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Abstract. We study when a smooth variety X, embedded diagonally in its Carte-
sian square, is the zero scheme of a section of a vector bundle of rank dim(X) on
X ×X. We call this the diagonal property (D). It was known that it holds for all flag
manifolds SLn/P .

We consider mainly the cases of proper smooth varieties, and the analogous prob-
lems for smooth manifolds (“the topological case”).

Our main new observation in the case of proper varieties is a relation between
(D) and cohomologically trivial line bundles on X, obtained by a variation of Serre’s
classic argument relating rank 2 vector bundles and codimension 2 subschemes, com-
bined with Serre duality. Based on this, we have several detailed results on surfaces,
and some results in higher dimensions.

For smooth affine varieties, we observe that for an affine algebraic group over
an algebraically closed field, the diagonal is in fact a complete intersection; thus
(D) holds, using the trivial bundle. We conjecture the existence of smooth affine
complex varieties for which (D) fails; this leads to an interesting question on projective
modules.

The arguments in the topological case have a different flavour, with arguments
from homotopy theory, topological K-theory, index theory etc. There are 3 variants
of the diagonal problem, depending on the type of vector bundle we want (arbitrary,
oriented or complex). We obtain a homotopy theoretic reformulation of the diagonal
property as an extension problem for a certain homotopy class of maps. We also
have detailed results in several cases: spheres, odd dimensional complex projective
quadric hypersurfaces, and manifolds of even dimension ≤ 6 with an almost complex
structure.
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1. Introduction

Diagonal subschemes are important in many questions of intersection theory. Apart
from classical “reduction to the diagonal” (cf., e.g., [29] or [7]), it was shown in [25],
Sect.5 that knowing the fundamental class of the diagonal of a variety, is an important
step towards computing the fundamental classes of all subschemes of this variety (see
also [26], [10]).

A good resolution of the structure sheaf of the diagonal over the structure sheaf of
X × X has been used to give a description of the derived category D(X) of X [17],
and has proved useful in studying algebraic K-theory of homogeneous spaces and their
twisted forms (cf. [19], [3]).

We recall an interesting case, where the diagonal is described in a suitable fashion,
leading to a resolution of its structure sheaf by a Koszul complex. Let G = Gr(V ) be
the Grassmannian parametrizing all r-subspaces of a vector space V (so, in particular,
for r = 1, we consider projective spaces). The Grassmannian is endowed with the
“tautological” sequence of vector bundles

0 → S → VG → Q → 0 ,

where rank(S) = r. Let G1 = G2 = G and use analogous notation for the tautological
vector bundles on Gi, i = 1, 2. Denote by

p1, p2 : G1 × G2 → G

the two projections. Then the diagonal of G is the zero scheme of the section s of the
bundle

Hom(p∗1S1, p∗2Q2)

of rank equal to dim(G) on G1 ×G2, where s is induced by the following vector bundle
homomorphism:

p∗1S1 → p∗1VG1
= VG1×G2

= p∗2VG2
→ p∗2Q2 .

(This was surely observed independently by so many people that the “paternity” is
impossible to detect.1)

Let X be a smooth variety. Denote by ∆ ⊂ X ×X the diagonal subscheme, that is,
the image of the diagonal embedding

δ : X ↪→ X × X ,

given by δ(x) = (x, x).

We are interested in when the following diagonal property holds:

“There exists a vector bundle E of rank equal to dim(X) on X × X and a section s
of E, such that ∆ is the zero scheme of s.”

1– even by analyzing the DNA.
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In the following, we shall use abbreviation “(D)” for the diagonal property.
Observe that if X1 and X2 satisfy (D), then it also holds for X1 × X2. Moreover,

(D) is obviously valid for curves. We noted that it holds for any Grassmannian; it also
holds for flag varieties of the form SLn/P over any field (cf. [8], [9]). In fact, in this
last case, (D) was a starting point for the development of the Lascoux-Schützenberger
theory of Schubert polynomials for SLn [18] (see also [8], [9]). The question:

“Do the flag varieties for other classical groups have (D)?”

arose in discussions of the first author with William Fulton while writing up [9] at the
University of Chicago in 1996.

In the present paper, we investigate this property mainly for surfaces, and have
some results in the higher dimensional case. We use an argument arising from the
fundamental Serre construction relating codimension 2 subschemes and vector bundles
of rank 2 (cf. [28]), combined with Serre duality, to relate (D) with the existence or
absence of cohomologically trivial line bundles.

In the surface case, this leads to the following result, summarizing several conclusions.

Theorem 1. Let X be a smooth projective surface over an algebraically closed field.

(a) There exists a birational morphism f : Y → X such that Y satisfies (D).
(b) If Y → X is a birational morphism, X satisfies (D), and Pic(X) is finitely

generated, then Y satisfies (D).
(c) Suppose X is birational to one of the following: a ruled or an abelian surface,

or a K3 surface with two disjoint rational curves, or an elliptic fibration with a
section, or a product of 2 curves, or a complex Enriques or hyperelliptic surface.
Then X satisfies (D).

(e) Suppose Pic(X) = Z, such that the ample generator of Pic(X) has a nonzero
section, and X satisfies (D). Then X ∼= P

2. In particular, (D) fails for general
algebraic K3 surfaces, or for general hypersurfaces X ⊂ P

3 of degree ≥ 4.

For higher dimensional varieties, the general result we have is the following.

Theorem 2. Let X be a smooth projective variety with Pic(X) = Z, such that the ample
generator OX(1) has a nonzero section. Suppose X has (D). Then ωX

∼= OX(−r) for
some r ≥ 2, i.e., X is a Fano variety of index ≥ 2.

On the other hand, (D) fails for a smooth projective quadric of any odd dimension
≥ 3. Curiously, our proof of this for quadrics of dimension ≥ 5 is by reducing to the
case of quadrics over the complex numbers, and using the topological results below.

We have not been able to decide if (D) holds for cubic 3-folds, though we suspect it
does not hold, at least in general.

While studying (D), often, a related point property (cf. Section 4) is particularly
useful (both in disproving and proving (D)). The point property is closely related to
the property for a point to be a complete intersection; this property was extensively
studied in [24]. However, it seems likely that it is a strictly weaker property: we can
verify it for a cubic 3-fold, for example.

(D) makes sense for smooth affine varieties as well. Here, Serre’s construction implies
that (D) holds for all affine surfaces. We conjecture that there exist smooth affine
complex 3-folds for which (D) fails. We formulate a question on projective modules, a
negative answer to which gives examples of smooth affine varieties for which (D) would
fail (see Section 5).
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There are also topological versions of (D). Here, the question comes in several
flavours: we may ask if the property holds

(i) for a smooth manifolds, with an arbitrary smooth vector bundle of appropriate
rank (this property is denoted (Dr)), or

(ii) for oriented manifolds, and oriented vector bundles (this is denoted (Do)), or
(iii) (in appropriate cases) for an even dimensional almost complex smooth manifold

X, and a compatible complex vector bundle on X × X (this is called property
(Dc)).

Some of these questions are investigated in this paper, in Section 6.
There are some obvious remarks, analogous to those in the algebraic case: each of

the diagonal properties is compatible with products, (Dr) holds for 1-manifolds, and
real flag varieties SLn(R)/P , and (Dc) holds for Riemann surfaces, and for flag varieties
SLn(C)/P . However, orientable real flag varieties need not satisfy (Do) (it fails for odd
dimensional real projective spaces, as we see in Theorem 3).

We obtain a homotopy theoretic translation of the diagonal property (of any of the
above types): if Y is the complement of an open tubular neighborhood of the diagonal
in X×X, then the property is equivalent to the extendability of a certain vector bundle
on ∂Y to the whole of Y ; this can be viewed as an extension problem for a map to a
classifying space, leading to a possible obstruction theoretic approach (see Lemma 5).

We also have several explicit results, obtained by different methods, which are as
follows.

Theorem 3. (1) The sphere Sn has (Dr) iff n = 1, 2, 4 or 8. It has (Do) iff
n = 2, 4, 8. It has (Dc) iff n = 2.

(2) A compact oriented odd dimensional manifold X does not have (Do), and does
not have (Dr) if H1(X, Z/2Z) = 0.

(3) Any compact almost complex 4-manifold has (Dc). A compact almost complex 6-
manifold X has (Dc) if it has a spin structure; the converse holds if H 1(X, Z) =
0 and H2(X, Z) ∼= Z.

(4) A (smooth) complex quadric projective hypersurface X ⊂ P
2n(C) does not have

(Dc), unless n = 1.

There are other contexts in which analogues of (D) make sense, that we do not
investigate here: e.g. for compact complex manifolds, and for Stein manifolds, or over
non-algebraically closed fields. Thus, one may ask if there exist Stein manifolds of
dimension ≥ 3 for which the diagonal is not the zero set, with multiplicity 1, of a
section of a holomorphic vector bundle. Similarly, for a projective smooth surface over
a number field, which is geometrically rational, the validity of (D) might provide a
subtle obstruction to rationality over the given field.

2. Preliminaries on (D)

2.1. Some general remarks. Let I∆ ⊂ OX×X denote the ideal sheaf of ∆ ⊂ X ×X.
If a variety X admits (D) then the cotangent sheaf is isomorphic to the restriction of
E∗ to the diagonal:

(1) E∗
|∆ = I∆/I2

∆
∼= Ω1

X

(via the isomorphism ∆ ∼= X), so that it is locally free and consequently X is smooth.
Let L = det(E∗), then

(2) L|∆ = ω∆
∼= ωX ,
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We have also the following expression for the fundamental class of ∆:

(3) [∆] = cdim(X)(E)

by the Grothendieck formula [12], Théorème 2.

2.2. (D) for proper smooth varieties. In this section, we assume that X is a proper
smooth variety of dimension n ≥ 2 over an algebraically closed field k. We make a
preliminary analysis of the condition (D), motivated by Serre’s construction of vector
bundles of rank 2 (cf. [28]), and some variants.

Consider the exact sequence

(4) 0 → I∆ → OX×X → O∆ → 0 .

For any line bundle L on X × X, if we apply the functor Hom(−,L) (and its derived
functors) to the exact sequence (4), we get the following exact sequence of global Ext’s
(all Ext’s without subscripts are taken over X × X):

(5) Hn−1(X × X,L) → Extn−1(I∆,L)
β→ Extn(O∆,L)

α→ Hn(X × X,L) .

Suppose now that E is a vector bundle (i.e., a locally free sheaf) of rank n on X ×X,
with a global section s : OX×X → E, whose zero scheme is the diagonal ∆. We then
have the (truncated) Koszul complex associated with the dual s∗ : E∗ → OX×X ,

(6) 0 → det(E∗) → · · · → E∗ s∗→ I∆ → 0 ,

which determines an element [s] ∈ Extn−1(I∆,det(E∗)). On splicing this with the short
exact sequence (4), we obtain the Koszul resolution of O∆, and a resulting element

β([s]) ∈ Extn(O∆,det(E∗)),

where β is the map in (5), with the choice L = det(E∗). This amounts to the assertion
that the boundary map β may be viewed as a Yoneda product with the class of the
extension (4).

Our basic criterion for testing if (D) holds is based on the following result, which
is folklore (see the discussion in [6], where this is the condition that the subscheme
∆ ⊂ X × X is “strongly subcanonical”).

Proposition 1. Let L be a line bundle on X×X whose restriction to ∆ coincides with
ω∆. Assume that there exist a rank n vector bundle E on X × X with det(E∗) = L,
and a section s ∈ Γ(X × X,E) satisfying Im(s∗) = I∆ . Then the map α in the exact
sequence (5) vanishes. The converse holds if n = dim(X) = 2.

