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1. Introduction

There exist basically two different approaches to Selberg’s zeta function for cocompact
Fuchsian groups: the original one dating back to Selberg [S] and proceeding essentially via
the trace formula [V], [E], and a more recent one, based on the thermodynamic forma-
lism [R4] and the dynamical zeta functions of Smale [Sm] and Ruelle [R2] for flows on
compact manifolds, which for geodesic flows on surfaces of constant negative curvature

(c.n.c.) are closely related to Selberg’s zeta function [R3].

The problem we adress in the present paper is an extension of the latter approach to sur-

faces of c.n.c. with finite area and hence to Selberg’s function for cofinite Fuchsian groups.

The standard procedure in the thermodynamic formalism approach to the Smale—Ruelle
zeta function for uniformly hyperbolic flows on compact manifolds [F] is to start with a
Markov partition [Si], [B1] and to construct symbolic dynamics [B1] for the flow:
thereby the flow gets described in terms of ‘a much simpler one, built essentially from its
Poincaré map and the recurrence times with respect to the Markov partition, where the
Poincaré map is finally described by a subshift of finite type [B2], [B3]. The
Smale—Ruelle function appears then as some kind of generating function for partition
functions of a lattice spin system of classical statistical mechanics [R3]. This allows the
transfer operator method to be applied [R1], [R4], [M2], [M4] so that for analytic
systems the Smale—Ruelle function can finally be expressed in terms of Fredholm deter-

minants of such transfer operators.

For geodesic flows on compact surfaces of ¢.n.c. the above approach can be made rather
explicit thanks to the work of Bowen and Series [BS] on the boundary expansions at

infinity for such flows. These are piecewise analytic, expanding Markov maps with well
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studied transfer operators [M4] which Pollicott used also recently in his approach to the

Selberg function for cocompact Fuchsian groups [Po2].

In trying to extend his results to gemeral cofinite Fuchsian groups one faces the problem
that for groups with parabolic elements the Bowen—Series boundary maps are not anymore
expanding [BS] and hence their transfer operators not of trace class [M4] (which was an

essential point in the whole approach).

For the modular group PSL (2,Z) and the modular surface M_ = H/PSL(2,Z) (H the
upper halfplane model of hyperbolic 2—space), the solution for the above problem follows
from results of Series [Se] respectively Adler and Flatto [AF] extending earlier work of
Artin [A]. These authors have shown that the nonexpanding Bowen—Series map can be
replaced for PSL (2,Z) by an induced map on the unit interval of the real line which is
again expanding. Their real astonishing result indeed is that this map can be chosen the
well known continued fraction map TGx = Jl—(mod 1 whose relation to the geodesic flow on
M was recognized already by Artin [A] in the thirties. From the work in [BS] one
should expect something similar to happen for general cofinite Fuchsian groups and the
geodesic flows on the corresponding surfaces, even if explicit expressions as for PSL (2,Z)

are not to expect in general.

For PSL (2,Z) hence the thermodynamic formalism can be applied and leads to a repre-
sentantion of its Selberg function as a product of two Fredholm determinants of transfer
operators of the continued fraction map. The explicit form of these operators allows a
detailed investigation of their analyticity properties leading to a new proof of the analytic
properties of the Selberg function. The above representation leads also to a new formu-

lation of Riemann’s hypothesis in terms of the above transfer operators.



II. Transfer gperator 11 functions for the Gauss ma
The Gauss or continued fraction map Tg:I—1I,I= [0,1] i8 defined as
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It belongs to the class of piecewise analytic, expanding Markov maps with a well developed

theory for their transfer operators [M4]. The local branches T x = x La of Ty map

1 1
n X+n

] onto I for every n € N and have inverses 9 (x) =
which extend to the disc D = { 2€C: |z-1] < g} and map D holomorphically into

. [ 1
the intervals IIl = [m-,
some compactum in D [MI1].

Denote then by Z (T, A) the partition functions [R3] for T

Z (Tg, A)= ) exp £ A(Tg %) (2)
: n =0
x € Fix TG

with Fix T," the n—periodic points of Ty in I and A:I— C some function such
that the infinite sums in (2) converge for any n € N. The elements of Fix TGn can be
characterized through their continued fraction expansions being n—periodic: x € Fix TGn
& x=[my,..,m_] for some m, € N. The only function A:I— C of interest for the

following is
/ 2
As(x) =—§ log|TG(x)| = g log x (3)

and its analytic extension to D , where 8 is some complex parameter known in statistical
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mechanics as "inverse temperature”. The special role the function Al plays already in the
ergodic theory of T is well known [R4]. The partition functions Z (T, A) are well
defined for all s with Res > % and can be expressed in terms of transfer operators Js

acting on the Banach space Am(D) of holomorphic functions on D which are continuous

on D . They are defined as [M1, M3]

£ 4(z) = Y exp A(u(2) fov(s) = Y1) " 14 - (4)
n=1 | n=1

In [M3] we proved
Proposition 1 The operators £ : A (D) — A (D) arefor Res > % nuclear operators of
order zero [G] and fulfill the trace formulas

Z (Tg Ag) = trace .an-trace (—.z(;_*.l)ll .

