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o. Introduction

Let X be a paracompact topological space, and let 11(X) denote the monoid of
self-homotopy equivalences of){' The homotopy equivalences which are homotopy
equivalent to the identity map of X form a submonoid 111(X). The quotient E(X) ­
H(X)/H1(X) is a group, called the gro'Up 0/ 8eZrequivaiences 0/ X. Subgroups
of E(X) represent "homotopy symmetries" of X, or symmetries of the homotopy
type of X in the homotopy category. More generally, any group homomorphism
p : G -4 E(X) leads to a homotopy action 0/ G on X by choosing representatives
9 E H(X) for p(g) E E(X) for each 9 E G, and considering 9 : X -4 X acting on
X. If c.p : G X X -4 X is a topological action, then c.p induces a homotopy action.
Conversely, given a homotopy action a : G -4 E(X), one is interested in finding
a topological action 1/J : G x ~\.' ---+- X' and a homotopy equivalence f : X' ---+- X
which is equivariant up to homotopy, i.e. fog and gof are homotopic (using the
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above-mentioned notation). If such an (X',,,p) exists, then "p is called a topological
replacement (following George Cooke [18]) or a topological realization for Q.

The concept of a homotopy-action and its first applications to algebraic topol­
ogy appear in the 1978 paper cf George Cooke [18]. Further generalization of
Cooke~s work and its applications to homotopy theory are due to Alex Zabrodsky
[48] [49J. Zabrodsky had formulated an obstruction theoretic approach to finding
a -topological replacement for homotqpy actions which was step-by·step and fairly
difficult to compute (unpublished work). Bill Browder and the author were led to
homotopy actions as a tool to study and construct finite group actions on simply­
connected manifolds [7) [11]. These efforts motivated the author's present paper
and an earlier paper [8]. There are also further research by Frank Quinn [36] [37],
Justin Smith [42], Peter Kahn [28J [29J and Schwänzl-Vogt [39]. Mark Nlahowald
has kindly pointed out to the author the recent joint work of Mike Hopkins and
Haynes Miller (to appear).

The purpose of this paper is to introduce new invanants for homotopy actions
of finite groups via tools from abstract algebraic geometry. Roughly speaking, these
invariants parametrize aod encode replacements for farniliar objects such as fixed­
point sets and inertia subgroups from topological transformation groups. Nlore
details and applications of these ideas will appear elsewhere.

1. Homotopy Actions and Representations

In this section~ we diseuss some examples of homotopy actions and how they
relate to other problems. 'Yhile homotopy actions and topological actions of a
group G on a spaee )C are geometrically very different, they share some common
algebraic features. Namely~ if F is a homotopy functor from spaces to abelian
groups~ then F()() affords a G-representation in both cases. 'Vhen F(X) admits
a richer algebraic structure. the G-representation F(X) carries more sophisticated
information.

In the case of topologieal G-actions~ the RG-modules H- (..Y; R) and H _(X; R)
are called homology repre.sentation.s of ..\. Homology representations arise naturally
in group theory. Cf. [1] [44] for a sampie of examples in this context.

Example 1. Suppose}{ is aspace homotopy equivalent to a bouquet of n copies
of sm. Then E(..Y) 2;; Aut(Hm( ..Y)) 2;; GL(n, Z) by obstruetion theory. Thus, any
torsion-free ZG-module of Z-rank n gives rise to a homotopy G-action on X and
Vlee versa.

Example 2. Let ..\ be a closed-simply-eonnected topological 4-manifold~ and let
J1. : H2 (..JC) X H2 (.Y) --.. Z be it 5 interseetion form. Let Aut (H2 (){), J1.) denote the set
of isometries of H2( ..y) with respeet to the non-degenerate symmetrie bilinear form
f.L. It is isomorphie to an arithmetie group of orthogonal "type. According to Nlike
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Freedman [22] every such orthogonal form fl on zn corresponds to Aut( H2 (X), J1.) for
an appropriate simply-connected dosed 4-manifold X as above, and at most there
are two such X up to homcomorphism for each isomorprusm dass of J1 (22). On the
other hand, there is a surjeetion E(X) -+ Aut(H2(.y), J1) with kernel isomorphie to
(Z2 y. Thus, a homotopy G-action G -+ E(X) gives rise to a torsion-free orthog­
onal ZG-module. Conversely, the results of Freedman-Quinn [23] imply that any
homomorphism G -+ Aut(H2(..,y), fl) lifts to E(..,Y). Consequently, every torsion-free
orthogonal ZG-module corresponds to a homotopy G-action on a simply-eonneeted
closed 4-manifold (well-defined up to homotopy). In this case, the homotopy equiv­
alenees eorresponding to action of 9 E G ean be taken to be homeomorphisms.
However, the group law in G is preserved only up to homotopy, so this homotopy
action is still far from a topologieal G-action.

