Hecke's integral formula

by

Eduardo Friedman

Max-Planck-Institut ' Department of Mathematics
fir Mathematik University of Pennsylvania
Gottfried-Claren-Str.26 Philadelphia, PA 19104
D-5300 Bonn 3 U.S.A.

Federal Republic of Germany

MPI/88-44



Hecke’s integral formula

Eduardo Friedman*

Summary: We simplify the multiple integral appearing in Hecke’s -
formula for the Dedekind zeta function by turning it into a single
integral. Hecke’s expression then turns out to be but one of an |
infinite family of formulas each of which is eqﬁivalent to the
functional equation and meromorphic continuation of the zeta
function. As a corollary we obtain a formula for the regulator and

a lower bound for the number of integral ideals of norm at most
1

D2 (Loglog|D])™/2

, where D is the discriminant and n the
degree. We also give a practical formula for quick calculations
with any Dirichlet series that has a functional equation and an

analytic continuation.

§ 1. Introduction

Hecke [He] gave in 1917 the first formula for the (completed)

Dedekind zeta function fk(s) valid in the entife complex plane:

2 M + 2 [g[!I?I ] + g[VTﬁT,i-s]] (1.1)

Gl8) = s

sk
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Ve shall spare the reader for as long as we can from a detailed
description of Hecke’s formula (1.1), but we must at least point
out that g(x,s) 1is given by an (r1+r2)-dimensiona1 integral,

N = Norink/Q and that 2a. runs over all integral ideals of the
number field k . Hecke, of course, was interested in (1.1) mainly
to prove the functional equation and meromorphic continuation of
£, (s) . In fact, he wrote (1.1) in a slightly different form using
theta functions. This, while theoretically preferable, is even
more cumbersome than (1.1). When Siegel needed to use lecke’s
formula to prove his part of the Brauer- Siegel theorem, he
simplified it somewhat by replacing the theta functions by the
ideals [Si 1].

The main problem with (1.1) is that g(x,s) is very hard to
compute if T +X, is not tiny. In applications, this has led to
discarding the sum [Si 2] using only g(x,s) > 0 if s is real,
or to bounding g(x,s) from below rather coarsely [Si 1].
Sometimes one needs something more precise than this. Suppose we
try to compute hR wusing (1.1). Since all terms make sense for
s >1 , we can isolate the residue to obtain

r
2 1hr

W

= s(s~1) E [a mess]}.,. =~ - Celmeliiere T - -8 > 1. (1.2)

fp —

a

If you examine the term in brackets more closely, you soon get the
feeling that the infinite sum (1.2) should bé‘very wvell

approximated by the early terms (if s is chosen large) and that
the remaining terms should all be positive. To prove this, as well
as to have a useful tool for computing hR , one needs a workable

formula for g(x,s) .



Theorem 1.

| O+io « .Z r(z/z)rir(z)r2 ) 1
g(x,8) = 573 Lim [2r2,n/2] e z (1.3)

where &6 > 0, 6 > Re s , but otherwise the integral is
independent of 6 , and g(x,s) is defined by (2.0) below.

If one writes the integral (1.3) as sum of residues by
shifting 6 to -~o , one finds that g(x,s) is given by a

rapidly convergent power series in xfl

and log x whose
coefficients depend on s in a straight-forward-manner. From this
the behavior as x - +o can be read off as in [F]. The behavior
as x - 07 follows directly from (1.3) and old results about
integrals of this kind going back to Barmes (See [Br] [F], the
references there and Proposition 2.3 c¢) below).

On substituting (1.3) into Hecke’s (1.1), one finds that the
resulting formula is actually a consequence of the functional
equation and merombrphic continuation of § (s) (see Proof 2 of
Proposition 2.1 below); Thus Hecke’s formula is equivalent to
these properties of ¢, (s) . One also finds that g(x,s) may be

replaced by many other functions.

From Theorem 1 we can obtain a cleaner version of (1.2).

Corollary 1.

(1.4)



x z r r
(x) = 571 —F" ' (z/2) Ir(z) 2(22-1 dz, 6> 0 1.5)
’ L—im [rn/22 2] ( ) e . (

an a2 runs over all integral fof the number field. Also

1+r

1

. (3=r~r,)/n 2 1/2
lim Eexpfnr w2/ TR 2R )
x-0" '

and
r
H(x) 2 1
1im = - . .
T +ro-1 (ry+ro=1)! (1.7)

X7F® (log x)

Ve add that H(x) 1is also given by a quickly convergent power
series in x ! and log x [F] .

