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Here we will consider algebraic methods of the problem of describing stable
homotopy groups of spheres, wich were discussed on the first report 09. 02. 1994.
Recall the notions of B-construction and co-B- construction introduced by Adams
[1] and generalized on the case of Ay -algebras and Ay-coalgebras by Stasheff [2].

Let A be a graded A-algebra. It means there are products m; : A®UT2) 5 4
and for any n > 0 the following relations are satisfied

n

Y (-)m(1® .. @i ®...®1) =0

i=0

where the sum is taken also over all places of m,_;. Then B- construction BAisa
differential coalgebra, wich as a graded coalgebra coincides with the tensor coalgebra
TS A over the suspension SA. The elements in T'SA denote [z, ...,z,],@; € A, and
have dimensions Y., dim(z;) + n. A coproduct in T'SA is given by the formular

V[:ﬂl, ...,.’L'n] = Z[.’ul, %,] ® [:E,'+1, ...,.’c,,]

A differential on the elements [zy,...,z;] is defined by the formular

dlzr, .. z0) = Z(—l)f[:cl, s TE(Ti @ oo @ Zigkt1)y ooy Tha

i

In the case when A is usual algebra without higher products 7;,7 > 1 the corre-
sponding B- construction denoted BA.

By dual manner, let i’ be a graded Ao- coalgebra. It means there are coproducts
v;: K — K®+2) and for any n > 0 the following relations are satisfied

n

Y (-)(1®..®V.i®... @17 =0

=0

where the sum is taken also over all places of V,,—.;. Then co-B-construction FKisa
differential algebra, wich as a graded algebra coincides with a tensor algebra TS~ ¥
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over a desuspension ST'I{. The elements in 'S ™! K denote (2, ..., za],2i € I and
have dimensions 3 .., dim(z;) —n. A product in TS™'K is given by the formula

T([Z1y s T @ [Y1, ooy Um]) = [T1s e Tas Y1y oons Y|

A differential on the elements [z] is defined by the formula d[z] = >, vi(z). On
the others elements the differential defined as on the products of the elements {z].

In the case when I is usual coalgebra without higher coproducts v;,¢ > 1 the
corresponding co-B-construction denoted FI .

B-constructions and co-B-constructions prove to be very useful in algebraic
topology. In particular Adams has used the co-B- construction FI overe Mil-
nor coalgebra II' (dual to Steenrod algebra) to describe the second term of his
spectral sequence for stable homotopy groups of spheres. He has proved that this
second term is isomorphic to the homology of the co-B-construction over Milnor
coalgebra. We have proved the next

Theorem 1. On Milnor coalgebra K there 138 Aoy- coalgebra structure and the
homology of corresponding co-B-construction FIU are isomorphic to Eo.- term of
the Adams spectral sequence of stable homotopy groups of spheres.

The meaning of this theorem is in the possibility to choose higher differentials
of the Adams spectral sequence in such manner, that they will form A, -coalgebra
structure on Milnor coalgebra. To prove this theorem we use Bousfield-Kan spectral
sequence [3], functional homology operations [4] and operad methods [5],[6].

In two words the proof is the next. It is known that higher differentials in the
Adams spectral sequence are determined by Massey-Peterson functional cohomol-
ogy operations [7], wich are partial defined and multivalued mappings. We have
defined such functional homology operations {4], wich are usual operations, every-
where defined and unique valued. They determine Massey-Peterson operations and
hence the higher differentials in the Adams spectral sequence. These functional
homology operations give us the desirable Ay -coalgebra structure on Milnor coal-
gebra I,

So to describe the second term and Eo term of the Adams spectral sequence
we must describe the homology of the corresponding co-B-constructions FI overe
Milnor coalgebra in the case of the second term, and F/i over Ag-Milnor coalgebra
in the case of Ex-term. Indeed our methods are working in general situation of
arbitrary Aqs-coalgebra. In the case of Milnor coalgebra we will obtain the second
term, in the case of A, - Milnor coalgebra we will obtain E, term of the Adams
spectral sequence.