Example 3. In the late 1950's, Steenrod asked if every G-representation was
obtained as thc homology representation for aG-action on a finite wIoore space
[34]. The answer is negative in general. A reformulation of this problem, ealled The
Steenrod Problem, has been studied by several authors [3] [4] (5] (8] [9] (13] [17] [28]
[29J [42] [45] [46] [47J. It arnounts to the problem of characterizing the homology
representations of a group G acting on a lvloorc space.

Suppose 1'.1 is a finitely generated RG-representation. ,\Then .1.vl is R-torsion­
frce, Example 1 shows that therc exists a homotopy G-action (unique up to homo­
topy!) on a bouquet of spheres ..,\ such that H*(..,Y; R) ~ kl. To [eplace this
homotopy action by a topological action, one may appeal to G. Cooke:s The­
ory [18]. According to [18L the representation Q' : G ~ E(){) gives rise to a
map Ba : Be ~ BE(x) on the level of dassifying spaees. The exact sequence
H t (..,Y) -+ H(..,Y) --t E( ..Y) gives rise to a fibration B'HdX) ~ B'H.(x) --t BE(x).

Theorem (G. Cooke [18]), The homotopy action Q' is equivalent to a topological
G-action if and only if there is a lift of BQ to B'H.{x),

Suppose such a lift exists~ say f : BO' ---+ B 1i(x). Then one pulls back the Stash­

cff universal fibration )( ---+ Es ~ B 1i(x) via f to thc fibration )( ~ {,V~BG.
Now consider the pull-back of the universal principal G-bundle G ~ Ee --t Be via
if to G ~ {/II ---+ {V. Thc free G-space {1' is seen to he homotopy equivalent to
)(, and this G-action is equivalcnt to 0'. Cooke~s point of view has been applied
to the Steenrod Problem by Peter Kahn (28]. In this case 1 E(X) ~ GL(n 1 Z), and
through stabilization of n and Quillen:s plus-construction thc above-mentioned map
Ba --t BCL(n,Z) is replaccd by p : Be -+ BGL+: lcading to algebraic I\"-theoretic
invariants.

Example 4. 'iVhen thc ZG-llloduic .1.\;/ is not. Z-torsion free, the G-action on Aut(lvI)
may not lift to a horTIotopy action on a lvloore space ~Y whose homology is isomor­
phie to thc llIlderlying abdian grollp of j\1. In fact: obstruction thcory shows that
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the existence of such a homotopy action depends on the 2-torsion part of H*(G; M).
There is a beautiful (unpublished) example of Pierre Vogel which realizes this ob­
struction. Let G be the I(lein four-group 1 2 x 1 2 regarded as the subgroup of

GL(2, F4) via { (~ ~) I x E F4}. G acts naturally on F4 EIl F4 "'" (Z2)4 via left

matrix multiplication on 2-vectors. This rcpresentation of 1 2 x 1 2 on J'vf = (1 2 )4

eannot be realized by a homotopy-action on a IvIoore space, and hence not by a
topological G-action ei ther.

Example 5. Another approach to the Steenrod Problem is duc to Frank Quinn
[36] [37] and Justin Smith [42] [43] in the general context of topological realization
of chain complexes. The obstruction theories of Quinn and Smith are essentially
different. There is an cxamplc of a 1-torsion-free 1[12 x 1 2]-rcprcsentation due to
G. Carlsson [17] \vhich cannot arise as the homology representation of any 1 2 X 1 2 ­

action on a ivIoore spacc. Thus, therc is a homotopy Z2 x Z2-action o' on a IVIoore
space X whose assoeiated 1 2 x 1 2 -reprcsentation is isomorphie to 1\1. Peter I(ahn:s
computation of the first non-vanishing obstruetion via Cooke's Theory (Example
3) to replace a by an equivalent topological action and thc analogous obstructions
via Smith's theory applied to thc appropriate 1[12 x Z2]-chain complex are elosely
related. This points out to thc possibility of a decper relationship between the
works of Cooke, Carlsson: Quinn and Srnith.

In the following, we describe algebraic-geometrie invariants that can be associ­
ated to topological G-spaces, G-rcprescntations, G-chain complexes and homotopy
G-actions by the same proccdurc. In the case of finite group actions on IvIoore
spaces, these invariants coincidc~ and confirrn the same answer by the previous
methods.

2. Algebraie Geometrie Invariants

Let C be any of thc following catcgorics:

(i) T = eategory of paraCOIupact topologieal spaces and continuous maps.

(ii) T h = thc homotopy category corresponding to T.

(iii) M = the catcgory of R-rlloelules (finitcly gcneratcd) and R-hornomorphisms.

(iv) C = the category of R-chain cOTIlplexcs allel chain hOIlloHlorphism.

