppose F is an indeconlposable rigid bundJe on S' wit;h I(~ > 0; i.hell F
has the foJJowing filtrations:

a) G'1'R(F) = (Qn, Qn-I, 1 Qd Sudl tha,t Vi Qi = EB YisEis; Eis are exceptional
bundles, the coJJection (EIl, , EI m\, ... , Enl , ... , Enmn ) is exceptional and for each
bUDdle Eis (i = 1, ... , n - 1) there is Ei+1•k such t,hat i,he pair (Ei,s, Ei+! ,k) is
singular.

/)) G'rL( F) = (C:n , Gn-! , , G'1) such t.hat Vi Gi = EB Xis Eis ; Eis are exceptiona,l
bundles, the coJIcction (Eil, , E1k l , ••• , En1 , ... ,Enkn ) is cxcepUonal and [ar each
bundle Ei:J (i = 2, ... , n) there is Ei-I,I such that the pair (Ei-I,l, Eis) is singular.

PROOF. Let us construct thc first filtra.tion. The second one is constructed sinlilarly.
By thc theorem ahout rigid bundlcs (2.4.1 ) the shcaf F has thc exccptional filtration

Let us subdivide the exceptional collection

associated with this filtration into subcollections

wherc i o = 0 such that thc following conditions hold.
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PA RT.1: Any pa.ir of cach su bcolJectioll has the zero type whenc"er this SlJ bcollection

contains llJOre thall one bundle.

PART. 2: For the last bundlc Ei~ of each subcollection there exists E j in the next;

subcollection such tlJat the pair (Ei" E j ) is singular.

Therc cxists at 1110st olle singular pair in this collection since the bundle F is indecOlnpos­
able. This il11plies that this partition exists.

Denote by Qs the direct sun1
I,

EB .ccjEj

j=i~-l +1

o[ exceptional bundles [1'0111 the subcollection with the index s. By rCl11ark 2.5.2 P has thc
filtration (/1'( P) = (Q k l Qk-I, ... : Qd wherc k is the nllll1ber o[ all su bcollections. Note that
this filtration coincicles with GTR if and only if the collectiol1 decoIllposecl into subcollcctions
satisfics the condi tions PAR,T.1 anel the following

PART.2R: for any bundle Ei of each subcolJection there is a bundle

Ei in the next su bcolJection such that the pair (Ei, Ei) is singular.

Ta construct the required collcction we shall intenl1ix the bunclles of subcollcctions anel
1110ve sOInetilnes bundlcs froll1 subcollection to thc next subcollection.

Suppose therc is a bunelle Eo in the first subcollection such that for all bundles Eß
in the second one all (Een Eß ) are zero pairs. Let us shift Ea to the second subcollection.
Since this shift can be realizcd by penllutations of Ineillbers in neighboring zero-pairs we get
that the obtained collection is exceptional. Besieles, it satisfy the conelitiollS PAR,T.1 and
PART.2. It is clear that after a finite number of such shifts we get the cxceptional collcction
decomposed into subcollections such tllat for cach bundle Ea of the first subcollectioll there
is Eß in the second one such that (Ea , Eß) is a singular pair. Let us Inention that one can
do the SOllle thing with a.n arbitrary pair of neighboring subcollections. This process will
be called the displacentenl.

Let us do the displacement with cach pair of thc neighboring subcollcctions, starting fronl
thc first onc. Thc ntllnber of the subcollections does not change during the process. The
ntunber of the bundles in the first suhcollection can only clecrease. Two latter subcollections
will satisfy the conelition PAR,T.:2. R. l3ut since we lnoved the bundlcs froll1 thc left to thc
right one can find now two neighboring subcollections (with thc nUIl1bers s anel s + 1, for
exa.n1ple) satisfying the followillg conditions. Any pair (Ei, Ei) with Ei belonging to thc s-th
subcollection and E j belonging to the (s + l)-th subcollection has tbe type zero. t\10reover,
one can gual'antcc that two latter subcollcction satisfy the conel ition PAR.T. 2 R. only.

Let us unite (if it is necessary) thc neigh boring subcollections to satisfy tbe conditions
PART.l anel PAR.T.2.

Let us do the displacenlent with each pair of ncighboring suhcollection and join all what
is possible to join, ets ...

This process cannot be repeatcd ad infinituI11. Indeed there exists ko E N such that for
any k > ko the nUl11her of the subcollections will not change after the k-th step consisting

of "the clisplacelllcnt anel thc join". After S0111e successive step the nUl11ber of bundlcs in

the first subcollection will not change, ets ... Thus, the nUI11ber of the subcollcctions and
thc nUI11ber of the bundles in each subcollection will not change since some 1110111cnt. That
ll1eans that any bundle cloes not go fro111 one subcollcction to another. Hence we are done.
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2.5.5 LEMMA. Let F be iU1 indecolnposable torsion-free rigid sheaf on the sllrface S.
ASSlJIlle thai;

are two exceptional filtrations of F, j.e. the collections

are exceptional. Suppose

Vi,); (10)

then 171. = n Ci.nd t;he collecUon (Eh E2 , ••• , En ) can be o!Jt'aincd fron1 (F\, li2, ... , Fm)
by lnlltations of the neigllboring zero pairs.

PROOF. It follows froll1 proposi tion 2.:3.1 that each pair of these collcctiolls has the zero
01' the singular type. Lct us show that any such collection can be ordered by the i-slope
lIsing the pennlltations of thc neighbol'ing zero pairs Inelnbers only. In this case the lernn1a
follows fr01n the uniqueness of thc Hal'der-Narasilnhan filtration (1.2.3 ).

The possibility of such ordering is obtained by incluction on the 11l1I11ber of the tenns in
the collection by thc following argll111CIÜS.

Suppose that (E, F) is 30 singular pairj then it follows froll1 lenl11la 2.:3.2 that ranks of
the sheaves E anel F coiende and Cl (F) - Cl (E) = C is an effeetive -2-di visor. (Recall that
the i-slope is the vector

ci - 2C2
(PIJ,PA, ),

r

where /-LA = c\:A, a,nd A is an anlple eli visor.) Since A is ample, we gct /-LA (E) < flA (F). By
asSllIl1ption we have ttH( E) = flH( F). Therefore, 7( E) < t(F).

2.5.6 LEMMA. Suppose that (E, F) is an except,ional singular pair on Sand G is a torsion-
free sheaf; then the folJowing iInplications hold

a) Ext2 (G, E) = 0 => Ext2 (G, F) = 0;
b) ExtO

( er', F) = 0 => ExtO
( C, E) = 0;

c) ExtO(E,G) = 0 => ExtO(F,G) = 0;
cl) Ext 2

( F, G) = 0 => Ext2
( E, G) = 0;

PROOF. The lellln1a. follows fron1 thc cohonlology tables associated with the exact tripie

o---+ E ---+ F --+ Q ---+ 0,

where Q is a torsion sheaf. n1oreover, since Q ha.s the zero rank anel G is torsion free we
get that Horn(Q, G) = O. Furthenl0re, l1sing SeITe dl1ality, we get Ext2(G, Q) = O.

2.5.7 LEMMA. Let F be a. jiu-sernist,able rigid hund/co Lct

be it's exceptional filtration and G be a torsion-free sheaf Then
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a) Exti,(G, F) = 0 Vi {:::::} Exti(G, Ek ) = 0 Vi, k;
b) Exe(F, Ci) = 0 V'i {:::::} Exti(Ek , G) = 0 Vi, k.

PIlOOF. vVithout loss of gcnerality it can be assuI11ed that F is indecol11posable. Con­
sider its filtration G'1'R(P) = (Qm, Qm-l,"" Q.) frol11 lel11lna 2.5.4. ßy 2.5.5 wc can
aSSUI11C without 10ss of genera.lity tliat

8)+1- 1

Qj = EB YiEi t = S, < $2 < ... < Sm < Sm+l = n + 1.

To prove thc first statetl1ent of our le1111113. it is sufficicnt to check the following ill1plication

(The seeond iD1plieation follows fro111 1.2.4 .) Let us apply the functor Ext·(G, .) to each of
the seqllences:

o ---t Fj+1 --+ Fj --t Qj ---t 0,

where Fj are terl118 of the filtration G'rR( F), Ft = Fand Fn = Qn. vVc see that the spaces
Hom(C/, Pj ) = 0 for j = 2,:3, ... 1 n. In particular, Hmn(G, Qn) = O.

Step 1. Let us show that HOD1( G, Ei) = 0 for al1 i.
By the equality HOI11(C', Qn) = 0 we get HOln(G, Ed = 0 for Sm :S i S n. By thc

construction of the fil tration G'rn( F) for each direct SUlTIllland Ea of thc bllndle Qn-I there
exists a bundle Eß with Sm :S ß :S 11. such that (Ea , Eß) is a singular pair. Applying lelllI11a
2.5.6 to this pair wc get HOIn( G, Ea ) = O.

In the sanle way using thc propertics of the fil tration GrR( F) and 2.5.6 we concludc
thc first step.

Step 2. Let lIS check that Ext2 (G,Ed = 0 for all i.
Now let us intern1ix the bllndles in collection (E1 , E2 , • •• , En ) to obtain thc filtration

G'1'L( F). vVithout lass of gencrality wc can assulnc that

8)+1- 1

Gj = EB YiEi
1=8j

1 = SI < '~2 < ... < Sm < Sm+l = 11. + 1.

are quoticnts of Gl1"L (P).
Applying thc flll1ctor Ext" (G, .) to thc exact tri pie

o ---t F; -+ F --t G't -+ 0,

where F~ is the first tenn of thc filtra.tion GrL( F) we gct Ext2
( G, Gd = O. This Ineans that

Exe( C/, Ed = 0 for any elirect sun1111anel of thc bu nelle (,'t.
As befOl'e, u8ing the properties of the filtration G'rL( F) and IClnma 2.5.6 , wc have

Thus it is proved that for a,lly quotient Ei of the exceptional filtration of thc bundle F
the grollps ExtO(G, Ed and Ext 2 (G, Ei) are trivia.1. Hcnce, X(Gt, Ei) ::; 0 Vi. Since thc
Euler characteristic of sheaves is an additive function we have

Tl

L XiX(G, Ei) = X(G, F) = O.
i=1



30 2 RIGID SI-IEA\fES.

!vloreover all Xi arc positive integers. Thus, x( G, Ei) = 0 Vi. The first statclnent. of thc
lelnnla was proved. Silllilarly thc seconcl statclllent is proved.

PROOF OF THEOREM 2.5.1
1. First wc aSSlllne that all pairs of the collectioll (EI, E2 , • .. , En ) have the zero 01'

singular type. The proof is by induction on thc nUlllber 11. of bundles in thc collcction. For
n = 1, there is nothing to prove.

By thc inductivc hypothcsis therc cxists a superrigid bundle E' such that

Suppose the pair (EI, Ed has thc zero type for any i then E = E' EB EI is a superrigid
bundle (see 1.2.4 ).