Let now I be a graded Aqo- coalgebra. Consider a question of describing ho-
mology A. = H*(I:"I\') of co-B- construction A = FK. First question we must
answer - what structure is on A, = H, (IE’ K). Of course there is an algebra struc-
ture 7, : A, ® A, — A, induced by an algebra structure 7 : A®@ A — A 1n co-B-
construction 4 = FK. But besides that there are, for example, Massey products
A, ®..Q0 A, > A,, wich are partial defined and multivalued operations. Much
more convenient language for our purpose is Stasheff language of A.- structures.
A general theorem states that on the homology of any differential algebra A there
1s Ay~ algebra structure, wich defines all Massey products and there is an iso-
morphism of homology of B-constructions H,(BA) = H ,‘(f?A.). It was proved by
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Kadeishvili [8] and also follows from the fact that A.o- algebra structure is a homo-
topy invariant one in the sense that if it is on a chain complex A and a chain complex
A’ is homotopy equivalent to A, then on A’ also is Ax- algebra structure and there
is Ao~ chain equivalence between A and A’. In the case when a ground ring is
a field the homology A, of a differential algebra A may be considered as a chain
complex with zero differential, wich is chain equivalent to A. Then on A, there is
the required Aqo- algebra structure and an isomorphism H,(BA,) = H,(BA).

So we will describe A, = H,(FK) as Aqo- algebra. It means to find indecompos-
able elements and relations between its products. In the first report we have defined
what it means decomposable and indecomposable elements for A,- algebra. Now
we reformulate these definitions on the language of B- constructions.

Let A be a graded Aeo- algebra. Consider B- construction BA. There is an
injection A = BA,x — [z] and a short exact sequence

. ~ ) ~ ‘vl
0-AS5BAL B'A=BAJ/A 50
wich induces a long exact sequence of homology
oo AL H(BA) IS H(B'A) 25 A2 H(BA) - ...

From the definition of Massey sequence it follows that the sequence (22, ...,2") of
the elements z* € A®' is Massey scquence if and only if the element 2? +...+z" is a
cycle in B'A. Moreover, a map j, : H *(Bl A) = A s induced by Massey products.
The element z € A will be decomposable if it belong to the image of y, . The
module of indecomposable elements of A will be denoted QA. It is isomorphic to
AfImp, = Ima,.

Notice that in the case of usual algebras we obtain usual definition of indecom-
posable elements.

So to find indecomposable elements in Ay~ algebra A we must find the image
of the homomorphism 7, : A — H,(BA), and its clements will be the generator
elements.

By dual manner for Ay coalgebra I it may be defined a notion of primitive
elements. Namely, consider co- B-construction FK. There is a projection p : FK —
K and short exact sequence

00 F'K = Ker(p) 5 FK B K =0
wich induces a long exact sequence of homology
oo H(F'K) 25 H(FR) 25 K 2 H(F'R) - ...

An element z € K will be called primitive 1if it belongs to the kernal of the map-
ping 7, : K — H,(IE’IK), or that is the same, to the image of the mapping
pe : H,(FK) = K. The module of primitive elements of K will be denoted PK.
Notice that if K be usual coalgebra with coproduct v : ' — K @ K then we
obtain usual definition of primitive elements PK = {t €¢ K : V(z) =z @1+ 1@=z}.
Next theorem gives us the opportunity to find indecomposable elements of the
homology of co- B-construction over arbitrary A.-coalgebra.
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Theorem 2. For any graded Ao-coalgebra I there 1s an isomorphism
QH.(FK) = PK

, where QH*(FK) -a module of indecomposable elements of A, = H*(FK), PK -
a module of primitive elements in K.