Proof. By (2), L resticts to ω∆. By Serre duality on X × X,

(7) Extn(O∆,L)∗ ∼= Hn(∆,L∗ ⊗ ωX×X |∆) = Hn(∆, ω∆) .

Hence the space Extn(O∆,L) is 1-dimensional.
We also have isomorphisms of sheaf Ext’s

(8) Exti(O∆,L) ∼=
{

0 if i 6= n
HomO∆

(det(I∆/I2
∆),L|∆) if i = n

(cf. [13], III, §7) because ∆ ⊂ X × X is a nonsingular subvariety of codimension n,
with

(9) HomO∆
(det(I∆/I2

∆),L|∆) ∼= ω−1
∆ ⊗ L|∆

∼= O∆ .

This implies that the canonical map

(10) γ : Extn(O∆,L) → H0(X × X,Extn(O∆,L)) ∼= H0(∆,O∆)
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is an isomorphism of 1-dimensional vector spaces.
Now, if there exists a vector bundle E with det(E∗) = L, and a section s ∈ Γ(X×X,E)

with zero scheme equal to the diagonal, then there exists β[s] ∈ Extn(O∆,L) which is
in the kernel of α. But β[s] is the class of the Koszul resolution of O∆, which is a
generator of the 1-dimensional vector space H 0(X ×X,Extn(O∆,L)). Hence α, which
has a non-trivial kernel, and a 1-dimensional domain, must be the zero map.

When n = 2, if α = 0, the isomorphism γ implies the existence of an element
[s] ∈ Ext1(I∆,L) whose image β([s]) ∈ Ext2(O∆,L) generates this 1-dimensional vector
space. This element [s] determines an extension, that is to say, a vector bundle E and
section s giving rise to a 3-term exact sequence (6); this is the Serre construction. �

We call a line bundle M on X cohomologically trivial if H i(X,M) = 0 for all i. If
M is cohomologically trivial on a smooth proper variety X, then by Serre duality, so is
M−1 ⊗ ωX .

We now discuss the criterion which we actually use in studying the property (D), in
many instances. This leads to a good understanding of (D) in the surface case, and a
nontrivial necessary condition for (D) to hold, in the higher dimensional case.

Theorem 4. (i) Denote by p1, p2 : X × X → X the two projections. Suppose that

(11) Pic(X × X) ∼= p∗1 Pic(X) ⊕ p∗2 Pic(X) ,

and that X × X supports a vector bundle E with a section s such that (D) holds.
Then there exists a cohomologically trivial line bundle M on X, such that det(E) =
p∗1M

−1 ⊗ p∗2(M ⊗ ω−1
X ).

(ii) If dim(X) = 2, and there exists a cohomologically trivial line bundle on X, then
(D) holds for X.

Proof. Suppose that there exists a vector bundle E on X × X of rank n such that the
diagonal is the zero scheme of its section s. Let L = det(E∗), and form the corresponding
exact sequence (5). From Proposition 1, we must have α = 0.

Now consider the dual linear transformation to α:

(12) α∗ : Hn(X × X,L)∗ → Extn(O∆,L)∗ ∼= Hn(∆, ω∆) = k .

Using (11) and (2), choose M ∈ Pic(X) such that

L = det(E∗) ∼= p∗1(M) ⊗ p∗2(M
−1 ⊗ ωX) .

By Serre duality on X × X, we get that

Hn(X × X,L)∗ ∼= Hn(X × X,L−1 ⊗ ωX×X) ∼= Hn(X × X, p∗1(M
−1 ⊗ ωX) ⊗ p∗2M).

From the Künneth formula, we have

(13) Hn(X × X, p∗1(M
−1 ⊗ ωX) ⊗ p∗2(M)) = ⊕n

i=0H
i(X,M−1 ⊗ ωX) ⊗ Hn−i(X,M) .

Further, on any summand on the right, the induced map

Hi(X,M−1⊗ωX)⊗Hn−i(X,M) ↪→ Hn(X×X, p∗1(M
−1⊗ωX)⊗p∗2(M))

α∗

→ Hn(∆, ω∆) = k

coincides with the Serre duality pairing on cohomology of X, and is hence a non-
degenerate bilinear form, for each 0 ≤ i ≤ n.

Thus, the dual map to α vanishes if and only if all of the summands on the right
side of (13) vanish, which amounts to saying that M is cohomologically trivial.

Conversely, if M is cohomologically trivial, then in the exact sequence (5) determined
by the line bundle

L = p∗1M ⊗ p∗2(M
−1 ⊗ ωX),
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the map α is the zero map, by reversing the above argument. Hence, if n = 2, we
deduce that X × X supports a vector bundle E of rank 2 and a section s with zero
scheme ∆, by the surface case of Proposition 1. �

In order to apply Theorem 4 in various situations, we need to be able to verify the
hypothesis (11) on the Picard group. This property is well understood, and the facts
are recapitulated below.

Lemma 1. Let X be any smooth proper variety over an algebraically closed field k.

(i) The isomorphism (11) holds ⇔ Pic(X) is a finitely generated abelian group.
(ii) If H1(X,OX ) = 0, then (11) holds.

Proof. (i) Let Pic0(X) denote the neutral component (identity component) of the Pi-
card scheme of X, in the sense of Grothendieck. Then Pic0(X) is a projective connected
k-group scheme, such that

(a) its Lie algebra is naturally identified with the vector space H 1(X,OX ) ;
(b) the associated reduced group scheme is an abelian variety, the classical Picard

variety (in the sense of Weil).

The group of connected components of the Picard scheme is identified with the
Néron-Severi group, which is always a finitely generated abelian group. The group
of k-rational points of a positive dimensional abelian variety is not finitely generated.
Thus, Pic(X) is a finitely generated group precisely when Pic0(X) is a 0-dimensional,
local k-group scheme (in characteristic 0, this means it is 0). The connected group
scheme Pic0(X) is of course 0 if its Lie algebra H1(X,OX ) vanishes.

In any case, if L is any line bundle on X×X, which (for some fixed base point x0 ∈ X)
is trivialized on X ×{x0} as well as on {x0}×X, then by the universal property of the
Picard scheme, L determines a morphism of k-schemes fL : X → Pic(X), which maps
x0 to the identity point, so that L is the pull-back under 1X ×fL : X×X → X×Pic(X)
of a suitable Poincaré bundle. Clearly fL factors through the neutral component, and
then through the corresponding reduced scheme, which is the identity point, when
Pic(X) is finitely generated. Hence L is the trivial bundle. This clearly implies (11).

On the other hand, suppose Pic(X) is not finitely generated, which is to say that
Pic0(X)red is a positive dimensional abelian variety. We claim that (11) does not hold
in this case.

Indeed, the dual abelian variety to Pic0(X)red is the Albanese variety Alb(X), in the
sense of Weil, which is an abelian variety of the same dimension (> 0) as the Picard
variety; further, there is a morphism f : X → Alb(X) such that f(x0) = 0, which is
universal among morphisms of pairs (X,x0) → (A, 0) with A any abelian variety. As a
consequence, the k-points of the image variety f(X) generate Alb(X) as a group, and
in particular, f has positive dimensional image.

From the duality theory of abelian varieties, we know that the Albanese and Picard
varietes of X, being mutually dual, are also isogenous. This means that, composing f
with an isogeny, we can construct a morphism g : X → Pic0(X)red with g(x0) equal to
the neutral element, whose image is a positive dimensional subvariety, whose k-points
generate the group of points of the abelian variety Pic0(X)red. The pullback of the
Poincaré line bundle under the morphism

1X × g : X × X → X × Pic0(X)

is a line bundle on X×X which is non-trivial, but is trivial when restricted to X×{x0}
or to {x0} × X. Hence (11) fails.
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(ii) This follows from “Cohomology and Base Change” (cf., e.g., [13, Theorem 12.11]
and comment on p. 292).

�

3. Main results for surfaces

We now explore (D) for surfaces. Our main references on the theory of surfaces are:
[1], [2], [11], and [13]. From Theorem 4, for a surface X, (D) is more or less equivalent
to the existence of a cohomologically trivial line bundle on X.

Before a more systematic discussion, we consider the following simple result, since it
was our first example of failure of (D).

Proposition 2. Let X be a generic complex algebraic K3 surface. Then (D) fails for
X.

Proof. It follows from e.g. [11], p. 594, that Pic(X) = Z · OX(1), where OX(1) is an
ample line bundle on X. Let OX(1) ∼= OX(H) for a divisor H; then d := H2 > 0.

Since X has a trivial canonical bundle and χ(X,OX ) = 2, the Riemann-Roch theorem
implies that for any integer n,

χ(X,OX(n)) =
n2d

2
+ 2 ≥ 2.

In particular, since every line bundle M is isomorphic to some OX(n), it must has some
nontrivial cohomology, and in fact, has non-zero Euler characteristic. �

We now proceed more systematically.

3.1. (D) within a birational class. A classical result in surface theory asserts that
any smooth proper (equivalently, projective) algebraic surface is obtained from a (rel-
ative) minimal model by a succession of blow ups of points (cf., e.g., [13] III, Theorem
5.8 and II, 4.10.2). Thus, the following result reduces (D) for surfaces to the question
of finding cohomologically trivial line bundles on relative minimal models.

Proposition 3. Given a birational morphism f : X → Y of smooth surfaces, if Y
supports a cohomologically trivial line bundle M, then the pullback f ∗M is also coho-
mologically trivial.

Proof. The morphism f is a composition of point blow ups, as noted above. By induc-
tion on the number of blow ups, we thus reduce to the case when f is the blow up of 1
point. In this case, it is standard that f∗OX = OY and Rif∗OX = 0 for all i > 0 (see
[13], V, 3.4, for example). From the projection formula ([13], III, Ex. 8.3, for example),
it follows that for any cohomologically trivial line bundle M on Y , the pullback f ∗M

is cohomologically trivial on X. �

Corollary 1. If X admits a morphism to a relative minimal model Y which supports
a cohomologically trivial line bundle, then X has (D).

Let us note also:

Corollary 2. If f : X → Y is a birational morphism of smooth surfaces with finitely
generated Picard groups, and Y has (D), then X has (D).

On the other hand, we claim that any “sufficiently non-minimal” surface has a co-
homologically trivial line bundle, and hence satisfies (D).



DIAGONAL SUBSCHEMES AND VECTOR BUNDLES 9

Theorem 5. If X is any smooth projective surface over an algebraically closed field k,
there is a birational morphism f : Y → X of smooth projective surfaces such that Y
satisfies (D).

Proof. Choose a line bundle L on X so that H i(X,L) = 0 for i > 0 (by Serre vanishing,
Hi(X,OX (n)) = 0 for all i > 0, and any n >> 0, so such an L certainly exists). If
H0(X,L) = 0, then L is cohomologically trivial, hence (D) holds for X itself. So let us
assume that dimH0(X,L) = r > 0.

For any x ∈ X, let L(x) = Lx ⊗OX,x
k(x) denote the fiber of L at x; this is a

1-dimensional vector space over k = k(x).

We now state a standard lemma, whose proof is left to the reader.

