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TEICHMULLER THEORY AND THE UNIVERSAL PERIOD MAPPING

VIA QUANTUM CALCULUS AND THE H 1/ 2 SPACE ON THE CIRCLE *

by

Subhashis Nag anel Dennis Sullivan

§1 - Introduction

Thc Universal Teicluuiiller Space T(l), which is a universal paralneter space for aH

R.icn1ann surfaccs, is a con1plex Banach Inanifolel that 111ay be defil1cd as the hon10gc

neous space QS (51) /1lIöb (51). Here QS (SI) del10tes the grollp of all quasisYl1uuetric

hC>111e01110rphisrns of the unit circlc (51), und Möb(51) is thc threc-paralncter subgroup

of rvlöbius transfonnations of the unit elisc (restricted to the bounelary cirele). There is

a relllarkable hOIl1ogcneous I\:ä,hlcr conlplex Inanifolel, lvI = Diff (51) / Mäb (51) ,- aris

ing froIll applying the I\:irillov-I(ostant coadjoint orbit 11lethod to the Coo-diffeolllorphisnl

gronp Diff (51) cf thc cirele ([27]). Ai elcarly sits clubcelcled in T(1) (since any srnooth

diffeolllorphis111 is quasisynllnetric).

In [18) it was provecl that the canonical complcx-analytic anel I(ähler structures on

these two spaccs coincide nnder the natural injection of j1;1 into T( 1). (The I(ä,hler structurc

on T (1) is fonnal - the pairing converges on precisely the H 3 /2 vector fielels on the circle.)

The relevant con1plex-analytic and sYlnplectic structures on 1\1, (anel its elose relative

IV = Diff (S I ) / (SI)), arise fronl the l'cpresentation theory of Diff (S1) ; whereas Oll T (1)

thc con1plex structure is dictatecl by Tciclunüller thcory, anel thc (fornlal) I(iihler rnetric is

\Veil-Petcrsson. Thns, the hOlllogcneous spacc A1 is a conlplex analytic sublllanifolcl (not

locally closecl) in T( 1), carrying a canonical I(ähler luetric.

In subsequent work ([14] [15]) it was shown that one can canonically associate infinite

dim.ensional period rrw,triccs to the snlooth points A1 of T( 1). The crucial step in this

construction was a faithful representation (Scgal [23]) of Diff (SI) on the Frechet space

11 = C oo lvlaps (S I , IR) /IR. ( the constant 111aps ) (1)

Diff (51) acts by substitution (i.c., pullback) on the functions in 11 as a group of toplinear

auto1110rplüslllS that preserve abasie sY111plectic farIn that 11 carries.

In order to bc able to extend the infinite dinlensional period 111ap to thc full spacc

T(l), it is necessary to replace 11 by a suitahle "colnpleted" space that is preservecl un

der quasisynunetric pullbacks. Now, quasisynunetric h0I11COn10rphis111S of the circle, that

aJ:isc in the Teiclunüller theory of Rielnann surfaces as boundary valucs of quasiconfomal

diffeOlTIOrphislns of the disk ([3], [17]), have fractal graphs in general and are consequently

... Ta appeal' in Osaka Journal of Matllelnatics.
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not so an1enable to usual analytical 01' calculus procedures. In this paper we Inake use of

the relnarkablc fact this group QS(Sl) cloes act by substitution (i.c., pre-colnposition) as

a family of bounded syn1plectic operators preserving the Hilbert space H="H 1
/

2
". This

Hilbert space turns out to be exactly thc conlpletion of the pre-Hilbert space F; H 1/2

cOlllprises functions on SI (nl0dulo constants) possessing a square-integrable half-order

derivative.

Converscly, and that is also ilnportant for our work, quasisynu11ctric hOineon10rphis111S

are actually characterized alnongst h0111eOInOrphisnlS of SI by thc property of prcscrving

the space H.

Interpreting H via bounclary values as the square-integrable first coho1110logy of the

disk \vith the cup product sY111plectic structure, anel complex structure providcd by the

Hodge star, wc obtain a nni1Jer.~(Ll form of the clw~~qical period 1napping extending thr. 1nap

of [14} [15} fr01n Diff(Sl )jlvJob(Sl) to alt 01 QS(SI )jMob(SI) - namcly to thc cntirc

universal Teiclnnüller spaccJ T( 1). The target space for this periodluap TI is the universal

Siegel space of period matricesj that is the spacc of aU the cOlllplex structures on H that are

cOlnpatible with the canonical syn1plectic structure. We thus show in this paper (TheorC1n

7.1) a new laithl7tlrealization 01 the universal Teichm,7Lller space as a complex s7Lbrnanilold

01 the univcrsal Siegel space.

Using Alain Connes' suggestion of a quantU111 differential d~ f = [.1, f] - conllllutator

of the n1l1ltiplication operator \vith the con1plex structure operator - wc obtain in lieu of the

problelnatical classical calculus a quanttun calculus for quasisynllnetric hOlneon10rphisn1s.

Namely, one has operators {h, L}, do{h, L}, do{h, J}, corresponding to the non-linear cla,s

sical objects /og(h'), ~': dx, ~Schwa1'zian(h)d:r2definecl when h is appropriately S1l100th.

Any one of these objects is a quanttlln lneasurc of the confonnal clistortion of h in analogy

with the classical calculus Bcltranli coefficient p for a quasiconfonnal hOIne01110rphisnl of

the disko Here L is the snl00thing operator on thc line (ar the circle) with kerncl/oglx -yl,
J is the Hilbert transfonn (vlhich is cl 0 L 01' L 0 cl), anel {h, A} lncans A conjugated by h

lninus A.

The period lnapping 11 anel the quanttlln calculus are rclated in several ways. Für

exalnple, .f belongs to H if and only if the qllantllln differential is Hilbert-Schnlidt. Also,

the cOlllplex structures J on 'H lying on the Schottky locus (i.e., the ilnage of 11) satisfy a

quantuln integrability condition [d~ 1 J] = O.

In universal Teidunliller space there resides the separable con1plex snbmanifold T (H 00 )

- the Teiclllniiller space of the universal hyperbolic lanlination - that is exactly the closure

of the union of all the classical Tciclllniiller spaces of closed R.ien1ann surfaces in T( 1)

(see [25]). Genus-independent constructions like the universal periocl lnapping proceed

nattlrally to live on this c0l11plctcd version of thc classical Teicluniiller spaces. Thc lattice

anel I(ähler n1etric aspect of thc classical period Inappings appeal' by focusing attention
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on this space. In fact., we show t.hat T(Hoo ) carries a nat.ural convcrgent vVcil-Petcrsson

palnng.

\-\Tc make no grcat clainl to originality in this work. Our first purpose is to survey

fronl various different aspects the elegant role of H 1 /2 in universal Teiduniiller theory, the

Inain goal being to unelerstanel the period luappillg in its new universal version.

Acknowledgelllents: It is our pleasant clut.y to acknowledge several stinlulating con

versatiüns with Graelne Segal, ~Iichcl Zinslneister, ~/I.S. Narasin1han, Alain Connes, Ofer

Gabber, Stephen Scnunes anel Ton1 vVolff. vVe heartily thank Michel Zinsn1cister for sup

plying us \vith his notes on H 1
/

2
, and für generously pennitting us to utilise thenl in this

publication. Graelne Segal suggested the use of Schur's Lenuua in order to show the unique

nature of the synlplectic structure. The icleas on thc generalised .Jacobi varicty (Section

5) arosc in conversations with NI.S. NarasiIuhan.

One of us (S.N.) consielers it his pleasant eIuty to thank the IHES (Bures-sur-Yvctte)

- whcre nlost of these results were obtaineel - as weIl as the ICTP (Trieste) anel the CUNY

Graeluate Center (Ncw York) , for thcir excellcnt hospitality eluring thc Autulunj\Vinter

üf 1992. The paper has gone through a fairly long process of evolution, anel S.N. thanks

the ~'Iax-Planck-Institut(Bonn), for offering to place it in their preprint series.

He woulel nluch like to thank thc 111any interested participants of the Matherna.tical

Society of Japan's International R,esearch Institute on the "Topology of the 1l10duli space

of curves" (I(yoto 1993), ancl of the ~ISJ Anllual Conferencc (Osaka 1993), for their eleep

interest, discussions, and useful feedback.

§- 2 The Hilbert space H 1/ 2 on the circle and the line.

Let ~ elenote the open unit elisc anel U the uppcr half-plane in the cOlnplex plane (C).

51 = ob,. is the unit circle.

Intuitively speaking, thc real HilbCl,t space under concern:

(2)

is the subspace of L 2 (51) c0111prising real functions of n1can-value zero on 51 which have a

half-order derivative also in L 2 (51). Hannonic analysis will prove that these functions are

actually defined off SOlllC set of capacity zero (i.c., "quasi-everywhere") on thc circlc, anel

that thcy also appeal' as the boundary valucs of real hannonic functions of finite Dirichlet

energy in~. Our first \vay (of several) to lllakc this precise is to identify 1-l with the

seq'Uence S]Jace

e;/2 = {colllpiex sequences II _ CU1' 112,1[3, ... ) : {;n 11 n } is squarc sUIlllllable }. (3)

The identification between (2) anel (3) is by showing (see below) that the Fourier scries
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00

(4)
11=-00

converges quasi-everywhere anel elefines areal function of the required type. Thc no1'1n on

1i anel on e~/2 is, of course, the e2 nonn of {Vii u n }, i.e.,

00

Ilfll~ = 1I11II~t/2 = 2 L n l71 n l2 .
2

11=1

(5)

Therefore e~/2 anel 1i are isornetrically iS01110rphic separable Hilbert spaces. Notc that

1i is 30 subspace of L 2 (51) because {;n u 11 } in e2 inlplies { u n } itsclf is in e2 .

At the very outset let us note the fundalllental fact that the space 1i is evidently

closed uader Hilbcrt transforrn ("conjugation" of Fourier series):

00

(Jf)(e i6
) = - L isgll(n)u 1l e

in6
.

11=-00

(6)

In fact, J : 1-l --+ 1-l is an iS0l11etric iseHnorphisnl whose square is the negative identity, anel

thllS J defines a canonical complex st7"llct'/LTe for 1-l.

Relllark: In the papers [10],{14],[15],[18], we had nladc use of the fact that the Hilbert

transfonn defines the ahnost-co111plex structllre operator for the tangent space of the coad

joint orbit Inanifolds (11.1 ancl N), as weIl as for the universal TeicllIniillcr space T(l).

Vlhen convenient we will have to pass to 30 description of our Hilbert space 1-l as

functions on the real line, R. This is done by SÜllply using the ivlöbius transfonnation

of the circle onto the line that is the boundary action of the R,ieInann lllapping ("Cayley

transfoflll") of .6. onto U. vVe th11S gct an iS011letrically isOll1orphic copy, called H 1/2 (IR) ,

of our Hilbert spacc 1-l on the circle defil1ccl by takil1g f E 1-l to correspond to 9 E H 1
/

2 (IR)

where g = f 0 R" fl,( z) = ~+~ beillg thc Riclllalln luapping. The Hilbert transfornl cOlnplex

structure on 1i in this version is then elescribecl by thc usual singular integral operator Oll

the real line wi th the "Cauchy kerneI" (x _ y) -1 .

