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INTERSECTION THEORY ON MI,4 AND ELLIPTIC
GROMOV-WITTEN INVARIANTS

E. GETZLER

1. INTRODUCTION

In this paper, we find a new relation among codimension 2 cycles in M I ,4. The Inain
application of the new relation is to the calculation of elliptic Gromov- Witten invariants.
As an illustration of our results, we show that the elliptic Gromov-Witten invariant.s are

determined by t.he rational ones and (1Y,I,ß)' 0 ~ Cl (V) n ß < d, in t.he following cases:
for a surface V; for a threefold V, on restrietion to the even dilllensional COhOIllology; for
any smooth projcctive variety V, on thc subalgebra of He(V, Q) gencrated by the Kähler
fOrIn w.

In (lI], we will provc, Bsing lnixed Hodge theory, timt the cycles [M(G)], as G ranges
ovcr all stable graphs of genus 1 and valence 11, span the evcn dimensional hOIllology of
M I,n, and that the new relation, togethcr with those already known in genus 0, gcneratc
all relations among these cyclcs. This result is thc analogue, in genus 1, of a theorClll of
Keel [15] in genus O.

Our new relation is closely related to a relation in A 2(M3) 09 Q discovered by Fabel'

(Letnnla 4.4 of [6]) j the ilnage of his relation in H4 (M 3, Q) uuder thc cyde Illap is the same
as the pllsh-forward of our relation nnder the map M 1,4 ---+ M 3 obtained by contracting
the 4 tails pairwise. This suggests timt our new relation shotlId actually bc a rational
equivalence.

Let us illustrate our results with the case of the projcctive plane. The genus 1 potential
of ((]p2 cquals

00 3n
F (CIP2) = -~ + '" N(l)qr~entl~

1 8 ~ n (3n)!'
n=[

where tl and t2 are formal variables, of degrcc 0 and 2 respectively, dual to the classes

w E H 2 (((]D2, Q) and w2 E H 4 (CJP2, Q) respcctively, and NA l
) is the lltunbcr of elliptic

plane curves of degree n which meet 3n generic points. In Scction 3, we prove that the

coefficients Nr\l) satisfy the recursion

(1.1) 6N~I) = L (3j~rt,3~_1)ij3k3(2i - j - k)NP) NJO) NkO)
n=i+j+k

+ 2 L (en3i2)ij2(8i - j) - (~7=f)2(i + j)j3)NP) NJO)
n=i+j

- 2
1
4 ( L .(;~~D (n2 - 3n - 6ij)i3j3 N,l°) Njü) + 6n3(n - l)N!.O)).

n=t+;

In Tablc 1, we list the first few,:or these cocfficients, together with the corresponding
rational Gronlov-Witten invariants for comparison. We have checked that our resnlts for

N~l) agrec in degrees up to 6 with those obtained by Capora.'3o and Harris [5].



TA BLE 1. Rational and elliptic GrOIUOv-Wit ten invariants of CIfD 2

11 N~O) N~l)

1 1 0

2 1 0

3 12 1

4 620 225

5 87304 87192

6 26312 D76 57435240

7 14616808192 60 478 511 040

8 13525751027392 96212546526096

9 19385778269260800 220716443548094400

10 40739017561997799680 702 901 008 498 298 112 640

11 120278021410937387514880 3011 788599493603375929600

12 482113680618029292368686080 16916605752 Oll 965307094 124800

The situation for thc elliptic Gromov-Witten invariants of CJPl3 is a little luore compli­
cateel. The genus 0 anel 1 potentials of (jp3 have the form

t2 t t 3 00 tatb
R (CIP 3 ) =~ + t t t + -.!. + '"' '"' N(O)qnentl2..lo 2 0 I 2 6 L.J LJ ab alb! '

n=14n=a+2b

00 ab
PI ((]D3) = - t

4
'1 +~ ~ N

ab
(9) qnent1 t2t3

LJ L alb!'
n=14n=a+2b

where ti is the fonnal variable, of degree 2i - 2, dual to wi E H 2i (QIl3, Q), auel N~g) is the
GrOIuov-Witten invariant which "counts" the stable maps of genus 9 anel clegree 11 to 1{]D3

which meet a generic lines and b generic points. The elliptic Grolllov-Witten invaria.nts

are no longer positive integers: for example, Nd~) = -1/12. In [10J, we use the met.hods of

this paper to prove that thc linear cOIubination N~~) + (2n - l)N~~) /12 counts the number
of elliptic space curves which meet a gcneric planes and b generic points.