Lemma 2. Let X be a projective variety over an algebraically closed field, and L ∈
Pic(X) with dimH0(X,L) = r > 0. Then for any r general points x1, . . . , xr of X, the
induced map of r-dimensional vector spaces

(14) fr : H0(X,L) → ⊕r
i=1L(xi)

is an isomorphism. 2

Now let L be as before on our surface X, and let x1, . . . , xr be chosen as in the
lemma. Let f : Y → X be the blow up of the points x1, . . . , xr, and let E1, . . . , Er be
the corresponding exceptional curves. Consider the line bundle

M = f∗L ⊗ OY (−E1 − E2 − · · · − Er)

on Y . We claim that M ∈ Pic(Y ) is cohomologically trivial, and hence Y satisfies (D).
Indeed, it is easy to see that if S = {x1, ..., xr}, and IS is the ideal sheaf of S, then

Rif∗M = L ⊗ Rif∗OY (−E1 − · · · − Er) = 0

if i > 0, and f∗M = L⊗ IS . Thus, from the Leray spectral sequence for f , it follows at
once that

Hi(Y,M) = H i(X,L ⊗ IS) .

There is an exact sequence of sheaves

0 → L ⊗ IS → L → L ⊗ OS → 0 ,

where we may identify

L ⊗ OS = ⊕r
i=1L(xi)xi

(here, for a point x and abelian group A, we let Ax denote the skyscraper sheaf with
stalk A at x). Then clearly H i(X,L ⊗ OS) = 0 for i > 0, while

H0(X,L) → H0(X,L ⊗ OS) = ⊕r
i=1L(xi)

is the map fr considered above, which (by the choice of the set S) is an isomorphism.
Hence the long exact cohomology sequence for the above sequence of sheaves implies

that L ⊗ IS is cohomologically trivial on X, and so M is cohomologically trivial on
Y . �

2This says that, if we blow up the base scheme to get a morphism to projective space P
r−1, the

linear span of the image is the whole projective space, so that there exist r linearly independent points
in the image.
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3.2. Ruled surfaces. We shall examine now the case of birationally ruled surfaces.
It is useful for us to make explicit the following observation (which is of course

well-known).

Lemma 3. Any non-singular projective curve Y over an algebraically closed field sup-
ports a cohomologically trivial line bundle L.

Proof. This is clear if Y = P1 (take L = OY (−1)). If Y has genus g > 0, the isomor-
phism classes of line bundles of degree g − 1 on Y are parametrized by a g-dimensional
variety Jg−1(Y ) (it is a principal homogeneous space under the Jacobian variety J(Y )).
On the other hand, the subvariety parametrizing line bundles with a non-zero section
is the image of the natural morphism Sg−1(Y ) → Jg−1(Y ), with domain the (g − 1)st
symmetric power of Y , which is the parameter variety for effective divisors of degree
g−1. Clearly this is not surjective; a point in the complement of the image corresponds
to a line bundle L of degree g − 1 on Y such that L has no non-zero global sections.
Now the Riemann-Roch theorem on Y implies L has vanishing Euler characteristic,
hence is cohomologically trivial. �

Proposition 4. Let X be a birationally ruled surface. Then X admits a cohomologically
trivial line bundle, and in particular, (D) holds for X.

Proof. We may as well assume X 6∼= P
2, since OP2(−1) is cohomologically trivial. Then,

from the classification of birationally ruled surfaces, we know that X is birational
to Y × P

1 for some non-singular projective curve Y , such that there is a morphism
π : X → Y with general fiber P

1. The morphism π has a factorization as a composition
X → X̄ → Y , where X → X̄ is a composition of point blow ups, and X̄ → Y is a
P

1-bundle. By Proposition 3, it suffices to show X̄ supports a cohomologically trivial
line bundle.

Hence we may without loss of generality assume that π : X → Y is a P
1-bundle. We

now note that if L is cohomologically trivial on Y (and such a line bundle exists, by
Lemma 3), then π∗L is cohomologically trivial on the surface X. This follows from the
Leray spectral sequence, because for the P

1-bundle π : X → Y , we have Riπ∗OX = 0
for i > 0, and π∗OX = OY . �

3.3. Surfaces of Kodaira dimension 0.

Proposition 5. An abelian surface supports a cohomologically trivial line bundle. Thus
(D) holds for abelian surfaces.

Proof. It is well known (cf., e.g., [22], Sect. 8) that for an abelian variety X, any line
bundle M on X which is non-trivial, but is algebraically equivalent to 0 (i.e., having a
nontrivial class in Pic0(X)), is cohomologically trivial.

Note that in the surface case, after showing that H 0(X,M) = 0 (loc.cit.), one can
argue as follows. Since ωX is trivial, we get by Serre duality that H2(X,M−1) = 0.
But, exchanging the roles of M and M−1, this implies that H2(X,M) = 0. On the
other hand, we have by the Riemann-Roch theorem that χ(M) = 0, so that we also
have H1(X,M) = 0. Applying Theorem 4(ii), the assertion follows. �

Proposition 6. A K3 surface X with two disjoint smooth rational curves supports a
cohomologically trivial line bundle, and (D) holds for it.

Proof. Let D1 and D2 be two disjoint smooth rational curves on X. Let M = O(D1 −
D2). We claim that M is cohomologically trivial. By the adjunction formula, the curves
D1, D2 are −2 curves. We thus have H0(X,M) = 0. By Serre duality, invoking that
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ωX is trivial, we get that H2(X,M−1) = 0. But, exchanging the roles of D1 and D2,
this gives H2(X,M) = 0. The Riemann-Roch theorem for a K3 surface reads (with
M = O(D)):

(15) χ(M) =
1

2
D2 + 2 .

Hence in our situation, we get χ(M) = 0, and consequently we have H 1(X,M) = 0.
Applying Theorem 4(ii), the assertion follows. �

Corollary 3. For the Kummer surface, (D) holds.

In the rest of this section, we assume the ground field is C, for simplicity.
We use the term hyperelliptic surface to mean a complex surface X which is a quotient

of a product E×C by the diagonal action of a finite abelian group G which acts on each
of the factors, where E is an elliptic curve on which G acts faithfully by translations,
while C is a smooth projective curve of genus > 0 such that C/G ∼= P

1. The surface
X = (E ×C)/G admits a morphism to C/G ∼= P

1 with fibers which are elliptic curves.
Such a surface has Kodaira dimension 0 if C is also elliptic, else it has Kodaira dimension
1.

Proposition 7. A hyperelliptic surface (as above) admits a cohomologically trivial line
bundle, and (D) holds for it.

Proof. First observe that since q : E × C → X is a finite covering of complex surfaces,
the cohomology of any line bundle on X injects into the cohomology of its pull-back to
E × C. Hence, if we show that there is some line bundle M on X whose pull-back to
E × C is cohomologically trivial, then M itself is cohomologically trivial.

Since G is a finite group of translations on E, the map π : E → E/G is an isogeny
of elliptic curves. We can find a nontrivial line bundle L on E/G of degree 0, whose
pull-back π is a non-trivial line bundle on E, also of degree 0 (i.e., L considered as a
point of E/G ∼= Pic0(E/G) is not in the kernel of the dual isogeny to π).

In particular, π∗L is cohomologically trivial on E. If p1 : E×C → E is the projection,
the pullback p∗1π

∗L on E×C is again cohomologically trivial, from the Künneth formula.
There is a commutative diagram, whose horizontal arrows are quotients mod G, with

induced vertical arrow f

E × C
q→ X

p1 ↓ ↓ f

E
π→ E/G

Thus M = f ∗L has the property that q∗M = p∗1π
∗L is cohomologically trivial; hence

M is cohomologically trivial on X. �

We shall now discuss the case of Enriques surfaces (surfaces with pa = pg = 0 whose
canonical line bundle has order 2).

Proposition 8. Any complex Enriques surface supports a cohomologically trivial line
bundle, and hence has (D).

Proof. First, suppose we have a smooth −2 curve E on the Enriques surface X (i.e.,
E ∼= P

1, and E2 = −2). We then claim OX(−E) is cohomologically trivial (and so
the diagonal property holds). Indeed, we have χ(X,OX (−E)) = 0 by the Riemann-
Roch theorem. Since OX(−E) is the ideal sheaf of a smooth rational curve, and X has
H1(X,OX ) = 0, we have

(16) H0(X,OX (−E)) = H1(X,OX (−E)) = 0 .
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Hence this ideal sheaf is a cohomologically trivial line bundle.
Now we shall use [1], VIII, Lemmas 16.4, 17.1, 17.2, and 17.3. These results imply

that there always exist “half pencils” on an Enriques surface X, that is, effective divisors
D such that the normal bundle OD(D) is a line bundle of order 2, where D is a non-
multiple divisor which is an “elliptic configuration”, i.e. a member of the Kodaira list
in Table 3 on p. 150 in [1], V, Sect. 7. The discussion of case (c) in the same section
(cf. top of p. 151) says, in fact, that D is reduced, and is either a smooth elliptic curve,
an irreducible curve with one ordinary double point, or a polygon of b curves, each of
which is a smooth rational −2 curve (Kodaira’s types I0, I1 and Ib, respectively).

If we have a half pencil of type Ib with b ≥ 2, we have a smooth −2 curve E on the
surface. Then as seen above, OX(−E) is cohomologically trivial.

The same argument also takes care of the case of “special Enriques surfaces”, on any
of which there is a smooth −2 curve.

So we may assume our Enriques surface is “non-special”, with two distinct half
pencils D1, D2, each of which is irreducible, and is either an elliptic curve, or a singular
rational curve with one ordinary double point; further, we may assume their intersection
number (D1 · D2) is 1 (cf. [1], VIII, Theorem 17.7). Thus D1 and D2 must intersect
transversally at a point, say x ∈ X, which is a smooth point of each curve.

In this situation, we claim that OX(D1−D2) is a cohomologically trivial line bundle.
First, note that E = D1 − D2 has self-intersection −2, since D2

1 = D2
2 = 0, while

(D1 · D2) = 1. Since the canonical bundle on an Enriques surface is numerically
trivial (it is 2-torsion), and χ(X,OX ) = 1, the Riemann-Roch theorem gives that
χ(X,OX(E)) = 0.

Next, consider the exact sequence of sheaves

(17) 0 → OX(D1 − D2) → OX(D1) → OD2
(x) → 0 ,

where we note that the restriction of OX(D1) to the curve D2 is the line bundle cor-
responding to the intersection point x. Since D2 is an irreducible curve of arithmetic
genus 1, OD2

(x) has a 1-dimensional space of sections, and vanishing higher cohomology.
Hence

H0(X,OX (D1)) → H0(X,OD2
(x)) ,

being a nonzero map between 1-dimensional vector spaces, is an isomorphism. This
means that OX(D1 − D2) has no nontrivial global sections, and

OX(D1 − D2) → OX(D1)

is an isomorphism on higher cohomology.
Now consider the sequence

(18) 0 → OX → OX(D1) → OD1
(D1) → 0 ,

where OD1
(D1), the normal bundle to D1, is a line bundle of order 2. In particular,

it a nontrivial line bundle of degree zero on a curve of arithmetic genus 1, and thus
has no cohomology (it has no sections, and by the Riemann-Roch theorem, its Euler
characteristic is equal to zero). Hence OX → OX(D1) induces isomorphisms on all
cohomology groups. In particular, OX(D1) has vanishing cohomology H1 and H2.
Hence so does OX(D1 − D2). �

3.4. Elliptic surfaces. We now pass to elliptic surfaces. Here we have a result for
elliptic surfaces with a section (i.e., for Jacobian fibrations).
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Proposition 9. If f : X → C is an elliptic fibration over a smooth projective curve C,
such that f has a section, then X supports a cohomologically trivial line bundle, and
so (D) holds.

Proof. Let D be a curve in X mapping isomorphically to C under f .
We may replace f by a suitable relatively minimal model (the pull-back of a cohomo-

logically trivial line bundle from the minimal model is of course cohomologicaly trivial).
Since f is an elliptic fibration, all fibres of f are connected curves of arithmetic genus
1. Hence for any fiber F , H1(F,OF (D)) = 0, while H0(X,OX (F )) is 1-dimensional for
general fibers F (note that the general fiber is smooth).