Let G be Cl. finite group. The G-equivariant category eorrcsponding to C is denotcd
by Ce. Thus objccts of Ce are cndowed with a G-action a~l(l thc morphisms are
G-equivariant (homotopy-actions and homotopy-equivariant maps for Th). Givcn
objects )( and y~ in Ce and a G-ulorphism f : _Y ---4 }/: wc wish to attach invariants
for the G-actions on _Y aud }~ and cstablish Cl.. relationship bctwcen them via f. First:
consider T G, wherc the fixed point set ~yG, ~Y II (H ~ G): thc isotropy subgrollps
CL for .7: EX: the orbit spacc _Y /C: thc Bord-coIlstrucboIl Xc == Ec x G ...Y (X -t
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Ec Xc X ~ BG is the associated fibre bundle to the universal principal G-bundle
G ----70 Ec ----70 BG) and their many atgebraie-topologieal invariants are defined as
usua!. vVhen dirn X < 00, XC and its topologieal invariants are useful invariants of
the G-aetion on JY. The isotropy groups are rather weak invariants when one deals
with homologieal properties of the G-aetion as opposed to more subtle geometrie
eireumstanecs (such as G-manifolds). A better substitute is thc set A(X) = {A ~

G I H*(JY A, JY A'; Zp) f=. 0, where A and A' are elementary abelian p-subgroups and
A' ~ A} whieh we eall the 8et 0/ e88ential stabilizcrs. vVhen only one prime p J (GI
fiUSt be eonsidered, we use the notation Ap(JY)' Among the algebraie topologieal
invariants in Tc, the Borel equivariant eohomology HC(JY; R) =H*(JYc; R) is one
of the most useful and common invariants. rvIany of the invariants of G-aetions
on ..X and Y are obtained from the functor Ec Xc (-) : T G ----70 T and the usual
algebraie-topologieal invariants of T. Note that Hc(-; R) yields a graded module
over H*(BG; R) and Je == Hc(!; R) is H*(BC; R)-linear.

In the following, we wish to construct analogues of the above-mentioned invari­
aots of Tc for the remaining eategorics. Thc coneepts corresponding to EG X G (-)

and Hc(-) for M and C were introduced alld studicd in homologieal algebra in
the same period. The sct-theorctie notion ::C-fixed points:: when applied to an
RG-Inodule Ai, with thc same definition as ~yG: leads to group eohomology with
t.wisted coeffieients H*(G; 111). Lct Q* be an RG-frce acyclic cOInplcx. Q* 0e lVI in
Me is analogous ta t.he Borel construction in T G. Thus, H(Q* 0e 1\1) 8:: H*( G; lvI)
is a good eandidate to imitate HÖ(JY)' This construction carries aver to Cc, and
leads to the notion of group-cohoInology with coefficicnts in achain complex, orig­
inally called hypercohomology (cf. [15] [14] and [9] Section One.) For an RG-chain
complex C* 1 the cohomology of the total complex of the double complex Q* 0 C*
is denoted by H*(G; C*). If C* 1S thc singular cochain complex of a paracompact
G-space )( ~ then H*(G; C*) agrees \Vi th HG (~Y; R), confirming thc expected require­
Inents. Moreover, if Co = 1\1 and Ci = 0 for all i > 0, thcn H*(G; C*) = H*(G; Ai).
Thus, construetions in Ce yield gcneralizations for both Tc and Me. The case of
hOInotopy actions T~ is Ilot cleal' as readily~ cvcn if wc ask for the analogue of the
Borel cquivariant cohomology H(,'( -).

It i5 worth Inentioning that the dircct gcneralization of fixed point set XC
to thc algebraic set-up yiclds an algcbraic objcct ouly. The quest,ion of finding a
geometrie gcneralization still rCInains to be explored. For example, considcr a finite
dimensional G-space ~Y and its singular cochain cOlnplex C*(JY; R). The dcrivcd
functors of (_)C in Ce give back Hc(.\; R) and not H* (){G; R). Thus~ analogucs
of fixed point sets and essential stabilizcr subgroups frOln a geoIuetric point of vicw
remain to bc fonnulated for MG anel Ce lwsidcs T~.

In abstract algcbraic gcolnetry: olle often needs appropriatc finiteness condi­
bOlls. In the sequel, wc will aSSllmc that all RG-rnodllies are finitcly generated.
This will include tot.al hOIIlologies of G-spaccs and G-chain complexes.
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2.1 Proposition. Let R be a commutative ring and let G be a finite group. Then
H· (G; R) is a (graded-commutative) 'noetherian R-algebra. For any finitely gener­
ated RG-module lvI, H*(G; 1\1) is a finitely generated H*(G; R)-module. Similarly,
assume that H*(X; R) and H*(C*; R) are finitely generated R-modules where X is
a G-space and C· is a G-complex. Then Hc("Y; R) and H*(G; C"') are finitely as
H*(G; R)-modules.

See Eyens (21] for noetherian properties of H *(G; R) and related results.
Next, we shall restriet attention to the graded R-algebra He clefined to be

ffiH2i (G; R) whenever R is not a ring of characteristic 2. Therc are two main reasons
1

for this restrietion. First, the ring H*(G; R) is not strietly eommutative in general.
One may eonsider the Z2-graded R-algebra corrcsponding to He and $H2i+1 (G; R)

I

as a super-ring, and apply constructions from super-algcbraie geolnetry. Thcre are
Inany important teehnieal differences betwcen thc eommutative and the Z~rgradcd

theories. '~Te shall study thc super-algebraic geometrie illvariants analogous to the
invariants of HG elsewhcrc. Thc second rcason is thc more 8atisfactory geometrie
situation that arises for the case of cleITICntary abelian p-grollps when we eonsider
the polynomial subalgebra of H*( G; n,).