FundaIl1Clltal for our set up is the dense subspace V in 1i elefillcd by equation (1)
in the introcluction. At the level of Fourier series, V corresponds to those scqucllce {'/ln}
in e~/2 which go to zero l110re rapidly than n-J.: für any k > O. On 11 one has the basic

synlplectic fonll that we utilised crucially in [14], [15]:

5:VxV--71R

5(f,g)=~ { f·dg
2rr Jst
4
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This is (a const ant tÜlles) the signeel area of the (I (e i 8 ) , 9 (e i8 )) curve in Eucliclean plane.

On Fourier coefficients this bilinear fonn becolues

(9)

wherc fUn} anel {v n } are respectivcly the Fourier coefficients of the (real-valuecl) functions

/ anel g, as in (4). Let us note that the Cauchy-Schwarz inequality appliecl to (9) shows

that this non-degenerate bilinear alter1"1.ating form extends from, V to the full Hilbert spacc

H. \Ve will call this extension also S : H x H -7 IR. Cauchy-Schwarz asserts:

I

15(/, g)1 ::; 11I11 . Ilgll· (10)

Thus S is a jointly continuous, in fact analytic, luap on H x H.
The ünportant interconnectioll betwecn thc inner product on 1-1., thc Hilbert-transfonn

cOlnplex structure .1, anel the fornl S is encapsulatcd in thc identity:

5 (/,.1g) = (/,9), for allf,g E H (11 )

We thus see that V itself was naturally a JJ1'e-Hilbert space with respect to the canonical

inner product ansing f,om, its symplectic form and its Hilbert-transform complex structure.

Wehave fust established that the completion of 1/ is nothing other than the Hilbert space

H. Whereas 1/ carried thc Coo theory] beaca'llse it 'was diffeom,01]Jhism invariant, the

c01npleted Hilbert spacc H (Lllows us to C(L7TJJ thrrJ1tgh our constructions for the Jull Universal

Teichmüller Space beca'use it indeed is q7lasisY1nmetrically inV(Lriant.

It will be iInportant for us to complexify our spaces since we need to deal \vith isotropie

subspaces anel polarizations. Thus we set

(12)

He is a cOlllplex Hilbert spacc iSOnlOl'phic to e~/2(c) - thc latter cOlnprising thc Fourier

senes

00

f (e i8
) = L ll n ein8

, Uo = 0
11=-00

(13)

with {M u n } bcing square sUllunablc The Hcnnitian inner product on He derivecl fronl

(5) is:
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00

(f, g) = L Inlunvn .

n;;-oo

The fundalnental orthogonal decomposition of 'He is given by

lV+ = {f E 'He: aU negative index Fourier coefficients vanish }

H1+ = H1_ = {f E 'He: all positive index Fourier cocfficients vanish }.

(14)

(15)

Here we denote by bar the conlplcx anti-linear al1tolnorphis111 of 'He given by conjugation

of conlplex scalars.

\Ve extend C-linearly the fonn S anel the operator J to 'He. The conlplexifiecl S is still

givcn by thc right-rnost fonnula in (9). Notice that lV+ anel vV_ can be characteri7.ccl as

precisely the -,i and +i eigcnspaces (respectively) of thc extension of the Hilbcrt transfonn.

Further, each of H1+ and vV_ is isotropie for 5 1 i.e., 5 (f, g) = 0, w henever both f anel 9

are frOln ci ther H1+ or H1_ (see fonnula (9)). lvIoreover, H1+ and IV_ are positive isotropie

subspaces in the sense that the following identities hold:

(16)

(17)

Reillark: (16) and (17) sho\v that we coulel have defincd thc inner procluct anel nonn on

He from thc symplcctic fonn 5, by using these relations to dcfinc the inner proelucts on

H1+ anel H1_ 1 alld declarillg Hl+ to be perpelldicular to Hf-. Thus, for general f, 9 E 'He
Olle has the fundaulclltal identity

(18)

The Hilbert space structure of H can thus bc describeel sirnply in tenns of the canoni

cal sYlnplectic fOrtll it carries anel the fundanlental deC0l11position (15). [f± elenotes the

projection of f to H1±.]

In order to prove thc first results of this paper, wc have to rely on intcrpreting the

functions in Hl/2 as boundary values ("traces") of functions in the clisc ß that have finite

Dirichlet energy, (i.e. thc first derivatives are in L 2 (.6)). \Ve now explain this lllaterial.

6



Define the following "Dirichlet space11 of hannonic functions:

D = {F : 6- --+ IR. : F is hannonic ,F(O) = 0, anel E(F) < CXJ} (19)

where the energy E of any (conlplex-valucd) Cl nlap on 6. is defined as thc L2 (6.) nornl

of grad(F) :

IIFII~ = E(F) = 2~ Ji (1~12 +I~:n dxdy (20)

D1 and its cOlllplexification DCl will be Hilbert spaces with respect to this energy nonn.

\"'/e want to idcntify thc space D as prcciscly thc space of han110nic functions in 6

solving thc Dirichlet problel11 for functions in H. Indccd, thc Poi.'5son integral 1'cprcsen

tation allows '/lS to maz> P : 'H --+ D so th(Lt P is an isornetric isom.orphism, 0/ Hilbert

spaces.
00

To see this let f(e iB ) = L u"einB be an arbitrary nlelnber of 1ic. Then the Dirichlet
-00

extension of f into the elisc is:

F(z) = f nnl' ln leinB = (f ll.n zn ) + (f l,-",zm)
n=-oo JJ=1/11=1

(21 )

where z = reiB. i.Frolll the abovc series Olle call directly COlnpute the L2 (6-) 1101'1118 of F
and also of grad(F) = (0F / ox, 0F / Dy). One 0btains t he following:

E(F) = ~Jr Igrad(FW = f Inllllnl2 == 11.f11~ < CXJ
2rr J~

-00

(22)

(23)

"Vc will rcquirc crucially thc wcll-known fonnula of Douglas (see [2,pg. 36-38]) ex

pressing thc abovc cncrgy of F as the double integral on 51 of the square of the first

differences of the boundary valucs f.

E(F) =~ [ [[(f(e iB ) - f(e irP ))/8'in((B - cP)/2)J2dBdcP
16rr JS1JSl

Transferring to the real Ene by the rdöbius transfonl1 identification explained before1

thc above identity bccolnes sinlply:

E(F) = IIfl1 2 = _1 J[ [f(X) - f(y)]2 dxdy, fE H 1 / 2 (lR). (24)
4rr2 JR2 ;l: - y

Calclliating fronl thc series (21), the L2-110rnl of F itsclf is:

7



1 11 2 00 lu n l2- IFI dJ:dy = L (I 1 ):::; E(F) < 00
2rr ~ n + 1

-00

(25)

(22) shows that indeed Dirichlctexteusion is isometric fra m 1i to D: whereas (25) shows

that the functions in D are thcnlselves in L 2
, so that the thc incl'llsion of D '-+ L 2 (.6.) is

contin-l101LS. (Bounding the L 2 no1'1n of F by thc L2 nonn of its derivatives is a "Poincare
. l't ")Inequa 1 y .

It is thercfore deal' that D is a subspacc of the usual Soholev space H 1(.6.) conlprising

thosc functions in L 2 (6.) whose first dcrivatness (in the sense of distributions) are also in

L 2 (.6.), The theory of function spaccs iInplies (by thc "trace theorenls") that H 1 functions

lose half a derivative in going to a boundary hypcrplane. Thus it is known that the

functions in D will inclced have boundary values in H 1/ 2 . See [5] [9] and [26].

Moreover, thc iclentity (24) shows that for any F E D, the Fouricr expansion of

thc trace on thc bounclary circle is a Fourier series with I:: jnllu n l2 < 00. But Fourier

expansions with coefficients in such a wcigtccl e2 space, as in our situation, are kno\vn to

converge quasi-everywhcre (i.e, off a set of logarithnüc capacity zero) on SI. See [28, Vol

2, Chap. XIII]. The iclcntification betwcen D ancl H (01' De and He.) is now provccl.

It will be necessary for us to iclentify the Hf± polarization of He at the level De.

In fact, let us cleconlpose the ha1'1nonic function F of (21) into its holonl0rphic and anti

holoI110rphic parts; these are F+ ancl F_, which are (respectively) thc two SUlns bracketed

separatelyon the right hand side of (21). Clearly F+ is a holoillorphic function extcncling

f+ (the lV+ part of f), and F_ is anti-holomorphic extcnding f-. V\fe are thus led to

introcluce the follo\ving space of holcHllorphic functions whosc derivatives are in L 2 (6.):

Hoh(6) = {H : 6 --+ iC: H is holomorphic ,H(O) = 0 and 1i IH'(zWd:uly < oo}.

(26)

This is a cOlnplex Hilbert space with the non11

(27)

00

If H(z) = L unz H
, a conlputation in polar coordinates (as for (21), (25)) produces

n=l
00

IIHI1 2= L n lu n !2 .
n=1

(28)

r
1

Equations (27) anel (28) show that thc nonn-squared is the Eudidean area of the (possibly

nlulti-sheetcd) il11a.gc of thc 111ap H.

8



\-\Te let Hob (.6) denotc thc Hilbcrt space of antihololnorphic functions conjugate to

those in Hob(.6). The nonn is definecl by stipulating that the anti-linear iSOlTIOrphisnl of

Hob on Hob given by conjugation should be an iS0l11etry. Thc Cauchy-R,ielnann equation

for F+ anel F _ ilnply that

(29)

and hence

(30)

The relation bebvecn D (harnl0nic functiolls in H 1 (.6)) and Holz (.6) is now transpar

ent. The hololnorphic functions in Hob will havc non-tangelltiallinlits quasi-everywhcrc 011

SI, defining a function in lV+. \~Te collect together the various iInportant representations

of our basic Hilbert space in the follo\ving Theoreln:

THEOREM 2.1: There are canonical isornetric isom,orphism,q between the following

c0I11plex Hilbert spaces:

(1) He = H 1/ z (Sl, C) je = c 0 H1/Z(IR) = VV+ EB H1_;

(2) The sequence space e~/z(C) (constituting the Fourier coefficients of thc above

quasi-cvcl'ywhere elefined functions);

(3) Dc, cOlnprising nonnalizecl finite-energy harnl01lic functions (either on .6 01' on

thc half-plane U); [the nonn-squared being given by (20) 01' (22) 01' (23) 01' (24)];

Under the canonical iclcntifications, H1+ Inaps to Hob (.6) anel H1_ onto Holz (.6), •

Reluark: üne advantage of introducing the fuH Sobolev space H 1(.6) (rather than only

its hannonic subspace D) is that we n13.y use Dirichlet's princi]Jle to rewrite the nonn on

1i as

Ilfll~ = inf{E(F) : F ranges ove1' all extensions to .6 of f} (31)

(32)

By Dirichlet principle, the infi111U111 is realizcel by the hannonic extension P(f) = F of

(23). In connection with this it is worth pointing out still anothe1' fonnula for thc norn1 :

llfll~ = j p. ap ds
51 an

\vhere P is the harnl0nic extension to .6 of f. This follows fronl Green's fOI'lnula. The

elose relation of fOrInula (32) with the syn1plectic pairing formula (8) should be notcd.