It follows that R1f∗OX(D) = 0 (see [13] III Ex. 11.8, for example). Hence for any
line bundle L on C, the projection formula identifies

Rif∗f
∗L ⊗OX

OX(D)

with
L ⊗OC

Rif∗OX(D) .

Hence we obtain an isomorphism

(19) H i(C,L ⊗ f∗OX(D)) ∼= Hi(X, f∗L ⊗ OX(D))

for any i ≥ 0. The sheaf f∗OX(D) on C is torsion-free, hence it is a vector bundle. By
looking at the generic fiber, we see that it is, in fact, a line bundle.

We now claim that, for any line bundle M on C, there exists a line bundle L on
C so that L ⊗ M on C is cohomologically trivial. Indeed, by Lemma 3, C supports a
cohomologically trivial line bundle L0. Choose L = L0 ⊗ M−1. �

Remark 1. Proposition 7 for X = (E × C)/G, with C of genus ≥ 2, also gives
examples of complex elliptic surfaces for which (D) holds; some of these surfaces have
elliptic fibrations without a section.

3.5. Some surfaces for which (D) fails. We shall give now more surfaces for which
(D) fails, because the surface does not support a cohomologically trivial line bundle.

The result below applies to any surface X, which is a sufficiently general complete
intersection in projective space (or in a homogeneous space G/P , where G is a semisim-
ple group, and P a maximal parabolic sugroup), of large enough multi-degree that the
canonical bundle of the surface has non-zero sections (this amounts to saying that ei-
ther X is a K3 surface, or X is of general type). This is because, since the surface X
is a very general member in the corresponding family of surfaces, we have Pic(X) ∼= Z,
by the Noether-Lefschetz theorem.

Proposition 10. Suppose X 6∼= P
2 is a smooth projective surface, with Pic(X) = Z,

such that the ample generator of Pic(X) has a non-zero section. Then X does not have
(D).

Proof. Note first that (11) holds by Lemma 1. So we must show that X does not support
any cohomologically trivial line bundle, that is, every power of the ample generator has
some non-zero cohomology.

If L is a nonnegative power of the ample generator, then clearly H 0(X,L) 6= 0, by our
assumptions. Suppose now that L is a negative power of the ample generator. Observe
that ωX is a nonnegative power of the ample generator because (by classification) X
is not Fano, since the only Fano surface with Picard group Z is P

2. We conclude that
L−1 ⊗ ωX is a strictly positive power of the ample generator, and so, by Serre duality,

H2(X,L) = H0(X,L−1 ⊗ ωX) 6= 0 .
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The proposition has been proved. �

Remark 2. We comment on the hypothesis in Proposition 10 that the ample generator
of Pic(X) has a non-zero section. Any surface X 6∼= P

2 with Pic(X) = Z must have
trivial canonical bundle, or be of general type, with ample canonical bundle ωX

∼=
OX(n) for some n > 0, where OX(1) denotes the ample generator of Pic(X).

We claim that the canonical bundle of such a complex surface always has a non-zero
section, i.e. pg(X) > 0.

Indeed, suppose that the canonical bundle is ample, with no sections. It follows from
Hodge theory that the second Betti number of X equals its Picard number. Hence the
topological Euler characteristic of X is 3, while its holomorphic Euler characteristic is
1. This forces K2

X = 9 by the Noether formula, that is, X is a Fake P
2 in the sense

of Mumford [23], who first constructed such a surface of general type, using p-adic
uniformization.

All complex Fake P
2’s have been classified in recent work of Gopal Prasad and Sai-

Kee Yeung [27]. From their work (see Theorem 10.1), every Fake P
2 has a non-zero

torsion subgroup of Pic(X), and hence does not have Picard group Z.
It is interesting to ask if a complex Fake P

2 has (D). Poincaré duality, combined with
the Riemann-Roch theorem, gives us that any ample generator of the Néron-Severi
group, modulo torsion, has self-intersection 1, and thus vanishing Euler characteristic.
Hence (D) holds for X precisely when a line bundle can be found on X which gives an
ample generator for NS(X)/(torsion), and has vanishing H 1.

Remark 3. We do not know an example of a surface X with Pic(X) = Z, and an
ample canonical bundle with a non-zero section, but with H 0(X,OX (1)) = 0 for the
ample generator OX(1) of Pic(X).

4. Higher dimensional varieties

4.1. Varieties with Picard group Z. We first consider varieties of dimension d ≥ 3
with Picard group Z. From the Grothendieck-Lefschetz theorem (cf., e.g., [14]), we
have Pic(X) = Z for any smooth complete intersection X, or for a smooth complete
intersection of divisors in a homogeneous space G/P with G semisimple, P maximal
parabolic (so that Pic(G/P ) = Z).

Proposition 11. Let X be a smooth projective variety of dimension d ≥ 3 over a field.
Suppose that

(i) (D) holds for X;
(ii) Pic(X) = Z, and the ample generator of Pic(X) has a nonzero section.

Then X is a Fano variety, with canonical line bundle ωX
∼= OX(−n) for some n ≥ 2.

Proof. Since X has Picard group Z, and (D) holds, Theorem 4 and Lemma 1 imply
that X supports a cohomologically trivial line bundle, which must be OX(m) for some
integer m. If ωX = OX(r) then by Serre duality, OX(m) and OX(r − m) both have
H0 = 0. Since the ample generator of Pic(X) has a nonzero section, we must have
m < 0, r − m < 0. Hence r = (r − m) + m ≤ −2. �

Corollary 4. Let X ⊂ P
n be a smooth complete intersection of multidegree (d1, . . . , dr)

with r ≤ n − 3, and
∑

i di ≥ n. Then X does not have (D).
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Proof. Such a complete intersection has dimension n − r ≥ 3, so has Picard group Z,
from the Grothendieck-Lefschetz theorem. The canonical bundle of X is

OX

(

∑

i

di − n − 1
)

,

where
∑

i di − n − 1 ≥ −1. Hence (D) does not hold for X. �

Thus, for smooth hypersurfaces in P
4, the only cases we need to consider are quadrics

and cubics; the case of quadrics is settled below ((D) does not hold, cf. Proposition 12).
For Fano varieties, we similarly have:

Corollary 5. Let X be a smooth projective complex Fano variety with second Betti
number b2(X) = 1 and ωX = OX(−1) (i.e. X is of index 1). Then X does not have
(D).

Proof. Recall that H i(X,OX ) = 0 for i > 0, by Serre duality and the Kodaira vanishing
theorem; in particular, X is algebraically simply connected, since χ(X,OX) = 1 . Since
b2(X) = 1, we have Pic(X) = Z, and (11) holds (cf. Lemma 1). Now Proposition 11
implies that (D) does not hold. �

Fano varieties of the above type have been essentially classified by Iskovskih (see
[16], [4]). This is extended to positive characteristics in [30].

4.2. (D) and the Point Property. It is useful to consider a property related to (D),
which is sometimes a consequence of it.

Let X be a scheme. For a line bundle L on X, we say that the “L–point property
holds” if the following is true:

“ If for each x ∈ X, there exists a vector bundle F on X of rank d = dim(X) with
det(F) = L, and a section of F vanishing exactly at x with multiplicity 1.”

This implies

c1(F) = c1(L) ∈ CH1(X), cd(F) = [x] ∈ CHd(X) .

Theorem 6. Let X be smooth and proper over and algebraically closed field k. Denote
by p1, p2 : X × X → X the two projections. Suppose that the diagonal property (D)
holds, and Pic(X) is finitely generated. Then there exists a cohomologically trivial line
bundle L on X such that

(i) the L−1–point property holds, and also

(ii) the L ⊗ ω−1
X –point property holds.

Proof. Let dim(X) = d, and let E be a rank d bundle on X × X given by (D).
By lemma 1, the finite generation of Pic(X) is equivalent to (11). By (11), we have

(20) det(E) = p∗1L1 ⊗ p∗2L2 ,

for some line bundles L1 and L2 on X. Then the restrictions of E to X × {x} and
{x} × X have the determinants L1, L2 respectively, whatever the choice of x. Hence
the L1–point property as well as the L2–point property hold for X.

When the determinant of E does have the above special form (20), then the restriction
to the diagonal is L1⊗L2, so that, by Theorem 4, we see that L−1

1 and L−1
2 are mutually

Serre dual line bundles, which are cohomologically trivial line bundles. �
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Corollary 6. Assume that a smooth proper k-scheme X satisfies (11). If for any
cohomologically trivial line bundle L on X, either the L−1–point property fails, or the
L ⊗ ω−1

X –point property fails, then X does not admit (D).

Observe, that there exists a “trivial” instance of the corollary when there are no
cohomologically trivial line bundles on X at all.

Proposition 12. A smooth quadric Q3 ⊂ P
4 over an algebraically closed field fails to

have (D).

Proof. There are two cohomologically trivial line bundles on Q3: L1 = OQ3
(−1) and

L2 = OQ3
(−2). Since ωQ3

= OQ3
(−3), we have

L
−1
1 = L2 ⊗ ω−1

Q3
,

so by Corollary 6, it suffices to show that the L−1
1 –point property fails.

We use a standard presentation of the Chow ring CH ∗(Q3) as Z
⊕4 with a suitable ring

structure. Let [Q2], [L], and [P ] (quadric surface, line, and point) be the generators of
CH1(Q3), CH2(Q3), and CH3(Q3) respectively. There are the following relationships:

(21) [Q2]
2 = 2[L] and [Q2] · [L] = [P ] .

If E is a vector bundle on Q3, the total Chern class of E is of the form

1 + d1(E)[Q2] + d2(E)[L] + d3(E)[P ] ,

where di(E) ∈ Z.
The argument now boils down to showing that there is no rank 3 vector bundle E

on Q3 with d3(E) = 1 and d1(E) = 1.
Suppose - ad absurdum - that such a bundle exists. We use the formula for the Euler

characteristic of E given by the Grothendieck-Hirzebruch-Riemann-Roch theorem (see
[7], Example 15.2.5 for a general formula for 3-folds). In fact, we use the following
explicit version of the formula for smooth quadric 3-folds, given in [5]: for a vector
bundle E on Q3,

(22) χ(Q3,E) =
1

6
(2d3

1 − 3d1d2 + 3d3) +
3

2
(d2

1 − d2) +
13

6
d1 + rank(E) ,

where di = di(E) are the above numbers. Substituting the present values, we get

χ(Q3,E) =
15

2
− 2d2 .

This contradicts the fact that χ(Q3,E) is integer, and the proposition has been proved.
�

Note that since the quadric Q3 is birationally isomorphic to the projective 3-space
which has (D), this last property is not a birational invariant in dimension ≥ 3.

The following result is obtained in a standard way, following the argument that the
tangent bundle of a group variety is trivial.

Proposition 13. Let X be a group variety over an algebraically closed field. Then
X has (D) if and only if X has the following “weak point property”: for some point
x ∈ X, there exists a vector bundle E of rank d = dim(X), such that there is a section
of E with zero scheme x.



DIAGONAL SUBSCHEMES AND VECTOR BUNDLES 17

Proof. If X has (D), then for any x ∈ X, the weak point property holds, by restriction
of the data giving (D) to X × {x}.

Conversely, suppose the weak point property holds with respect to the point x.
Let E be the corresponding vector bundle, and s a section with zero scheme x. Let
µ : X×X → X be the multiplication, and i : X → X the inverse, defining the algebraic
group structure on X. Define a new map f : X × X → X by

f(u, v) = µ(µ(u, i(v)), x).