It is well-known that one can calculate hR to any desired
accuracy by computing the splitting of sufficiently many primes.
In this sense Corollary 1 is not new. However, our few experiments
seem to indicate that formula (1.4) provides a simple and
practical way to compute hR as long as |D| is not immecnse
compared with the minimum discriminant for the given (rl,r2) O
course, if one knows that h =1 , then (1.4) gives a formula for
R . For exaﬁple, any totally real quintic field of discriminant
less than 368000 has h = 1 (This follows from Odlyzko’s lower
bounds). When h > 1 is possible, thé calculation of R (and

therefore, of h ) is trickier:



Corollary 2.

(1.8)

where ¢ (resp., h ) runs over all integral ideals in the
principal class (resp., in the class of the different) and H(x)

is given by (1.5).
The problem with (1.8) is that one must be able to list all
. %+a
principal integral ideals of norm less than |D]| .

Nevertheless, in [F] we applied Corollary 2 to find the smallest

regulator of any number field.

Corollary 3 Let M(x) be the number of integral ideals in the

number field k(# Q) having norm £ x . Then

M[(V|D|(log|D|)n/2] > ChR where C > 0 depends only on

n = [k:Q] . If k contains no quadratic extension of @ (or if no

quadratic field contained in k has a Siegel zero) then

M[VTﬁT(loglog|D|)n/2] > ChR .

An old result due to Dedekind, as improved by Weber and Landau

[La 2], is
1 n~1
M(x)-rx| < C (log|D)™D|™ x™1, x>0, (1.9)
r I
2 1(2x) %nk
vhere «k = and C; (like all C; below) depends only

w/[D]

on n . But (1.9) says almost nothing if x < C2V|D|(log|D|) 2

n+1

—_—

In fact, for such x (1.9) is implied by the inequalities [La 1]
[La 2] '



K < C4(log|D|)™ ! and M(x) < C,x(log x)™* . (1.10)

1
Note that M[J|D|(log|D|)n/2] > Csh(log|D|)g is easy since any

ideal class has an integral ideal of norm less than 4[D] and the
4
rational integers provide (log|D|)“ principal integral ideals of

n/2

norm less than (log|D|) . Corollary 3 is an improvement on

this if k is not a CM-field, since then R > Cﬁlog|D| [Re] .
So far we have dealt only with the zeta function. Similar

methods yield the following, which we state somewhat vaguely here:

-Proposition 2.3. Suppose L(s) = 2 ann-s and i(s) = 2 bnﬁ-s
n>1 _ n21
are two Dirichlet series. Let A(s) = B(s)L(s), A(s) = B(s)L(s)
M
with B(s) = C° I:I F(ﬂjs+bj), ﬂj >0, M>1, C>0 . Assume A

and A are entire functions and satisfy A(k—s) = VX(S) for some

k >0 and W € € . Then, for any s ,
- C C
A(s) =) |a £(Z,8) + Wb f(3,k-8)| (1.11)
n>1

where f(x,s) is given by an integral analogous to (1.3) and
decreases exponentially as x - 0° . Moreover, f(x,s) is also
given by a rapidly convergent power series in x"1 and log x if

the ﬂj are rational.
It is a pleasure to acknowledge E. Calabi’s help with

Theorem 1.



§ 2. Proofs

Ve formalize our notation, which we suggest the reader skip for

now.
k = number field
n = [k:Q]
D = discriminant
h = class number
R = regulator

(ry,Ty) = number of (real, complex) places

Na = Normk/Q(a) = norm of an (integral) ideal a

T C C1(k) = a subset of the ideal class group of k
¢p(s) =) ) (Na)™® (=) Na™® by abuse of

AET a€A aEeT
notation) = the sum of the ideal- class zeta

functions corresponding to the ideal classes A
in T
8 = jdeal class of the different

T = {A717 |A € 1}

1
|DI§ S

Ay(s) = [;;75;;;] r(§) Ir(s) 2 ¢y(s)

m = r1+r2
. _ { 1 if erl }
2 if j>r1

For x > 0 define



m dy.
g(x,s) = Ji ...... J I:I[yjjS/zexp(-rejyj xf2/n) —;%] . (2.0)
H y5321
yj>0

Proof of Theorem 1.