Consider the projective scheIne (5: Os) over Spcc(R), where 5 = Proj(He) =
the projeetive scheme consisting of all proper hOITIogeneous prime ideals of HG. A
finitely generated graded He-module F* givcs rise to a coherent algcbraic sheaf F of
modules over (5: Os): also calleel an LJs-lTIodule for short. Let us rceall briefty this
construction due to Serre anel Grothendicck [24J [40]. A sub-basis for thc Zariski
topology on Proj (HG) consists of open sets of the form Spec( (HG) (f)) \vhieh are
denoted by 5/. Here, (He )(n i8 the hOITIogeneous localization of HG with respect
to the homogeneous eicinen t f E He alld i t consis ts of all (cquivalence classes of)
elements /n with a E HG hOlIlogeneolls: dcg( a) = dcg(fn) and n '2:: O. Given F*:

let F( 5/) = {/n I b E F* is hOIllogeneous: clcg b = deg fTl alld TL '2:: O} define the
presheaf associated to :F.

Given a coherent LJS-IIlOclulc F: define thc following exact scquence:

() -4 Fr ----+ F ----+ F rp ----+ O.

The subsheaf:Fr i8 defincd via Fr(S/) = torsion (HC)(J)-sllbnlodulc of F(5/),
and :F~ is the quotient sheaf F /:Fr. :Fr is called the torsion sllbshcaf of :F and
Frp is the largest torsion-frce quotient of F. Thc support of Fr is defincd to be
supp(Fr) = {.5 E S I :F~ i= O}. It dcfines a closed sllbschcIllC oE (S, LJ5) whose
underlying topological spacc is sllpp(Fr ).

Let ~V be any ()f the following: (i) Cl topological spacc with an action G x )( ----+

_\'; (ii) an R-frce RG-chain c(HTIplcx C*: (iii) an RG-lnodllie .1.\1.

Let Fot< be the Hr;-lllodllie in cach casc, rcspcctively: (i) Hc()(; R); (ii) H*(G; C*);
(iii) H*(G; Al).
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Definition. Let F be the Os-module corresponding to F*. F is called the char­
acteristic sheaf of l'V. F T and :Fq are called respectively the characteristic torsion
and the characteristic torsion-free sheaves of VV.

Next, we relate the characteristic sheaves of a finite dimensional G-space to its
more familiar geometrie invariants. It turns out that the set of essential stabilizers
Ap(.'Y) and the corresponding dimk H*(){ Ai k) for each A E Ap("\") ean be recovered
from the eharacteristic sheaves associated to the G-action on){. Here, k is a field
of characteristic p and A ~ (Zp)"+l, n 2:: O. To see this, we need to look at the
case G ,....., (Zp)n+l. For simplieity of notation, we shall eonsider the ease p = 2.
For p = add prime, one has the Siune statements by replaeing He and Proj(Hc) in
the following with the reelueed k-algebra He /radical and the corresponding redueed
scheme. By eonsidering the odd and evcn degrees separately, onc ean obtain stronger
results~ such as Euler eharact.eristics of thc fixed point sets. CL [9] for related results.

2.5 TheorelTI. Let G = (1 2 )n+ land k be a fielel of characteristie 2. Let X be a
finite-dimensional G-space with characteristic shcaf F. Then:

(a) F T determine A2(~Y) = set of essential stabilizers of ~Y, and conversely A2(..Y)
determines supp(FT ).

(b) dimk H* (..\"0; k) = rank F q = rank F.

Proof. First consider the ease )(o = 0. Then HG(~Y) is a torsion He-module
(k-eoefficients by Borel-Quillen-Hsiang loealization theorem (cf. [35] (27L for exam­
pIe). Hence:Fq = 0 and F T = F. Since He ~ k[to, ... , tn] is a polynomial ring,
Proj(He) = pn(k) = pn(F 2 ) x Spec k. The linear subspaces of pn(F 2 ) are