Acknowledgments. Conversations with K. Behrend, E. Looijenga, Yu. Manin and es­
pecially with C. Faber, enabled me to write this paper at all.

I am very grateful to Yu. Manin, D. Zagier and the Max-Planck-Institut für Mathematik
in Bann, where this paper was conceived, and to A. Kupiainen and the Finnish Mathe­
Inatical Society for an invitation to Helsi nki University, where much of it was finishcel.
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2. INTERSECTION THEORY ON Mi,4

In this section, we calculate the relations among certain codimension two cycles in MI,4;

one such relation was knowIl, and we find that there is one new oue.
First, we assign naInes to the codimension 1 strata of Ml,4' Denote by ßo the boundary

stratum of irreducible curvcs in M 1,4, associated to thc stable graph

For each snbset S of {I, 2, 3, 4} of carel inality at least 2, let 6J. s be t he bounelary stratum
associated to the stable graph with two vcrtices, of genus 0 anel 1, one eelge connecting
thcm, and with those tails labelled by elements of S attachcd to the vertex of genus 0;
there are 11 such graphs. In our pictures, wo denote genus 1 vertices by a hollow dot,
leaving genus 0 vertices unInarked. For example,

3 4

6J.{1,2} =

1 2

We only neeel the three 54-invariant cOInbinations of these 11 strata, which are (l,S folIows:

6J.z = 6J.{1,2} + 6J.{1,3} + 6J.{1,4} + ß{2,3} + 6J.{2,'1} + 6J.{3,4} 1

6J.3 = ß{ } + .6.{ } + .6.{ } + .6.{ }1,2,3 1,2,4 1,3,4 2,3,4 ,

.6.4 = .6.{1,2,3,4}'

In sumIuary, there are foul' invariant combinations of boundary strata: 6J.o, 6J. Z1 ß3 anel
6J.4 .

We now turn to enumeration of thc codiuwnsion two strata. These fa.ll into two classes,
distinguishcel by whether thcy are contained in thc irreducible stratum 6J.o 01' not. Wo
start by list.ing those which are not; each of them is thc inten;ection of a pair of boundary
strat.a 6J.s . 6J.T . WC give foul' examples: from these, thc other strata may be obtained by
thc action of 84 :

1 2

6J.{l,Z} . .6.{3,4} =

3 4

tJ. (1,2) . tJ. (1 ,2,:1,4) = 1
~~

1 2

4

ßp,Z} . .6.{l,2,3} =

1

tJ.{1,2,3} . tJ.{1,2,3,4} =~

1 2 3
3



Thc 54-invariant combillations of these strata are as follows:

~2,2 = .6.{1,2} . .6.{3,.1} + .6.{l,3} . ~{2,4} + ~{1,4} . ~{2,3}'

~2,3 = .6.{1,2} . .6.{1,2,3} + ~{1,2} . .6.{1,2,4} + .6.{1,3} . ~{1,2,3} + ~{1,3} . .6.{1,3,4}

+ .6.{1,4} . .6.{1,2,4} + .6.{l,4} . ~{1,3,4} + ~{2,3} . .6.{1,2,3} + .6.{2,3} . ~{2,3,4}

+ ß{2,4} . ß{l,2,4} + ß{2,4} . .6.{2,3,4} + .6.{3,4} . .6.{1,3,4} + .6.{3,4} . .6.{2,3,'Q ,