For x> 0 and é as in Theorem 1, let

J
fj(t) = e6t/2exp[%ajexp(t/ej)]

Since 6 > O, fj(t) has a Fourier transform and satisfies the
Fourier inversion formula. Write 8 = a+é6 , so Re a < 0 . Ve

calculate now:

e.af2 de./2 y
s08) = [ [ TT [y vy 3 emteagyy) 5]
J=1 J
m
I
Ysi©Z
yj>0
-1 m m
2 a
=2 “l....i... .
J Jexl’[ EuJ] 1 f5(u;)duy
-0 < u: < j=1
m J
2 uj >0



n
(where v = 2 u. and uy (for 2 < j {m ) are new variables)

_ g 2 Jm o2 [fl*...*fm] (v) dv

v=0 (convolution, Calabi’s observation)

|
MlH
Ny I

6 .
J'cID e!avjm eiwv ﬁ[a;ej 2" :W)I‘(e:j (g- - iw))] dw dv
v=0 W==m -

(Fourier inversion)

2(3‘5 - iw) m 5 dv
1 F(ej (Q' - iv))

e iwv X
= 2 e T
W==m 2 2xn/2 J=

(we reversed the integrals, which is possible since Re a < 0 )

6, r r
~1 §+1m[ x 2z I'(z) 1l"(2z) 2

= 5% dz
o ] 2r21rn/2] f-f -z
D-im_
(put =z = ‘26 - iw)
0+im

z b To
1 J [ X ] I'(z/2) "I'(z) dz .
271 T Z— 8
O~im 2 2xn/2 .



Hence Theorem 1 is proved.

For Re s > 0O it is often convenient to shift the contour to the

left and so rewrite g(x,s) in the form

g(x,s) = [—555;——]3 F(s/2)r1F(s)r2 +

2
. T+im 2 r( /2)r1F( )r2
bd Z A
-+ mj [ r2 n/2] Z = S dz N 0 < 17 £ B.e S . (2-1)
T—-im 2 “nx

Proposition 2.1. Suppose T C Cl(k) satisfies (p(s) = (g:(s)
for all s . Then for Re s > 1 ,

ii:_['ﬂ = s(s=-1) EG[ﬁg[ ,s] ,

where |T| = number of ideal classes in T , a -ranges over all

integral ideals whose class is in T and

1 T+1mw Z 1

G(x,8) = mf [—r;-(?] I‘(z/2)r11"(z)r2[siz . 1_8_2] dz |
Tein 2 ‘a0

0 <7< BRe s

Proof 1. Hecke’s formula [L;p. 254 , although 2™1A"1  nust be

corrected to 8A™! ] reads, when (p = Cpo s

(2.2)

Ty ’
AT(S) = ggzégé; + gT[ g[gggI,s] + g[JTﬁT 1-5] ] ’



vhere 2 is short- hand for E z . Substitute the definition
a€T AET a€A

AT(S)

r 8
I‘(s/2)r11"(s) 2y ﬂ___] (2.3)

r
a€T Naxn/22 2

into (2.2) and use (2.1) and Theorem 1 to obtain the Proposition.

Proof 2. Proposition 2.1 follows from the functional equation
Ap(1=s) = Aps(s) = Ap(s) (since (g = (y» ) and the fact that
Ap(s) can be continued to € except for simple poles at s =0

and 1. Indeed, let

1 T+im 1

1
1= ‘Q"HJ AT(Z)[S_Z + 1_s_z]dz , f(Res>r>1) . (2.4)
T=1m .

Standard estimates [L; p.266] show that we can shift the integral

to Re z = % , picking up a residue at z = 1

1.
r +1lm
2 '|T|R 1 2 1 1
I = w(is-1)s * 271 I AT(Z)[s-z + 1_B_z]dz . (2.5)
1 .
Byl

But the integral on the right of (2.5) vanishes for the trivial
reason that the values of the integrand at =z = é + it and

z = %w- it cancel. If we now write (2.4) as a sum of integrals
and use (2.3), we obtain Proposition 2.1 except that 7 is
restricted to 7 > 1 . However the integral is independent of the
value of 7 as long as O < 7 < Re s (but note that the sum and

integral in Proposition 2.1 can be reversed only if 7 > 1 ).



- 12 - |
Note that this second proof combined with Theorem 1 shows that
Hecke’s formula (1.1) is a consequence of the functional equation

and meromorphic continuation of £k(s)

Proposition 2.2. Assume T C Cl(k) satisfies (y(s) = (q.(s)
for all s . Then

1RITI

-1

a

] , (2.6)

where H is defined by (1.5) and a runs over all integral

ideals whose class is in T .

Proof. Take 8 - +o in Proposition 2.1. Alternatively, adapt

proof 2 above or see [F].