Then f is a morphism, whose scheme theoretic fiber f−1(x) = ∆X , the diagonal sub-
scheme. Hence the vector bundle f ∗E has the section f ∗(s) whose zero scheme is the
diagonal. �

Corollary 7. An abelian variety has (D) precisely if it has the weak point property for
some point.

Though we have not resolved whether a smooth cubic 3-fold has (D), we have the
following observation, which is a necessary condition for (D), since the only cohomo-
logically trivial line bundle on a cubic 3-fold X is OX(−1).

Lemma 4. A smooth complex cubic 3-fold X has the OX(1)-point property.

Proof. It is known that a smooth cubic 3-fold X contains lines from the ambient pro-
jective space, and is covered by such lines. Further, any line L ⊂ X has a normal
bundle with trivial determinant, from the adjunction formula, since ωX = OX(−2),
ωL = OL(−2), and OX(1) ⊗ OL = OL(1) (the last formula holds because L is a line).

If IL is the ideal sheaf of a line in X, then since H i(X,OX ) = 0, i = 1, 2, we have an
isomorphism

Ext1(IL,OX) ∼= H0(Ext1(IL,OX )) ∼= Hom(det IL/I2
L,OL) = C.

Thus, from the Serre argument, there is a rank 2 vector bundle F on X with trivial
determinant, together with a section, whose zero scheme is L.

Now suppose x ∈ X is any point. Choose a line L ⊂ X passing through x, and
choose a hyperplane H in P

4, not containing L, but passing through x. Then L and
H intersect transversally at x. If t ∈ H0(P4,O(1)) is a section with zero scheme H,
then the rank 3 vector bundle E = F ⊕ OX(1) has a section (s, t |X) with zero scheme
L ∩ (H ∩ X) = {x}, and the intersection is transverse in X. The determinant of E∗ is
clearly OX(−1). �

5. The affine case

It makes sense to ask which smooth affine varieties over an algebraically closed field
have (D). If X = SpecA is a smooth affine k-variety of dimension ≤ 2, then X has (D);
in the 2-dimensional case, this follows from Serre’s classic argument, since the diagonal
is a smooth, codimension 2 subscheme of an affine scheme.

We do have one positive result in the affine case, which may be of interest. This is
basically a corollary of work of M. P. Murthy.

Proposition 14. An affine algebraic group over an algebraically closed field has (D).

Proof. If X is an affine algebraic group over an algebraically closed field, then a result
of M. P. Murthy (cf. [24], Theorem 3.3) shows that any smooth point is the zero scheme
of a section of a vector bundle of rank equal to dim(X). �
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Remark 4. In fact for an affine algebraic group X, we can even say that any point
x ∈ X is a complete intersection (i.e. the vector bundle may be chosen to be a trivial
bundle). Hence the diagonal is also a (global) complete intersection. Indeed, Murthy’s
results [24] imply that a point on a smooth affine variety is a complete intersection if
and only if its class in the Chow group of points vanishes. This holds for X because for
unirational smooth affine varieties the Chow group of points is, in fact, zero. One can
now naturally ask if the diagonal of any affine algebraic group is a complete intersection
in any group-theoretically significant way!

We conjecture that there exist smooth affine complex varieties of any dimension ≥ 3
for which (D) fails. However, we have been unable to construct such examples. This
leads to the following question:

Question: Let A be a non-singular affine algebra over an algebraically closed field k.
Let K be an extension field of k (not necessarily algebraically closed), AK = A ⊗k K,
and and M ⊂ AK a maximal ideal with residue field K. Does there exist a projective
AK-module P of rank n = dim(A) such that there is a surjection P → M?

If K is an algebraically closed extension of k, this is always true, from Murthy’s
results. If X = SpecA satisfies (D), then the question has a positive answer for any
field extension K. So a negative answer to the question would give a way of constructing
counterexamples to (D).

6. The Topological Diagonal Property

Let M be a compact connected oriented smooth manifold, and let

∆ ⊂ M × M

be the diagonal submanifold. In this section, we introduce topological versions of the
diagonal property (D). We also use notation standard in topology (instead of that from
algebraic geometry used earlier).

We say that M has property (Dr) if there exists a smooth real vector bundle E of
rank n on M × M and a smooth section s of E such that (i) s is transverse to the
0-section 0E of E and (ii) ∆ = s−1(0E). If further the bundle E is orientable, we say
that M has property (Do). Finally, if dimR M = 2m, and E can be chosen to be a
smooth complex vector bundle of rankCE = m, we say that M has property (Dc).

Remark 5. Clearly (Do) ⇒ (Dr). Further, if M satisfies (Dc), then E|∆ is isomorphic
to the normal bundle of ∆ by the transversality condition, and this normal bundle is
known to be isomorphic to the tangent bundle τM (cf. (1) in §2). It follows that E a
complex vector bundle forces τM to be a complex complex bundle, so M will have to
be an almost complex manifold. (Do) and (D) will follow from (Dc) whenever it holds.
Also if M is a complex manifold, then (D) of the earlier sections will imply (Dc), hence
(Do) and (Dr).

Remark 6. (The topological point property) In analogy with “weak point property”
from Section 4, if M has (Dr), then letting E be the bundle realizing (Dr), and setting
E1 := EM×{p}, and the section σ = s|M×{p} one finds σ _| 0E1

and σ−1(0E1
) = {p}.

Likewise for E2 := E|{q}×M . We will say that a smooth manifold obeys (Pr) (resp.
(Po) resp. (Pc)) if there exists a smooth real (resp. real orientable, resp. complex)
bundle H of rankR = dimR M = n (resp. rankR = dimR M = n, resp. rankCH = n)
with a smooth section σ meeting 0H transversely at one point. Thus (Dr) (resp. (Do),
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resp. (Dc)) implies (Pr) (resp. (Po), resp. (Pc)). If M is compact, by well known
transversality results, H realizes (Pr) (resp. (Po), resp. (Pc)) iff wn(H) = 1 (resp.
e(H) = ±1, resp. cn(H) = ±1).

Example 1. (Lie Groups) Let G be a Lie group, then G satisfies (Dr) (resp. (Do), resp.
(Dc)) iff it satisfies (Pr) (resp. (Po), resp. (Pc).) The proof is analogous to Proposition
14. Let H be a bundle realizing (Pr) and a section with a transverse zero at 1 ∈ G
(by translating if necessary), and then the bundle E := µ∗H , where µ : G × G → G is
(x, y) 7→ xy−1 with pulled back section realizes (Dr). Likewise for (Do) and (if Dµ is
C-linear) also (Dc). It follows that S1 satisfies (Dr). Similarly SO(3) = RP

3 satisfies
(Dr). We will see later that no odd dimensional manifold satisfies (Do), so neither of
the above satisfies (Do).

Example 2. (Products) If two manifolds M and N have (Dr) (resp. (Do), resp. (Dc),
then so does M × N , as remarked in the Introduction, by taking the product of the
corresponding bundles. In particular, by the example of S1 in Example 1 above, and
and of CP

1 from the next example, manifolds satisfying (Dr) (resp. (Dc) ⇒ (Do)) exist
in every dimension (resp. every even dimension).

Example 3. (Projective spaces and Grassmannians) For all k the real Grassmannian
Gk(R

n) satisfies (Dr), by the construction using the tautological bundles given in the
Introduction. Likewise Gk(C

n) satisfies (Dc) by the analogous complex construction.
It is not true that an orientable Grassmannian satisfies (Do), e.g. we shall see below
that no odd-dimensional real projective space satisfies (Do).

Example 4. (Compact Riemann Surfaces) As remarked in the Introduction, if M is a
compact connected Riemann surface, then it satisfies (D), and hence (Dc).

Example 5. (The spheres S1, S2, S4, S8) The circle S1, in view of Example 1 (or 3)
satisfies (Dr), and S2 = CP

1 satsifies (Dc) ⇒ (Do) in view of Example 3. Regarding S4

(resp. S8) as the quaternionic line (resp. octonionic line) and repeating the construction
of Example 3 above with respect to the respective tautological bundles defined on these,
one checks that S4 and S8 both satisfy (Do). They obviously can’t satisfy (Dc) because
neither is an almost complex manifold (cf. Remark 5).

A Riemannian metric on M induces one on M×M , so metrics result on τM×M , and all
its subbundles. Let U be a closed ε-tubular neighborhood of ∆ in M ×M . The tubular
neighborhood theorem gives a smooth diffeomorphism φ : (U, ∂U) → (D(ν), S(ν)),
where D(ν) is the ε-disc bundle of the normal bundle ρ : ν → ∆ of ∆ in M × M , and
S(ν) the ε-sphere bundle. The map r := ρ ◦ φ : U → ∆ is then a strong deformation
retraction of U to its core ∆. Thus there is a bundle diagram

r∗(ν)
Dφ−→ ρ∗(ν)

ρ ↓ ↓ ρ

U
φ−→ D(ν) .

(23)

The restricted bundle ρ∗(ν)|S(ν) → S(ν) has a tautological section s defined by v 7→ v,
which satisfies ‖s(v)‖ = ε for all v ∈ S(ν). Thus we have an orthogonal direct sum
decomposition of bundles on S(ν):

ρ∗(ν)|S(ν) = ξ ⊕ L ,

where L is the trivial line subbundle spanned by s. It is also well known that ρ : ν → ∆
is isomorphic to the tangent bundle ρ : τM → M under the identification ∆ ∼= M , and
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since M is orientable, so is ξ. Hence, under this identification, ξ is isomorphic to the
quotient bundle

ρ∗(τM )/L → S(τM ) ,

where L → S(τM ) is the trivial tautological bundle spanned by the tautological section
of ρ∗(τM ) over S(τM ).

Let F := φ∗(ξ), a rank (n − 1) subbundle of r∗(ν)|∂U . It is isomorphic to the rank
(n − 1) bundle ρ∗(τM )/L → S(τM ) under the above identifications. Note that F is an
orientable bundle on ∂U .

Remark 7. The restriction of the bundle ξ above to each fiber S(νx) of the sphere
bundle ρ : S(ν) → M is the tangent bundle τn−1 of the sphere S(νx). Consequently,
the bundle F, when restricted to a fiber r−1(x) of the fiber bundle r : ∂U → ∆, is
isomorphic to τn−1. This is clear, since the fiber of L at a point v ∈ S(νx) is precisely
Lv = Rv.

Since the n = 1 (i.e. S1) case is completely settled by Example 1, we will assume
henceforth that n = dimR M ≥ 2. The following lemma is the key technical result of
this section.

Lemma 5. Let M , U , ∆, be as above. Set X := (M × M) \ U ◦. Then M has (Dr)
iff the rank (n − 1) bundle F → ∂U defined above is isomorphic to the restriction to
∂U = ∂X of a smooth rank (n− 1) bundle G on X. Further, M has (Do) iff the bundle
G can be chosen to be orientable.

These are both problems in homotopy theory, of extending classifying maps ∂X →
BG for the bundle F (where G = O(n− 1) for (Dr), resp. SO(n− 1) for (Do)) to X.

Proof. We first prove the “only if” part. Suppose there exists a rank n smooth real
vector bundle π : E → M × M , and s a smooth section transverse to the zero-section
0E such that the diagonal ∆ = s−1(0E). The strong deformation retraction r : U → ∆
makes E|U isomorphic to r∗(E|∆), so Er(y) is identified with Ey for all y ∈ U . The
section s is nowhere vanishing on

X = (M × M) \ U ◦ ,

and hence defines a trivial line subbundle Λ of E|X , and a splitting of bundles on X:

E|X = G ⊕ Λ ,

where G is a rank (n − 1) bundle on X. Using the transversality condition on s,
the tubular neighborhood theorem, the inverse function and compactness of M , and
choosing ε (the radius of U) small enough, it is easy to see that there is a smooth
bundle equivalence of π : E|U → U and ρ : τ∆|U → U which carries the section s of
the former to the tautological section of the latter (U being identified with the ε-disc
bundle D(τ∆) = D(τM ) = D(ν)). Thus on ∂U = ∂X, quotienting by the respective
trivial line bundles defined by these sections, it follows that G|∂U = G|∂X is isomorphic
to F. If M had (Do), and E was an orientable bundle realizing (Do) to begin with, then
G = E|X/ε1 would also be orientable. This proves the “only if” parts of both the first
and second statements.