The proof follows from the above definitions and commutative diagram

H(FK) —2— K

= lg

A‘ _'.—} H*(BA‘)

Similary, for the primitive elements of the homology of B- construction over Aq.-
algebra there is a dual theorem.

Now we consider the question about relations for A.- algebra. Let A be a
graded Ac- algebra. Any relation in A may be written in a form pu(z?,...,z2") =
mo(z?) + ... + mp_a(a™) = 0, where (z?, ...,z™) - Massey sequence and u(2?,...,2™")-
Massey product in Ay - agebra A. To find the relations it means to find those
Massey sequences, for wich Massey products are zero. Of course, some of such
relations follows from A,- algebra structure. So we need to find only such relations,
wich don’t follows simply from A, - algebra structure.

As we have seen it earlier Massey sequences (22, ..., z") represents cycles in B'A.
Show that homological zero cycles give the relations p(z?,...,2") = 0, wich follows
from As- algebra structure in A.

Indeed let y € A®("+l),d(y) = 22 4 ...+ 2z Then z? = (T2 @14+ 1
Tne2)(y)y ey " = (M0 ®...®1+...+ 1®...Qmo)(y). Massey sequence (z?,...,z") in
this case determines the relation u(z?, ..., z") = Tro(.'l:2)+ et Tp—(z") = mo(mH—2®

1+1@mu—2)(y)+ ...+ Tn2(m0®..Q L+ ...+1Q ..m)(y) =

n—2

Y (1@ @mno2-i ® ... @ 1)(y) =0
1=0

wich follows from Ag- algebra structure.

Thus the relations what we need are determined by the elements in homology
H,(B'A) such that u,(z) = 0, where p, : H,(B'A) —» A, and to find relations
in A-algebra A we need to find the kernal of ., or that is the same, the image
ofp, : H,(BA) - H,(B'A).

From the other side let Ao A be a free A algebra generated by A and AL A =
AsoA/A. Then to find relations in 4 it means to find such elements 2 € Al A for
wich p(z) = 0, where i : AL_A — A is a mapping induced Ao- algebra structure
in A. Of course, some of such relations follows from A, -algebra structure in A.
To find these relations consider a map v x 1 —1 X g : Ao AL A = AL A, where v
1s a mapping induced by a monad structure in A, considered as a monad in the
category of graded modules. If « belongs to the image of this mapping v x1—1 x p
then it generates a relation p(z) = 0, wich follows from Ag,- structure. Denote
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Al + A a factor of AL A under the image of v x 1 — 1 x p. Note that elements in
Al % A have a form 7,(z7 @ ... @ T,42), where z; € A,1 <1 < n. Then to find
relations in A, wich not follows simply from A- algebra structure we need to find
such elements € AL * A wich maps into zero under the mapping ¢ : Al_* A —= A,

Define a mapping i : B'4 — Al x A by putting i(z? + .. + &") = mo(z?) +

.+ ma—2(z™). It is casy to see, that if z be homological zero in B'A then i(z) =

0, and conversly if i(z) = 0 then z is homological zero. Therefore i induces a
monomorphism z, : H‘(EIA) — Al x A

Consider a composition % : H,(BA) = AL * A of the mapping p, : H,(BA) —
H*(E”A) and this monomorphism H.(B']A) — Aloo * A, Then to find relations we
need to find the image of ¢¥. All required relations will have a form ¢(z) = 0,z €
H,(BA).

Let now K - Ago- coalgebra. Consider Aqo- algebra A. = H.(FK). Taking into
account an isomorphism H‘(BA*) = I, from previous considerations it follows
that all required relations have a form ¢¥(z) = 0,z € K and to find them we
need a formula for . To write such formula consider Stasheff operad A, wich is
generated by the operations ;. Remark, that we can denote it’s elements as V; also.
When we are saying about A,,-algebras we use the notations m;, when about 4..-
coalgebras then we use the notations ¥v;. There is a coproduct A : Age = A ®@ Aco,
wich turn A, into a Hopf operad. We will denote values of this coproduct as
A(m;) = Y 7 ® V. Denote also p: I’ = PK = QA, a projection. Then we will
have