Proof of rollaries 1 and 2
Take T = Cl(k) for Corollary 1 and

= {principal class} U {class of different} for Corollary 2 and
apply Proposition 2.2. For the asymptotic behavior of H(x) , see
[F] and Proposition 2.4 below.

Proof of Corollary 3.

From Corollary 1 we have H(x) < Cjexp(-3n x ~2/n

) for all
x > 0 , where 01 > 0 depends only on n . From Corollary 1, for

any y 21



ry .
’ th =y n[N—ﬂT] < CHM(YIDTY) + ) 1[[@]
a Na)JTﬁTy
co[uwmT + § exsfsn[ae) ) )
Na>/[D]y

Abel summation [Ap; p. 77] and (1.10) yield

Na

2/n
\/WI'] /] < C;;w/l'ﬁT(longl)’""Lexpk311 y2/m)

2 expE3n[
Na>4/[D]y

If y = (10g|D|)n/2 , this last term tends to zero as |D| - +o .

This proves the first claim in Corollary 3. If y. = (L[oglog|D|)n/2

we get

r
1
2 lhp
— < clu[,[r—rn (10glog|D|)n/2] + CgyTDT(Log[D|)™2%1 . (2.7)

If k has no quadratic subfield, Stark [St; p. 135] showed

hR/w > 041,/,|D|(10g|D|)_1 . The same holds if for any quadratic
subfield k, C k we have {ko(x) < 0 for

1= (0510g|Dk|)"1 {x<1, cf. [St; p. 148]. Corollary 3 now
follows from (2.7). .



The trick used in the second proof of Proposition 2.1 can be
generalized to yield a practical method to compute with Dirichlet
series satisfying a functional equation of the usual kind. Ve

formalize this as follows. Suppose

i) L(s) = 2 anﬂ-s and i(s) z bnn'"'s converge absolutely
n>1 n21
in some half-plane Re s > V ,

ii) there is an integer M 2> 1 , positive numbers ﬁj and
complex numbers bj (1 € j £ M), positive numbers C and k and

a complex number VW such that if we set

M
C5L(s) E T(B58+bs)

A(s)

M
C5L(s) JT;[ [(f;s+bs)

1

A(s)

then K(s) and K(s) have an analytic continuatiom to € and

satisfy the identity A(k-s) = W K(s) .
Proposition 2.3. Assume i) and ii) above. Then

AGs) =) [anf(.g,s) . wbnf(-g,k-s)] (2.8)
n2>1

where f : m+ x € + € has the following properties:




1 O+iw . M dz
a) £(x,8) = 57 L xz[JTz—lr I‘(ﬂjz+bj)] = > Ns), (2.9)
1lm

where N(s) = max[ max {Re(=b./B.)}, Re s] and the integral
1<G <M 7 |

(wvhich converges very rapidly and can easily be computed

numerically) is independent of & ( > N(s) )

b) Assume ﬂj €Q (1 <j <M . Then

4 1 (log x)j-1 N :
f(x,s) =.21 ; A£?_‘)j X" G- +  x° E F(ﬂjs+bj) (2.10)
J:

holds for s f-b, /,6 (1 <j<H).Here I ranges over all the
M b. +P
poles of 'l—r F(ﬁ.z+b.) (i.e., =--3-— for any 1 <j <M

and for any integer -p 2 O ) wxezer, the A£ ) are defined by

M
1 .
——— ]—r P(f;2+b;) = Aﬁ‘g/(z- .
3—1
+ (a function analytic at z = 1 ) (2.11)

and can be calculated recursively. For any pole I0 satisfying
Re I, < Re(s= 1), Re I, <0, a finite form of (2.10) is

}) I(logx)-

G-107 |

f(xs)—x'[_TF(ﬁs+b) - 2
JlI)I

€1 M Re(I ~a) |
< [W] x 0 ’ (2.12)

vhere @, Cy» Cg > 0 depend on the ﬂj and bj
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c) 1lim f(x,s) xB exp(Qk—ijy) =S , (uniformly for |s| bounded)

+
x-0

where 4,Q,R,S depend on the ﬂj and bj (but not on s ) as
follows:

M
B o= 2 ﬂj >0
=
_ 1/u = J
Q=4u87" >0  where g = 8. > 0
-1 M+1
=Ty = )
i=1

1 M 1
= (21)(M“1)/2 u 2 ﬁR I:I ﬂ§bj‘- 5) £0 .

wn
t

Remark. This is one of those propositions whose statement is
longer than its proof (except for c¢) which is, fortunately, in the
literature). In most applications to number theory, ﬁj can be
taken to be % for all j . One can then change variables in
(2.9) to get- ﬂj = 1 , which simplifies everything. Although
f(x,s) would still look a bit ugly, it would be as nice as a

Bessel function (see [F] for a closely related example).