Applying these trace formulas to Ruelle’s zeta functions [R2] Ck(z, As) for T with

1]
n
Gz A) =exp ) 2 2, (TG, A),kEN, (5)
n=1
wefind for |z| < e ¥P(Ag) with
.1
P(A)=1lim_logZ (Tg, A) (6)
n-m

the topological pressure of As under Tq:



Corollary 1 The Ruelle zeta functions (¢, (z, As) can be written for Res >% as
det(l—z(—.i’s;lg()

det(lz £ %)

C(z Ag) = , and extend there as meromorphic functions into the entire

complex z—plane. For fixed z € C the functions are meromorphic in the half plane

Res > %
Of special interest for us are the functions (k(l, As) which we denote by (; :

(8= LA (1)

Their analyticity properties in s follow from Corollary 1 and

Propogition 2: tM3] The map 8-—— % extends as a meromorphic function into the
entire complex s—plane whose values are nuclear operators of order zero in Am(D) . It has
simple poles at the points 8, = %’-‘ , k=10,1,2,... with residues the rank 1 operators

. 11 [k
N :A_(D)— A_(D) with N,{(z) = 3 & {)(0).
From this follows immediately [M3]:

Corollary 2: The Fredholm determinants det(1 + .{k) extend as meromorphic functions

into the entire s—plane with (possibly removable) singularities at 8, = lgk ,k=0,1,...

The proof uses Grothendieck’s Fredholm theory for nuclear operators [G].
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III. The Selberg zeta function for PSL (2,Z)

For a general flow ¢t :M— M the ‘dyna.mica.l Smale—Ruelle zeta function is defined
through the length spectrum L(¢t) characterising ¢,'s periodic orbits and their prime
periods 1(7) [Sm], [R2]:

(sp® =T T-e 1y (8)

For uniformly hyperbolic flows [P] the above product is known to converge for all 8 with

Res>h, (¢,) (= topological entropy of ¢, ). For ¢, the geodesic flow on a surface of

top
c.n.c. the function (cp determines the Selberg zeta function Z(s) for the corresponding

Fuchsian group I" through the relation [R3]

~

2(6) = TTT TN -7 ¢op(s+k) ©)
7 k=0 k=0

For T' =PSL(2,Z) respectively the corresponding modular surface M_ the geodesic flow
and its length spectrum are closely related to a special flow "bt built over the natural

~

extension T:IxIxZ,— IxIxZ, of themap Tq:I—1 [Se], [AF], [Pol]
with

. 1

TG(x,y,e) = (TGX, m, —E) ,E= +1. (10)

Hence L(¢t) coincides with L(qbt) which can be simply described in terms of the periodic

points of Tq [Pol], [P]



S
2r-1 ~

L) =1 § AT [(xre)] €Fix (Tg™) 1 €N (11)
k=0

~n ~
where Fixp(TGzr) denotes the equivalence classes of periodic points of TG of prime

~

period 2r , where two points are equivalent if they belong to the same orbit under TG .

The function A, was defined in (3).

The Smale~Ruelle function CSR for the special flow ¢t with length spectrum (11) can
be written as [P]

(gR(8) = exp 2 %n zn(;G’ Xs) (12)

n=1

with As :IxIxZ,—— C defined in terms of As in (3) as As(x,y,e) = As(x) . Since

Fix T;" = ¢ for n odd we find from definition (2) of the partition functions Z_:

n odd (13)

A 0
Z (Tn, A )={
"G’ s 2 Zn(TG’ As) n even

and hence
Cgr(8) = {y(1, A)) = Cg(s) (14)
with ¢, as defined in (7).

Inserting finally (14) into relation (9) and using Corollary 1 for the case z =1 we get



—8—

Proposition 3 The Selberg zeta function Z(s) for PSL(2,Z) has in the half plane

Res > % the representation
2(s) = det(1-.%,) det(1+ .Z,) = det(1-.£2)
where .s,g is the transfer operator for Tq defined in (4), and is holomorphic there.

The above representation allows now a simple meromorphic extension into the entire com-
plex s—plane: we only have to apply Corollary 2 which gives meromorphic extensions for

the corresponding Fredholm determinants.

Corollary 3 The Selberg zeta function for PSL(2,Z) is meromorphic in the entire s—plane
and has there the representation Z(s) = det(1- %) det(1+ 2} .

It would be interesting to extend Patterson’s recent approach to determine the divisor of

Z(s) for cocompact groups through the transfer operator also to the present case [Pa].

Let us finally combine the representation found for Z(s) in Corollary 3 with classical
results derived from Selberg’s trace formula for PSL(2, Z) [V]. The nontrivial zeros s
of Z(s) corresponding obviously to s values :3=I:sk T,k 0,1,..., for which % has

A=+1 or A=-1 as an eigenvalue, fall into two classes: either 8 is 1/2 times a non-
o
trivial zero of Riemann’s zeta function ((s) = 2 n® ,or 8 corresponds via the formula
n=1

2

= 15 +ir to the discrete eigenvalue ¢ = i— + 1, " of the Laplace—Beltrami operator
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—Ayr on M_ . The value 8, =1 is obviously such a non—trivial zero of Z(s) since the

m
operator .5.’1 , which is nothing else than the Perron—Frobenius operator of TG , has

A =1 as a simple eigenvalue [M1]. It corresponds to the "small" eigenvalue §=0 of

—AM . It is then tempting to conjecture that the factorization
m

Z(s) = det(1- %) det(1+ .7) is analogous to the one found for cocompact groups in

[Sa], [Vo]: in this case the factor ‘det(l—.z/s) would describe the eigenvalues of —A,,
m

and det(1+ %) the non trivial zero’s of ((s) . If this is true the Riemann Hypothesis on
¢(s) could be expressed in terms of Z,:RH & £, has eigenvalue A =—1 only on the
line Res = % .

One could then also speculate if the operator .Zs is the one Hilbert proposed to look for to
prove the RH [Su]. Certainly, he primarily had in mind a selfadjoint operator in some
Hilbert space, and indeed, the transfer operator .2’5 can be considered for s # B the

analytic extension of selfad joint operators on the real axis s > % [M3].
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