Suppose there is an index ,j such that (Eh Ed is singular then Extk
( EI, Ed = C for

k =.0,1 and
Ext2 (E1, E j ) = Extk

( Ej , Ed = 0 \/j, k.

Therefore, Ext k (E', E.) = 0 \/k and

Consider the universal extension:

o---+ E' -----+ E ---+ IIV @ EI ---+ O.

Using the coholllology tables let us show tha.t E is superrigid. Thc first table has the farIn:

k Extk(E\, E') -+ Extk (E't, E) -+ H/@ Extk(E t , E.)
0 \I ? I,V
1 HI ? 0
2 0 ? 0

Since the extension is universal, we sec that thc coboundary hOmOlll0l'phis111

is isolll0rphis1l1. Hence
ExtI(E1, E) = Ext2(E1, E) = O.

The next tables have thc fornl:

k Extk( E', E') -+ Extk(E', E) -+ IV ® Extk( E', Ed
0 * ? 0
1 0 ? 0
2 0 ? 0

k H/- ® Extk(EJ, E) -+ Exe'(E, E) -+ Extk(E' , E)
0 * ? *
1 0 ? 0
2 0 ? 0



ThllS, E iR 30 superrigid bllndlc.
Now aSSlll11e that (EI, E2 , ... , En ) is an arbitrary exceptiona1 collection of bllndles such

that

Let llS subclivecle it into subcollcctions of bundlcs with cqual j-l11- slopes. Since alJ pairs
in obtaincd subcollections a,re the singular or the zero pairs wc see that therc exists su­
perrigid bund1cs (,'1, G'2, ... , Gk cOllstructed by these Sllbcollections. Morcovcl', PH (Gi) <
PH (Gi+d· No\v 1ct U8 recall that a pair (Ei l Ej ) of bunclles has thc type h01n providcd
ltH(Ed < llH(Ej ), i.e. Extk(Eil Ej ) = 0 for k = 1,2 anel Extk(Ej , Ei) = 0 for k = 0,1,2.
This yie1ds that the bund1c Ei EB Ej iR superrigid . Thus, ES Gi is the required bllnelle.

2. It follows frol11 theoren1 2.4.1 that a tOl'sion-frec supcrrigid sheaf is a elil'cct SUIn of
m

llH-smnistable rigid bllnelles F = EB Pj. vVithout 10ss of genel'ality we can assUl11e that
j=I

Since F is superrigiel wc see that Extk (Fi , Fj) = 0 for k = 1, 2 and for any pair i, j. Besidcs,
it follows froll1 thc JlH-SeInistability of Fi anel the last inequality that H0I11( Fj , F i ) = 0 for
j > i.

Taking into account theoreI11 2.4.1 we obtain that each Fj has the exceptional filtration

Using the previous len11na anel thc already proved fact that Extk
( Fj, F i ) = 0 for j > i allel

k = 0,1,2 we see that the collection of the elirect SUI11tnanels of 3011 bund1es Fj (with the
SOI11e order) is exccptional. This coneludes thc proof of the second statetnent.

3. Since any torsion-frec rigid shcaJ is 10caHy fl'ee anel elil'ect SUl11111ands are uniquely
eletennincel we see that it is sufficient to prove the thirel stateI11cnt in the case when F is
aH inelecol11posablc supcrrigiel bund1c. ßut this case is alreaely settled in 2.5.5 .

This cot11pletes the proof of the theOretll.

3 Constructibility of Exceptional bundles.

3.1 Introduction to the Helix Theory.

In this section we recaJl following [19], [5], (2], anel [4] the general concepts anel facts related
to thc exccptiona1 sheaves on Illanifolds (see tbc definition of exceptional sheaves in 2.2)
and exceptional objccts in thc clerived category.

The notion of exceptional bundles was introduced in thc paper [6]. The Inain result of
that paper is the elescriptioll of ehern classes of selllistable bundles on IfD2. Exceptional
bundles appeared there as SOlne kind of bounelary points.

Later the exceptional bundlcs anel thc exccptiona1 objects in thc derived category of
sheaves were studicd on the Rudakov's sctl1inar in !vloscow. It bccan1e dear that the ex­
ceptiona1 objects (sheaves) organized in thc exceptiona.l collections can generate the whole
elerived categol'Y of sheaves. Thcreforc, thcre cxists a spectral sequence of Beilinson type
associated with an exceptiona.l collection. Let us note that for the first tillle a spectral
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sequence of such type in the case of p2 appea,red in [7]. Bllt the general result was obtained
by A. L. Gorodentsev ([5]) independentlyon [7] .

The existencc of this spectraI seqllencc is the scrious reason to stucly the exceptional
sheaves. IVloreover 1 the exceptional bundles a,re interesting as bllndles with the zero­
dilnensiona.l nl0duli spa.ce.

Another application of the cxceptiona.1 bundles is the description of moduli spaces of
selnistable bundlcs. Thcre cxists such c1escription in thc case of thc projective plane ([6])
and of the slnooth 2-dilllcllsiollal qua.dric ([21]).

Thc helix thcory is connccted with nUlnber theory. NamelYl A. A. nllarkov~ stlldiecl in
particular, solutions of the following Diophantian eqllation:

2 223x + y + z = a:yz. (11)

(This equation is called llOW thc rvlal'kov cquation allel its solutions are called the fvlarkov
lltunbel's.) 1t was proved that thc n1al'kov lltllnbers coi neide with the ranks of thc exceptional
bundles on p2 (which forn1 a foundation of a helix).

A. A. lVlarkov fonnulatcd thc following conjccture:
Any ir'iple 0/ natural solutio1ts 0/ lhe equatio1t (11) is 'llniquely delcrmined by its uln.'"Ci7nal

elen-zent.
This conjecture can bc I'efonnulatcd in tenns of the exccptional bundlcs in the following

way.
Suppose E and F are except.ional bundles on 1P 2 wilh equal Tanks; then eitheT E = F(n)

0'1' E* = F(n) /or som,e natural n.
~Irore details can bc found in [18].

Now let us return to the helix theory. The definition of a helix allel the first results
about heliccs appearcd in [18]. 1'hc deRn itioll of a helix is duc to A. L. Gorodentsev alld
A. N. Rudakov. The word '1 helix11 allel thc idea. of considering a helix as an infinite systeIl1
of bundles with sOIne fOrIll of periodicity is due to V. N. Danilov.

Now we following {l9L fOrn1tllate the a.xionlS of thc helix theory.

vVe consicler pairs of objects of a category II 01' c1elncnts of a set II .
DEFINITION. A pair (A, B) is callcd lefl admissible if a certain pair (LAB, A) is defined.

The pair (LA B, A) is called a left. nl1dation of (Al B) anel thc objcct LA B is called a left
shift of B. SiInilarly, a pair (A, 13) is Fight. admissible if a certain pair (B 1 RaA) is defined.
The pair (B, RBA) in this casc is calleel a righl rnuf,a/.ion of (Al B) and the object RBA is
a '1'1ght shift, of A.

Thc axiOlns are the following.
(1 L) If (Al B) is left acltnissi ble thcn (DA B 1 A) is right adnlissiblc anel RA LA B = B.
(1 R) If (A, B) is right aellnissible then (B 1 RaA) is left adluissible and LBRBA = A.
(2L) Let (A, B 1 G') be such a tripie that the pairs (B 1 G')1 (Al LBC) and (A, B) are left

achnissible. Then the pairs (Al C), (13', LAC) are left achnissible where B' = LAB and
LALBG' = LB,LAG'.

(2R) Let (Al B 1 C) be such a tri pie that the pairs (B, C), (A, B) anel (RBA, C) are right
adrnissible. Then the pairs (A, C), (ReA, B') are right achnissible, whcre B' = Reß and
Rc;RBA = RB,ReA.

Thc cqualities in t1le axiOlns (2L) allel (2R) are usually called thc tl'iangle equations.
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It will be convenient to denote the object LA LBC, which appeared in (2L) by L(2)C and
also to sct R(2) A = Re RBA. In thc sanlC way if (Ao, Al, A2 , • .• ,An) is a systenl of objects we
put L(O) A" = A,,: L(I) AB = LA~_l AB1 ... , L(i) A" = LA3 _ i L(i-I) AB with thc condi tion that the

resulting pairs are lcft achnissible. Analogous notation will be used for the fight Inutations.
DEFINITION. A collection {Ai! 'i E Z} will be ca.lleel a helix 01 period n if for all s the

following conelition holels:
HEL: The pairs (A s - 1 , As ), (A"-2, L{l) As ), ... ,(A s - n+1 , /)n-2) A s ) are left achnissible

anel L(n-l) As = A,,-n.
Further wc shall aSSUI11e that (JL), (IR), (2L) anel (2R) are satisncd. rrhen HEL is

eq LI ivalent to
HEL': The pairs (A B- n, AB-n+d, (R(llA B _ n , A s- n+2), ... , (R(n-2)A s_n, A s) are right ael­

missible anel RJn-l) A s- n = A".
Each collcctioll of thc fOI'l11 {Ai, Ai+ I, ... , A i+n - 1 } is cal1cel a f01tndalion of thc helix

{Ai}. Note that a. helix is uniquely eletcnnincd by any of its founelations.

A collcction {Bil i E Z} with

Bi = LA i+1

Bi = A i - 1

Bi = Ai

for i =1'11. - 1(171.od n),
for i =1n(111.od n),
for i:j:. 111.,111. - I (117,od n),

is calleel a lefl. 'Tll'ltlaJ,ion of the helix at Am allel is elenoted by Lm.
A collection {Cil i E Z} with

Ci = RAi- 1 for i == 111. + 1(rnod n),
Ci = A i+1 for i =1n(111.od n),
Ci = Ai for i:j:. '111.,1'11. + l(1'nod n),

is called a 'rig!tJ, 'mut.at.ion of thc helix at Am and is clenoted by Rm.
The basic fact ahout helices is the following statcll1Cnt.

3.1.1 THEOREM. The I'ight OI' thc 10ft rnutation of a, helix is a helix.

All applications of helices are based on this theorenl.
Looking at thc tri angle equations we sce that thc I11utations of helices denne the action

of the braid group Oll thc set of all helices. Olle of the 111ain questions in the helix theory
is to deHne the nUillber of orbits of this a.ction. of this action.

Let HS return to thc exceptional sheaves on sUl'faces anel define thc mutations of an

exceptional pair of sheavcs. (The elefinition of exceptianal pa.irs and their types can be
fatlnd in section 2.3.)

LEMMA-DEFINITION. 1. Let (E, F) be a,ll exceptional hOln-pair of sheaves. Considcl'
the canonical h0l1101110rphisIllS

HOll1(E, F) 0 E /car) F anel E~ H0I11(E, Fr @ F.