Spcc F 2

easily seen to be in one-to-one correspondence with subgroups of G~ while points
of pn(F2 ) correspond to cyclic subgroups of G. Thc defining ideal for the linear
subspace corresponding Co the subgroup A. 'i G is givcn by thc kernel of the in­
duced hornomorphisln H* (G: F 2) ---+ H* (..1; F2). The formulation of the localization
theorem in equivariant COhOlllology by Hsiang [27] implie~ that A. 'i G is an es­
sential stabilizcr if and only if there exists lL E H o( ~Y; F ~,d such that ann(u) =
I(er(H*(G; F 2 ) ---+ H*(Ai F 2 )). Bence, corresponding to each A E A 2 ( ..\"), there
exists a subsheaf of F T whosc support. is thc F 2 -rational linear subspace of pn (k)
defined by the hOIllogeneous prime ideal JA = Ker(H*(G; k) ---+ H*(Ai k)). Further,
JA occurs as the annihiluting ideal for aglobai secbon lL E HO (pn (k), :FT (d)) for
a sufficiently large d. Therefore~ A2(X) dctermilles supp(FT ). Convcrsely, for any
homogeneous element 7l E H[-;()C; k), t.he ilnnihilating ideal ann(u) ~ He is seen to
be invariant under thc action of thc Stcenrod algcbra~ i.c. invariant under t.he substi­
tubon ti f-t ti + t; for a11 POIYlloluials generators of HG. According to Serre [41L thc
variety defined by such an ideal is thc union of the F 2-rational linea.r sllbspaces of
pn(k). Consider an clClllcnt l) E HO(pn(A:); FT(d)) (for a sllfficiently high d) whose
annihilating ideal is Cl hOlnogcneous prilnc [ ~ HG. Accordingly, I elctcrmines a
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subgroup A <; G via~ J ~ JA = Ker(!I*(G; k) -t H*(A; k)). Therefore, there is a
one-one eorrespondenee between A2 (X) and the homogeneous prime ideals of He
whieh oecur as annihilating ideals far some u E HO (P n(k), :F(d)) for a suffieiently
large d.

(b) rank:Fq is equal ta thc dilnensian of thc (:Fq)x at thc generie point x
of pn( k) as a veetor spaee over ]{ (thc quotient field of HG). By the loeal­
ization theorem, HG(~){) 0Hc ]( rv HC(JyG) 0/fc K ~ H*(XG) 0k JC Henee
dimk H*(XG) = rank :Fq = rank :F.

3. Invariants for Homotopy Actions.

In this seetion, we cxtcnd thc eonstruetion of thc prcvious scetion to hOlnotopy
aetions. To do this~ wc necel to introduec~ an appropriate stabilization procedure.
Let lVIi bc RG-modules anel Pi be projectivc RG-Inodules: i = 1: 2. 111i are ealled
(projeetively) stably cquivalent if for suitable ehoices of Pi, lVII EB Pt ~ 1112 EB P2 .

Define thc operation w on the stable equivalenee classes of RG-modules via thc
short exact sequencc appliecl to a. reprcsentativc of the dass:

Here, P is RG-projcetivc, and U"l(111) is well-clcfined up to projective equivalenee by
Sehanuel's Lemma [19]. Denote st.able equivalence class of J\1 by (iv!) and w( (.LV!))
by (w(j\;J)). \Ve ean define the operation w- 1 for R,-free RG-Illodules via 0 -t 1\11 -t

Q -t w- I (lVI) -t 0 wherc Q is RG-injectivc (equivalcntly RG-projeetive: sinee
these two conecpts agrec for quasi-Frobenius rings such as R.G) [19]. Equivalently~

w- l (111) == HomR(w(Hoffin(111: R)), R) cDuld be used. Inductively, w n+ 1(.L11) ==
w(w n (11;J)), n E Z. In general: &,.,,-1 (lvI) ean be clefined as w-:.!(w(i\I)), using the R­
free RG-Inodule w( 111). Two RG-Inodules 1111 and J.112 are ca11ed w-stably cquivalent
if (w T (lVI1 )) = (WS (A12 )) for some T: S E Z.

Next, we neecl to pass to the graclcd version of w-stability. Givcn a gradcd
finitely generated RG-nlodule 111- = ffi 1\1 i : choose 1V E Z sufficicntly large so that

i>ü

111 i = 0 for i ~ lV. Definc a scquencc l\l
i

as fo11ows: x;t = u.)N 1110 and thc sequence

o -t Al i
-t 111 i

+ I -1 w N -( i+ I) (.1.11 1+ I) -t 0 is exact. Thus~ up to w-stability: ivI 1V
1S

a composi te extension of COIllposi tion fac tors wN - i ( 111 i ) .

3.1. Definition-Proposition. Thc w-shtble dass of l11
N

is wcll-defined and it is

ealled an w-eolnposite extensioll of 111-. Thc w-stable dass of i\;I
iV

i8 denoted by
J-L( ]I;I- ).

-N
Note that lvI <lepcnds Oll thc choices of extensions. Hence, thcrc are InilIlY

possibilitics far Il( 1\1-) in genera.l.
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Notation. For a homotopy action 0' : G --t E(..\), define 1JCY,O') = the set of
w-stable classes of w-compositc extensions for H*(X; R). 7](X, a) incorporates all
possible w-stable classes which may arise from all possible topologically equivalent
G-actions.

To see the effect of w-stability on characteristic sheavcs, we need to recall the
notion of Serre twist in algebraic geometry. Let A* be a graded R-algebra, and let
F* be a gradcd A*-modulc. Let S = Proj(A *) and F be the coherent Os-module
corresponding to F*. The shift of grading by d yields the A*-modulc F*(d) defined
by F*(d)i = pd+i. The corresponding sheaf is denoted by :F(d). It follows that
F(d) "" F rFYo s 0 s(d). 0 s(l) is eallecl the Serre twisting sheaf, and F( d) is called
a Serre twist of F.