Proof.

Let

A(z) * WA(z)
1 1
pi(s,z) = z=8 * kez=s °

Ai(z)




Note that

S A0
p.(s,k=z) = + o (s,z) .

A, (k=2z)

Assume first Re s >~§ and take 6 > V ( = abscissa of

convergence), 6 > Re s . Let
1 6+im
I+ = E;I J A+(z)g_(s,z)dz )
f=im
1 6+im
I_ = §;T J A-(z)p+(z)dz .
6 im
Note that
' 1 0+im 0% M 1 _ 1 .
I:t = 2 (anﬂs\u’bn) mj [ﬁ] [T:I F(ﬂjz+bj)] [z—s T k—-s-szZ .
>1 =i J=
n’/ .
(2.13)

Bylstandard estimates [La; p. 266], we may shift the contour in
the integral defining I, to Re s = %-. By assumption, A and A

are entire so that we only pick up a residue at z = s

k .
+ lw
1 2
I, =4,(s) + 3573 A*(z)p:(s,z)dz = A, (s), (2.14)

5= im



for the integral again vanishes (because the integrand at

% + it =~ integrand at %*— it ) . From (2.13) and (2.14):

A(s) = H(A,(s) + A_(s)) = §(I, + L) =

T+im M a Vb

1 z . i
3o @ o) e el

T™im

This is (2.8) and (2.9), except that we have required Re s > %
and 6 > max(V,Re s) instead of &6 > N(s) in (2.9). However,
(2.9) is independent of &6 ( > N(s) ) since there are no poles ﬁf
the integrand for BRe z > N(s) . The restriction.‘Re s > % can be
dropped because both sides of (2.8) are entire functions of s
(for the right- hand side of (2.8) this follows from c)).

To prove b), shift the line of integration in (2.9) leftward

to Re z = Re(Id4a) where a > 0 is chosen (independently

of I, ) so that no pole I lies in Re(Id-2a) < Re z < Re(I,) .
Such an a exists because the ﬂj are rational. If
Re I, < Re(s=1) and Re(I;) < 0 , then
«Z | M
_ - s
f(x,s) = 2 Resz=1[z_S T;I F(ﬂ3z+bj)] + X T;I F(ﬂ&s+bj) +
DI J J
=70
1 ” N dz
— t[ X []flr F(ﬂjz+bj)] — (2.15)
Re z=Re(Iya) J=
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The integral in (2.15) is readily estimated, to be at most

Re(Id-a)[

x ¢4 / F(c2|IO|)]M‘ for some c,,c, > 0 which depend on

th .
e ﬂJ

follows from (2.15) and definition (2.11). Equation (2.10) follows

and bj (see [F] for a similar calculation). Now (2.12)

from (2.12) on taking Re(I;) -~wo . Since all the ﬂj are
rational we may, after a change of variable in (2.9), assume

‘ ﬁj € (1L £j<MH) . Then the A{s% can be recursively calculated

I'(z)
Z—1 - Ihis proves b).

using TI'(z-1) =
The proof of c¢) is rather long but is given in full detail

in [Br], especially §2.2 and §10.1. The uniformity in s is not

explicitly stated in [Br], but it follows from the proof. To apply

Braaksma’s results one must first change variables in (2.9) from

1 I'(-2z-3)
- . _ , .
z to z and write <z=s ~ [(ez-8+1) ° Braaksma’s equation

(2.21) then shows that his function H(z) includes our f(x,s)
as special case " ( n =0, m = M+1, p=1, q = M+1 in his
notation). We shall sketch his method of proof in a related case

below.

Remarks.

a) One can write down infinitely many formulas similar to (2.8) by
replacing pi(s,z) by any function enjoying the formal properties
of p, used in the proof of (2.8). Our choice, which agrees with
Hecke’s by Theorem 1, is the simplest but not necessarily the best
[F; §4]. In this sense, Hecke’s is but one of an infinite family
of formulas.

b) If K(s) is allowed to have finitely many poles, one may

proceed in two ways.



or

1) Add the polar parts to (2.8) and give a quickly
convergent formula for each of the residues similar to

Proposition 2.1,

\

2) Multiply @, (s,z) by a polynomial P(s) chosen so that
A(s)P(s) is analytic and P(k=s) = P(s) . This will

slightly change f(x,s) , but not its essential properties.