If lcan is an epilnorphisln then the pair (E, F) is left adlnissible anel

LEF = ker(lcan).
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Besieles, thc shcaf Ls F is exceptional anel the pair (LEF, E) is also exceptional.
The pair (E, F) is right acltnissible provideclrcan is a. InOn0l110rphislll. In this case,

RpE = cokcr(rcan).

Bcsiclcs, the shcaf RF E and the pair (F, Rp E) are also exceptional.
In both these cases the nlutation of thc pair (E, F) is callcd 1'cgu/ar.
Supposc {can is a InOnOI110rphislll then the left shift of Fis elefined as LEF = coker(lcan).

(The pair (LE F, E) is exceptional as weIl.)
The right shift of E is defined as RFE = ker(1'can) whencver 1'can is an epirnorphism.

(In this case the pair (F', RF E) is exceptional as weil.)
2. T'he ext-pair (E, F) is both left anel right adrnissible. The following universal exten­

sions define the mutations of the exl-pa,ir.

o-t F -+ LEF --7 Ext 1(E, F) (9 E -t 0,

o-t Ext1(E, Fr 0 F -t RFE ----t E --+ O.

In this case as before, LE P and RF E are cxeeptional allel (LEF, E), (F, RpE) are h01n-pairs.
3. Both the left and the right 111utation of a zero-pair is permutation of the cntries of

the pair.

lt follows frol11 this ICI111na that there are cases when thc left 01' the right rl1utation of a
honl-pair is not defineel. iV[oreovel', thel'e arc not 111utatiolls of a singular pair of sheaves.

To overconle these linlitations let us pass following ([41) to thc bOllndcd derived eategory
(D b

( S)) of sheaves on thc surface S . Exceptional objects anel collections in this catcgory
a.re definecl in the saille way as in the ba.sic ca,tegory of sheaves.

LE~HvlA-DEFINITION. Let (E, P) be an exccptional pair in Db(S). Objccts LEF anel
RF E which cOlnplete thc ca.nonica.l 1110rphislllS

allel E --+ R'Holn(E, Fr 0 F --+ RFE

up to the distinguished triangles are exceptional just as the pairs (LEF, E), (F, RFE),.

Thc catcgory of sheaves is inlbeddcd into Db(S') by the morphislll O. Anyexccptional
sheaf stands exceptional under this i111bedding. ~'I utations in the base and in the derived
category are rclated in thc followi Ilg way. If an exccptional pair or shcaves (E, F) is Icft
achnissible then the left shift of o( F) in thc derived category is quasiisol110rphic to o(LEF).
That is, it is a. cOIllplex with a unique Ilonzcro cohOlnology coincided with LE F, anel vice
versa.. The silnilar statelnent holels in the ease of the right ll1utation. Thus we can assUTlle
that any exceptiona.l pair of sheaves is both left anel right adll1issible.

3.1.2 THEOREM. (GorodcnL'Scv-Orlov) Any exccptional object oE Db(S) is quasiisOl1101'phic
to an exceptional sheaf fJl'ovidcd S is DeI Pezzo surfacc. That is, a.1I rnuta.tiol1S of
exccptional päirs of sheaves belang to the base category.

3.1.3 TB EORErvl. (R.udakov-Gorodentsev).1. The rnutaUons of sheaves above defined and

thc exceptional objects o[ t11e deri\red category satis(y the axiorns (1 L),(2L), (1 R) and
(2R).
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2. An exceptional collccf,ion reI11ains exceptional whene1ler S0111C its pair of neigh­
boring sheavcs is replaced by a I11ul;at.'ion of this pair. This proccdure is ca.JJed (,he
'lrtutaUon oJ a collechon.

DEFINITION. Let er = (EI, E2 , ••. , En ) bc a.n exceptional collection of shcavcs 01' objects
of Db(S). It is Juli provided Db(8) is generated by er, i.c. thc set of all objects of Db(8) can
bc obtained [roln the elemets of er by taking thc direct SU111S, tensoring anel forilling cones
of all possible ill0rphis111S.

1701' exanlple, tlie following collection of lille bundles on p2

is the full exceptional collection.

3.1.4 THEOREM . (Bondal) Let; er = (EI, E2 , •.• , En ) be an exceptional colJection of sheaves
or objects of the derived category on a lnanifold )(. Tben tbe [olJowing stateI11cnts
aie true.

1. If er is fulJ tbe]] its left and right; ]llutations are full collecUons.
2. Thc colJection of t;IJC [onn

is a helix oE period n iE and only iE er is [ull.

'Are see that full collections arc closely connected with helices.

Ta write thc spectral sequcncc I1lentianed at the beginning of this section let us dcllnc
dual collections.

Let er = (EI, E2 , ... , Ek ) bc an exceptional collcction. Thc following collectioll
(V E_ k , • •. , VE_

"
v Ea), whcl'c

V/_' _ E vE - LE vE - L(2)E vE - L(k)E'..Ja - 0, -I - I , - 2 - 2, ... , - k - k

is callecI the left dual to cr. Thc collectioll (E~, E~_I"'" E~), where

I,?V - R(k)E EV - R(k-lj E EV - R(k-2) I~ E V - E'..Ja - 0, ..JI -, 1, ..J2 - ..J2, ••• , k - k

is called the right. dual to er.
In these notations the following theorcnl is valid.

3.1.5 THEOREM. (Gorodentsev) Let Q !Je an exceptiona/ o!Jject be/anging to the su!Jcat­
egory generated by an excepiional collcction (Eo, EI, E2 , .•. ,Ed. Then there exists
a spectra.J sequence

EP,q =? ffp+q (Q) ,

the EI-tenn of which hiiS t;he fonn

Ei,q = EB HOllIDb(S) (Ek-p, Q) (9 HtJ(V Ek- p).
r+s;;;;q
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In tbis case we say tbat tbe spectl'aJ scquence is associated witb the left dual colJec­
tion.

SiJnilarly, one can write tlJe spectl'al scquence associateel with thc fight, dual
colJection.

3.1.6 COROLLARY. Let; (EOl EI, Ez, ... , Ek ) be an excepUonal colJection of sheaves on the
sUl'facc S. Supposc UlC len. dual collccUon belongs to the base categolY, i.c. each
element of the left dual collection is a sheaf; then for anJ' shcaf Q belonging to the
categofY gcneratcel by this collect.ion f,llere cxists H spectral sequence EP,q with (;]w

EI -tenn of the fonn

where ß p is the nunlber of nonregllla,r Inlltat.ions needed for constructing the sheal
v E_ p . ßesides, there exists a spect;ral scquence EP,q wif;h E\-t;enn

where ß p is the llumber of nonregular tnllta.L'ions llcedeel to COllstruct the shear E~p'

Both these sequences cOllvergc to Q on the rna.in diagona.l, i.e. E~:} = 0 for
p + q #- 0 anel

G'l'(Q) - (Eo.o E-I,l E-n,n)1 -..Joo ,..Joo , ... ,..Joo .

The helix theory has the following basic open problell1s.
1. Do there exist full exccptional collections on a givcn Inanifold?

2. How Illany orbits has the action of thc braid grollp on the set of a11 helices? 'vVe
say that all helices (01' full exceptiona.l collections) are construclible provided the orbi ts are
UI1lque.

3. Does an arbitrary exceptional collcctioll belong to R foundation of a helix? In other
words, is there a full exccptional collectioll containing a given cxceptional collection? \Nc

say tbat tbe exceptional sbeaves are const.ruclible whenever thc answer of the second and
thc last problclns are positive.

4. vVe can consider the action of thc braicl group on the set of cxceptiona.I collectiolls
which generate OllC and the SRI11e dcrived subcatcgory of Db(X). How 11lallY orbits has this
action?

.5. Dcscription of stahle subgroups of the braicl group action.
Full collections were found on pm, Dei Pezzo surfaces, G(2, 4). Besides the follov..'ing

result was proved by D. Orlov in [17J.

3.1.7 THEOREM. (Orlov) 1. Let IP(E) -t 1\1 be the projectivisatioll of a vect;or bundle Oll

a 11lanifold ~~. Supposc therc is a fulJ exceptional colJect,ion on X f,hen therc exists
such collect~on on IP( E).

2. Let X be obtaincd frorn X by blowing up a snloot'h regular subnlanifold Y.
811ppose that therc exist [ull exceptionaJ collections on X and on Y then there exists
a (ull exceptiona1 colJection on _x RS well.
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In the papers [18], [20], [11] it was proved that all exceptional sheaves anel all helices on
G

Dei Pczzo sllrfaces are constructible. The constrllctibility of helices on the ruleel surfaces
with the rational base a,nel on p3 was proved in ([15]).

In the last part of our paper we sha11 provc the rollowing theorcn1.

3.1.8 THEOREM. 1. Let a be an exceptiona/ collection of bundles on a. snlooth projective
surfilces S' wif;!J ant'icanonica/ dass without base component,s and /<1 > o. Supposc
that the rank of each bllndle o[ this collection is great'er than 1 then tllere is a, [ull
exceptional collection T such that (]' is a subcollcction of T. 1Vloreover, T can be
obtained by nllJtations [rom f;/w basic fuH collection. /n other words, a11 helices on
5' are const.Tllct.ible.

2. Thc condition a.baut; ranks CiU] be Oll1it;ted provided J'i..''§ > 1.

3.2 Restrietion of Superrigid Bundles to an Exceptional Curve.

Let HS recall that we deal with the sllrface 5' the anticanonica.l dass [i = - /(5 of which has
no base cOInponcnts. This Ineans that H is ner.

In the beginning of section 2.4 we restricted the dass of considered surfaces by the
condition 1\.."1 > O. Using thc elescription or sllrfaces with lluI11erically effective anticanonical
dass frOili section 2.1, we see that thc sllrfaces sa.tisfying this candition are thc following:
p2, pI X r I , F2 01' surraccs obtained rrolll IF2 by blowing II p at lliOst 8 points.

Furthel'l110re we can aSSlllnc that the surfacc 8 satisfics thc following conelitiollS.