9



§3 - QuasiSYUUlletric invariance.

Quasiconfonnal (q.c.) self-hon1eornorphisn1s of the clisc 6 (of the upper half-plane)

U are known to extencl continuously to the bounclary. The action 011 the boundary circle

(rcspcctively, on the realline IR.) is callecl a quasisymmetrie hOIUe0I110rphisI11, characterizecl

by thc well-known Beurling-Ahlfors [4] critcrion.

No\v: given any orienta.tion preserving hOIUeOITIOrphisll1 <p : 51 -t 51, \ve use it to

pullback functions in H by pre-col11position:

V'P(f) = <p*(f) = f 0 <p - -2
1

{(f 0 <p).
?T JSl (33)

[\;Ve subtra.ct off thc luean va.luc in order that the resulting function also possess zero

lucan.]

THEOREM 3.1: V',O luaps H to itself (i.e., the space H 0 'P is H) if anel only if 'P

is quasisyn1111etric. The operator norn1 of 111;' :::; V1( + 1(-1, whenever cp allows a 1\:

quasiconfof111al extension into thc disco

COROLLARY 3.2: Thc quasisynuuetric hOlueoluOrphisI11 group, QS (51), acts faith

fully by bouneleel toplinear auton10rphisI11S on the Hilbert space H.

Proof of sufficiency: ASSUlllC 'P is q.s. on 51 , anel let q, : 6 -t 6 be any quasiconfornutl

extension. Let f E 1l and supposc P(f) = F E D is its unique hannonic extension into 6.

Clearly G = F 0 <P has bounelary values f 0 'fJ, the latter being (like f) also a continuous

function on 51 defined quasi-everywhere. [Here we recall that q.s. honleonlorphisll1S carry

capacity zero sets to again such sets, although Ineasure zero sets can bCC011le positive

lueasure.] \~Te neeel to prove that the Poisson integral of f 0 cp has finite Dirichlet encrgy.

Indeed we will show

(
1 + k

2
)E(hanllonic extension of cp*(f)) ~ 2 1 _ k2 E(F).

Here 0 :::; k < 1 is the q.C. constal1t for <P, i.e.,

!<pzi :::; k I<p z ! a.e. in 6.

(34)

(35)

(
2) 1/2

The operator n01'1n of V',O is thus no 1110re than 21
/

2 i! Z2 = v']( + ]{ -1 .

Towards establishing (34) we prove that the inequality holels with the left siele heing

the energy of the luap C; = F 0 <I>. Dil'ichlet's principle (see (31)) then iluplies the rcquireel

inequality.

Setting <I> = ll. + iv l we obtajn via chajn ruIes:
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(BC) 2+ (BC) 2::; 2 [( BF) 2+ (BF) 2] [I <I> z 12+ l<I>z I2] .Bx By Bu Bv
By thc qllasiconfonnality (35) we therefore get fronl (36):

Using change of variahles in the Dirichlet integral we derive

E(G) ::; 2C~ ~:) E(F)

as desirecl.•

(36)

(37)

(38)

Relnark: The Dirichlet integral in two elil11ensions is invariant nnder confof111al nlappings.

Quasi-invariance of that integral uneler q.C. transfol'l11ations has been noted before and is

applied, for exanlple, in [1] anel [19]. See also Partyka [20],[21], for \vork and ideas relatecl

to this section.

Proof of necessity (idea of ~11. Zil1S111eister): Since two-dil11ensional Dirichlet integrals

are confof111ally invariant, we \vill pass to the upper half-plane U aud its bounclary IR, to

aid our presentation. Thc traces on the boundary constitute the space of quasi-everywherc

defined functions that we called H 1 /2 (IR).

The Douglas identity, equation (24), inuncdiatcly shows that 11911 = 11911 whcre g(x) =
g(ax + b) for any real a( # 0) ancl b. This will be utilizecl below.

Assul11e that <.p : IR --+ IR is an orientatiol1 preservil1g hOI11eolllorphislll such that

V.p-l : H 1 / 2 (IR) --+ H 1 /2 (IR) is a bOllneleel auto1110rphislll. Let us say that the nOl'l11 of this

operator is NI.

Fix a bUI11P fUl1Ctiol1 fE Cü (lR) such that 1 == 1 on [-1,1]1 == 0 outside [-2,2] auel

o ::; f ::; 1 everywhere. Choose any c E IR anel any positive t. Denote 11 = [x - t, x] anel

12 = [x, X + t]. Set geu) = f(a7.l- + b), choosing a anel b so that 9 is ielentically 1 on Ir anel

zero on (x + t~ 00).
By asstunption, go )0-1 is in H1/2(IR) allel 119 0 )0-111 ::; 1\111911 = 1\1 IIfll. \-Ve havc

J\111/112: J[ [9 0 tp-l(u) _gO<p-l(v)]2 dndv
iJR2 U - V

j
l1=r.p(;r) jU=oo 1

> d7.ldv
- v=r.p(x-t) u=r.p(x+t) (1l. - v)2

1 (
<p(x) - 'P(~; - t))

= og 1 + .
<p(x + t) - <p(x)

11

(39)



\~Te thus obtain the result that

<p(x+t)-<p(x) > 1
<p(x) - <p(x - t) - elHllfll - 1

(40)

for arbitrary real x anel i)ositive t. By utilising synllnetry, nalncly by shifting thc bunIp to

bc lover 12 anel 0 far u ::; ~; - t, we get. the opposite incquality:

<p(:r + t) - <p(x) < eMllfll _ l.
<p(x) - <p(x - t) -

The Beurling-Ahlfors condition is verified, anel we are through.•

(41)

§4 - The invariant synlplectic structure.

The quasisYllllnetric hOlneoll10rphis111 group, Q5 (51), acts on H by precolllposition

(equation (33)) as bouneled operators, preserving the canonical syrnplectic tonn 5 : H x

H -+ IR (equations (8), (9), (10)). This is a central fact; it is the crux on which the

extension of the perioel lnapping to a11 of T( 1) hinges:

PROPOSITION 4.1: For every <p E QS (51), anel a11 f, 9 E 1i,

S(<p*(f),<p*(g)) = S(f,g)· (42)

Considering the conlplex linear extension of the action to He: oue can asscrt that the only

quasisYllllnetrics which prcservc thc subspace vV+ = HoI2(~) are the Ivlöbius transforn1a

tions. In fact, ~1öb (51) acts as unitary operators on vV+ anel Hl_.
Before proving thc proposition wc would like to point out that this canonical Sy111

plectic fonn enjoys a nUlch stronger invariance propcrty:

LEMMA 4.2: If<p : 51 ---+ 51 is any (say Cl) IllHp of winding nUlnber (= clegree) k, thCll

S(f 0 <P,9 0 r.p) = kS(!,g) (43)

\

for arbitrary choice of (Cl) functiolls f anel g on the circIc. In particular, S is invariant

uncler pu11back by a11 clegree one 111appings.

Proof: The proof of (43), starting froln (8), is an exercise in calculus. Lift <p to the

universal cover to obtain :P : IR ---+ IR; the clcgrce of <p being k( E Z) ilnplies that :P(t +21f) =
:P(t) + 2k7r. Partition [O,27r} into pieces Oll which 'P is monotone, and apply thc change of

variables fonnula in cach piece.•

Pro 0 f 0 f Propos it ion 4.1: Thc LC1l1111a shows that (42) is true whenever the quasisYll1

lnetric hOlneolnorphislll cp is at least CI. By [13, Chapter 11, Section 7.4} wc kno\v that

for arbitrary q.s <p, thcre exist real analytic q.S. hOlllcolllorphislns <pm (with the sanle
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quasisynunetry constant as <p) t.hat converge unifornlly to '-P. An approxitnation arglul1ent,

as below, then proves the required result.

Denote the TL th Fourier coefficient of a function / on 51 by Fn(f). R,eca11 fron1 equation

(9) that

00

5(j,g) = -i L nFn(f)F-n(g)
n=-oo

(44)

for aH /, 9 in He.
Now since 5 IS continuous it. is enough to check (42) on the dense subspace 1/ of

sluooth funct.ions / and g. Since '-Pm -t '-P unifonny it fo11ows that Pu (/0 '-Pm) -t F u Cf 0 "p)
as 1n -t 00 (for each fixed 11.). Applying the dOlninatcd convcrgence thcOrC1ll to thc SllIns

(44) \ve inl1uediately see that as 1n -+ 00,

(45)

But Lenl111a 4.1 says that for each ra, S (CP:n (f), tp~1l (g)) = 5(j, g). Therefore we are

through.

If the action of '-P on He preserves lF+ it is easy to see that tp IUUSt be the boul1clary

values of S0111e hololuorphic Iuap <P : ö.. -+ .6.. Since '-P is a hOIueoIuorphislll one can see

that <I> is a holoillorphic honlcol11orphisl11 (as explained also in [14, Lenlll1a of Section In
- hCllce a 1tlöbius transfonuation. Since evcry <p preservcs 5, and since 5 induces the

inner product on Hf+ anel Hf_ by (16) (17), we note that such a sYluplectic transfonnation

preserving Hf+ lUllst necessarily act unitarily.•

Reillark: The rell1a.rkable invariance propcrty (43) leads us to ask a question that l11ay

shed light 011 the structure of degree k luaps of 51 onto itself. Given a vect.or space 1/

equipped with abilinear forn1 5, one luay fix some constant k( =I- 0) anel study the fanüly

of linear luaps A in H0111(1/, 1/) such that

(46)

holels for a11 VI, V2 in 1/. Of coursc, thc trivialnlultiplication (by Jk) will bc such a luap,

hut wc have in LelllnlH. 4.1 a situation where the intercsting falnily of linear Inaps obtained

hy clegree h: pu11hacks provide a profusion of exall1ples precisely when k is an integer.

Furthennore, in thc situation at hand, we 111a.y take 1/ as the space of Coo (real

01' c0111plex) functions on the circle. Then 1/ also carries algebra structure by point\vise

Inultiplication. The pll11backs by degrce k lnappings clearly preserve this rnultiplicative

structure (whereas dilatations do not). It is interesting to question whether the linear

Inaps that preserve thc algebra structure anel also satisfy the relation (46), (for integer k),
lUUSt necessarily arise froln SOlue clegree k luapping of SI on itself.

13



The heart of the rnattcr in extencling the perioclrllapping froll1 \!Vitten's hOlnogeneous

space ~1 (as in [14], [15]) to T( 1) lies in the propcrty of prcserving this syrnplectic fonn

on H. To establish the nat'nrality of the universal period nlapping, we now prove that 5
is indeed the uniquc syrnplectic fonll that. is Diff (5 I), or Q5 (51), invariant. It is rnore

surprising that thc fOrIn 5 is canonically spccifiecl by requiring its invariance under simply

the 3-pararneter subgroup 1vlöb(Sl) (Y Diff(51
) Y Q5 (SI) ).

THEOREM 4.3: Let 5 == 51 bc the canonical synlplectic fonn on"H. Suppose 52 :

H.. x 1-l --+ IR is any other continuous bilinear fOrIn such that 52 (<p* (f), <p* (g)) = 52 (I, 9L
for all /, 9 in H.. \vhenevcr <p is in ~vlöb (5 I). Then 52 is necessarily areal nnl1tiple of

5. Thus every fonn on H that is Möb (S 1) == PSL(2, IR.) invariant is necessarily non

clegenerate (if not identically zero) anel renli:lins invariant uneler the action of thc whole of

Q5 (51). (Therefore it autornatically satisfies the stronger invariance property (43)).