For the “if” part, let G be given on X as in the statement. Construct the bundle
E, by taking r∗(ν) on U , and gluing it to the bundle G ⊕ ε1

X on X, after ensuring that
the decomposition r∗(ν) = F ⊕ φ∗(L) on ∂U is preserved, viz. the first summand G|∂U

is glued to the first summand F|∂U via the given isomorphism, and the second trivial

summand ε1
X is glued to the second trivial summand φ∗L|∂U on ∂U by matching the
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section σ of the trivial bundle φ∗L → ∂U defined above with any everywhere 6= 0
section of ε1

X which extends σ to X (this is possible by the theorem of Tietze, since
n ≥ 2 implies ∂X is connected). The section σ of r∗(ν) → ∂U above is the restriction
of the tautological section, also denoted σ, of r∗(ν) → U which is transverse to the zero
section. Thus the matched section s of the whole bundle E vanishes exactly on ∆, with
s _| 0E.

The lemma has been proved. �

We have an analogue of this lemma for (Dc). Assume (in view of Remark 5) that
M is an almost complex manifold of real dimension n = 2m. Then in the notation
of the last section, the normal bundle ν ∼= τM of ∆ is a complex vector bundle, and
r∗(ν) → ∂U splits off a complex line subbundle ε1

c defined by the complex span of the
tautological section of r∗(ν)|∂U . Thus we may write

r∗(ν)|∂U = Fc ⊕ ε1
c ,

where Fc is now a complex vector bundle on ∂U = ∂X with rankCFc = m − 1.

Lemma 6. Let M be an almost complex manifold of dimC M = m. Then M has (Dc)
iff the bundle Fc of complex rank m − 1 on ∂X is isomorphic as a complex bundle to
the restriction of a complex vector bundle Gc on X. This is again a homotopy problem
as in Lemma 5, with structure group G = U(m − 1).

Proof. The proof is a minor modification of that of Lemma 5, and therefore is omitted.
�

Corollary 8. (Compact Riemann surfaces again) Let M be a compact Riemann sur-
face. Then M has (Dc).

Proof. We saw this in Example 4. It also immediately follows from Lemma 6, since Fc

is a complex vector bundle of rank 0 (!) �

Remark 8. Lemmas 5, 6 allow us to identify the obstructions to (Dr), (Do) and
(Dc) as some relative cohomology classes of the pair (X, ∂X) with local coefficients in
πi(BG), where G = O(n), SO(n), U(n) respectively. Since these are not computable
obstructions, we skip the details.

Theorem 7. The sphere Sn has (Dr) if and only if n = 1, 2, 4 or 8. (All except the
first have (Do).)

Proof. The unit sphere bundle S(τn) is the Stiefel manifold V2(R
n+1) of orthonormal

2-frames (x, v) in R
n+1. The bundle projection ρ : S(τn) → Sn is projection into the

first factor, and thus we have the spherical fiber bundle

Sn−1
x

jx→ V2(R
n+1)

ρ→ Sn(24)

with fiber Sn−1
x = ρ−1(x) over x. The tautological section of the bundle

ρ∗(τn) → V2(R
n+1)

is the map (x, v) 7→ v. Set ε = π (length of a semicircle), and denote the closed
π-tubular neighborhood of ∆ by U as above. The complement

X = (Sn × Sn) \ U◦

is a closed π-tubular neighborhood of the antidiagonal Γ, which is the graph of the
antipodal map A : Sn → Sn defined by Ax = −x.
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The involution 1×A smoothly identifies U with X. The common boundary ∂U = ∂X
is diffeomorphic to the π-sphere bundle Sπ(τn) = V2(R

n+1). Also, X becomes a disc
bundle Dπ(νΓ) = Dπ(τn), and contains the antidiagonal Γ as a strong deformation
retract. Let θ : X → Γ denote the retraction, coming from the bundle projection

νΓ
∼= τn → Γ .

Because θ is a deformation retraction, every bundle G on X is the θ-pullback of a bundle
on Γ, equivalently a ρ-pullback of a bundle on Sn. Hence it follows by Lemma 5 that
Sn has (Dr) iff the bundle F → V2(R

n+1) is isomorphic to the pullback under ρ of some
bundle on Sn. By (24),

ρ ◦ jx : Sn−1
x → Sn

is the constant map to x, it follows that the ρ-pullback of any bundle G on Sn will be
trivial when restricted to a fiber Sn−1

x . It follows that F|Sn−1
x

is isomorphic to a trivial

bundle on Sn−1
x . By Remark 7, F|Sn−1

x
is isomorphic to the tangent bundle τn−1 of

Sn−1
x . Hence F will be a ρ-pullack of a bundle on Sn only if τn−1 is trivial. Hence

n− 1 = 0, 1, 3, or 7 by [20], Theorem 2. This proves the “only if” part of the theorem.
For the “if” part, cf. Example 5.

The theorem has been proved. �

All homologies and cohomologies hereafter are with Z coefficients unless otherwise
stated.

Theorem 8. Let M be a compact orientable manifold of odd dimension. Then M does
not have (Do). If further H1(M, Z2) = 0, then it does not have (Dr).

Proof. Let E be an orientable bundle of odd real rank 2k+1 on M×M , where dim(M) =
2k +1. It is well-known that the Euler class e(E1) of E1 := E|M×{p} must be zero, since
E1 is of odd rank = 2k +1 = dim(M) and top homology of M is Z, devoid of 2-torsion.
This contradicts property (Po) of Remark 6, so M doesn’t satisfy (Do).

For the second assertion, note that if H1(M, Z2) = 0, then H1(M, Z2) = 0 and also
H1(M × M, Z2) = 0. In particular, every bundle on M × M is orientable. Thus if M
satisfies (Dr), it automatically satisfies (Do). But this contradicts the first statement.

�

Remark 9. We note from Example 3 of RP
3 (satisfying (Dr) but not (Do)) above that

this is a sharp result, i.e. the H1(M, Z2) = 0 condition cannot be dropped. Note that
Theorem 7 for spheres of odd dimension n ≥ 2 follows from the last theorem.

Theorem 9. Let M be an almost complex manifold of dimC M = 2. Then M has (Dc)
(⇒ (Do) ⇒ (Dr)). (This is in contrast with the results of Section 3 on surfaces in the
algebraic setting.)

Proof. We appeal to Lemma 6. The bundle Fc on ∂X defined there is a complex line
bundle, and hence it extends to X iff its first Chern class c1(Fc) ∈ H2(∂X) lifts to
H2(X). So it is enough to show that the restriction homomorphism

H2(X) → H2(∂X)

is surjective. From the commutative diagram induced by inclusions

H2(X) → H2(∂X)
j∗ ↑ ↑ l∗

H2(M × M) → H2(U)
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we note that the bottom restriction map is the same as the map

H2(M × M)
δ∗→ H2(M)

(by deforming U to its core ∆) which is a split surjection. (Recall that δ denotes the
diagonal embedding.) The left vertical map is an isomorphism, for by excision

Hi(M × M,X) ∼= Hi(D(ν), S(ν))

and this vanishes for 0 ≤ i ≤ 3 by the Thom isomorphism (ν ∼= τM is a bundle of real
rank 4). Also, the right vertical arrow is an isomorphism because of

Hi(U, ∂X) = H i(U, ∂U) = H i(D(ν), S(ν)) = 0

for 0 ≤ i ≤ 3, again by the Thom isomorphism.

Hence the top horizontal map is a surjection, and the assertion follows. �

Theorem 10. Let M be an almost complex manifold of complex dimension 3. Assume
that the second Stiefel-Whitney class w2(M) = 0 in H2(M, Z2) (⇔ mod 2 reduction of
c1(M) vanishes ⇔ M has a spin structure). Then M satisfies (Dc) (⇒ (Do) ⇒ (Dr)).

Proof. Since the mod 2 reduction of c1(M) = c1(τM ) is 0, it follows that c1(M) ∈
H2(M, Z) is divisible by 2 (from the Bockstein cohomology exact sequence), so there
exists a complex line bundle L on M with 2c1(L) = c1(M). The map

H2(M × M)
δ∗→ H2(M)

being a split surjection, it follows that there exists α ∈ H 2(M × M) such that δ∗α =
c1(L). Since complex line bundles are completely classified by c1, there is a complex
line bundle Γ on M × M whose restriction to the diagonal is L, i.e. δ∗Γ = L.

Now we appeal to Lemma 6. The bundle Fc of complex rank 2 on the sphere bundle
∂U = ∂X defined there needs to be extended to a complex rank 2 bundle Gc on

X = (M × M) \ U ◦

which has boundary ∂U = ∂X. Since the line bundle Γ on M × M is an extension of
the line bundle L → ∆, it is an extension of r∗L → ∂X to M × M , and a fortiori to
X. Thus to extend Fc to X, it is enough to extend the twisted rank 2 complex bundle

F1 := Fc ⊗ r∗L−1 → ∂X

to a complex rank 2 bundle G1 → X.
We claim that c1(F1) = 0. This is because Fc being of rank 2,

c1(F1) = c1(Fc ⊗ r∗L−1) = c1(Fc) + 2c1(r
∗L−1)

= r∗(c1(M)) − 2r∗(c1(L)) = r∗(c1(M) − 2c1(L)) = 0

by the definition of L above and the fact that r∗ν = r∗τM = Fc ⊕ ε1.
We proceed to extend F1 to X. Since we have a fibration

BSU(2) → BU(2) → BU(1) ,

where the last map is the classifying map of ∧2γ2 (here γ2 is the universal complex
2-bundle on BU(2)), the the only obstruction to lifting the classifying map f : ∂X →
BU(2) of the 2-bundle F1 to BSU(2) is

f∗(c1(γ
2)) = c1(F1) ∈ [∂X,BU(1)] = H2(∂X, Z) ,

which we have seen to be 0 in the last paragraph.
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Consequently, f : ∂X → BU(2) lifts to BSU(2) = BSp1 = HP
∞, and F1 becomes a

quaternionic line bundle. It is well known that the Z-cohomology ring of HP
∞ is the

polynomial ring Z[c2], where c2 ∈ H4(HP
∞) is the second Chern class of the universal

quaternionic line bundle on HP
∞. Since HP

∞ = K(Z, 4), all quaternionic line bundles
on any space Y are classified by H4(Y, Z), i.e. by their 2nd Chern class. Since F1

above is a quaternionic line bundle, all we need to do is check that the restriction map
H4(X, Z) → H4(∂X, Z) is surjective. Using the diagram

H4(X) → H4(∂X)
j∗ ↑ ↑ l∗

H4(M × M) → H4(U)

the proof is identical to the argument at the end of Theorem 9, after noting that

Hi(U, ∂X) = H i(U, ∂U) = H i(D(ν), S(ν)) = 0

for 0 ≤ i ≤ 5 by the Thom isomorphism, since rankR(ν) = 6.