For the practical application of Corollary 1 (or of formula

(1.11)) to the numerical calculation of hR (or of A(s) ) one

needs asymptotic formulas with all constants explicit. These

constants can be computed by following Braaksma’s proof. We shall

sketch this below for the function H(x) appearing in Corollary

1.

Proposition 2.4. Let H(x) be defined by (1.5) and assume

I +T, 2 3 . Then

0 < H(x) < 81r(21+r1/n)1/2x(r1+r2-3)/nexp(‘n7f x~2/)

(0 <x¢ xo) ) (2.16)
where Xg must satisfy the following: If we let Vg = 27 x62/n
%o 12
we must have Yo 2 2, W > g and
Yo 1 %0 Ja J(a) o Ja J(a+l)

271 [2@(0)] n * [2G(a+1)] 4G(a+1) °



nv
wvhere a = %(r1+r2-1), G(t) =—5-~t,

T1(“)8"1’[12@(1:)

[5 At 11/2 *

IIWO

~

1 ] '2G(t)]1/2

I(t) =

nw(}

nw
1/2r x i, °l4 = )
(2/7) /7T, (t)e pch(t) 2 [§1°32 2nv, ]]

+

6 /2(f - 375y)

. .]'.'2
i(ry +3) 2g(1) j

nwo
T,(t) = 5 [exP[ 6wy nw, 6nw0-12t+12]'1]’ (3=1 oz 1)

(t—1)[ 4(t-1) ]]

E(t) = (t'l)[t -5+ |1+ 3(avg-2t+2

Remarks.

1) The restriction r +r, 2 3 (<=> a 2 1) is only to avoid even
messier expressions. If r; =0 or ry, =0 and r +r, < 2, then
H(x) can be given in terms of Bessel or exponential functions
(see [F] for the case (rl,r2) = (2,0)). Thus Proposition 2.4
essentially excludes only (ry,ry) = (1,1) .

2) One could take a coarse bound of the kind Wg > ¢n for some
absolute constant ¢ , but this would be very wasteful unless n

is large.



Sketch of Proof.

For a =0 or 1, let

+3
1 W+lm

r r
G (v) = o7 J v"% 52 r(s/2) Ir(s) 2ds ,
w=iw
2y2/n
w = - >0

r r
Then H(x) = 2G1(xn/22 2x-l)-- Go(rn/22 2i-1)

The aim is to write
G (y) = main term + explicitly bounded term = Ma(y)+ B, (y) (2.17)

and work out when y 2 y, => 2H,(y) = My(y) > |2B, (v) [+|By(y) |

(For then |H(x)-— main term| < main term if
x £ Xq = n/22 2y61 . This is equivalent to (2.16)). To do this,
write

r r
sr'(s) 2r(s/2) ! =

B, (s)

s r 1/2 = _ a

P (27) [] >3 “9/21‘( ~ a+a) [1 v — (2.18)
§—w-a+a—1

wvhere Be s = w gjt,~anJ

T,(a+1=a) if |Im s| Sw,z%(o:-a)
(o)1 < | i } .

T“(a+1-a) o‘H.erwr;g S



This is proved using an explicit form of Stirling’s formula for

log I'(s) :

Q(s)

log I'(s) = (s—%)log S =~ 8 + %1og(2x) + 155

(2.19)
where
[Q(s)| €1 if Re s >0 and |Im s| { Re s [W-W; p. 252] ,

Q(s)| S8 i ITm'sl 5 Re popp—mams” 0 [N5 p. 208, (17)]

From (2.18) we find, say for a =1,

1 w+io
r r./2 a- 1 ns
2 —n/2 2 -
G, (v2 22 =21 (2:)“@5 [E;I j YOI (—5 -a+1)ds +
W=im
1 w+im ns
‘5 j y™SI(—5 - a)R, (s)ds ]
w=im

The first integral, being an inverse Mellin transform of a Mellin

2 -~2(a-1)
Sy

transform, is exp(—y2/n) . This gives M,(y) in

(2.17). The second integral is bounded by integrating an upper
ns
bound for |j_SF(—§- a)Rl(s)I . A bound for Rl(s) was given

ns
above while a bound for |y-SF(—§- a)] follows from (2.19). The
resulting integral is then treated as in [Br; pp. 308-309]. This

gives the messy but explicitly bounded term needed in (2.17).
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