Given any continuous bilinear pairings Si : "H x "H --+ IR Ci = 1,2) one obtains the

inducecl "cluality" nlaps ~i : H --+ 1-l* Ci = 1,2), which are bounded linear operators

elefineel by :Ei (9) = Si(., g) l gEH... By tracing through the definitions one first notes the

following easy Lenul1a:

LEMMA 4.4: The duality incluccd by canonical fOrIn 51 is (the negative of) thc Hilbert

transforIn (eqnation (6)). Thus the Inap ~ 1 froln H.. to its clual is an invert ible isonlorphiSIll .

• The basic tool in proving thc Theoreul 4.3 is to consieler the Uintcrwining operator"

(47)

whieh is a bounclcd linear operator on 1-l by the abovc Lenun(\..

LEMMA 4.5: lVI conunutes \vith every invertible linear operator on 1-l that preservcs

both thc farIns SI anel 52.

Proof: 1'1 is definecl by the iclentity SI Cu, l'1w) = 52 (v, 'tU). If T preserves boths forll1s

then one has the string of equalities:

Since T is assulnccl invertible, this is the sarne as saying

51 (v,TlvIw) = 51(v,A1Tw), for all v,w E 7-l (48)

But 51 is non-clegeneratc, nanlcly ~l was an isoluorphisrn. Therefore (48) ill1plies that.

Tl'1 == l'1T, as desired. I
It is deal' that to provc 52 is a realrnultiple of SI Ineans that the intertwining operator

1'1 has to be siluply luultiplication by a scalar. This can now be deduced by looking at the

14



(49)

cOlllplexified rcpresentation of lv!öb (51) on 'He, which is unitary, anel applying Schur's

LC111ll1R..

LEMMA 4.6: Thc unitary reprcsentation of 5L(2, IR) on 'He eleco1l1poses into prccisely

two irreeluciblc pieces, narnely Oll Hl+ allel Hl_. In fact these two representations corresponel

to the two lowest (conjugate) nle111bers in the discrcte series for 5L (2, IR).

Pro 0 f: \-\Te refer to [12] 01' [24] for the li st of irreducible 'unitary re]Jres cntations of S L (2, IR )

that constitute what is called its "discrete scrics". Each of these represcntations is indexcd

by an integer 111. = ±2, ±3, ±4, . ". For rn ;::: 2 one can write this reprcsentation on the L2

space of holorllorphic functions in ß. with thc fo11owing wcighted Poincarc l11easurc:

( I 1
2)nl rlxdy I I

rlvm = 1 - z (1 _ Iz12)2 , Z < 1.

On the Hilbert space L~ol (ß., dvm) the discrete serics reprcsentation of S L (2, IR) cor

responding to this 111. is given by iT In : SL(2, IR) --+ Aut (L1101 (ß., dl/ rn )), where

iTm(,)(!(z)) = f (az + ~) (cz +el)-m. (50)
cz + (

Here, of course, I E 5L(2, IR) corresponds to thc (P5U(1,1)) r'/!öbius trallsfonnation

~: t~ on the disc obtainecl by conjugating the SL(2, IR) rllatrix by thc :rvIöbius isol11orphisnl

of the upper half-plane onto the disco

""le clairll that the representation given by thc operators V~ on vV+ (equation (33)),

<.p E rv!öb (51), ean be inelentifieel \vith the 111. = 2 case. Reeall froln Theorel11 2.1 that l'F+

is iclentifiable as HoI2 (ß.). The action of'P is given on Roh by :

(51 )

But Hol2 consists of nOrInalizecl (F(O) = 0) holornorphic functions in ß. whose dC1'ivativc

is in L 2 (ß., Euclidean rneasure). FroHl (51), by the chain rule,

d (elF) I-\1 (F) = - 0 r..p r..p
dz ,." dz

(52)

So we ean rewrite the representation on the elerivatives of the functions in Hol2 by the

fonnula (52) - anel that coincieles with fonnula (50) for 1n = 2.

It is clear that the reprcsentation on the conjugate space will corresponcl to rn = -2

in the discrete series. In particular, the representations we obtaill of ?v!öb (SI) by ullitary

operators of Hl+ anel H1_ are both irred·fl,cible. I
Proof of Theoren1 4.3: By Lellllna 4.5, (the tC-linear extension of ) the intertwining

operator lvI COllllllutes with every Olle of the unitary operators Vlp : He --+ He as I.p varies

over 11öb (SI). Sinee vll+ and vll_ are the only two invariant subspaees for a11 thc \/:;',

15



as proved above, it follows that 1\1 nlust nul.p B'+ either to H'+ 01' to Hf_. Let us first

aSSUlue the fonner cnse. Then NI conUl1utcs with all thc unitary operators Vep on vV+,
\vhich we know to be an irreducible representation. Schur's Lenlma asserts that a unitary

representation will be irreelucible if anel only if thc only operators that conlnlute \vith thc

operators in thc reprcsentation are thc scalars (see [24, page 11]). Since AI was areal

operator to start with, the scalar conccrned lllUSt be real.

The alternative assluuption tbat A1 luaps lF+ to vF_ is untcnablc. In fact, if that

were so we could replace AI by J'1 followed with cOlnplex conjugation. This new lvI will

luap vV+ to itself ancl will again COnlnlllte with 8011 the Vep, hence it lUust be a scala.r. Since

the origil1al1\1 arose froI11 a real operator this scalar lUust again be real anel the proof is

conlplete.•

Thc absolute naturality of thc syrl1plectic fonu thus cstablished will be utiliscd in

understanding the H 1/2 space as a Hilbertia,n spnce, - naluely aspace posscssing Cl. fixed

synlplectic structure but a. large fanüly of cOll1patible c0I11plex structures. See section 7.

§5- The H 1/ 2 space as first COh011101ogy:

Tbc Hilbert space H 1/ 2 , that is the hero of our tale, cau be il1terpreted as the first

COhOll1ology space with real coefficients of the "universal RjenlHun surface" - nalnely the

unit disc - in a Hodge-theoretic sense. That will be funclrunental for us in explaining thc

properties of the periocl Inapping Oll tbe universal Teichnliiller space.

In fact, in the classical theory of thc period Iuapping, tbe vector space H I (~Y", IR) plays

a basic role, )( bcing a closed orieutable topological surface of genus 9 to start with. This

real vector space COUles equipped with a canonical sYlnplectic strllcture given by the cup

proeluct pairing, S. Now, whencver ~y" has a. cOlllplex Inanifolel structure, this real space

Hl (~\'", IR) of dinlcnsion 2g gets endowcd with a com]Jlex structurc J that is cornpatible

with thc C7.L]J-pairing S. This happens as follows: \~Then ~y" is a Rjenlann surface, the

coholnology space above is precisely thc vector space of real hannonic 1-forIns on ~Y", by

the Hodge theorclll. Then thc cornplex struct7.Lre J is thc Hadge star operator on thc

harmonic l-form,s. The cOlnpatibility with the cup fonn is encoclecl in the relationships:

S(Ja,Jß) = S(a,ß), for all a,ß E Hl(~Y",IR)

anel that, intcrtwining Sand J exactly as in cquation (11),

S(0', J ß) = inner product(0', ß)

(53)

(54)

should definc a posi tive defini te inner prodnct on H I (~Y", IR). [In fact, as wc wi 11 nlake

explicit in Section 7, the Siegel disc of period lnatrices for genus 9 is preciscly thc space

of 3011 the S-coI11patible cOlllplex structnrcs .1.] COllscquently, the periocl I11apping can
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be t~ought of as the variation of the Hodge-star complex structure on the topologically

determined symplectic vector space H 1 (X, IR). See Sections 7 and 8 below.

Remark: vVhenever X has a complex structure, one gets an isomorphism between the

real vector space H 1 ( ..Y, IR) and the 9 dimensional cOinplex vector space BI ()[, 0), where

Odenotes the sheaf of germs of holomorphic functions. That is so because IR can be

considered as a subsheaf of 0 and hence there is an ind~ced map on cohomology. It

is interesting to check that trus natural map is an isomorphism, and that the complex

structure so induced on BI (X, IR) is the same as that given above by the Hodge star.

For our purposes it therefore becomes relevant to consider, for an arbitrary Riemann

surface X, the Hodge-theoretic first cohomology vector space as the ~~pace 0/ L 2 (square

integrab Ie) real harmonic 1-forms on )(. This real Hilbert space will be denoted 11.(..Y) .

Again, in complete generality, this Hilbert space has a non-degenerate symplectic form S

given by the. cup (= wedge) product:

5 (<PI , </12) = JL<PI !I <P2 (55)

and the Hodge star is the complex structure J of11.( ..Y) which is again compatible with S as

per (53) and (54). In fact, the L 2 inner product on 11.( ..Y) satisfies the triality relationship

(54) (or (11)).

Since in the universal Teichmüller theory we deal with the "universal Riemann surface"

- namely the unit disc ~ (being the universal cover of all Riemann surfaces) - we require

the following basic Proposition:

PROP<?SITION 5.1: For the disc ~, the Hilbert space H(~) is isonletrically isomorphie

to the real Hilbert space 11. of Section 2. Under the canonical identification the cup

\vedge pairing is the canonical symplectic form Sand the Hodge star beeomes the Hilbert

transform on H.

Proof: For every 4> E 11.(ß) there exists a unique real harmonie function F on the disc

with F(O) = 0 and dF = <p. Clearly then, 1-l(~) is isonletrieally isomorphie to the Dirichlet

space D of normalized real harmonie funetions having finite energy. But in Section 2 we

saw that this spaee is isometrically isomorphie to H by passing to the boundary values of

F on 51.
H <PI = dFl and 4>2 = dF2 , then integrating 4>1 A 4>2 on the disc ainounts to, by Stokes:

theorem, JJ~ dFI 1\ dF2= JS1 F1 dF2= S(F1 ,F2).
Finally, let 4> = udx + vdy be a L 2 harmonie I-form with cf> = dF. Suppose G is the

hannonic conjugate of FI with G(O) = O. Then dF + 'idG is a. hololllorphie I-fonn on 6.

with real part 4>. It follows that the Hodge star maps cf> to dG; hence, under the above

canonical identification of 1-l(6.) with H, the star operator beeomes the Hilbert transform~

as claimed.•

17



Remark on a generalised Jacobi variety: Concomitant with the theory developed

in this paper, it is natural that one should define for an arbitrary Riemann surface ~Y, a

certain generalised Jacobi variety of ); as the quotient of the complex Hilbert space 1i()C)

by the "discrete subgroup" B l (X, Z). [The integtal homology does sit inside the Hodge

theoretic first cohomology by integration of forms on cycles. These linear functionals can

be considered as elements of 1i(.Y) by the usual canonical isomorphism of a Hilbert space

with its dual.] For compact Riemann surfaces· this is simply the classical Jacobian torus.

Interestingly, for certain classes of open Riemann surfaces also, that quotient is a reasonable

complex analytic object (Hilbert manifold). We hope to report on these matters in future

articles with H. 5higa and N1.5. Narasimhan.