The theorem has been proved. �

Lemma 7. Let M be an almost complex manifold with dimC M = 3. Let E be a smooth
complex vector bundle on M of any rank, with Chern classes ci(E) ∈ H2i(M, Z), for
1 ≤ i ≤ 3. Then these Chern classes satisfy the following identity:

(25) c3(E) − c2(E)(c1(M) + c1(E)) = 2mµ

for some m ∈ Z, where µ ∈ H6(M, Z) ∼= Z is a generator.

Proof. For a complex bundle E of any rank on M , the Todd characteristic class of M
with coefficients in E (cf. Ch. III §12 of [15] for the definition) obtained by taking the
degree 6 term in Td(M)ch(E) is

T (M,E) := rankCE

(

c1(M)c2(M)

24

)

+ c1(E)

(

c1(M)2 + c2(M)

12

)

+

(

c1(E)2c1(M)

4

)

c1(E)3

6
+

[

c3(E) − c2(E)(c1(M) + c1(E))

2

]

.

For such an E, the generalized Riemann-Roch theorem for almost complex manifolds
implies that T (M,E) is an integral multiple of the fundamental class µ ∈ H 6(M, Z), the
integer being the index of a Dirac operator of the elliptic Spinc complex of M twisted
by E (cf. Theorem 24.5.4 in Appendix 1 of [15]).

Letting k := rankCE, we have

c1(E) = c1(∧kE ⊕ εk−1) and c2(∧kE ⊕ εk−1) = c3(∧kE ⊕ εk−1) = 0 ,

(εk−1 being the trivial rank k − 1 bundle). Thus sum of the unboxed terms in the
last equation is equal to T (M,∧kE ⊕ εk−1), which is also an integer multiple of the
fundamental class µ by the above result. Hence the boxed term here is also an integer
multiple of the fundamental class. That is,

c3(E) − c2(E)(c1(M) + c1(E)) = 2mµ

for some m ∈ Z, and the lemma follows. �

Theorem 11. Let M be an almost complex manifold of dimC M = 3. Assume H1(M, Z) =
0 and H2(M, Z) = Z. Then if M satisfies (Dc), the second Stiefel-Whitney class
w2(M) = 0. Thus, in view of Theorem 10 for such an M , (Dc) is equivalent to the
existence of a spin structure on M .
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Proof. Let E be a smooth complex rank 3 bundle on M × M realizing (Dc). Let x
denote a generator of H2(M, Z). Since H1(M, Z) = 0, and H2(M, Z) = Zx, we have
by the Künneth formula that

H2(M × M) = Z(x × 1) ⊕ Z(1 × x) ,

where × denotes the cohomology cross product. Hence the first Chern class of E is
given by

c1(E) = a1(x × 1) + a2(1 × x) ∈ H2(M × M, Z)

with a1, a2 ∈ Z. Since E restricted to the diagonal ∆ is isomorphic as a complex vector
bundle to the normal bundle ν of ∆, i.e. τM , it follows that

δ∗(c1(E)) = a1(x.1) + a2(1.x) = (a1 + a2)x = c1(M) .

Thus we have the relation (analogous to the “weak point property” from Section 4)

(a1 + a2)x = c1(M) .(26)

We noted in Remark 6, that the restriction of E to the slices M × {p} and {q} × M
will have Euler class ±1 times the generator. Thus the 3rd Chern classes of the rank
3 bundles E1 := E|M×{p} and E2 := E|{q}×M are both equal to ±µ, where µ is the

fundamental class in H6(M, Z). Clearly c1(E1) = a1x and c1(E2) = a2x. From Lemma
7 applied to E1 and Eq. (26), it follows that

c2(E1)(c1(M) + c1(E1)) = c2(E1)(2a1 + a2)x = c3(E1) + 2m1µ = (2m1 ± 1)µ

and similarly

c2(E2)(2a2 + a1)x = (2m2 ± 1)

for some mi ∈ Z. Reading these relations in Z2-cohomology, we find

a1 ≡ a2 ≡ 1 mod 2 .

Thus a1 + a2 ≡ 0 mod 2. By Eq. (26), it follows that modulo 2

w2(M) = c1(M) = 0 .

The theorem has been proved. �

Remark 10. The condition H2(M, Z) = Z cannot be dropped in Theorem 11. E.g.,
we know that (Dc) holds for CP

2 ×CP
1 (by Examples 2 and 3) which is not spin. This

condition seems to be the topological analogue of the condition Pic(X) = Z in the
algebraic theory.

Corollary 9. Let M ⊂ CP
N be a smooth projective variety of dimC M = 3. Assume

that M is a strict complete intersection (alternatively, a set-theoretically complete in-
tersection with H1(M, Z) = 0). Then M has (Dc) iff M is spin.

Proof. If M is a smooth projective set-theoretically complete intersection of complex
dimension 3, it is known (cf. Cor. 7.6 on p. 149 of [14]) that for such an M we have

H1,0(M) = H0,1(M) = 0 .

By Hodge decomposition, it follows that H1(X, Z) = 0. The same result quoted above
shows that

H0,2(M) = H2,0(M) = 0 and H1,1(M) = C .

It follows again that H2(M, C) = C. Since by hypothesis H1(X, Z) = 0, it follows
that H2(X, Z) has no torsion, equals Z, and is generated by the hyperplane class.
Similarly, for a strict smooth complete intersection M with dimC M ≥ 3, it is known
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that H2(M, Z) = Z by the Grothendieck-Lefschetz theorem (cf., e.g., [14]). The result
now follows from Theorems 10 and 11. �

Corollary 10. Let M be a smooth strict complete intersection of dimC M = 3 in CP
n,

with M = X1 ∩ · · · ∩ Xn−3 with Xi smooth hypersurfaces of degree di. Then M has
(Dc) iff

(27) n + 1 −
∑

i

di

is even. In particular, a smooth hypersurface M in CP
4 has (Dc) if and only if it is of

odd degree. Thus a smooth quadric 3-fold in CP
4 does not have (Dc).

Proof. It is known that the first Chern class of the tangent bundle of M is (n+1−∑

i di)
times the hyperplane class (indeed, the normal bundle of M in CP

n is ⊕i O(di)). Thus
c1(M) is an even multiple of the hyperplane class iff the number (27) is even. Thus M
is spin iff this number is even, and the previous corollary implies the result. �

When n = 4, and M is a hypersurface, the number (27) is even iff d is odd. In
particular, a smooth quadric in CP

4 does not have (Dc) (compare with Proposition 12
from Section 4).

We remark that since the quadrics of complex dimension 1 and 2 are respectively
CP

1 and CP
1 × CP

1, they both satisfy (Dc). The quadric of dimension 3 does not
satisfy (Dc) by Corollary 10. This last fact generalizes to all smooth projective quadric
hypersurfaces of odd complex dimension ≥ 3.

Up to the end of the proof of Theorem 12, we shall now write P
n for CP

n.

Proposition 15. Let Q2m−1 ⊂ P
2m denote the smooth odd-dimensional quadric hy-

persurface V (X2
0 + · · · + X2

2m), and let m ≥ 2. Then the integral cohomology ring of
Q2m−1 is given by

H∗(Q2m−1) = Z[x, y]/〈xm − 2y, y2〉 ,

where x := c1(OQ2m−1
(1)) is the generator of H2(Q2m−1), and y is the generator of

H2m(Q2m−1). In particular,

H2k+1(Q2m−1) = 0 for all k

H2k(Q2m−1) = Zxk for all 0 ≤ k ≤ m − 1

= Zxk−my for all m ≤ k ≤ 2m − 1 .

Proof. This result is well-known, but we sketch the proof for completeness. There is
an inclusion j : P

m−1 ↪→ Q2m−1 , where P
m−1 is the linear subspace of P

2m defined by

{[x0 : x1 : · · · : x2m] ∈ P
2m : x0 +

√
−1x1 = · · · = x2m−2 +

√
−1x2m−1 = x2m = 0} .

Letting i : Q2m−1 ↪→ P
2m denote the natural inclusion we have the composite homo-

morphisms

Hr(P2m)
i∗→ Hr(Q2m−1)

j∗→ Hr(Pm−1) ,

Hr(P
m−1)

j∗→ Hr(Q2m−1)
i∗→ Hr(P

2m)

which are isomorphisms for 0 ≤ r ≤ 2m − 2, since i ◦ j is a linear inclusion. It follows
that Hr(Q2m−1) = Hr(Q2m−1) = 0 for r odd and 0 ≤ r ≤ 2m − 2. Furthermore
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H2k(Q2m−1) = Zxk for 0 ≤ k ≤ m − 1. By Poincaré duality on Q2m−1, we have
Hi(Q2m−1) = 0 for all odd i, 0 ≤ i ≤ 4m − 2. Similarly,

j∗ : H2k(P
m−1) → H2k(Q2m−1)

is an isomorphism of infinite cyclic groups for 0 ≤ k ≤ m − 1.

Setting Di, i = 1, 2, to be the Poincaré duality isomorphisms for P
m−1 and Q2m−1

respectively, it follows by the preceding paragraph that the composition

H2k(Pm−1)
D1→ H2m−2−2k(P

m−1)
j∗→ H2m−2−2k(Q2m−1)

D−1

2→ H2m+2k(Q2m−1)

is an isomorphism for 0 ≤ k ≤ m − 1. This composite map is the integral cohomology
Gysin homomorphism denoted j!, so, setting k = 0, we find that H2m(Q2m−1) is a
cyclic group generated by y = j!1. Also, j! is a H∗(Q2m−1)-module homomorphism, so
H2m+2k(Q2m−1) is a cyclic group generated by

j!(h
k) = xkj!1 = xky

for all 0 ≤ k ≤ m − 1. Since H4m(Q2m−1) = 0, it follows that y2 = 0. Since Q2m−1 is
a degree 2 hypersurface in P

2m, we have

〈x2m−1, [Q]〉 = 2 ,

where [Q] ∈ H4m−2(Q2m−1) is the fundamental homology class of Q2m−1. Thus

〈xm.xm−1, [Q]〉 = 2 .

By Poincaré duality the generators y of H2m and xm−1 of H2m−2 are dually paired, so
we have

〈y.xm−1, [Q]〉 = 1 .

Thus xm = 2y and the proposition is proved. �

Corollary 11. The cohomology ring H∗(Q2m−1, Z2) (where m ≥ 2) is given by

H∗(Q2m−1, Z2) = Z2[ξ, η]/〈ξm, η2〉 ,

where ξ (resp. η) is the mod 2 reduction of x (resp. y) of the last proposition. Alter-
natively, ξ = w2(OQ2m−1

(1)), the second Stiefel-Whitney class of the canonical bundle
on Q2m−1 considered as a real 2-plane bundle, and η = j!1, where

j! : H∗(Pm−1, Z2) → H∗+2m(Q2m−1, Z2)

is the Z2-cohomology Gysin homomorphism. In particular,

H2k+1(Q2m−1, Z2) = 0 for all k ;

H2k(Q2m−1, Z2) = Z2ξ
k for all 0 ≤ k ≤ m − 1

= Z2ξ
k−mη for all m ≤ k ≤ 2m − 1 .

Proof. The assertion is immediate from the last proposition. For a complex vector
bundle, the total Stiefel-Whitney class is the mod 2 reduction of the total Chern class,
so ξ = w2(OQ2m−1

(1)). �



28 PIOTR PRAGACZ, VASUDEVAN SRINIVAS, AND VISHWAMBHAR PATI

Lemma 8. Let m ≥ 2. Then the second Steenrod squaring operation Sq2 on H∗(Q2m−1, Z2)
satisfies the relations

Sq2(ξ) = ξ2

Sq2(η) = (m − 1) ξη mod 2

Sq2(ξm−2η) = ξm−1η mod 2 ,

where ξ and η are the algebra generators from Corollary 11.