Theorem 3. Let K be a graded Ao- coalgebra, then all required relations in the
homology A, = H,(FK), considered as Ao - algebra have the form (z) = 0, where
P K — AL« A, is given by the formula ¢(z) =3, 7i+ (p@ .. @ p)V/(z),z € K

Note that in the case when I\’ be a usual coalgebra the formula for ¢ takes more
simple form: ¢(z) = ¥, m*(p®...@p)V(:)(x), where V(i) : K — K®(+2) obtained
by iterating a coproduct V : &' — K @ K.

Let now K be Milnor coalgebra (dual to Steenrod algebra). Show how these
methods are working for describing E;-term of the Adams spectral sequence. Recall
that Milnor coalgebra indeed is a Hopf algebra with associative product n : KQLK —
IV, associative coproduct V: ' = K @ ' and Hopf relation

Vor=(7®m)o(l1®T®1)o(VRV),

where T: K @ N = K @ K is a permutation mapping.
If a ground ring R is Z/2 then K is polinomial algebra with generators §; of
dimensions 2' — 1,£y = 1 and coproduct V : K — K @ I defined by the formula

V(&) = Zf?ﬁk ® &k
k=0

If R =1Z/pthen K is commutative Hopf algebra with generators §; of dimensions
2(p* — 1) and 7; of dimensions 2p' — 1. A coproduct V : K - K @ K defines as
follows

Zf  ® &k, V T,)—T.®1+ZE . ® T
k=0
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Directly from the definition of coproduct in Milnor coalgebra it follows that its
primitive elements are ¢ ,7 > 0 if R = Z/2 and ﬁf',ro, if R =Z/p. Correspond-
ing indecomposable elements in the second term of the Adams spectral sequence
denoted h; for £; and gp for 79. From Theorem 2 it follows

Theorem 4. If R = Z/2 then the module of indecomposable elements in A, =
H,(FK) considered as graded Ao~ algebra is generated by the elements h; of di-
mensions 2' — 1. If R = Z/p then corresponding module of indecomposable elements
is generated by the elements h; of dimensions (2p — 2)' — 1 and by the element g
of dimension 0.

Of course these results are simply reformulations of May results [9].

Now we consider the question of finding the relation in the second term of the
Adams spectral sequence. Let R = Z/2. Define a projection p : ' — QA,, where
A, = H,(FK), putting p(é?') = h;, and p(z) = 0 otherwise. Then a mapping
Y N — Ax * A, calculates by the formula

P(e) =Y mil(p(z1) @ ... @ p(eita)),

i>0

where Y 21 ® ... @ Tiy2 = V(i)(x).
Taking different elements @ € K we will obtain different relations. For example,
it is to see that ¥(£;) = mi—2(hi—1 @ ... ® hg) and therefore we have the relations

Tri_g("ti_.l ® ® }10) =0

wich we call basic relations.

To describe others relations we use Hopf structure in . Namely, define products
Uy in QA, putting h; Uy by = hiy and h; Ug h; = 0 otherwise. Similary h; Uy by Uy
hivr = hiUy hip1 Uy hy = hipy Uy hi Uy Ry = hig and h; Uy b Uy by = 0 otherwise,
and so on.

Using these products we define products of the elements 7, _2(2z; ® ... @ 2,,) in
AL, * A, by putting

7rn-2(3:1 ®..Q :L'u) Uy 77111-—‘2(3311+l ®..Q0 -Tn+m) =

= Zﬂ'n+m+2($in ® ...®:1:,-n+m)—|—z Tntm=3(Ti; @ ... @i, U1 Tj, @ .. Ti ) + oo

where all sums are taken aver all (n,m) shuffles of (1,...,n4+m) and 1 <7; < i3 <
e<nn+ 1<y << <n4+m.
Similary it defines a product

ﬂn—?(a;l ®...Q :En) U Trm—?(mn-i-l ®..8 "l:n+m) Ul 7rk—2($n+m+l ® ---$11+m+k)

and so on.