1. J{'§ > O.
2. Therc cxists a blowing down of 8 onto P2.
Suppose 8 is obtained from }p2 in the following way

5' (1d c' (1d_~ (12 8 (11 S' _ rm2-----=+ 0 d - 1 . . . -----=+ 1 ----=--t 0 -.1[ ,

whcre aj is a blow up of a point Pi-l E 8i- 1 and cl:::; 8. ßy definition, put ei = a;l(pi_d.
It is deal' that ei arc exceptiona.l -l-cllrvcs for all i and Cd is irreduciblc. 'vVe see that

ed is a sll100th rational curvc.
It is known that the divisors 17" el, ... ,ed gencrate the grou]) Pic( 8) (here 17, is the

preimage of a line on }p2). Besidcs

d

J{s = -317, +Lei.
1=1

3.2.1 R.EMARK. The di\risor h is nW11erica.lly cffective.

PROOF. In fact, a, line on IP 2 has HO base points. Hence its preitnagc is basc set free as
weIl. Therefore, the cup product h with any curve on S is nonnegative.
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3.2.2 LEMMA. Let E and F be exceptionaJ bundlcs on S with HJC equal/-ln-sJopes and let,
e = ed be an irreducible exceptional curve. Suppose E = F 01' CI (E) - Cl (F) = C is
a. -2-curve; t.hcn

eithe1' Ext2 (E: F( -e)) = 0
01' I{~ = 1 a.nd (E, P) is a.n exccptiOlla.] pa,ir of the form (CJ s(D), CJs(D+e+ /(5)),

where D is SOJ1Je divisor of Pic(S).
PROOF. By Serrc duality theOrCl11,

Suppose J{~ > ] thcn

Bence the equaJi ty H0111( F, E( e + /(5)) = 0 follovo/s [rOI11 the 1ll1-stability of cxccptiona.l
bundles on Sand 1.1..5 .

Now suppose !(l = 1 and H0111(F, E(e+!(5)) =J O. lt follows [roln the cquality J-lH(F) =
/-lH(E(e + /(s)) and 1.1.6 that there exists an exact tri pIe:

o--+ F --+ E(e + f\'s) --+ Q --+ 0, (12)

where Q is a torsion sheaJ. Denote by l' the rank of thc bundles E ancl F. (Let us reca.ll
that 1'( E) = r( F)). vVe get

CI(Q) = cl(E) - cI(F) +1'(e + /(5) = c + 1'(e + [(5).

R.ecall that the first ehern dass of a torsion shcaf I1111St bc "nonnegative" , i.e. cithcr effcctive
01' trivial. Assllllle that E = F then one gets cdQ) = 1'(e + J{s). ßut this is ilnpossible
since this divisor is ineffective.

Assulne that E =J F. Then, by thc assulnptions of the lemlna. C = Cl (E) - CI (F) is
- 2-divisor such that C . /(5 = 0 (recall that /-lH (E) = /-lH (F) and 1'( E) = r( F)). Such
divisors were described by Yu. 1. l\1anin in [12]. Using his reslllts we can state that if

d d
C = ah - L biej then la I ~:3. Nloreover C = 311. - ej - L ei whenevel' Cl = 3.

i;;;; I i;;;;l

We aSSll 111e that seqllence (12) exists. In this case thc divisor C +1'(C + /{s) is effective.
d

\Nhereby, thc cup proeluct h·(C+1'(e+l\'s)) is llonncgativc (:3.2.1 ). ThllS, C = 3h-ej - L ei
j;;;;l

and r = 1.

vVe have C + r( e + /(5) = 2ed - 2ej (recall tha.t e = Cd). The curve Cd is irredllcible.
Bence, 2ed - 2ej is ineffective if j =J d. Thcrefol'e, ed = Cj allel C = -l\'s - e. Thlls thc pair
(E, F) is equal to

(CJ5 ( D), CJ5 (D + e +[(5) ) .

This concllleles the proof.

3.2.3 COR.OLLARY OF Ti-IE PIlOOF. 5uppose C is -2-di\riSOf with C· /(5 = °and e = ed;

then the divisor C + e + /(5 is nOllposit;j ve.
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3.2.4 LEMMA. Let (E, F) !Je an excepUonal pair of !JundJes on S with IlH(E) < flH(F')
and e = ed !Je the irredllcihle exceptional Cllrve. Then

Ext 2
( E, F( -e)) = O.

Pnoor. By SeITe eluality thcol'etn we have

Ext2 (E, F(-e)r ~ Horn(F, E(e + [(5)).

But,

JlH(E(e + [(s)) = 111l(E) + I - !(~ ::; JlH(E) < JlH(F)

anel the proof follows frolll the P-H-stahility of exceptiona.l bundles on S' anel lenlll1a 1.1.5 .

3.2.5 LEMMA. SlIppose thn,t E and F are rigid flH-selnistable bundles on 8. Assunle that
they have excepUonal filtrations

In addiUon we aSS111ne thaf; thc following conditions hold.
1. Extk(F, E) = 0 Vk = 0,1,2.

2. flu(E) < fll/(F) < IlH(E) + !(r
3. Provided I{~ = 1 tlw exceptional collections (Et , E 2 , .•. , En ), (Ft , F2, ... , Fm)

have no pairs of the fonn (Js( D), 0 s( f) +e + J{s)) where D E Pic(S) and e = ed is
an irredllcible exceptional curve.

Tllen the restrietions of E and F to e havc the [onn

where 0', ß", 6, ( are nonl1cgative integer wit;h 'f. = O.
PR.OOF. It fo11ows fro111 the aSSUlll pt ions of thc leIllIlla anel 2.4.1 that alt pairs (Ei, Ej )

and (Fi, Fj) for i < j are exccptional singular 01' zero pairs. By proposition 2.3.2 wc havc

and the eliffercncies of thc first ehern classes

are -2-divisors. Since atllong these pairs there are no pairs of thc kinel

(Os ( j)), (Js (D + e + !(s ))

(in the case /(1 = 1), it fo11ows from len1111a 3.2.2 that

for any pa,ir 'i,j. Thus the equa.lities

Ext 2(E, E(-e)) = Ext2 (F, F(-e)) = 0
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follow frol11 :3.2.2
Since the bundles E and F are rigid using thc cxact tripies

0---+ E*@ E(-e) ---+ E* 0 E ---+ (E*@ E)le ---+ 0,

o ---+ F* @ F(-e) ---+ F* @ F ---+ (F* @ F)le ---+ 0

we gct Ext 1(E', E') = Ext l (F' : PI) = O.
By the Grothcndicck theOrCI11 [16) any bunelle on a projective line (in particular, E' anel

F' on e) is a dircct SUln of line bunelles. FI'Oln the rigidity of E' anel P' anel Bott's fornntla,
which calculating the cohol11010gy of lille bunelles on the projcctivc lille ([3]) we obtain

Using the first anel thc second conditions of the len11na !ct us show that

s ::; s' ::; 8 + 1.

Note that it follows [1'0111 the condition 1 anel proposition 2.:3.1 that each pair (Ei, Pj ) is
exceptional. Besides,

f-lH(Ei ) < /.lldFj ) < llu(Ed + I(~.

Applying le1nn13o 3.2.4 to the pa.irs (Ei, Fj ) we get Exe(Ei , Fj(-e)) = O. This 111cans that
Exe(E, F( -e)) = O.

By virtue of tbe inequalities on the IlH-slopes anel 2.3.1 thc pairs (Ei, Fj ) havc the
type 11.0111. In pal'ticul3or Ext1(Ei , Pj ) = 0. Hence we have Extl(E, F) = O. Now it follows
fr0l11 the long exact COhOl110logy sequencc associatccl with the rcstriction sequence to thc
exceptiona.1 curvc

o---+ E* 0 P( -e) ---+ E" 0 F ---+ (E* @ F)le ---+ °
that Ext1(E', F') = O.

By SeITe duality and the first condition of the ICI11ma we gct

for k = 0,1,2.

The sccond candition of thc lenltna. yields the inequality

Repeating the reasoning for rigid bundles F(l(s) anel Ewe get that Extl(F(J(s)le, E') = O.
Note that F(J(s)le = F'(-l), i.c. Extl(F'(-l), E') = 0. Now the inequality (8 ::; 8' :S

s +1) fo11ows fr0l11 Batt's fornutla. This cOll1pletes the proof.

3.2.6 COROLLAllY. Assulne that an ordcred collecUon o[ flu-selnistabJe rigid bundlcs

satisfies UlC followi ng condiUOl1s.
1. Extk(Eil Ej ) = 0 {ar j > i, k = 0,1,2.
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2. JlH(Bd < flH(E2 ) < ... < Ilf/(Em ) < /lH(Ed + l(~.

3. Provided J(~ = 1 tlJe exeepUonal eollceUons corresponding to the excepUonal

fiItrations of aJJ Ei hRve 110 pa.irs o[ the fonn (Os( D), Os (D +e + !(s)) where c = ed

is an irred /lei blc exc€/Jtional curvc.
Then there is a 11 II In !Jer i such tha.l.

PROOF. Vle say that an orelereel pair of rigiel flH-selnistable bundles (E, F) on S' has
t.he zero type 0/ decom,posi/.ion whenever

It has the first type 01 decompositioll whenever

with 0' . 0 i- o.
Fronl the previous lenlIna it fo110\\'5 that each pair fr0111 our collection has either the

zero 01' the first type of decolllposition.
'.;Ve see that the above statelnent holeIs provieleel the pair (EI, Ei) has the zero type of

elecolnposition for 3011 i.
In the opposite case denote by i the Ininillla.l nUl11ber such that the pair (EI, Ed has thc

first type of decOInposition. Note that in this case Vj < i ".5c k the pair (Ej, Eh) has the first
type of elecoll1position anel the pair (E~, EI) has the zero type of elecoInposition whenever
i ".5c s < I or s < I ~ i. Besieles if a pair (E, F) has the first type of elecOll1position then thc
pair (F, E(-/{s)) has the zero type of decOInposition.

Thus, each pair of the collcction

has the zero type of 30 clecOlnpositioll. This cOlllplctes the prooL

3.3 Equivalence of Collections and the Key Exact Sequence.

DEFINITION. 'vVe say that an exccptional collection (7 = (EI, E2 , ••• , Ek ) (of sheaves 01'

of objects in Db(S')) on S' is cOl1slrucfible whencver there is a fnIl exceptional collcction
(EI, ... , Ek , Ek+I1 ... , En ) containing (7 such that it is obtaineel fronl thc basic collection

(70 = (Oe] (-1), ... , Oed( -1), Os, 0 5 (11,), Os(2h))

by 11lutations. Here 11, is the preinlage of a line on JID2 anel Ci are thc blow \lP divisors. (lt
follows froln [1 7] that the ba.sic collection is exceptional anel full.)

vVe say that an exceptional collcction (7 is cquivalenl to an cxceptional collection T

whenever the following conelition holeIs. The collection a is constructiblc if and only if T is
constructible.

3.3.1 LEM M A. a) 81lPPosc an exccptional collecUoll a is obt;ained frOHl an exceptional
eollection T by lllutationsj t}len these collections are equivalcnt.
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b) An exceptional collection (EI, Ez, . .. , Ek ) is equiva.lent (;0 the following collcc­
tions:

and (Ez, ... , Ek, EI (- f{s)).