Proof. Since Sqix = x2 for x ∈ H i (cf. [21], part (3) on p. 90), and ξ ∈ H2(Q2m−1, Z2),
it follows that Sq2(ξ) = ξ2.

For the second formula, one notes that the Gysin homomorphism j! is well known to
be the composition

Hi(Pm−1, Z2)
φ→ Hi+2m(D(ν), S(ν); Z2)

(l∗)−1

→ Hi+2m(Q2m−1, Q2m−1 \ P
m−1; Z2) → H i+2m(Q2m−1, Z2) ,

where ν is the real rank 2m normal bundle of P
m−1 in Q2m−1, D(ν) its disc bundle, S(ν)

its sphere bundle, φ the Z2 Thom isomorphism for ν, (l∗)−1 is an excision isomorphism,
and the last arrow is restriction. For brevity’s sake, denote the composite of the last
two maps by α. Then

η = j!1 = α(φ(1)) = α(Uν) ,

where Uν ∈ H2m(D(ν), S(ν); Z2) is the Z2 Thom class of ν. Since α is the composite of
maps induced by restriction (and the inverse of a restriction), the functorial operation
Sq2 commutes with α. Thus

Sq2(η) = Sq2(α(Uν)) = α(Sq2Uν) .

It remains to determine Sq2Uν . By Thom’s identity for Stiefel-Whitney classes (p. 91,
(loc.cit.)), we have φ(wi(E)) = SqiUE for any real bundle E, so Sq2Uν = φ(w2(ν)).
The normal bundle of Q2m−1 in P

2m is OQ2m−1
(2), and the normal bundle of the linear

subspace P
m−1 in P

2m is the sum of m + 1 copies of OPm−1(1), hence

ν ⊕ OPm−1(2) = [OPm−1(1)]m+1 .

Thus

c1(ν) = (m + 1)h − 2h = (m − 1)h ,

where h is the hyperplane class of P
m−1. Since w2(ν) is the mod 2 reduction of c1(ν),

it follows that modulo 2

Sq2(Uν) = φ(w2(ν)) = (m − 1)φ(h) .

Thus

Sq2(η) = α(Sq2Uν) = (m − 1)α(φ(h)) mod 2

= (m − 1)j!(h) = (m − 1)ξj!(1) = (m − 1)ξη mod 2

since j∗ξ = h mod 2 and j! is a H∗(Q2m−1, Z2)-module homomorphism. This proves
the second formula. Since

Sqk(a.b) =
∑

i+j=k

Sqi(a)Sqj(b)

(cf. (4), p. 91, (loc.cit.)), and Sq1 ≡ 0 (odd cohomology vanish), we have by the first
two relations above
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Sq2(ξm−2η) = Sq2(ξm−2)η + ξm−2Sq2(η) = (2m − 3)ξm−1η mod 2

= ξm−1η

which proves the third formula.

The lemma has been proved. �

Proposition 16. Let E be a continuous complex vector bundle of any rank on Q2m−1

(where m ≥ 2). In terms of the generators of H2, H4m−4 and H4m−2 determined in
Proposition 15, define its Chern numbers cj ∈ Z by

c2m−1(E) = c2m−1(x
m−1y); c2m−2(E) = c2m−2(x

m−2y); c1(E) = c1x

Then we have

c2m−1 = c2m−2(c1 + 1) mod 2 .

Proof. For a complex bundle E, the Stiefel-Whitney class w2j(E) is the mod 2 reduction
of cj(E) (and odd Stiefel-Whitney classes vanish), so that

w4m−2(E) = c2m−1ξ
m−1η; w4m−4(E) = c2m−2ξ

m−2η; w2(E) = c1ξ (mod 2) ,

where ξ and η are the mod 2 reductions of x and y respectively, as in Corollary 11. We
recall Wu’s formula for Stiefel-Whitney classes of a real bundle (cf. Problem 8-B on p.
94, (loc.cit.)):

Sq2wn = w2wn + (2 − n)w1wn+1 +
(2 − n)(2 − n − 1)

2
w0wn+2 .

For a complex vector bundle E, w1(E) = 0, so applying the last formula for n = 4m−4,
we have

Sq2(w4m−4(E)) = w2(E)w4m−4(E) + w4m−2(E) .

Substituting from the first paragraph and Corollary 8, we have

Sq2(c2m−2.ξ
m−2η) = (c1ξ).(c2m−2ξ

m−2η) + c2m−1ξ
m−1η mod 2

c2m−2(ξ
m−1η) = (c1c2m−2 + c2m−1)ξ

m−1η mod 2

which implies the proposition. �

Theorem 12. Let m ≥ 2. Then a smooth quadric hypersurface Q2m−1 ⊂ P
2m does not

have (Dc).

Proof. The proof proceeds exactly as in the proof of Theorem 11. Since the normal
bundle of Q2m−1 in P

2m is O(2), the first Chern class of Q2m−1 is

c1(τQ2m−1
) = (2m + 1)x − 2x = (2m − 1)x .

Thus

w2(τQ2m−1
) = ξ ∈ H2(Q2m−1, Z2) .

Now let E be a complex vector bundle of complex rank 2m − 1 on Q2m−1 × Q2m−1

realizing (Dc). Then

c1(E) = a1(x × 1) + a2(1 × x) ∈ H2(Q2m−1 × Q2m−1, Z) .

Since (Dc) implies that δ∗(E) ∼= τQ2m−1
, we have

δ∗(c1(E)) = (a1 + a2)x = c1(τQ2m−1
) = (2m − 1)x ,



30 PIOTR PRAGACZ, VASUDEVAN SRINIVAS, AND VISHWAMBHAR PATI

so that a1 + a2 ≡ 1 mod 2. The restrictions Ei, i = 1, 2 of E to the slices Q2m−1 ×{p}
and {q} × Q2m−1 respectively must have top Chern number c2m−1 ≡ 1 mod 2 by
Remark 6. This implies, by Proposition 16, that a1 and a2 are both ≡ 0 mod 2. This
contradicts the last paragraph. The theorem now follows. �

Remark 11. It is not clear what happens for quadrics of even complex dimension. We
note that Q2 = CP

1 × CP
1 and Q4 = G2(C

4) both satisfy (Dc) by Examples 2 and 3.

We now make use of the topological Theorem 12, or rather its key input, Proposi-
tion 16, to obtain the following algebraic result.

Theorem 13. Let X ⊂ P
2n be an odd dimensional smooth quadric hypersurface over

an algebraically closed field k, with n > 1. Then X does not have (D).

Proof. We claim that the congruence formula in Proposition 16 is valid for the algebraic
Chern classes of any algebraic vector bundle, if we consider it as taking values in the
Chow ring CH∗(X) ⊗ Z/2Z. Assuming the claim, it follows that X does not have the
OX(−r)-point property for any odd r > 0, exactly as in the complex topological case.
Since ωX = OX(−(2n − 1)), we see from Corollary 6 that X does not have (D).

Indeed, we will show that the congruence actually holds for Chern classes of virtual
bundles, i.e. for the homogeneous components of any element in the image of the mod
2 total Chern class map

K0(X) → CH∗(X) ⊗ Z/2Z .

We first observe that any smooth quadric X ⊂ P
2n over an algebraically closed field

k is isomorphic to the quadric defined by

{x2
0 +

n
∑

i=1

xixi+n = 0}.

This quadric contains the i-dimensional projective linear subspace

Li, 0 ≤ i ≤ n − 1,

defined by

x0 = 0, xj = xn+j = 0 ∀ 1 ≤ j < n − i, xj = 0∀ j ≥ n − i.

Here Ln−1
∼= P

n−1 is defined by x0 = x1 = . . . = xn = 0, and L0 ⊂ L1 ⊂ · · · ⊂ Ln−1

is a maximal flag of projective linear subspaces. Let Hj ⊂ X be a complete intersection
with a general linear subspace of P

2n codimension j.
The Grothendieck group K0(X) of algebraic vector bundles on X is freely generated

by the classes OHj
, 0 ≤ j ≤ n − 1, and OLi

, 0 ≤ i ≤ n − 1. Here H0 = X.
Similarly the Chow ring of X is freely generated, as an abelian group, by the classes of

the irreducible varieties Hj, 0 ≤ j ≤ n−1 and Li, 0 ≤ i ≤ n−1. Here [Hj] ∈ CHj(X),
while [Lj ] ∈ CHj(X) = CH2n−1−j(X).

If x ∈ CH1(X) is the class of the cycle [H1], and y ∈ CHn(X) the class of the cycle
[Ln−1], then the intersection product in CH∗(X) is determined by the properties that
the class of [Hj ] is just xj. and the class of [Lj ] is xn−j−1y. We also have relations
y2 = 0, and xn = 2y.

For k = C, this is exactly the presentation for the integral cohomology ring H ∗(X, Z)
given in Proposition 15 (with m in place of n). In fact, the cycle class map

CH∗(X) → H∗(X, Z)

induces an isomorphism of rings, where the algebraic generators x, y above map to the
corresponding topological generators of Proposition 15.
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In a similar fashion, if Ktop(X) denotes the topological K-group of complex vector
bundles on X, one knows that the natural map K0(X) → Ktop(X) is an isomorphism of
rings. Further, the algebraic and topological Chern class maps are compatible. Hence,
an element of CH∗(X) lies in the image of the algebraic total Chern class map precisely
when the corresponding element in H∗(X, Z) is in the image of the topological total
Chern class map. Note that, at the topological level, any element of Ktop(X) is of the
form [E]−m for some integer m, where E is a complex topological vector bundle on X.
Thus the image of the total topological Chern class map coincides with the set of total
Chern classes of complex topological vector bundles. In particular, at the topological
level, the congruence in Proposition 16 is valid for the total Chern class of any element
on Ktop(X). Hence this congruence is valid for the corresponding algebraic total Chern
class image of K0(X) in CH∗(X).

We now argue that, in fact, the image of the algebraic total Chern class map is
the same, for any smooth quadric X ⊂ P

2n over an algebraically closed field k, where
we identify the Chow rings of all such quadrics using the explicit presentation. This
is because the formulas for the Chern classes of the generators [OHj

] and [OLi
] of

K0(X), expressed as polynomials over Z in the generators x, y for the Chow ring, are
independent of the field k. This is clear for the Hj since these are classes pulled back
from projective space, and Chern classes are functorial under pullback; these classes
are certain polynomials in x. For the classes of Li, we may regard these as in the image
of the push-forward map K0(Ln−1) → K0(X). The push-forward map on the graded
Chow group is also defined, identifying CH j(Ln−1) ∼= Z with CHn+j(X) ∼= Z, where
the cycle [Lj ] is a generator of either group.

Now the universal nature of the Chern class formulas for the sheaves OLi
follows

from the theorem of Riemann-Roch “without denominators” ([7], Theorem 15.3) for
this push-forward map.

Thus, the truth of the congruences of Proposition 16 in the topological case, hence
the complex algebraic case, implies the same congruences hold over any algebraically
closed field. �

Remark 12. In fact the Riemann-Roch formula in [7], Theorem 15.3 allows us, in
principle, to consider giving a direct algebraic proof of Proposition 16 for elements in
the image of the algebraic total Chern class map, by actually determining explicitly
the image of the total Chern class map itself. This would also prove the result in
the topological case as well, by reversing the above argument, and would in some
way “explain” it, independent of any identities or properties of Steenrod squares, for
example. However, we were so far unable to make the direct computation. In principle,
such a direct approach might also shed light on the case of even dimensional quadrics,
and perhaps other cases. We conjecture that a smooth quadric hypersurface Qn in the
projective (n + 1)-space (over an algebraically closed field) has (D) iff n = 1, 2 or 4.
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