Definition. Two Os-modules :F and F' are called Serre-twist equivalent if F(d) ~
F'(d) for some d~ d' E Z.

3.2. Propostion. Let F be an OS-Inodulc~ and let Fr anel F q be its torsion
subsheaf and torsion-frce quoticnts. Thcn:

(a) F(d)r = Fr(d). Hence supp(F) is invariant under Serre twists.

(b) F(d)q = Fq(d). Hence Fq is locally-free iff F'q(d) is locally free. Nloreovcr: Fq
and :Fq(d) split into dircct sums of sheaves of sInallcr rank in a sirnilar manner.

The proof fo11o\vs from tcnsoring 0 --t :Fr --t :F --t F q --t 0 with Os(d) over Os,
and llsing the definitions.

Definition. Let Cl' : G --t E(X·) be a hOInotopy action. Thc set S~'(.Y~ Q') =
Serre-twist equivalencc classes of eharactcristic shcaves :F eorrcsponding to one rep­
resentative from cach w-stable class in ry(-':: er).

3.3. Proposition. S~(..'Y:O') is we11-clefined. In particular, thc set SllPP("\,O') =
{supp(Fr ) I :Fr is CL eharaetcristic shcaf corrcsponding to a rcpresentative from and
elemen t of 1](.Y ~ a:)} aud FixC\"": Q') = {Serrc- twist equivalencc dasses of charac­
teristic torsion-frce shcaves corrcsponding to Cl. rcpresentative from an element of
'T}(){,O')} are wcll-dcfincd.

Proof. \Vith a slight abusc of notation. apply coholnology H*(C;, -) to thc exact
sequence 0 --t w(1'1) --t P --t .1'1 --t O. It follows that

(1)

Hencc: thc eharactcristic shcavcs of u...'-stahly cquivalent RG-IllOdlllcs diffcr oIlly by
Serre twists. Note that two gradcd IIlodllles which are evcntllally isoInorphic (i.c.
isomorphie in a11 snfficicntly larp;c dcgrces) givc rise t,o isoIllorphic sheaves upan
Serrc-Grothcndicck COIlstrllctioIl. Thc cOIlclllSioIl follows [roln Proposition 3.2.



Remark. Supp(..-\, a) and Fix(X, a) incorporate the extensions in the w-composite
extension constructions on H*(X; R). They depend on Rand thc graded RG­
representation H* (..-'l; R). Otherwise, most other topological properties of X are
weakened in thc stability process.

Next, there are two closely-related notions of stahility for G-spaces and G­
complexes. Following [6], two G-spaces "-\i, Ci = 1: 2) are called freely equivalent,
if there exists a G-space Y containing ~Yl and }(2 as G-subspaces, and Y/ ,,-'li are
compact G-spaces with free G-actions away from thcir base points corresponding to
Xi. The corresponding notion for R-free RG-chain complexes are defined similarly:
C* and C~ are freely equivalent if therc is an RG-complex D* containing both as
RG-subcomplexes and such that D*/C* and D*/C~ are finitely generated and free
aver RG. Free equivalence is an equivalence relation.

3.4. Proposition. (a) Suppose ..\ and y~ are freely equivalent G-spaces. Then
thcir characteristic shcaves are isomorphie.

(h) Assume further that yG =I=- 0 and Y is a lvIoore space with Hn(y; R) = 111
for some n > 0 and sorne R,G-moclule kl. Then the eharaeteristic sheaves of ..'land
111 are Serre-twist equivalent. Sirnilar statements hold for RG-complexes.

Proof. It suffices ta eonsider thc casc \vhere Y contains ..Y as a G-suhspace, and
y~ - )( is a finite dimensional free G-spaee. Thus: H(;(Y~, ...Y) vanishes in all clegrees
greater than dimCY - ~Y). The inclusion j : ...\ -t Y' induecs an eventual iso­
morphism j* : HG(l'~) --+ Hc()C): hence an isornorphism after Serre-Grothendieck
construction. .

Ta see (b), observc that Hn(y; R) 15 an ",-'-eomposite extension of ffiiHl()C; R).
Let Ya E 1,~G. Then

in all sufficiently high degrccs anel after a possible dcgrcc shirt. Hence thc ehar­
acteristie sheaves diffcr at rIlost by a Scrrc~t\Vist. Sirnilar eommcnts apply to RG­
complexes.

Renlark. Thc condi tion yG =I=- 0 is not neccssary if one is willing to replace G­
spaccs by suitable RG-ehain cornplexcs (e.g. thc ecllular clluin eomplex if )( and Y~

are G-C\~T eomplexes), Up t.o frce cquivnlencc: any RG-chain cornplex is equivalent
to one with precisely one cohorllology group kl, whieh i5 <t w-corupositc extension
of EBiHi(_y; R). In this situation: the st,atement of 2.4 rcmains true again.