From basic relations by taking its products we can obtain new relations and
there is the next
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Theorem 5. The second term of the Adams spectral sequence considered as Ago-
algebra has generator elements h;,1 > 0 and relations:

mi(hit1 ® ... ® ho) =0,
Ti(hig1 @ ... @ ho) Ut (R4 ® ... @ hg) =0

and so on.

For example, multiplying the elements h; and h; we obtain the relation my(h; ®
hj)+ mo(h; @ hi) = 0. Multiplying mo(h; ® hg) with itself, we obtain the relations
mo(ha@h1) = 0. Repeating this procedure we obtain the relations mo(hiy @h;) = 0.
We denote them simply .;41h; = 0. Remark that there are no another relations
between two times products of the elements h;. To obtain all relations with three
elements h;, hj, hy we must find the products h; Uy hj Uy by and m(hiv @ hi) Us A
Doing it we obtain the following relations: m(h; @ h; @ hr +hi @ hxe @ h; + h; ®
h; @ hy -+ h.j RQhr @h;+hr @M ® hj +he® hj ® h.,‘) =0

T1(hit1 @hi @ hj +hig 1 @h; @hi+ 7 @hig1 ® M) =0,7 # 4,1+ 1;
T (hi @ hix1 ® ki) + mo(hit 1 ® hiyr) = 0,7 =14
T (hit1 @hi @ hiy1) + mo(hit2 @hi) =0, =1+ 1.

Of course when we say all relations we mean all generator relations. There are
also the relations from A,-algebra structure and corollaries relations. For example,
consider the relation 7o(m @1+ 1@ m )+ m (7@ 1Q1+1QmR1+1®1Qm) =0
and apply it to the element h; @ hiy; ® h; ® hiy, we will obtain the relation
h:i;+1 +h?hits = 0. If we apply the same relation to the element b, 12 @h; 41 @hi@hit)
we will obtain the relation h;h? 12 =0, and so on.

Indeed all these relations are some kind of commutativity relations. There is
another way to describe commutativity relations with the help of E,-algebra struc-
ture. Note that Milnor coalgebra I is a commutative algebra. In this case on its
co-B-construction FI{ is a structure of E-algebra [10]. But Eo- structure is a
homotopy invariant structure and hence E,-algebra structure is also on the ho-
mology H,(FI\'). For Ey-algebras we also can define a notion of indecomposable
elements and to look for the relations between its products.

Namely, for graded Eo,-algebra A also as for Ay, -algebra it may be defined a
notion of B-construction B(Ey, A). There is an injection ¢ : A - B(Ew, A), wich
induces a short exact sequence

0= A B(Ewo, A) 2 B (Eoo, A) = 0
and a long exact sequence of homologies

AL H,B(Ew, A) 22 H,B'(Ewo, 4) 125 4 — ...

An element = € A will be called decomposable if it belongs to the image of .. The
module of indecomposable elements will be isomorphic to Imz,.

Also as in the case of A- algebras the required relations are determined by the
homomorphism ¢ : H,B(Eo, A) = EL * A and have the form #(z) = 0. So to find
indecomposable elements and relations for E- algebra A we need to calculate the
homology of B(E, A). The answer in the case of Milnor coalgebra gives the next
theorem
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Theorem 6. Let K - Milnor coalgebra and A, = H.(FK') be considered as FEoo-
algebra. Then the homology H,B(Ew,A) in the case R = Z /2 be generated by
the elements & of dimenson 2' — 1; in the case R = Z/p - by the elements & of
dimension 2(p' — 1) and 1; of dimension 2p' — 1.