Pn.OOF. a) ASStllne that an exceptional col1ection 0' = (EI: Ez, . .. : Ek ) is obtained
f1'oll1 T = (FI : Fz: ... : /0.) by 11lutations. Sincc all 111utations of collcctions are invert­
ible (see the axiOlllS of the helix theory), we can assunlC that T is also obtained frolll 0'

by 111utations. Suppose 0' is constructible: i.e. there exists a full exccptional collection
(7' = (EI: ... , Ek : Ek+I, ... : ETl ) obta.incd frolll thc basic collection by ll1U tations. Thcn the
cxceptiona.l collection T' = (FI : .•. : Fk , Ek+1 : .•. , En ) is also obtained froll1 thc basic collec­
tion by mutations. Thercfore T' is full (:3.1.4 ). I3csidcs thc basic collection a.nel T' belong
to one anel the sanlC orbit of thc braid group action. Thus T is also constructible.

b) In order to prove the second sta.tenlent it is sufficient to check that the collections
0' = (Eh Ez, ,Ed anel (EZ, ' .• : Ek , EI (-j{s)) are equivalellt. Supposc 0' is cOllstl'ucti ble
and (TI = (EI, : Ek : Ek+ l : ... ,En ) is a full exceptional collection corresponding to 0'. By
theOI'C1113.1.4 if follows frol11 the fact that the collection 0'1 is full that it is a foundatioll of
a helix anel Ed -l\"s) = Rn-l EI. That is: thc collection

is equivalent to 0'1. Now \ve shift cach of thc shcaves En , En - I , • •• : Ek+1 to the right by
EI ( -l\"s) to obtain the fuH collection

equivalent to O'z. Thus T is constructiblc as weIl.
Since all opcrations are invertiblc wc sec that the collection 0' is equivalent to T.

NOTATION. Let (T = (EI: Ez, ... , Ed be an exceptional collection of bundles. Denote

3.3.2 LEM MA. For a.n)' except'ional colJection of bll11dJes 0' = (EI, Ez, ... , Ek ) there exists
a.n cxceptionaJ colJectioll of bundles T = (PI, Fz, ... , Fk ) cquivalent to 0' such that

FUl'thel'l110re we say that cxceptional collection of bundles (FI, F'z, ... ,Fn ) is a h01H­

colleclion whenever

flH(Fd ::; PH(Fz) ::; ... ::; fIH(Pn ),

PROOF. Let s be the I11inilnal nUlll bel' such that PR (E~) > PH (E~+d. It follows froll1
proposition 2.3.1 that the exceptional pair (Es, Es+d has the type ext. Consider the lcft
l1ltltation of this pair
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Since the sheaves E:> anel E~+l are locally free we get that L E • E~+l is also locally free. By
thc IlJl-stahility of cxceptionaJ bUlldles we have

Now suppose that flH(LE,E:f+d < IlH(ElJ-d then wc apply thc Icft l1ultation of this
ext- pai r, etc...

It is clear that after a finite nUlnber of 111utations we shal1 obtain an exceptional collection
a' equivalent to the original one and such that

.Nloreover, if we denote by s' the nlinirna! nunlber such that

thcn s' > s. This iIllplies the necessary stateillent.

3.3.3 LEMMA. For any excepUona,l collcction o[ bundles a = (EI, E2 , • .. ,Bk) t;heFe exists
an exceptiona.l hO'1n-collecUon o[ bundles T = (FI , F2 , .•. ,Fk ) equivalenf, to a such
t;ha.t

P+(T) - J-l-(T) < !....~.

PROOF. By definition, put ~fl(O") = Il+(a) - J-l-(a). Assurne that 6.Jl(a) > J{~. l3y
lenlma 3.3.2 , without lass of gencrality it can be assu1ned that 0" is a horn-collcction. 'vVe
ha,ve

Since ~fl(a) > /(~ allel fll/(E1(-/(s)) = IIH(E.) + !{~ wc see that thcrc exists a lltlIllbcr s

such that

fl H ( E~-.) :S J-l H ( EI (- /.(S)) < J-lH(E:> ).

Thc collection erl = (E:>l ... 1 En 1 EI (- fll.·S ) 1 ••• , E~_I (-/\'s)) is equivalent to 0" and i t has
the following lilnits of the flh-slope:

Il_(er.) = J-lH(EI(-[(s)) = flH(E.) + /(~,

Il+ (erl) = 'm.ax{Illf (E~-1 (-!(s)), Illf (En )}.

Suppose p+(a.) = J-lH(E~-I(-/(S)) thcn s > 1 anel

Hence orclering the collection 0"1 as in :3.:3.2 wc obtain thc horn-collection a2 eqllivaJent to
the original one anel such that ß.Jl( 0"2) ~ 1('1.

Suppose Il+(ad = ItJ/(En ) = fl+(er) then ordcring the collection al by the I-lH-slopes
we obtain thc h01n.-collection a3 eqlliva.lent to the original one anel such that ~Il(0"3) ~

ß.ll(er) - I(l·
Repcating this operation severa.l tilnes we finally obtain a h07n.-collcction equivalent to

a with öp ~ 1\].
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No\\' let us asslIIlle that ßI'( (J) = l(~. Denote by s the nlininlal l1un1ber such that
J-LH( E~) < {lH( E~+d. Consicler the equivalent collection

By the choice of s we have

J.l+(T) = J-L1r(En) = {lH(Ed-[(s)) =.... = J-Lu(Es(-l\'s)) = fl+(a),

a.n cl fl- (7) = Jl f{ ( E$+.) > /l_ ((J ).

In other words, 7 is thc hO'1n-collectiün wi th ~p(7) < 1\.]. This cülnpletes thc prüüf.

3.3.4 LEMMA. Let er = (Et, Ez, ... , Ed be a.Jl cxceptional colJeci'iol1 of bundles on a sur[acc
S with l(l 2: 1. Assumc in addition that in the case I\'l = 1 this collection hflS no
pairs of the [onn (Os(D),Os(D + e + [(s)) where D is sorne di\risor and e = ed is
the exceptional rational curvc.

Then tllere exists an exceptional h0111.-collection (FI , Fz, . .. , Fk ) equivalcnt, to (J

such that thc superrigid bUlldle F (Gl'( P) = (Xn}~l' ... , Xl Pd) associated with it is
included in the cxact seqllencc

(13)

where G' is a supel'rigid bundle with

PROOF. By leITIlna 3.3.3 therc exists a horn-collection 7 = (E'l, E'2, ... ,E'k) equivalent
to the original one and such that J-l+ (7) - /1- (7) < J{~.

vVe will split this collection into groups of bundles with equal J-LH-slopes. Using these
groups we construct a set of supcrrigid flH-SClllistable bundlcs [1, [2, ... ,Ern (see theoren1
2.5.1 ).

vVe have Extk(Ej , Ei) = 0 for j > 'i, k = 0,1,2 ancl

By corollary 3.2.6 t.here exists a Illunbcl' i such that

[-Ience there is a. nlllnbcr j such that thc superrigid bundle F a.ssociated with the horn­
collection

T' = (Ej, ... , E~, E; (- !(s ), ... , Ei -1 ( - J(s ))

satisfies the conclition

Thus the superrigid bundle F constructed fron1 the exceptional h.01n-collection

7
11

= 7
1

( dJ(s) = (Ei (clJ{s )1 ••• , E~ (d[(s ), E~ ((d - 1) [(s ), ... , Ei_I ( (cl - l)!(s ))
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restricts ta thc cllrve e in the following way:

Fle = 0('\( -1) EB ßOe.

One can easily show that the collection 7" is cquivalent to the original CT.

The following equalities can be obtained by direct calculations.
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11 ' (P, 0,(-1 )) = { ~

11'(0,(-1 ),F) = { ~

Consider the canollica.l rnap:

for i = 0
for i > 0

for i = 1
for i =P 1

Since the restriction of this lnap to thc curve e is an cpirnorphisrn we see that exact sequence
(13) is valid.

The sheaf G fronl this sequence, as a subsheaf of a bunclle has no torsion. In order to
calculate its coholnology let us consider the cohOlnology ta.bles corresponding to the exact
sequence (13). Denote by [, thc torsion sheaf Oe( -1).

1..-: Honl(F, [,) ~ Extk([" [,) --+ Extk(F,'c) -t Exj;k(GI,12)
0 HOIn( F, [,) 0 C Hom(F,'c) ?
1 0 0 ?
2 0 0 ?

k HOlll( F,.c) (9 Extk(.c, F) --+ Ext k
( F, F) --+ Extk(G, F)

0 0 * ?
1 * 0 ?
2 0 0 ?

k Extk(G,G') -t Extk
( (,1, F) -t HOln(F,'c)- (9 Exe-(G,.c)

0 ? * 0
1 ? 0 0
2 ? 0 0

This concludcs thc leIllIlla proof.

The idea of thc constrllction of the exact sequence (13) Oll DeI Pezzo surface with an
exceptional bllndle like F belongs to D. O. OrIov ([11]).

3.4 Category Generated by a Pair.

In the previous section we constructed starting frOln an exceptional co11ection er of bundles
the hOTn-collection 7 = (PI, I;;, ... : 10.) cq uivalent to a anel such that the sllperrigid bundle
associo.ted with 7 is included in the exact sequencc (13). In the next section we sho.11 shwo

using double induction that this sequence iIllplies the constructibility of the collection T.

Here we check the base of one of the illductions. NaInely we prove the following propo­
sition.
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3.4.1 PROPOSITION. Suppose that; a superrigid shea.f F on the surfaee S is inc1uded in
the exaet sequcIlee

wherc (G'o, Gd is an cxceptional pair Yi a.re posiUvc int'cge1' and GI is a bundel; then

1. I[Go is loeal/y {fce thcn F has il uniclue (up to pennutations o[ quoUents) exeeptional
filtration

1'1[o1'eove1',

(a) the pair (Fa, Fd is obtaincd [rorll thc pair (Go, G.) by 111 Utations,

(h) 'r(Fo) + 'r(Fd 2: '1'(Go) + '1'((,'1) whencver XO' ;Cl f:. 0,

(e) r(Fo) ;::: r(Go) + r(Gd provided ;Cl = 0,

(d) the equality of UJe SUJI1S o[ ranks holds iE and only if Pi = Gi [01' i = 1, 2.

2. Asslllne that Go = CJe ( -1) for the except,ional rational curve e = ed then

lVloreover,

(a) the exceptional pair (Fo, Fd is ohtained [1'0111 the pa.ir (Go, Gd by Jl1uta,tions,

(b) r(Fo) +r(Fd 2: .,.(00 ) + r(Gd whenever XO' Xl i= 0,

(e) r(Fo) 2: 7'(G'0) + 1·(G'.) provided ;Cl = 0,

(d) Fo is 10calJy free.

To prove this proposi tion, we need several lCll1Illas.

3.4.2 LEMMA. Let A anel B be sheaves on a rnani[old ); and let <p : \10 A ----t Hf 0 B be
a, nJorphisrn o[ shea.vcs. TlIen

1. The canonical IJlap lcan : 1-I0111(A, B) 0 A -----t ß is an epiI110rphislJJ provieled that <p

is also an epiI1101'phisnl.