For the unit disc itself therefore, the generalised Jacobian is the Hilbert space H l
/

2

= 1-1.. equipped with the Hilbert transform cOluplex structure.

.§6- Quantum calculus arid H l / 2 :

A.Connes has proposed (see [7],[8]) a "quantum calculus" that associates to a function

f an operator that should be considered its quantum derivative - so that the operator

theoretic properties of this dQ(f) capture the smoothness properties of the function. One

advantage is that this operator can undergo all the operations of the functional calculus.

The fundamental definition in one real dimension is

(56)

where J is the Hilbert transform in one dimension explained in Section 2, anel lvIf stands

for (the generally unbounded) operator given by multiplication by f. One can think of the

quantum derivative as operating (possibly unboundedly) on the Hilbert space L 2 (Sl) 01'

on other appropriate function spaces.

Note: We will also allow quantum derivatives to be taken with respect to other Hilbert

transform like operatorsj in particular, the Hilbert transfonn can be replaced by some

conjugate of itself by a suitable automorphism of the Hilbert space under concern. In that

case we will make explicit the J by writing d~ (f) for the quantum derivative. See Section

8 for applications.

As sample results relating the properties of the quantum derivative with the nature

of f, we mention: dQ(f) is a bounded operator on L 2 (Sl) if and only if the function f
is of bounded mean oscillation. In fact, the operator norm of the quantuln derivative is

equivalent to the BMO nornl of f. Again, dQ(f) is a compact operator on L 2 (Sl) if and

only if f is in LOO(SI) and has vanishing mean oscillation. Also, if f is Hölder: (narnely in

some ~ölder dass), then the quantum derivative acts as a cOlnpact operator on Hölcler. See

[6], [8]. (Note that the union of all the Hölder classes is both quasisynlmetrically invariant
I .
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and Hilbert-transform stable. Moreover, functions that are of bounded variation and

Hölder form a quasisymmetrically invariant subspace of H I /2 .) Similarly, the requirement

that f is a luember of certain Besov spaces can be encoded in properties of the quantunl

derivative.

our Hilbert space H 1/2 (IR) has a very sinlpIe interpretat ion in these terms:

PROPOSITION 6.1: f E H 1t.2 (lR) if and only if the operator dQ(f) is Hilbert-Schmidt

on L2(IR) [or on H I / 2 (IR)]. The Hilbert-Schmidt norm of the quantum derivative coincides

with the H 1/ 2 norm of f.
Proof: Recall that the Hilbert transform on the real line is given as a singular integral

operator with integration kernel (x - y)-l. A formal calculation therefore shows that

(dQ(f))(g)(x) = r f{x) - f(y) g(y)dy (57)
Ja x-y

But the above is an integral operator with kernel J{(x, y) = (f(x) - f(y))/{x - y),
and such an operator is Hilbert-Schmidt if and only if the kernel is square-integrable over

R 2
• Utilising now the Douglas identity - equation (24) - we are clone.•

Since the Hilbert transform, J, is the standard complex structure on the H 1/ 2 Hilbert

space, and since this last space was shown to allow an action by the quasisymmetric group,

QS(IR), some further considerations become relevant. Introduce the operator L on I-forms

on the line to functions on the line by:

(Lrp)(x) = k[lOglx - Yllrp(y)dy (58)

One may think of the Hilbert transform Jasoperating on either the space of functions

or on the space of 1-forms (by integrating agains t the kernel dx / (x - y)). Let d as usual

denote total derivative (from functions to I-forms). Then notice that L above is an operator

that is essentially a smoothing inverse of the exterior derivative. In fact, Land d are

connected to J via the relationships:

d 0 L = J1-jorms; L 0 d = Jjunetions (59)

The Quasisymmetrically deforlned operators: Given any q.S. homeolll0rphisnl h E

QS(IR) we think ofit as producing a q.S. change ofstructure on the line, anel hence we define

the corresponding transformed operators, L h and Jh by L h = hoLoh -1 anel Jh = holoh -1.

(J is being considered on functions in 1i = H 1/ 2(IR), as usual.) The q.S .homeomorphism

(assumed to be say Cl for the deformation on L), operates standardlyon functions anel

forms by pullback. Therefore, Jh simply stands for the Hilbert trans/orm conjugated by

the symplectomorphism Th 0/1i achieued by pre-composing by the q.S. homeomorphism h.

Jh is thus a new complex structure on 'H.
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Note: The eonlplex struetures on H of type Jh are exactly those that eonstitute thc

üuage of T(l) by the universal period nlapping. (See Section 8.) The target nlanifold, the

universal Siegel spaee, ean be thought of as aspace of S-colupatible conlplex structures

on H.
Let us \vrite the perturbation achieved by h on these operators as the "quantulll

brackets" :

{h,L} = L h
- L; {h,J} = Jh - J. (60)

Now, for instanee, the operator d 0 {h, J} is rcprescnted by thc kernel (h x h)*rn - 171.

where 'ln = (b:dy/(x - y? For h suitably SllloOth this i8 SÜllply dydx(log((h(x) - h(Y))/(:i: - V)]).

It is weH known that (11. X 11.)*111. = rn. whcn h is Cl, Möbius tranSfOrIllation. Interestingly,

therefore, on thc diagonal (x = y), this kernel bceonlcs (1/6 tinles) the 8ehwarzian deriva-

tive of h (as a quadratie differential on the line). For thc othcr operators in the table bclow

thc kernel eonlputations are even easier.

Set J{(x, y) = log[(h(x) - h(y))/(x - V)] for eonvcnicnee. Vle have thc follo\ving tahle

of quanhuu calculus fornll.llas:

Operator
{h,L}

d 0 {h, L}
do{h,J}

I(ernel
J{(x, y)

dxJ{(x, y)
dydxI{(x, y)

On diagonal
log(h')

hll

flidx
kS chwa1'z'ian(11.)d:l;2

Cocycle on QS(IR.)
funct-ion - val1led

1 - {onn. - valued
quadratic - fonn - valued

(61 )

\
'(

\

Thc point here is that these operators nlake sense when h is Illerely quasisYlunlctrie.

If h happens to bc appropriately Sillooth, we ean restriet the kerneIs to the diagonal to

obta,in the respective nonlinear classieal derivatives (affine Schwarzian, Sehwarzian, ete.)

as listed in the table above.

Reluark: It is worth pointing out that the central extensions associatecl to the three

eocycles in the horizontallines of the table above rcspectivcly correspond to the subgroups:

(i) Trnnslations) (ii)Affine tTansfoTm.ations} anel (iii)PTojective (Mäbius) transform,ations.

§7- The universal period luapping on T( 1):

Having now all the necessary background l'esults behincl 11S, we are finally ahle to

describe the universal perioel (01' polarisations) nlap itself.

Thc Frcchet Lie group, D'if f(5 1
) operating by pullback (= pre-coll1position) on

s11100th fllllctions, had a. faithful represcntatioll by bounded synlplcctic operators on the

synlplcctic vector spaee 11 of equation (1). That illelueed thc natural Illap II of the hOl110

geneous space lvI = D'iff(Sl )/lvJöb(Sl) illto Sega.l's version of the Siegel space of periocl

Illatriees. In [14] [15] we had shown that this lllap:
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(62)

is equivariant, holomorphic) Kählcr isornetric imm,ersion, and Inoreover that it qualifies

as a generalised period matrix m,(L]J, (relnel11bering [18] that the dOl11ajn is a cOlnplex sub

I11Rnifold of the universal spacc of TIjclllHJln surfaces T( 1)).

LFrol11 the results of Sections 2, 3, ancl 4, we know that thc quasisyul111etric grOllIJ,

QS(Sl) operates as bounclecl synlplectic operators on the Hilbcrt space H that is the

c0111pletion of the pre-Hilbert space V. The Sallle proof as offerccl in thc articles qllotecl

denl0nstrates that the subgroup of QS actillg unitarily is the rv!öbius subgroup. Clearly

then we have obtainecl the extension 0f rr (also called rr to save on nonlenclatllre) to th e

entire universal Teichm1Llier s]Jacc:

rr :T(l) --+ Sp(H)jU (63)

Let us first exhibit the nature of the conlplex Banach l11allifold that is the target

space of thc period lllap (63). This space, which is the 1lni1Jcrsal Siegel period rnatrix

S]}(l,ce, denotecl 500 , has several intercsting descriptions:

(a): 500 = the space of positive polarizatiolls of the sYlnplectic Hilbert space H . Recall

([14], [15], [23]) that a positive polarization signifies thc choicc of a closed cOlnplex sllbspace

Hl in He such that (i) 1-lc = Hf EB H'; (ii) Hi is S-isotropic, nal11cly S vanishes on arbitrary

pairs froln Hl; aud (iii) i 5 (10, 1U) defines thc square of a norn1 on w E Hi.

(b): Sex;)= the space of S-conlpatible conlplex structllre operators on H . That cousists of

bouncled invertible operators J of H outo itself whose square is the negative iclentity anel J
is C(Hllpatible wi th S in the sense that requirelnents (53) and (54) are valid. Alternativcly,

these are the cOlnplex structure operators J on H such that H(/,g) = 5(/, Jg) + i5(!,g)
is a positive definite Henllitian fonn having 5 as its itnaginary part.

(c): 500 = thc space of bounded operators Z fron1 Hl+ to H'_ that satisfy the conclition of

S-synuuetry: S(Z n l ß) = S(Zß, 0') anel are in the uni t disc in thc sense that (I - Z Z) is

positive definite. The Inatrix for Z is the "period matrix" of thc classical theory.

(d): Sex;)= the hOlnogeneous space 5p(H)jU; here Sp(H) denotes all bounded sYlnplectic

autoluorphisn1s of H, anel U is thc unita,ry subgroup defined as those synlplectolnorphislllS

that keep the subspace VV+ (setwise) invariant.

Introduce thc Grassrnannian G1'( Hl+, He) of subspa,ces of type 111+ in He, which

is obviously a complex Banach l11anifold 1110delled on thc Banach space of a11 bouneled

operators frOln Hl+ to Hl_. eleady, Sex;) is elllbedded in Gr as a conlplcx sublnanifold. The

connections between thc above descriptions of the Siegel universal space are transparent:
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(a: b) thc posi tivc polarizing snbspacc H1 is the - ,j-eigenspace of thc conlplcx strncture

operator J (extendeel to He by COlllPlex lineari ty ).

(a:c) the positive polarizing snbspace H1 is thc graph of the operator Z.

(a:cl) Sp(H) acts transitivelyon the set of positive polarizing subspaces. lV+ is a polarizing

subspaee, anel the isotropy (stabilizcr) subgroup thercat is exaetly U.

1i as a Hilbertian space: Note that the nlethod (b) above elesCl'ibes the universal Siegel

spacc as aspace of Hilbert spaee struetllres on the fixcel undcrlying sYlnplectic vector space

H. By the rcsult of Scction 4 we know that the sYlnplectic structurc on H is cOl1lplctely

canonical, \vhcrcas each ehoicc of J ahove givcs a Hilbcrt spaec inner product on the space

by intcrtwining 5 anel J by thc fUllchunental relationship (11) (01' (54)). Thus H is a

"Hilbertian spa,ce n: which signifies a conlplete topological vcetor space with a canonica.l

symplcctic structurc but lots of coulpatiblc inner products turning it iuto a Hilbert space

In many ways.