4. Obstructions for Topological Replacements.

Lct (..-\: 0') be a hornotopy G-Acr,ioll. As pointccl out. abovc: G. Cooke proveel
that cy~ 0') can be replaced by all eqnivalcnt topological G-aet.ion if allel only if the
map B o : BG --+ Bt:( X) lifts to ß'H( X) in thc fibratioll B"H( X) --+ BE(x). This lifting
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problem ean be studied via obstruetions theory as in [48] [49] [28]. In praetiee, only a
few lifting problems can be successfully studied. Often, when the first (01' at best the
first few) obstructions vanish and a higher obstruetion group is non-zero, it beeomes
exceedingly difficult to dctermine whether 01' not different ehoices for the earlier
Stages of the lifts will avoid the higher obstructions. ß'Ioreover~ the intermediate
obstruetions may not have a useful geometrie 01' algebraie interpretation.

The strategy adopted in this paper is to find necessary conditions for existenee
of topologieal replacemcnts for (){, 0') via global invariants, namely charaeteristic
sheaves associated to w-eomposite extensions of H*CY). There are advantages in
this point of view. First, these invariants are more readily eOlnputable. Through
common algebraie tools. Secondly, these invariants are defined in terms of more
basic features of (X, 0'), namely reprcsentations on hOIllology. Thc stabilizations
reduce further the dependence on more subtle invariants of the homotopy-type of
~Y. Third, these invariants have geometrie interpretations in terms of fixed point sets
and stability snbgroups when (~Y~ Q') is equivalent to a topologieal G-action. Thus,
these invariants of hornotopy actions are substitutes for their geometrie counterparts
in the case of topological actions. As such, they not only detect which w-composite
extension can possibly COlne froln an cquivalent topological action, but which geo­
metrie eharaeteristics the potential G-aetion should have.

Throughout thc rest of this section, wc assume that G = (Zp)n+l and k is a
field of characteristie p. Homology and cohomology groups have coeffieients in k.

4.1. Theorem. Let (){, 0') be a homotopy G-action Oll a connected C"VV complex
~Y. Let (5, Os) be The projective scheme Proj(Hc ). Let '1]( ..\,0') be the set of
w-stable w-composite extensions aad SW( ..Y, 0:') = the set of Serre-twist equivalence
classes of characteristic shcaves obtained froIn Serre~Grothendieckconstruction on
representatives of T7( )(, a). If (~Y. Cl:) is equivalent to a 0 topological G-action, then
there exists a [E] E SW( ..\, Q') such that:

(a) ei.p is locally-free, ilUd it spli ts iIl to a direct sunI of invertib le 0 5 - InodnIes.

(b) SUPP[~T] is a union of Fp-rationallinear sllbspaces of 5.

Outline of Proof: Suppose t,l· : G x Y -f Y· is a topological G-action replacing
(..Y, 0:). Let [~] E S:..J(~y, a) be Thc Serrc t\vist equivalcnce class of the charaeteristic
sheaf of (Y, 1f;) corresponding to HG(1'~; k). As indicated before, wc set (5, Os) be
Proj(Hc(Radical)): so that 5 = pn(k) <lnd ~ is an OS-Inodule. If dirn Y < 00: then
Theorem 2.5 ilnplies that support of ~r consists of thc essential stabilizers of the
G-action on Y· which are proper subgroups of G. Hence (b) follows in this case.
Moreover, proof of 2.5 shows that [~i.pl t,hc Serre twist equivalcnce cla..ss of the sheaf
obtained from the graded HC-Illodule Hc(){C; k). The splitting of Hc( ..yG) =
H*(G) ® H*(X; k) = H*(G) G· (md Hd(_y; k) ~ EBd H*(G)(d) proves (D) für this
ease. In the genral case, \vc note that S11PP[(r] is clctennined by t.he cornponents of
thc closed subspace of Pn( h:) dcfined by AIln ( 1l) C HG for a S 11itnb le set of dements
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u E Hc(Y)' On the other hand, ann(u) is invariant under the action of Steenrod
algebra Ap [30] [31] a result of Serre [40] [31] implies that these eomponents are Fp ­

rat ional linear subspaces of P n ( k ), as rcquired in (b). As for (a) in this case, we use
the work of Lannes [32] [33]. Aeeordingly, the torsion-free quotient of Hc(Y'; F p )

is isomorphie in suffieiently high dimensions to (Hc/Radical) ® Tc(Hc(Y'; F p )),

where Tc is a suitable version of Lannes' functor Tc and y~' = Ivlap(Ec , Y) with
the diagonal G-action. Sinee Hc(Y'j Fp ) is finitely generated over Hc/Radical.
Tc(Hc(Y', F p )) is a finite dimensional gradcd Fp-veetor spaee. On the other hand,
Hc(Y') = Hc(Y): so (a) fo11ows just as in the provious case.

Remark. For a general finite group C: thc Qui11en st.ratifieation of Spec He [35]
ean be used to formulate a generalization of the above thcorem. The proof above
determines the behavior of [~'P] and [~T] on each strattun.