2. The canonica,l 111ap 7'can : A -----t HOln( A, B)* 0 B is a IJl0nOnlorphisln [Jl'ovieled that
<p is also a, nl0nOI110rphisI11.

PROOF. In view of synllnetry of stateInents it is sufficient to check the first of thenl.
At first consider the case of the one-dilnensional space Hf, i.e.

<p : \I ® A -----t ß -t O.

Recall that thc ca.nonica.1 Il1a.p lcan is dcternlined by the elclnent of HOln( A, 8)*0 HOIll( A, 13)
corresponding to the identical 11101'phis111 HOIn( ..-4, B) -----t Hon1(A, B). Dcnote by lcan this
elclnent as wcll. Lct llS define a line 111ap 7/J : \I ----t HOln(A, B) such that

1/;* ® idHom(A,B) : lcan -+ <po
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This leads to the following COlll111uta.tivc diagralll
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H0I11(A, B) '9 A
1/J0idA t

V0A

lcat~ B

id B t
~B---+O

This diagraITI shows that lcan is an epinl0rphisI11.
Now suppose

'P : \I 0 A ---+ vV 0 B ---+ o.
Then

H0I11(A, H/0 B) 0 A~ H/0 B ---+ O.

V'/e see that there is a C0I11tTIutative diagranl

o
t

Honl( A, B) Q9 A lcat)

1f.0idA t
H0I11(A, HI 0 B) 0 A lcat)

where 7r is a projection HI 0 B ---+ B ---+ O.

o
t
B ---+ 0

1ft
I'V 0 B ---+ 0

3.4.3 LEMMA. Let F' be a rigid sheaf and (A, B) be an exccptiona.J horn-pair of sheaves
on tl1e surface 8. Then the following st;atCJ11ent.s hold.

1. Ir tlle sequence
o ---+ F' ---+ x A ---+ y B ---+ 0

is exact for positive integers x anel y then

(14)

(a) the left nUltation o[ the pair (A, B) belongs to the basic category and it is regular;

(b) either F' = wA EB zLAB 01' tllere cxists an exact sequencc

o ---+ F ---+ Z LA B ---+ wA ---+ 0

for SOHle nonnegative int,egers z and 'W.

2. Ir the sequence
o--+ :1: A ---+ y B ---+ F ---+ 0

is exact for positive integers x anel y then

(15)

(a) the right 11lutatioll oE alC pair (A~ B) belongs to the basic catego(v alld it is
regular;

(h) eitlIer F = wB EB z RaA 01' tllc1'e exist;s an exact sequence

o ---+ wB ---+ z RBA ---+ F ---+ 0

fo1' son1e nonnegative int;egers z al1cl w.
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PROOF. Since the statements of thc lell11na are dual it is sufficient to check the first of
theIn.

The regularity of the left l11utation of the h01n-pair (A, B) follows fron1 its definition,
seqllcnce (14) and lenlll1a :3.4.2. Note tha.t in this case thc pair (LAB, A) has also thc
h01n-type.

Sequence (14) yields that the shea.f F belongs to the category generated by the pair
(A, B). Therefore thcre cxists a spectral sequcnce EP,q (3.1.6 ) converging to F on thc
principa.l diagonal. Hs El -ternl has tbe fonn:

E-;I,t = Exe(ß, F) 0 LAB ~ E?,l = Ext 1(A, F) 0 A

E-;l,O = ExtO(B, F) 0 LAB ~ E?'O = ExtO(A, F) 0 A

T'he exact seqllence (14) and the fact that the pair (A, ß) is exceptional inlply that the
group ExtO( ß, F) is triviaL Hence the spectral sequence splits into two exact tripies:

o -----+ C -----+ Exe(B, F) 0 LAB -----+ Exe(A, F) (9 A -----+ 0,

o--+ HOll1(A, F) 0 A ---t F -----+ C -----+ O.

ASSlune that HOlll(A, F) =J o. Consieler the COhOlllOlogy table corrcsponeling to the first
of these tripies:

k \I (9 Extk(A, A) -r I,V (9 Extk
( LAB, A) -r Extk(C, A)

0 * * ?

1 0 0 ? ~

2 0 0 ?

where Ext1(A, Ft = \I, Ext1(B, Pt = I'V. Thc first anel thc second colun1ns are filled in
using the properties of the pair (LA B, A).

From the table the equality Ext 1(C, A) = 0 follows. This 111eanS that

F = C EB HOln(A, F) (9 A.

Since F is rigid we get Ext1(A,C) = 0 and Ext 1(A,A) = O. Bence, Ext1(A, F) = O. Thus,

anel F is the direct SUll1 of Illultiplicities of the sheaves A anel LA 8.
ASSlune that HOlll(A, F) =J 0 then thc spectral sequence degenel'ates into the exact tripIe

'rhis concludes thc proof.

3.4.4 LEMMA. Let (Eo~ Ed be an exceptiollaJ ext-pair oE sheaves Oll a mani{old )( with
X( Eo , E]) < -1. AS.':WI11e in addition thaf, for each positive inf,egcr n ale following
sheaves a.re detennined:
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8uppose that for a given sheaf Fand for any positi\re integer 11 there cxist positive
integers X71 , YnZn, W n SUd1 that the following exact sequences

o---+ Zn En ---+ W n E( 7l+ 1) ---+ F' ---+ 0

are vii,lid t;hen the Euler c1Hlracterist,ic x( F, F) is nonpositive.
PROOF. Denote by en the in1ages of En in I{o(X). The 1110dule !(o(X) inhcrits thc

bilinear fonn xC, .). Dcnote it by C, .).
Using thc assuI11ptions of the IClntna. wc get

(eo, ed = -h < -1.

l3y definition of thc mutations of an cJ:t-pair we get

It. follows fron1 thc exact scquenccs allel our assulllptions that a11 pairs (En , En +1 ) for
11 E Z· have the hOHl-type and both tnutations of these pairs (except for the left 111utation
of (EI, E2 ) and thc right one of (E_ I , Eo)) are regular (3.4.2).

The following formulae are easily obta.ined [rom the definition of mutations of exl- and
hom,-pa.irs.

Vn E Z:

and for 11 =1= 0

(11 > 1),

(n > 2),

(Cn+h en ) = 0

Dcnote by X n and Xn-I coordinates or the vcctor en (11 > 0) with respect to the basis
{eI, eo} : en = xne. + Xn-I eo. The recllrrence relations

:co = 0,

are pl'oved by induction on 11.

Note that thc vcctors e_ n (n > 0) are expressed through the san1e nlllnbel's, nan1ely

Let V be a 2-di111ensional vector space over Q generated dy eo, Cl. Let us choose an
affine tnap U in IP(V) containing thc ilnage of Co as the origin.

X
XC] + YCo .-......+ -eI + eo.

y

'vVe preserve thc notations for thc irnages of en on U. Let us calclllate the coordinates l+
a.nd 1_ of lil11it points e+oo = lin1n -too en : e_ oo = lil11n -too e_ n on U.

. X n . X n -2
1+ = llIn -- = h. - 11111 -- = h. - 1_ = h - 1/1+.

n--7CO Xn-l n-too Xn-l
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Hence, 1+ and 1_ are the roots of the equation P - hl + 1 = 0, i.e.

I _ h ± Vh,2 - 4
± - 2

(by asslunption, h 2:: 2). Taking into account thc cxact tripIes fron1 t,hc assumptions we see
that the point J on U corresponding to thc shcaJ F has the coordinate x E [/_,1+].

On thc othel' halld, the sign of X( F, P) is detcnnined by the sign of (co + :t:ed2
x 2 - hx + 1. Now the proof fo11ow8 fr01n the incqua.lity

x 2
- hx + 1 ~ 0 for

3.4.5 COROLLARY. Under the sanle assunlptions as in the prcvious lenllna we have 1'( En ) 2:
r(Eo) + r(Ed (for n#-O and 11 #- 1). lvloreover, 1'(En ) > r(Eo) + r(E.) fol' n#-O
alld 11 =1= 1 whcnevcl' both Eo and Er has a positive rank.

PROOF. In fact, we see that the i111agc of the sheaf En in }{o(X) has thc f01'111: en =
aeo + ber for son1e positive integers Cl and b. 'rhus our staten1ent follows fr0l11 the additivity
of the rank function.

PROOF 01" THE PROPOSITION 3.4.1. Suppose that (,'i are locaHy [ree. If the pa.ir
(Go, (-:1) has the zero- 01' hon1.-typc thcn h I (G01 Gr) = 0 anel F = yoGo EB YI c-:1 •

Ir thc pair (G'o, Gd is singular then IlH(GO) = fll1(Gd and the proof follows [rom the
uniqueness of the exceptional filtration (2.5.1).

Now 1 suppose Go is a torsion sheaf allel GI is a bunelle then the pair (Go, Gd is neccssarily
the ext-pair.

Thus, let (Go, Gd be an exl-pair. F'ollowing traditions take

a.nd

STEP 1. One of the folJowing possibilitics holds

o-r XIGI --t X 2G'2 --r F -+ O.

Consieler the spectral sequcnce converging to F a.nel constructing by the right dual co11ection
(Gi, C;;n (3.1.6). (RecaJI tha.t c,'y = G'] Rnd G;{ = RG1 Go = G'2.) Since the I'ight nlutation
of the pair (G01 G.) is nonregulal' we get

ßo = 1 and Ef,q = Ext-q(F, Go}* 0 G2 .

In addition, we do not ll1utations to obtain the sheaJ c;y. Hence, ßI = 0 and

E~I,q = Extl-q(F, G.)* (9 er...
Thus we see that thc E't-tCl'ffi of thc spectral sequence has thc fonn

E11
,1 = ExtO(F, G'.)* 0 GI

E1
1

,0 = Ext l (P, (,'.)* 0 (,'1

E - 1,-1 E ,.2(F G')* G'• I = xt ,.' I 0 -', I

o

~ 0

~ Ef'o = ExtO( F, Go)* 0 G2

~ E~,-I=Extl(F,G'0)*®G'2

~ E~,-2 = Ext2(F, (,'0)* 0 G'2
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Using the COhOlllOlogy tablcs corl'csponding to the exact scquence f1'0111 our assunlptions:

o -----+ YI GI ---+ F -----+ YoGa ---+ 0,

let us calculate thc g1'oups Extk
( F, Gd.

k YOExtk(Go, Gd --+ Extk( F, GI) --+ YI Extk(G\, Gd
0 0 ? *
] * ? 0
2 0 ? 0

k YOExtk(Go, Go) --+ Extk
( F, Go) --+ YI Extk

( G'1, Go)
0 * ? 0
1 0 ? 0
2 0 ? 0

vVhel'cby, the spectl'aJ scquencc splits into 1;wo exact triplies:

o ---+ Ext l (F, G' 1)'" (9 GI ---+ ExtO( F, Go)'" (2) G2 ---+ C -----+ 0,

o-+ C -----+ F' ---+ ExtO
( F, Gd'" 0 Cl ---+ O.