After that it 1s easy to find the image of 1. : Ax =& H.B(E, A). It contains only
one element hg of dimension zero. The homomorfism ¢ : H.B(Ee, Ay) = EL * A,
be expressed by the formula ¥(§;) = mi—;(h; ® ... ® ho). So we obtain the next
theorem

Theorem 7. The second term of the Adarmns spectral sequence considered as Eoo-
algebra has only one generator element hg and relations w1 (h; ® ... @ hg) = 0.

Indeed we don’t need all F-algebra structure for describing commutativity
relations. For example we don’t need U;-products, since we know that the elements
hi are generator elements and all others elements may be obtained by applying to
them only the operations from Ag-algebra structure without U;-products or any
othes operations from FE-algebra structure.

So we need such structure, what will give commutativity relations and contains
not so many operations as Fo,- algebra structure. To obtain such structure we
consider the monads A, Foo 111 a category of graded modules wich correspond to
graded module A a free A -algebra A4 and a free E- algebra EoA. If A be a
A or Eoo- algebra on the language of monads it means that A be an algebra over
correspondent monad.

There is a mapping of monads Ag, — Fo. For any graded module A denote
SeoA the image of the mapping Ao A = EA. Then a correspondence A — S A
generates a monad S, in the category of graded modules. Algebras over this monad
will be called Soo-algebras. It is clear that if A be Eos-algebra then it will be So-
algebra, and we have the next

Therem 8. The second term of the Adams spectral sequence, considered as Seo-
algebra, generated by the elements h;,1 > 0 and relations mi(hiy; @ ... @ hg) = 0.

Pass now to Eo-term of the Adams spectral sequence of stable homotopy groups
of spheres. To describe it in such manner we need to study a structure on Milnor
coalgebra more carefully. There is not only Ag-coalgebra structure. On Milnor
coalgebra there 1s E,-algebra structure and relations similar to Hopf relations
between E,-algebra structure and Ag-coalgebra structure. Such a structure we
call (Eu, Ax)- Hopf algebra structure. This structure on Milnor coalgebra K
makes it possible to calculate higher coproducts V; : k' — K®0+2) on the products
or U;- products of the elements =,y € I{.

Such calculations were produced for the operation v : K — K@K @K in [11]. In
particular from these calculations follows that v, (ﬁf') =& o ®£f"l ®€&1,71 2 2and
hence primitive elements in " arc only the elements &, 2, £1, €%, The corresponding
elements ho, h1, h2, hs are indecomposable and therefore we have

Theorem 9. The module of indecomposable elements in Eo-term of the Adams
spectral sequence considered as Ao, algebra 1s generated by the elements hy, hy, ha, hs

Of course this result is simply a reformulation of Cohen result [12].
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And what about the relations. There are two ways of obtaining relations. First -
using Hopf relations between Eo- algebra structure and Ao- coalgebra structure to
calculate the operations V;. The results of [11] show that it is possible but formulas
are very complicated. Second - use the next general theorem

Theorem 10. Let I be a graded (Eoo, Aco) - Hopf algebra. Then on it’s co-B-
construction A = FI\ there is Eqo- algebra structure, and hence on it’s homology
Ao = H.(FK) there 1s also Eo- algebra structure

Recall that to find indecomposable elements and relations for graded Eo- algebra
A we need to calculate the homology of B(E,, 4). The answer in the case of Milnor
coalgebra gives the next theorem

Theorem 11. Let I - Milnor coalgebra considered as (Eoo, Ao )- Hopf algebra
and A, = H,(FK) — E- term of the Adams spectral sequence considered as Eoo-
algebra. Then the homology H.B(Ew, AL) 18 generated by one element €.

After that it is easy to find the indecomposable elements and relations.

Theorem 12. E - term of the Adams spectral sequence considered as Eo,- algebra
generates by one element hy and all relations follows from E,- algebra structure.

Of course the last part of my report need to be more precisely. But to do it we r
must use developed operad methods and there is no time for it. I hope that I will
tell about 1t in the next time.
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