THEOREM 7.1: The universal perioclluapping II is an injective, equivariant, hololllor~

phic iUllnersion betwecn cOlnplex Banach luanifolds.

Proof: FrOlll our earlier papers [14] [15] we kno\v these facts for II restricted to 1\1. The

proof of equivariancc is the saUle (and siInplc). The 111ap is an injectiou becausc if we know

the subspace H1+ pullecl back by W'1~ then wc ean recover the q.s. hOlllcolllorphisnl1011" In

fact, inside thc given subspace look at those fUlletions which Inap 51 hOlllC01110rphically

on itself. One sees casily that these 111USt be precisely the Möbius transfonllations of the

circle pre-corllposed by 10 /1' The injcetivi ty (global Torelli thcorell1) fo11ows.

Let HS write down the rnatrix for the syrnplectonlorphisrn T Oll He obtained via pre

compositioll by 1V11" \~Te write in the standard orthollonllal basis eild} / k 1/2, k = 1~ 2, 3.. for

H1+, ancl the eornplex conjugatcs as o.n. basis for Hf_.
In He = H1+ EB H/_ block fonn, T is given by rnaps: A : H1+ --+ H1+, B : lV_ --+ H1+.

The conjugates of A anel B Inap H/_ to H1_ anel H1+ to H1_ ~ respeetively. The Inatrix

entries for A = ((apq )) anel B = ((b rs )) turn out to bc:

"pq = (27r) -11'1/2 q-1/21
2
" (w" (eiO))q e- ipO dB, ]V1 2: 1 (64)

br , = (27r)-1,.1/2 S-I/21 2

" (w,,(eio))-'e-ü,odB, ", s 2: 1 (65)

Heca11ing the standard action of synlplectolllorphis111S on the Siegel disc (rnodel (c)

abovc), we sec that the corrcsponcling operator [=pcriod rnatrix] Z appearing fronl the

Teichrniiller point [1'.] is given by:
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The usual proof of finite diluensions sho\vs that for any sYlupleetolll0rphislll AlllUSt be

illvertible - hence thc above cxplieit fornnl1a luakes sense.

Since the Fourier coefficients appearing in A and B vary only real-analytically with

J-l, it luay be sOI11ewhat surprising that TI is aetually holomorphic. In fact, a COlllputation

of the first variation of TI at the origin of T (1) ( i. e., the derivative luap) in thc Beltralni

direction IJ shows that thc following Ra'llch variational forrn'nla subsists:

(67)

The proof of this fonnula is as shown for rr on the smooth points sublnanifolcl NI in our

earlier papers. The luanifest cOl11plex linearity of thc derivative, nanlely thc validity of the

Cauchy-Ricluann equations, cOlnbined with equivariance, denl0nstrates that II is cOluplcx

analytic on T(l), as desirecl.•

Interpretation of II as period l11ap: Thc luap Il qualifies as a universal version of the

classical genus g period ll1aps. In thc light of P.Griffiths' ideas [11], the classical period

Inap luay be thought of as associating to a Teichluüller point a positive polarizing subspace

of the first COhOluology BI (.\'", IR). The point is that whcn .\'" has a conlplex strueture, then

thc cOlllplexifiecl first cohomology clecoluposes as:

(68)

The pcriod luap associates the subspace H 1,0 (.\'") - which is positivc polarizing wi th respeet

to the eup-produet sYlupleetic fonu - to the given cOluplex strueturc on .\'". Of course,

H"O(.\,") represents the holonlorphie 1-fo1'1ns on .\'", and that is why this is nothing but the

usual period nlapping.

Bnt that is precisely what rr is doing in thc univcr~~al Tcich7nüller SPo.cc. Indccd, by

thc results of Scction 5, 'H is the Hodgc-theoretie real first COhOIl1010gy of the clisc, with S

being the cup-produet.

The standard cOlllplex structure on thc unit disc has hololllorphie 1-fo1'1ns that are of

the fonn elF where F is a hololnorphic function on ß with F(O) = O. Thus the bounclary

values of F will have only positive inclex Fourier Inocles - corresponcling therefore to the

polarizing subspace Hf+. Now, an arbitrary point of T(l) is clescribecl by thc ehoice of

a Bcltralni differentialp Oll .6.. perturbing the cOll1plex structure. \~Te are now asking for

thc holoIuorphic 1-fonns Oll.6.JI' Sohring thc Beltralni equation on .6. provicles us with thc

p-confol'lnal quasiconfonnal self-hollleoll10rphisll1 lV ll of the disco This lV /J is a holoruorphic

unifornlising eoordinate for the dise with the J.l eonlplex strueture. The hololll0rphie 1

f01'1ns subspace, Hl,O(ß ,l ): should therefore cOll1prise those functions on SI that are the

Hf+ functions precompos cd with th e boundary v(Ll-n es 0 f th e q. c. 7nap 10IJ' That is exactly
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tbe action of II on the Teiclllniiller dass of p. Tbis explains wb)' II bebaves as an infinite

dilnensional period Inapping.

Reillark: On Segal's Coo version of thc Siegel space - constructed using Hilbert-Sclllnielt

operators Z, tbere existeel tbe universal Siegel symplectic rnetric, wbicb we studied in

[14J [15] and sbowcd to be tbc sallle as tbc Kirillov-I(ostant (= \Vcil-Petcrsson) lnetric

on D·if f(5 1 )/A10b(51
). Für thc bigger Banacb lnanifüld 5 00 above, tbat pairing fails to

converge on arbitrary pairs of tangent vectürs bccause the relevant operators are not any

nlore tracc-class in general. Thc difficulties asociated witb tbis nlatter will be adelresscd

in Section 9 below, anel in further work that is in progress.

§8- The universal Sehottky loeus and quantU111 ealeulus:

Dur object is to study the inlagc of 11 in 5 00 , Tbc result (cqllation (69)) can be recognizccl

to be a quanttllll "integrability conclition" for conlplcx structures on the circle 01' the line.

PROPOSITION 8.1: If a positive polarizing subspace l'V is in the "universal Schottky

locus" , nal11ely if Hf is in the il11age of T( 1) under thc universal period ll1apping 11, then Hl
posscsses a dcnse subspace which is rn,'ll,Zti]JZiclLtion-closed (i.e., an "algebra" under pointwise

nlultiplication 1110dulo subtraction of ll1can-valuc.) In quanb.ll11 calculus tcnnillologYl this

l11eans that

[d~,.1] = 0 (G9)

wbere J denotcs tbe S-col11patible cOlllplex structure of H \Vh08e -t-elgcnspace is Hl.

(Recall tbc va.rious descriptions of 500 spelled out in the last section.)

Multiplieation-elosed polarizing subspaee: The notion of being I1ltlltiplication-closcd

is well-defined for the relevant subspa,ces in He. Let us note that the original polarizing

subspace Hl+ contains the elensc subspace of holonlürphic trigononlctric polynonlials (with

111ea11 zero) which constitutc an algebra. Indecd, the identity nlap of SI is a Ine111ber of Hf+,

call it j, anel positive integral powers of j clearly generate Hl+ - since polynolnials in j fonn

a densc subspace therein. Now if vV is any other positive polarizing subspacc, wc know

that it is tbc il11age of vV+ nnder S0111e T E Sp(H). Tbus, vV will he nnlltiplication-closcel

precisely whell thc i111age of j by T gcnerates Hf, in thc sense that its positive integral

po\vers (lllinus the 111ean values) also lie in Hf (anel hcncc span a dense subspace of Hf).

In othcr words, we are consielering lV (E 500 ' [elcscription (a)]) to he ll1ultiplication

closed provided that thc pointwise products of functiollS fronl Hf (ll1inlls their rnean valucs)

that happen to be H 1
/ 2 functions actually land up in the subspace Hf again. NIultiplying

f anel 9 111odulo arbitl'al'Y additive COllstants clClllonstl'atcs that this notion is wcll-elcfincd

when applied to a subspacc.

QuantU111 calculus and equation (69): vVc suggest a quantulll version of conlplex

structures in one real dirucnsion , anel notc that thc illtegrable ones corrcspond to tbc

24



universal Schottky locus uueler study.

In the spirit of algebraic geon1etry one takes the real Hilbert space of functions 1i =
H 1 /2 (IR) as the "coo1'clillate ring" of the realline. Consequently, a con1plex struetu1'e on IR

will be consielerecl to be a con1plcx structure on this Hilbcrt spacc. Since Soo \'las aspace

of (sYlnplectically-colupatible) cornplcx st.ructures on 11., we are int.crp1'cting Soo as aspace

of quanttul1 c01l1plex structures on thc line (01' ci1'cle).

Anl0ngst the points of the universal Siegel space, those that ean be interp1'etecl as

the hololll0rphic function algebra for son1e cOl11plex structure on thc circle qualify as the

"integrable" ones. But T( 1) pa1'al11et1'ises all the quasisYllUl1ctrically relatecl circles: anel

for eaeh one, the 111ap II associates to that st.ructurc thc holoillorphic function algebra

corresponcling to it; see the interpretation we provided for II in the last section. It is

elear therefore that II(T( 1) shoulcl be the integrable con1plex structures. The point is that

taking the standard circlc as having integrable cOl11plex strueturc, 3011 the other integrahle

cor11plex structures arise fror11 this one by a QS change of coordinates on the unelerlying

circle. These are the c0111plex structures Jh introclucecl in Section 6 on quanttll11 calculus.

The -i-eigenspace for Jh is interpretccl as the algebra of analytic funetions on the quantunl

realline \vith the h-strueture. '~'e will see in the proof that (69) encocles just this condition.

Proof of Proposition 8.1: For a point of T(l) represented by a q.S. honleonl0rphislll

<P, thc periocl 111ap sencls it to the polarizing subspace lVq) = Hf+ 0 <p. But Hl+ was

a 111ultiplication-closcd subspace, generated by just the ielentity r11ap j on 51, to start

with. Clearly then, II( cI» = VV.P is also 111ultiplication-closccl in thc sense explainecl, anel is

generatecl by the ir11age of the generator of Hf+ - nar11ely by the Cl.s hOllleolllorphisrn cjJ (as

a r11er11ber of 11.e).•

Relllarks on the converse: '~'e suspect that the converse is also true: that the T(l'F+)
is such an "algebra" subspace only when T arises as pullback by a qua.sisynu11etric hOllle

011l0rphisrn. This assertion is relllinescent of standard theorerus in Banach algebras where

one proves, for exanlple, that cvery algebra autoluorphisl1l of thc a.lgcbra C(X) arises fron1

hOllleOmorphisnls of )l. [Renlark of Alllbar Sengupta.] Owing to the technical point that

H r/2 funetions are not in general everywherc definecl on the circlc, we are 80S yct unablc

to find a rigorous proof of this convcrse.

Here is the sketch of an idea for pl'oving the convcrse. SllPPOSC we are given a subspace

E that is ffiultiplication-closcd in thc sense explained. Now, Sp(11.) acts transitivelyon

thc set of positive polarizing sllbspaccs. V,'e consider a T E 5])(11.) that 111aps Hl+ to E

preserving the 111ultiplicative structure. Denote by j thc identity funetion on 51 anel let

T(j) = 10 be its inlagc in E.