Now as in the proof of lelnlna 3.4.3 lIsing the first of these tripies it is casily shown that
Ext I

( (,'1, C) = O. Therefore, if ExtO( F, Gd =I 0 then F is a direct St1111. In thc opposite case
the sheaf F is ineIueled in the cxact sequcnce.

STEP 2. Olle of the following possibilities }Jolds

o ---+ F -----+ X-I G- I ---+ xoGo ---+ O.

This step is checkeel in thc salne \Vay as the first one by using the spectral sequence associateel
with the left dual collection (0_1,(,10 ),

STEP 3. Tbc sheaf F is dccomposcd int;o the direct sum:

for sonle 11. E Z anel nOllnegative intcgcrs :l:n-!, xn . (1'hat is Fa = Gn - I anel F1 = Cn in thc
fonnulation of the proposition.)

Using thc first two stcps a.ncl lenllna :3.4.3 it can be statecl that fol' any 11. > 0 the
following exact tripies

hold unless F = Xn-l Gn - l EB xnGn.
Let us show thaI; these tripIes contradict thc aSsUlllptions.
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Suppose h1(G'0, GI) > 1 then it. fo11ows fr0111 these sequenccs anel lcn1111a 3.4.4 that
x( F, F) :::; O. This contraelicts the fact that F is rigid.

Suppose h1(Go, Gd = 1 then the series of thc exceptional sheaves G'n is forn1ec1 by
Go, GII, G'2. In fact in this case both the right ancI the left l11tltation of the e;ä-pair (Glo, GI)
is described by the sequence

vVhence, LCo(,'1 = G2 anel Rc'}.G 1 = Go. Henee there are exact tripies:

°--+ YI G\ --+ F -t YoGa -t 0,

Since Go is indecol11posable, it fo11ows fron1 the second sequence that h1(F, O2 ) #- O. vVe
apply the functor Ext'(·, (,'2) to the first tripie to obtain

Since the pair (02 , G'o) is exceptional we get Ext1(Go, (,12) = O. Besides, since (GI, G'2) is a
hOHl-pair, we obtain Ext 1(G I, G'2) = O. Thus, 111 (F, ( 2 ) = O. This contradiction proves the
3-th step.

STEP 4. Suppose GI is a bundle anel GIO = Oe( -1) then F is locaJly free 01' Fü 15 a
bundle and F1 = Oe( -1).

By assu111ptions the sheaf F is includcd in the exact tri pie:

Since F is rigid we see that F is loea.!ly free whenever F has no torsion (2.2.1). Therefore
its direct SU111n1ands are loc301ly free as weil.

Assu111e that F has a torsion T F. Since 0 1 is locally free we obtain the following
COllll11utative diagrarn:

0 0 0

t t t
0 --+ YI G'I --+ F" --+ Q -----7 0

t t t
0 --+ y1G'l --+ F --+ yoOe( -1) --+ 0

t t !Pt
0 --+ TF --+ TF --+ 0

t t
0 0

where P' is torsion free. Since TF is a subsheaf of yoOe( -1) alld the curve e is isol11orphic
to the projective line we get



.3.5 Pl'oof of the Main Theorer11.

Bence,

53

where T O is a torsion sheaf with a zero-dilllensional support.

Consider the upper row of the above c1iagran1. ASSUl11e that TO =I=- O. Since G't is locally

free anc1 the support of TO is zcro-cli1l1cnsional, we get Ext l (TO, YI eid = O. Hence TO is thc

direct SUn1I11and of F' . But this contraclicts to the fact that F' has no torsion. For the Sa1l1e

reasol1,

Let us show that this yields thc incquality clj :::; -l.
Indccd, by assumption, (()e( -1), (,'d is an cxceptional pair. Thcl'eforc it is casily follows

froln the calculation of cohonlology that (GI) le = 1"( GI )Oe. Thus,

anel thc inequalitics dj :::; -1 holel for all j.
On the other hand, Q is a quotient ofYOOe(-1). Hence, clj > -1 Vj. Fronl these

inequalitics it fol1ows that dj = -1 Vj a.nel Q = w()e( -] ).

\Ve see that T F = zOe( -1).
Now, the exact seqllence

°--t y1G t -t F'~ wOe(-l) --t °
iI11plies that Ext I (F' , ()e( -1)) = 0, i.c. F = F' ffi zOe( -1).

By the previous step F = X11-lC;n-l EB xnGn . Therefore F = X-IG-l EB xoOe(-l) 01'

F = x- I G- 1 EB xoOe ( -1) EB X1Gl' Since (C\( -1), Gd is the exl-pair anel F is a superrigid
sheaf we see that the last relation is ilnpossible. On the other hand, F' is 10ca1ly free, as

rigid sheaJ withollt torsion (2.2.1). Thus the sheaf xoFo = X_I G-1 = F' is locally free as

weil.

STEP 5. 1"(Fo) +1'(Fd > 1"(Go) + 'l'(Gr d far Xo' XI i- 0, allel 1"(Fo) ~ r(Go) + 1'(Gd for
XI = O.

Since Fo anel Ft are direct sun1lnancls of a superrigid shea.f we obtain that the pair

(Fo, Pd is exceptiona.I and it has thc h07n-type. Thcreforc it eloes not coincicles wi th thc
pa.ir (Glo, Gd. In view of this the first inequa.Iity follows fr01li corolla.ry 3.4.5.

Suppose F = xoFo thcn Fo i- Go, G't. By thc sanlC argun1ent, 1'(Fo) > T(Cr
O) +1'(Gt).

The equality of ra.nks is possible here only if Fo = G\ anel Go = Oe( -1) = 0. This COlllpletes
thc proof.

3.5 Proof of the Main Theorem.

It follows frOll1 lelnll1a :3.:3.4 that for any exceptional collection of bundles on the surface S
satisfying thc conditions of the 111ain theOrCI11 thcre is a horn-collection

T = (Fo, F"" F2, ... , Pk)
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equivalent to the original one such that the supenigid bundle F associated with T is included
in the exact sequcnce (1:3):

where C: is a supcnigid bundle with Extk(G,C\(-l)) = ° Vk = 0,1,2. (Further
wc denote by B(Fo, Fr, Fz, ... , Fk ) thc supcrrigid bunc!lc associated with the h01n-collection
(Fa, Fr, FZ, .•. 1 Fk ).)

In particlilar, we see that Gle = sOe. Thel'efol'e thcre exists a supcrrigiel bUIIdle C' on
the surface S' obtained froll1 8 by blowing clown thc curve e (0": 8 --t 8' ) such that
0"*(G') = G.

Since G' is superrigid we see that thel'e cxists its exceptionaJ filtration:

Using the induction on the nun1ber of blow up divisors on 5 we can aSSlllllC that thc
exceptional collection of bundles (G'r, (,'/ 2 , ••• ,G'n) is constructible. That is it incllldes in
S0l11e full exceptional collection obtaincd from thc basic collcction

(Oe l (-1), ... , Oed_l (-1), Os, Os(h), Os(2h))

by 111utations. (Note that [{li = 1{~ +1 > 1. Therefore the constructibility of the collection
((,"11 G/

Z, .•. , Gin) eloes not depend on the ranks of thc Gj (see theorenl 3.1.8 )).

Let HS recall that the base of the incluction, i.e. the case of the pl'ojective plane, has
been scttled in thc paper [18J.

Since 0"*( G') = G wc obtain that thc bunelle G has the cxceptiona.l filtration

where Gi = O""'(G~). n-I!ol'covcr, the collection T' = (Oe( -1), GI, ... 1 Gn ) is exceptionaI (the
triviality of the groups Extk (Gi, Oe( -1)) follows fron1 the fact that C;j le = 8jOe)' Further­
11101'e, the constructibil ity of the collection (G' I 1 G/

2 , ... , G'n) ill1pl ies the constructi bili ty of
T'.

Now to provc thcorcln 3.1.8 it suffices to show that the collection T is incIuded in an
exceptiona.l collection obtained fron1 T' by ll1utations.

Let us illustrate the proccdure of this indusion for the projectivisation of !{o(S)0Q = !{.
Assign to each sheaf E on 8 the vector [E] in !{. lt is obvious that vectors corresponding to
sheaves [roln an exceptional collection are lincarly independent. Recall that the nonsingular
bilinear forn1 (', .) is well-defined on J{ . It calTesponcls to thc Euler characteristic of sheaves
x( E, F). Since all cxceptiona! sheaves satisfy the equation x( E 1 E) = 1, we see that the
corresponding vectors are nonpropOl'tiollR,J, Let UR consider the projectivisation of Je In
this case, the vectors conesponding ta sheaves of an exceptional collection are projectecl to
vertices o[ SOIlle sill1plex.

The key exact sequcnce in1plies that the vector [F] I11apS anto thc sill1plex with the
vCl'tices [Oe( -1)]' [G\J, ... , [GIn].
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[Gd

5.5

Let us project the point [F] to the edge ([Oe(-1)),[Gd). Note that this projection
corrcsponds to a superrigid sheaf, ancl the exccptional pair (G~, C/;) associated with it is
obtained by n1utations of thc pair (Oe( -1), C'.). As the result, we get a srl1aller SiIll plex
containing [F]. Next let us project [F) to the face ([Gf/tL [G2], ••• , [On]), ctc... It rerTIains to
show that this process is finite.

Let us prove b ....o staterTIents about projections.

3.5.1 LEMMA. Let,
0---+ C'---+ P---+ E---+ 0

be an exact sequence of sllperrigid sheaves on the sllrface S'. Let

be exceptional filtl'ations of E and G such tha,t. the collection

is exceptional. Let us split f.he filtl·at.ion of the shcaf C; into f;wo groups

o---+ G' ---+ G ---+ C/" ---+ 0,

whcl'e er" allel (;" are (;he shea,vcs with thc exccptional filtrations

G1'( G') = (Ym Gm, Ym-l (/711-1, ... , Ys+l Os+I),

Then

(] 6)

(17)
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1. G' and G'" are superrigid;

2. End(G') ~ HOln((;', F);

3. Exti(GI', F) = 0 [01' 'i > 0;

4. Ext2
( F, G') = 0;

5. There is an exact scquel1ce:

o-t G' ---+ F -f E' --+ 0,

wl1Cre E' is i1 sl!pcrrigid shcaf incIuded in t.J]e cxact tTiple

o-f G" ---+ E' ---t E ---+ O.

(18)

(19)

Besides, Exti(G' , E') = 0 V'i.
PIlOOF. By the definition of an exceptionaJ collection Extk(Gj1 Gi) = 0 for j > i anel

all k. Thcrefol'c, Vk : Extk(G/, G") = 0 (1.2.4 ). Hcnce it follows frOIn lenlIlla 2.2.2 that
Ext 2

( G", (,") = O. 'tVc apply thc ~1 ukai !clllllla to cxact scqucncc (17) to obtain that G' and
(,111 are rigid. Since the collection (Gk+1 , ... , Gm) is exceptional we sec that EXe(Gi1 Gj ) = 0
for any pair i, j. This itnplies Ext2 (G', G') = Ext2

( G", G") = O. Thus thc first statenlent
holds.