4.2. Corollary. Suppose ()l,O') is a homotopy action and keep the notation
above. Assurne that for all [~] E S:"'( ..Y, a), either [~l,.'] is not represented by a surn of
invertible 0 s-ITIodulc 01' supp[~T] has components whieh are not F p-rationallinear
subspaces of pn(k). Then ( ...Y: 0:) cannot be replaced by a topological action.

4.3. Exarnple. Let I~ be a finite extension of F p such that [I~ : F p ] > 1. Let
Pi E pn(k) be a set of points which are not Fp-rational, i = 1, ... , m. Chonse
(n + l)-vectors Xi = (XiOl'" : Xin) E I~n: and form thc elements

n

Hj = 1 + L :Eij(ej - 1) E l\.PC:
j::=O

where {eo, ... , en} is an Fp - basis for G rcgarded as an (11, + 1)-dimensional F p­

vector space. Thc subgroups (Uj) ~ !':G are a11 isomorphie to Zp, and !(C is a frce
!~(ui)-modulc [16] [20]. Dcfine the Z-torsion ffee rnodulcs J.\li via exact scquence
0----+ 1\1j ----+ (ZG)S ----+ I~G01\'(u;)!~ ----+ O. Computation of H*(G,kli ) shows that
its characteristic sheaf is a sky-scraper sheaf over pn(k) with support {Pd. On thc
other hand, eonsidcr aspace .\ homotopy cquivalent to a. bouquet of sphcrcs of
dimensions di 1 i = 1, ... : ln + 1. \Vc assume that the di-th ßetti numbcr of ~Y is the
same as the Z-rank of l\lj for 1 ::; i ::::; "n. As in Example 1.1, construct Cl, homotopy
action 0' : C ----+ E(...\) w hose red11ccd homology representat ion is ffi i 1\1i . Hcre, wc
choose the trivial action on 1\1m+ I. Sllspcnding topological actions allows one to
have a base point fixet! by G. S11ch suspensions do not. affect our arguments, so we
shall consider reduced homology in thc following.

vVc leavc out J.\10 for t.hc mcnl1ent, aad consider the extensions

o ---+ 1\1 i --4 1\l i+ 1 ----+ w N-(i+l)(lvJ i+ 1 ) ---+ 0

as in the definition and nota.tion of Sectioll 3. Here H* (_Y; J,;) = hJ* and ~ 2: 1 in

these extensions. The extensions are dctermincd by an appropriatc Ext(-;(i\1
1

, 1\1i + l
)
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after dimension shifting, hence by a class in H*(G, Hom(1vI
l

, 1V/i+1
)). On the

other hand, a well-known result of Dade [20] (called Dade's Lemma, see also [12]
[16]) and an argument similar to NIackey's formula can be used to show that
(]{G 0K(ud ]() ® (](G ®K(uj) J() is a free J{G-module if i i=- j. This type of
argument and induetion proves that the w-composite extension eorresponding to
lVII, ... ,Mm is isomorphie to ffi:~1 w dm -dj (lvIi) = M'. First, eonsider the case
Mm+I = O. Then, S(..,'(..-Y, a) has only one element [~], and ~ = ~T' It follows that
SUPP[~T] = {Pt, ... ,Pm} C pn(k) satisfies the hypothesis of Corollary 4.2. Hence
(X, a) does not have a topologieal realization. Next, if A1m + 1 i=- 0, SW(..-Y, a) can
have more than one element. However, one can compute that for all [~] E SW(X, a),
SUPP[~T] C {PI"'" Pm}. If we take 'm > dim Hm+l(X; k), then SUPP[~T] is seen
to be non-empty. Hence (.X"~ a) is not cquivalent to a topological action in this case
either.

4.4. Example. In this exaIllplc. let Pt be as in 4.3, anel construct lvII as beforc.
Let 1\;12 = (.1.,'(1\11), and construct a. homotopy action (~y: a) as in 4.3 with reduced
homology H d( ..-Y) S;:' 1\11 and H d+ 1 (){) = 1\12 , Again, we Illay consider rcduced
homology. In this casc: thcn SW(~Y: n) has only two classcs: One corresponding to
thc case ~T = 0 and ~r.p = Os anel anothcr in which ~r.p = Os and ~T is a sky-scrapcr
sheaf with support {PI} and Bi (S; ~T) ~ k2 for a11 sufficiently large i. In the first
case, [~] is reprcsented by the charactcristic sheaf of 'IjJ : G x Y ---+ Y, where Y is
obtained as the mapping cone of f : G+ A (Sdr ---+ G+ A (Sd) r. Such f * in homology
realizes thc homomorphisIll a in thc sequencc

Thus, this u.J-compositc extension corresponds to a sernifree G-action on a finite
dimensional space with a contractiblc fixcd point set. In the second case~ there is
no topological action whose charncteristic shcaf be equivalent to ~. Hence this ~

does not correspond to a topological act.ion.
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