Since j is a honleoll10rphisr11 anel T is an invertible real sYlnplector1101'phisln, one

expects that 10 is also a hOll1cornorphisrll on 51. (Recall the signcel al'ca interpretation of

the canonical fonn (8).) It then follows that thc T is nothil1g other that precor11position
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by this w. That is because:

T(jm) = T(j)1H - Incan vaIne = (w(e i9 ))1H - nlcan value = jm 0 W - 111can value.

I\:nowing T to act SO on powcrs of j is sufficient, sincc polynolnials in j arc dcnse in H!+.

Fina11y, since T is thc c0111plexification of areal sYll1plect0l110rphisln, seeing the action

of T on Hl+ tells us T on a11 of 1ic; nalllely, T is everywhere precoluposition by that

hOlueolnorphislu W of 51. By the necessity ]Jart 0/ Theore1n S.l we concl'u,de then that 1U

1n'llst be quasisY1nm,etric, anel hcnce that the given subspace E is the ilnage uneler rr of the

Teichnlii11er point eletennineel by w.

Proof of equation (69): Let .I bc any 5-conlpatible conlplex structure on H, nanlely .I is

a.n arbitrary point of Soo (clescription (b) of Scction 7). Let. .10 denote the Hilbcrt transfonn

itself, which is the refcrence point in thc univcrsal Siegel space; therefore J = TJoT- 1 for

sonle sYlnplectolll0rphislll T in Sp(H). The ~i-eigenspacefor .10 is, of coursc, thc rcfcrcnce

polarizing subspace Hl+, anel thc subspace Hl corresponcling to .I consists of the functions

(I + i( .II)) for a11 / in H. Now, the pointwisc procluct of two such typical clelncnts of lV

gives:

(/ + 1:(Jf))(g + i(Jg)) = [fg - (Jf)(Jg)] + i[j(Jg) +g(.1f)]

In order for W to bc nnl1tiplication closed the function 011 thc right hand sidc IUust also

be of the fonn (17. + 'i(.1h)). Nalnely, for a11 relevant / and 9 in the real Hilbert space H
we 1l1Ust have:

.1[/g - (.1j)(.1g)] = [/(.19) + g(.1j)] (70)

Now reca.ll froll1 thc concepts introduced in Section 6 that one can associate to func

tions f their quanttlln derivative operators d~ (f) which is the COlnulutator of J with the

nlultiplication operator lvI! dcfined by f. The quantunl derivative is bcing takcn with

rcspcct to any Hilbert-transfonn-like operator .J as explained before. But now a short

C0111putation dell10nstratcs that equation (70) is thc s.a.lne RS saying that:

J 0 d~(f) = -d~(/).

Operating by J 011 both sieles shows that this is (69). That is as desireel.•

§9- The Teiclllnüller space of the universal laJnination and Weil-Petersson:

The Universal Tcicllll1iillcr Space, T(l )=T(.6.), is a non-se]Jarablc cOll1plex Banach

lnanifold that contains, as propcrly elnbecldecl cOlnplex subnlanifolcls, a11 the Tciclunü11er

spa,ccs: Tg , of the classical COll1pact Rienlann surfaccs of every genus 9 (2:: 2). Tg is 39 - 3

clilnensional and appears (in nlultiple copies) within T(.6.) as the Teichnliiller space T( G)
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of the Fuchsian group C; whenever tJ./C; is of genus g. The closure of the union of a falnily

of these embedded Tg in T(tJ.) turns out to be 30 separable conlplex sulnl1anifold of T(tJ.)
(ll1odelled on a separable conlplcx Banach space). That sulnuanifold can be iclentified as

being itself the Teichnliiller space of the "universal hyperbolic IFuuination" H00' \Ve will

show that T(Hoo ) carries a canonical, genus-independent version of the \Veil-Petersson

lnetric, thus bringing back into play the h~ä,hler structure-preserving aspect of the period

nlapping theory.

The universal laillinated surfaces: Let us proceed to cxplain thc nature of thc (two

possible) '\uliversallanünations" anel the conlplex structures on these. Starting frenn any

closed topological surface, )(, equipped wi th a base point, consider thc inverse (directcd)

systeIU of all finite sheeted unbrancheel covcring spaces of ); by other closecl pointecl sur

faces. The covering projcctions are all requircd to bc base point prescrving, anel isonl0rphic

covering spaces are idcntificd. Thc inven~c lim,it spacc of such an inverse systcrn is thc

::lalnination" - which is the fOellS of our intcrest.

Thc Zarnination E oo : Thus, if ); has genus one, then, of course, all covcrings are also tori,

anel one obtains as the inverse linüt of thc tower a certain conlpact topological space - every

path conlponent of which (the lanünating leaves) - is identifiable \vith the cOluplex plane.

This space Eco (to be thought of as the "universal Eucliclean lcunination") is thereforc a

fiber space over the original torus )( with the fiber being a Cantor set. The Cantor set

corresponds to a11 the possible backwarcl stl'ings in the tower with the initial elelnent being

the base point of _\'". The total space is C0111pact since it is a closed subset of the product

of all the conlpact objects appearing in the tower.

Th e Za1nination H(XI: Starting with an arbi trary _J.: of lligher genus deal' ly produces the

sarne inversc lilnit spacc, dcnotecl H (XI, indcpendent of thc initial genus. That is bccause

givcn any two surfaces of genus greatcr thaJl one, thcre is always a conunon covel'ing

surface of higher genus. H00 is our universal hyperbolic hunination, whose Tcichrniiller

theol'y we will consicler in this section. For the salne rcasons as in thc eRse of E oo , this

new lanlination is also a conlpact topological space fibering over thc base surfaee ~J.: with

fiber again a Cantor set. (It is easy to see that in either case the space of backwal'cl strillgs

starting frorn any point in ~J.: i5 an ul1countable, cOlnpact, perfect, totally-disconnectcd

space - henec hOlneolnorphic to the Cantor set.) The fibration restricted to each individual

leaf (i.e., path cOl11ponent of thc lanünation) i5 a universal covering projectioll. Indecd,

notice that the leaves of H00 (as well as of E oo ) Inust all be sinlply connccted - since

any non-trivialloop on a surface can bc unwrapped in a finite cover. [That corresponds

to the residual finitclless of the funclanlcntal group of a dosed sUl'faec.] Indecd: group~

theoretically speaking, covering spaces correspond to the subgroups of thc fUl1clalnel1tal

group. Utilising only nonna.l subgroups (nanlcly thc regular covcrings) woulcl give a cofina.l

inverse systeIn ancl therefore the inverse lilni t would still continue to be the H 00 lalninatiol1.
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This way of interpreting things a110ws us to see that the transverse Cantor-set fiber actua11y

has EI. group structure. In fact it. is the pro-finite grou}) that is the inverse linlit of a11 the

deck-transfonnation groups corrcsponding to these nonllal coverings.

COlllplex structures : Let us concentrate on the universal hyperbolic lalnination H oo

fronl now Oll. For any cOIllplex structure on .Y there is clcarly a cOlnplex structure ineluced

by pu11back on each surfacc of the inverse systeln, anel therefore H00 itsclf inherits a conlplcx

structure on each leaf, so that 1l0\V bihololllorphically cach leaf is thc Poincare hyperbolic

plane. If we think of a reference cOIllplex structure on X, then any new cOlllplex structure is

recorded by a Beltranli cocfficicnt on .Y, anel one obtains by pu11back a COlllplcx structure on

thc inverse lilnit in the sense that each leaf no\v has a cOlnplex structure and the Beltralni

coefficients vary continllously fronl leaf to lcaf in the Cantor-set direction. Incleed, thc

conlplex structures obtainccl in the ahovc fashion by pu11ing back to thc inverse linlit frolll

a cOluplex structure on any closed Burface in the inverse tower, have the special property

that the Beltrarni coefficients on the leavcs are 10ca11y constant in the transverse (Cantor)

dircction. These "loca11y constaut" fanlilies of Beltranli cocfficicnts on H oo cOlllprisc thc

transtJersely locally constant (writtcn "TLC") cOlllplex structures on the larnination. The

generic conlplex structure on H 00, where a11 continuously varying Beltralni coefficients in

thc Cantor-fiber clirection are achnissible, will be a litnit of the TLC subfanlily of cOlnplex

structures.

To be prccise, a complcx struct'nre on a lalnination L i5 a covering of L bylalnination

charts (disc) x (transversal) so that thc overlap horueoluorphisrns are cOluplex analytic

on the clisc clirection. Two conlplex structures are Teichm,1"iller cfjuivalent whenevcr they

are related to each other by a hOlueoluorphisnl that is hOlnotopic to the identity through

leaf-preserving continuous Inappings of L. For us L is, of course: H oo . Thus we have

clefinecl the set T( H 00)'
Note that there is a distinguishccllcaf in our laluination, nalnely the path cOluponent

of the point which is tbe string of a11 thc base points. Ca11 this leaf l. Note that a111eaves

are clense in H 00, in particular I is dense. \Vith respcct to the base cOlnplex structure

the leaf l gets a canonical iclentification with the hyperbolic unit disc~. Hence wc have

the natural "restrietion to l" llHl.pping of the Teichnliiller space of Hoo into the Universal

TeicIullüller space T(l) = T( 1). Sillce thc lcaf is dense, thc conlplex structure on it rccorcls

thc cntire c0111plex structurc of the lalnination. The above restrietion luap is thcrefore ac

tua11y injective (sec [25)) anel thcreforc describes T( H 00) as an elllbedcled cOlnplcx analytic

subnlanifold in T(l).
Incleed, as we will explain in detail bcIow, T( H00) ernbeds as precisely the closure

in T( 1) of thc union of the Teichlnüller spaces T( G) as G varies over a11 finite-index sub

groups of a fixed cocorupact Fuchsian group. These finite cliluensional classical Tcichnli.i11er

spaccs lying within thc separable, infinite-clinlensional T( H00), cOluprisc thc TLC points
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of T(Hoo )'

Alternatively, one I11ay unclerstand the set-up at hand by looking at thc dircct systenl

of Illaps betwecn Teiclnnüllcr spaces that is induced by our inverse SystCl11 of covering

nlaps. Indeed, cach covering nlap providcs an inll11ersion of thc Teicllluüller space of the

covercd surface into the Teicllluüller space of the covering surfacc induced by thc standard

pullback of cOluplex structure. These inlluersions are Teichmiiller Iuetric preserving, and

provide a dircct systenl wbose direct lituit, when cOluplctcd in tbe Teiehlniillcr nlctric,

produces again T(H00)' Tbc dircct lirnit already contains tbe classical Teicllluüller spaces

of closed R.ieluann surfaees, anel tbe eonlpletion corresponds to taking the elosure in T (1).

\Ve necd to elaborate SOUlewbat on these various possible enlbeddings of T (H00) [whieb

is to bc thougbt of as tbc 'nnivcrsal Tcichm:iillcr space of C0111pact Rie1nann s'll.rfaces]

within the classical universal Teicluniiller space T(ß).