"Ve sa\v that Extk (G', G") = 0 Vk. \Nhence, using exact tri pIe (17) and the fact that
G' is superrigid we have

HOln(G/, G) ~ End(G/) aneI Exti(G',G) = 0 for i > O.

Bcsides, in view of the definition of the sheaf G' and the fact that the collection

is exccptional the following idcntities are valid.

Consider two COh0I11010gy tables corresponding to sequence (16).

k Extk
((,", (;) -t Extk (G', F) -t Exe' ((;', E)

End( (,1') ? 0
0 ? 0
0 ? 0

A~ Extk(E, G') -t Extk(P, G') -t Extk(G, G')

* ? *
* ? *
0 ? 0

The statelnents 2, 3 and 4 follow frOll1 these tables.
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Exact triplcs (16) allel (17) give thc followillg COll1111utativc diagran1:

0

t
(,111 0 0

t t t
0 ---+ G' ---+ F ---+ E ---+ 0

t t t
0 ---+ G' ---+ F ---+ E' ---+ 0

t t t
0 0 GIf

t
0
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It yields exact sequcllces (18) allel (19).
Now in order to provc tbe lenlllla it renlains to check that the sheaf E' is supcrrigid and

for all i Ext i
( G', E') = O. All thesc facts follow froll1 the following COhOlllOlogy tables

associated with sequence (18)

k Extk
( G', G') -t Extk(C;', F) -t Ext k

( G', E')
End(G' ) HOlll(G' , F) ?

0 0 ?
0 0 ?

k Ext k
( F, G') -t Ext k

( P, F) -t Extk(F, E')

* * ?

* 0 ?

0 0 ?

1..-: Extk(E' , E') -t Extk(F, E') -t Extk
( G', E')

? * 0
? 0 0
? 0 0

This cOlnplctes the Pl'oof.

The dual statenlcnt can be proved by thc sanlC arguIllcnt.

3.5.2 LEMMA. Uncler t,he asslunptions of t,he previolls lel1lIna. let llS split the filtra.tion oE
tlle sheaf E into two grollps:

o---+ E' ---+ E ---+ Elf ---+ 0,

where E' and Eil are sheavcs with UlC exccptional filtrations
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1. E' and E" are superrigid;

2. End( Elf) ~ HOlll( F, E");

3. Exti (F, Elf) = 0 [01' i > 0,-

4. Ext2 (EII
, F) = 0;

5. There exists an exa,ct; sequence:

o--+ G' --+ F --+ Elf --+ 01

where G' is a superrigid sheaf inc1udcd ill the exact; tripje:

o --+ G --+ G' --+ E' --+ O.

A10reover, Exti(G", Elf) = 0 V'i.

3.5.3 REMARIC

1. Lern/na 3.5.1 is also valid provided E = YI Oe( -1) [01' the exceptional rational curve

e = ed;

2. lenlIn3, 3.5.2 holds provided E = YI E1 EB Y2 E2, where E1 is an cxcept,ional bUlldJe allel

E2 = Oe( -l)j

3. the procedure dcscribed in 3.5.1 is called lhe transfer of lhe colleetion (G'k+h' .. , G.,)
to the right, a,nd the siIniJar procedure fron) 3.5.2 is the transfer of the colleclion
(8"+1, ... ,Ek ) {o the left.

Now let HS prove a proposition concluding the proof of the lnain theoren1.

3.5.4 PROPOSITION. S'uppose a superrigid bUlle/Je F = B( Fo, F i , F2 , ••• ,10.) on tbc surface
S with 1\.] > 0 is illc1uded in the exact sequellce

o --+ G --+ F --+ E --+ 0,

where G is il, superrigid bundle with an excepUonaJ filtraUon

(20)

and E is a superrigid sheaf In addit,ion we assunle that E is either locally [ree and

G'r( E) = (Y"-l G"-l, y.,-2G'.,-2, ... , YoGo)

or E = yoGo = yoOe(-l); hut the eolleetion (Go,G1,G2 , ... ,G'n) is exceptionaJ in
all eöBCS. Then

1. k::;nj
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2. the collection (Fa, ... , Fd is inc1uded In an exceptionaJ collection obtained {farn

(Go, G't, O2 , .•. : Gn ) by Inutations)'

:;::;0

k n
4. Ir E is loca/l.Y (fee t;!lCn t;!w equalif;y L 1'(Fi ) = L 1'(Gj ) yields f;he cquality k = 11. •

i:;::;O j:;::;O

l\tloreO\'·ef, in this case we have Fi = Gi after SOHle l1ulf:at;iollS o{ the neighboring zero
pa.irs.

PROOF. Thc proof is bl' ineluction on the lltllnber of sheaves in thc collcction

The case n = 1 has been checkeel in the previolls section.

STATErvl ENT. Tt can be assuIl1ed witlwu t lass of generality that E and G is locally (fee.

Proof. Suppose E = YoGa = yoOe( -1). Following relnark 3.5.3 , let us appll' the
transfer of GI to the right. Nalllely, let llS elellote by G' the bunelle 8((,'2, G3 , .•. , On) anel
let us consieler the exact sequences

o --+ G' ----t F --+ E' --+ 0,

o ----t Yl G'l -t E' --+ yoGo ----t O.

Taking into account IClnma 3..5.1 allel proposition 3.4.1 we obtain that E' is a superrigid
bundle such that E' = xoEb EB :l:lE~ (01' E' = xoEb ), where the cxceptional pair (Eb, ED
(01' Eb) is obtaineel by lnutations of the pair ((,'0, G')). f\.10reovcr, Eb is locally [ree anel

(l'(E~) ~ 1'(Go) + r(Gt}).

Let us show that the collection (Eb, E~, G'2, ... 1 Gn ) is exceptional. Fronl ICIllllla 3.5.1 it
follows that Extk(G', EI) = 0 'Vk. But, EI = xoEb EB xtE~ and G" = 8(G2 , G3 , ... , Gn ).

Provicled E: is locally free, the triviality of the groups Ext k
( G'j, ED for j = 2, ... ,11.

follows froll1 leIllrlla 2..5.7. Let us check this propertl' [or the case E~ = Oe( -1). Since
Extk(G/, Oe( -1)) = 0 'Vk, we see tha.t, thc restriction of GI to the curve e is trivial. There­
fore there exists a superrigid bundle L on the sllrface S' obtained [roIn S by blowing down
the curve e (a : S --+ S') such that 0-"'( L) = GI.

Since L is superrigiel, we sec that it has thc exccptional filtration

Besides, G1'(C;') = (zmo-*(Lm),Zm-lo-'"(Lm-d, ... ,z2a"'(L2)) is the exceptional filtration of
the bUIHlle C;'. Now by theorenl 2..5.1 In = n anel Gi = a'"( Li)' Thus the collection
(Eb, E;, G2, . .. , Gn ) is exceptional.

Our stateInent is corrcct in t;hc case EI = yoEb.
AssuIl1e that EI = Xo Eb EB Xl E; for SOHle positive xo, Xl. Let us appll' the transfer of E;

to the Ieft:

o----t Ö --+ F ----t Xo Eb --+ 0,
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o ------t G' ------t (; ---+ X I E~ --+ O.

Using lenlllHl. 3..5.2 anel the inelyctive hypothesis wc obtain that (; is a superrigid sheaf with

the exceptional filtration G1'( G) = (x~ G~, X~_l G~._l' ... , x; G~). In addition, the co11ec­
tion ((,';, ... l G~) is incl udeel in an exccptional collection obtaineel fron1 (E~ l G'2, ... 1 (,'n)

by lTIutations anel

Note that the sheaf Ö has no torsion, as a subshcaf of a bundle, Since () is rigid wc
see that it is 10ca,}ly free. It can bc checked as abovc that the collectioll (Eb, (//1, ' , • , G''m) is
exceptional. This cOlnplctes the proof.

\,Ve shall name bounding the collection (Go, GI, G2 , ••• ,Gn ) fron1 the fornlltlation of our
proposi tion a.nd all collections obta,ined froll1 it by 111U tations.

Now, consider cxact sequcnce (20). 'vVe shall use thc transfer of thc bunelle Gs to the
right anel to the left. Recall that in this proceelure the SUlll of ranks of the bounding
collections do not decrease.

Since thc surn of ranks of thc bounding collections is less than 01' equals to thc rank
of the bllndle F we sec that this proccss cannot continue acl infinitu1l1. HCllCC starting
with SOllle Il10Inent the SUIl1 of ranks is a. constant. 'tVe stlldy this 1l10Inent in the following
staten1cnt.

STATEMENT. ;lsslllne that under the assulnptions of our proposition thc sunl of ranks
of bund/es fron] the bounding colJection does not changc aftcr the transfers of the buncl1e
G's to the right anel L'O f;he 1eft.. Then h~ = Tl a.lld

uP to fn u tations of neighboring zcro-pai rs.

Proof. After thc tra.nsfer of the bUllcile G~ to the right Olle gets two cxa.ct sequcllce:

o----+ y~G~ ----+ ß(G'o, GI
I , G'2, ... ,(,./d --+ B( (,'0, GI, G2, ... ,(,'o5-.) ----+ O.

Since Go, ... , Gs - 1 , G~ a.re locally free we obtain that the ineluctive hypothesis a.lld the
relation

I 05

L r(G~) = L 1'(C;i)
i;:;;o i=O

in1ply tha.t I = sand Gi = G'~ (up to llHltations of ncighboring zero-pairs). Therefore there
exists a.n exact sequence

Morcover, ((,'0, GI, O2 , .•• , G~) is the horn-callection. Whcrcby, I-tH(Gd ~ I-tH(G j ) far s 2::
i > j.

Now let us do thc transfer of thc bllndle G~ ta the left (by assuIl1ptial1, thc surn of ra.nks
does not change as well):
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o----t ß(G"+l:' .. , On) ----t ß( G'~, ... , G~) ----t y"Gs ----t O.

As befol'c, by induetive hypothcsis, wc obtain that the collection (C;~, ... ,G~) coincides with
the collection (Gs,' .. ,On) up to I1Hltations of neighboring zero-pairs. I-1ence (G's, ... ,Gn )

is thc h01n-collectioJl anel Illl (Gj) ~ Pli (Gd. for f:. ~ j < i.
As a result we obtain that the all bounding collections (Go, GI, G'z, ... , Gn ) are the

horn-coIlcctions. Thus we can construct the exceptional filtrations of the bundle

fr0l11 the exceptionaJ f-iltrations of thc bunelles E anel G in sequence (20).
Now the proof follows frorn the uniquencss of the exceptional filtration.
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