Explicit realizations ofT(Hoo ) within the universal Teicillnüller space: Start with

an)' Cocolupact Fuchsian group Ci operating on tbc unit disc ß, such that the quotient is a

R,ienlann surface ){ of arbitrary genus 9 greatcr than one. Considering the inverse lilUi t of

tbc elirected systenl of all unbranchcd finite-sheetccl pointcel covering spaces over ){ gives

us a copy of the universallaluinated spacc H oo equipped with a coruplex structure induced

froul tbat on ){. Every such cboice of Ci a11o\1"'s us to elubed the separable Teicbuliiller

space T(H00) hololuorphically in thc Bers universal Tcicllluiiller space T( ~).

To fix idcas, let us think of the universal Teicllluiillcr spa,cc as: T( ~) = T( 1) =
QS (SI) /Aiob( 5 1) as usual.

For any Fucbsian group r define:

Qs(r) = {w E Q5(5 1
): wrw- 1 is again a 111obi'u.s group.}

\Ve say that tbc quasisyulluetric bOlueoluorphisIllS in Q5(r) are those that are compatible

with r. Then the Tcichnlü11cr space T(r) is Q5(r)/lllob(5 1
) elcad)' sits embedcled within

T( 1). [\'Ve always think of points of T( 1) as lcft-coscts of the fonn 1\1ob( 51 ) 0 10 = [10] for

arbitrary quasisYlll1uetric hOllleolllorphisnl 10 of thc circle.]

Having fixcd the eocolupact Fuchsian group Cl tbe Tcichluiiller space T(Hoo ) is now

thc elosure in T(l) of thc clirect lilnit. of all thc Tcicllluüllcr spaces T(H) as H r'u,ns over

all the finite-index s'u,bgro'lt]Js 0/ the initial coc01npact F7tch..~ian grou]} G. Since each T(H)
is actua.lly cnlbedclccl injectivcly within the universal Teiclunüller space l ancl SillCC thc

connecting luaps in the directed syst.enl are a11 inelusion ruaps, \ve see that thc direct lilUit

(which is in general a quotient of tbc disjoint union) in this situation is nothing other than

.lust thc set-tbeoretic union of all tbc etubedded T(H), as H varies over a11 finite index

subgroups of Ci. This union in T(l) constitutes the dense "TLC" (transvcrsely locally

constant) subset of T( H00)' Thcreforc, the TLC s'Ubset 01 this embedded copy 01 T( H00)
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com]Jrises the Möb-classes 0/ alt those QS-hom,eom,orphism.~that are cornpatible with som.e

finite index s'ubgroup in G.
Vle I11ay call the above realization of T(Hoo ) as "the G-tagged embedding" 0/ T(Hoo )

in T(l).

Renlark: vVe sec above, that just as the Teichnliiller space of Rieinann surfaces of any

genus p have lots of realizations within the universal Teichnliiller space (corresponding to

choices of rcference cocoinpact Fuchsiall groups of genus p), thc Teichnliiller space of thc

laluination H 00 also has Inany different realizations within T( 1).

Thercforc, in the Bers eIllbcdding of T (1) ~ this realization of T (H 00) is thc intersection

of thc donlajn T(l) in the Bcrs-Nehal'i Banach spacc B(l) with the separa,blc Banach

subspace that is the inductivc (direct) linlit of thc subspaces B(H) 80S H varies over all

finite index subgroups of the Fuchsian group G. (The inductive linIt topology \vill give a

conlplete (Banach) space; see, e.g., Bourbaki's "Topological \!ector Spaces".) It is relevant

to rccall that B(H) conlprises the bounclecl holonl0rphic quadratic [ornIs for the group H.

By Tukia's results, thc Teichnliiller space of H is exactly thc interseetion of thc universal

Teichnliiller spacc with B(H).

Reluark: Indeecl one expects that thc various G-tagged cnlbeeldings of T(Hoo IllUSt be

sitting in gencral cliscretely separateel fronl each other in thc Universal Teicluniiller space.

Therc is a result to this effect for the various copies of T(f), as thc basc group is variecl,

duc to I(Jvlatsuzaki (to appeal' in Annales Acael. Scient. Fenn.). That should inlply a

siluilar discreteness for thc fal11ily of eI11bedelings of T( H00) in T(.6.).

It is not harel now to see how Inany different copies of the Teicllll1iiller spacc of genus

]J Rieluann surfaces appeal' einbeddeel within thc G-tagged elnbedcling of T(H 00)' That

corresponels to non-conjugate (in G) subgroups of G that are of index (p - l)/(g - 1) in

er This last is a purely topological question regarcling the funclanlental group of genus fJ

surfaces.

Ivlodular group: One Il1ay look at those eleluents of the full universal nl0dular group

Alod( 1) [quasisynllnetric hOllleonl0rphisll1 acting by right translation (i .e., pre-COll1posi tion)

011 T( I)} that prescrve setwise thc G-taggccl clubcdcling of T( H<Xl)' Since the Il10dular group

.Aiod(f) on T(r) is incluced by right translations by those QS-honlcomorphisms that are

in the nOrInaliser of r:
lVqs(f) = {t E QS(r) : tft- l = f}

it is not harel to see that only the elenlcnts of 1\[od(G) itself will lnanage to preserve the

G-tagged cinbeelcling of T(Hoo ).

The Weil-Petersson pairing: In [25], it has been shown that thc tangent (and thc cotan

gent) space at any point of T( H 00) consist of ccrtain holonl0rphic qua.elratic differentials

on thc universailainination Hoo . In fact, the Banach spacc B(c) of tangent holonl0rphic
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quadratic differentials at the Teiclllnüllcr point reprcsented by thc cOluplcx structure c on

the laluination, consists of hololuorphic quaclratic differentials on the leaves that vary con

tinuously in thc transverse Cantor-fiber di,rection. Thus 10callYl in achart, these objects

look like 'P(z, :\)dz2 in self-evident notation; (:\ represents thc fiber coorclinatc). The huni

nation Hoc also COlues equippecl with an invariant transverse Ineasure on the Cantor-fibers

(invariant wi th respect to the holono111)' action of fo 11owing the lcaves). Ca11 that lueaSlu'e

(fixecl up to a scale) (L\. (That lueasure appears as the linlit of (nornlalizecl) lueasures on

the fi bers above the base point that assign (at each fini te Galois covering stage) unifonn

\veights to the points in the fiber.] i.Frolll (25] \ve have directly therefore our prescnt goal:

T HE0 REM 9.1: The Teichn1üller space T (H 00) isa scparable conlplex Banach nlanifold

in T( 1) cOl1taining the direct lilnit of the classical Teiclllnü11er spaces as a dense suhset.

The \'Veil-Petersson lnctrics on the classical Tg , nonnalized by a factor depencling on the

genus, fit together and extend to a finite \iVeil-Petersson inner product Oll T(Hoc ) that i5

defined by thc fonnula:

(71 )

where (Poin) denotes the Poincare conforn1al factor for the Poincare 111etric on thc lcaves

(appearing as usual for 3011 \'Veil-Peterssol1 fonnulas) .•

Relnark on Mostow rigidity for T(Hoo ): The quasis)'nllnetric honleolnorphisnl classes

conlprising this Teiclullüller space are again very non-slll00th, since they appeal' as linüts of

the fractal q.s. boundary honleonl0rphislns corrcsponding to dcfornuüions of co-colnpact

Fuchsian groups. Thns, the transversality proved in [18, Part II] of the finite dilllcn

sional Teichnlüller spaces with the coadjoint orbit honlogeneous space Ai continues to

hold for T(Hoo )' As explaineel therc, that transversality is a fonn of the ~l/Iostow rigidity

phcnoluenon. Thc fonual "Veil-Pctcrsson converged 011 lVI anel coincided with the Kirillov

Kostant Inetric, but that fonnal luctric fails to give a finite pairing on thc tangent spaces

to the finite cliluensional Tg . Hence the intcrest in the above Proposition.

§10-The Universal Period 111apping and the Krichever 111ap:

\iVe nlake sonlC renlaJ.·ks on thc relationship of II with the Krichevcr nlapping on a

ccrtain fanüly of I(richever data. Tbis cOllld be usefnl in developing infinite-clin1f~nsional

theta. fnnctions that go hand-in-hand with our infinite dilnensional pcriod luatrices.

Tbe positive polarizing subspacc, TJl (lV+), that i8 assignccl by thc pcriod lnapping II

to a point [I-l] of the universal Tcicllluüllcr space has a elose rclationship with thc I(richcvcr

snbspace of L 2
( SI) that is detennined by the Krichever 111ap 011 certain 1(1'ichever data,

\vhel1 (I-l] varies in the Teiclllnüller spacc of a conlpact Rielnann surface with one pUllcture

(distinguishecl point). One of us (B.N.) is grateful to R. Penner for discussiollS on this.
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Recall that in the I(richever nlapping one takes a compact R,ienlann surface ..}{, a

point p E ~Y", anel a local holonlorphic coorelinate around p to start \vith (i.e., a l11e111ber of

the "clressed I110duE space"). One also ehooses a hole)111orphic Ene bunclle Lover ..(\ and Cl

particular trivialization of Lover the givcn (z) eoordinate patch around p. vVe assunlc that

the z coorclinate contains the closed unit disc in the z-plane. Ta such data, the Krichevcr

l11apping associatcs thc subspace of L 2 (5 1
) [here SI is the unit circle in the z coordinate]

conlprising functions which are restrietions to that circle of holol110rphic sections of Lover

the punctured surface ..Y - {p}.
If \ve select to work in a Teichl11iiller space T(g, 1) of pointed R,iel11ann surfaces of genus

g, then Ol1e l11ay choose z canonically as a certain horocyclie coorelinate aroul1d the point

p. Fix L to be the eanonieal Ene bundlc T* (..{\) ewer ..{\ (the eonlpact R.ienlalln surfaee).

This has a corresponding trivialization via "dz". The Krichever inul.ge of this data eHll be

considered as a subspace living on the unit horoeycle arouncl p. That horoeycle ean be

l11appcd over to the boundary circle of the universal eovering disc for )( - {p} by l11apping

out by thc natural peneil of Poincare geodesics having onc endpoint at 30 paraholic ensp

corresponding to p.

We may 7l0W see how to rccover the K richever s'llbs]Jace (for this restrictcd d07nain

of Krichcvcr data) from. thc subs]Jacc in H~/2(Sl) aS80ciated to (..\""~p) by ll. R.eeall that

the functions appcaring in the II suhspacc are the boundary valucs of the Dirichlet-finite

harnl0nic functions whose derivatives give the holol11orphic Abelian differentials of the

Rielnann surface. Hence, to gct Krichevcr froln II one takes Poisson integrals of the

functions in the II ill1age, then takes their total derivative in the universal covering disc,

and restriets these to thc horocycle around p that is sitting inside the universal cover (as

a circle tangent to the bounelary circle of the Poincare elisc).

Since I(riehevcl' data allows one to create thc tau-functions of the ](P -hicrarchy by

the well-known thcory of thc Sato anel the Russian schools, one 111ay now use the tau

function froln the Krichever data to associate a tau (01' theta) fnnction to such points of

our u11iversal Schottky locus. Thc search for natural theta functions associat.ed to points

of the universal Siegel spacc 5, anel their possible use in clarifying the relationship between

thc universal and classical Schott.ky problclns, is a 111atter of intcrest that we are pnrsuing.
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