.6.2,4 = ~{1,2} . .6.{l,2,3,4} + .6.{1,3} . .6.{1,2,3,4} + .6.{1,4} . .6.{1,2,3,4}

+ .6.{2,3} . .6.{1,2,3,4} + .6.{2,4} . .6.{1,2,3,4} + .6.{3,4} . .6.{1,2,3,4},

.6.3,4 = .6.{l,2,3} . .6.{1,2,3,4} + .6.{1,2,4} . .6.{1,2,3,4} + .6.{1,3,4} . .6.{1,2,3,4} + .6.{2,3,4} . .6.{l,2,3,4}·

Each of thc intcrscctions 6.0 . 6.s is a codinwllsion two stratum in 6.0; for exaIuple

6.0 . 6.{1,2} = .6.0 . .6.{1,2,3} =

1 2

6.0 ·.6.{1234} =, , ,

1 2 3 4

From these, we may form the 54-invariant cOIubinations

6.0,2 = .6.0 . 6.{1,2} + 6.0 . .6.{l,3} + .6.0 • .6.{1,4} +.6.0 . .6.{2,3} + .6.0 . 6.{2,4} + 6.0 ·6.{3,4}1

.6.0,3 = .6.0 . .6.{1,2,3} + 6.0 . .6.{1,2,4} + .6.0 . 6.{1,3,4} + .6.0 . .6. {2,3,4} ,

6.0 ,4 = .6.0 . 6. {1 ,2,3,4} .

There remain seven st.rata which a.re not. expressible as intersections, which we denote by

6.0 ,il 1 ::; i ~ 4, and 6.ß,12134, .6.ß,13124 and ~ß,14124' We illustrate the stable graphs for
two of these strata:

1

234

1 2

3 4

Denote by 6.0 and .6.ß the 54-invariant combinations of strata:

.6.0 = .6. 0 ,1 + .6.0 ,2 + 6.0 ,3 + ~Q,4, .6.ß = 6.ß ,12134 + .6.ß,13124 + .6.ß,14124'

For each of these strata .6.x, let Ox be the corresponding cyclc in H. (M 1,4, Q) (in thc
sense of orbifolds - we divide by t.he order of the autolIlorphislll grollp of a generic point
in the stratum, which in our case is always 2).

Lemma (2.1). The jollowing relatioTL among cycles holds in H 4 (M 1,41 (11) :

00,2 + 300,3 + 600,4 = 30a + 40ß ·

Proof. The two strata

1 2
4

2



define the sanle cycle, as do any pair of codimension two strata lying in an irreducible
surface. We obtain thc lelnma by lifting this relation by the 6 dist.inct projections M 1,4 --7

M 1,2 anel summing the answers. D

We can now state the l1lain rcsult of this sedion.

Theorem (2.2). The first seven 1'OWS 0/ the intersection 1natrix 0/ the nine S4-invariant

codim,ension two cycles in Ml,4 introd1J.cerl above equals

02,2 02,3 02,4 03,4 00,2 00,3 00,4 00 Oß

02,2 1/8 0 0 0 -3 0 3/2 0 3/2

02,3 0 0 0 0 0 -6 6 6 0

02,4 0 0 0 -1/2 0 6 -3 0 0

03,4 0 0 -1/2 1/6 6 -2 0 0 0

00,2 -3 0 0 6 0 0 0 0 0

00,3 0 -6 6 -2 0 0 0 0 0

00,4 3/2 6 -3 0 0 0 0 0 0

Proo/. The following lemma shows that Inany of thc intersectiOll nunlbers vanish. (Thc
use of this lenuna siInplifies our original proof of Theorem (2.2), anel was suggestcd to us
by C. Faber.)

Lemma (2.3). Let 0 be a cycle in ~o. Then 00 . 0 = O.

Proo/. Consider the projection 1r : M1,n --7 M1,1 which forgets all but the first marked
point, anel stabilizes the rnarked curve which results. The divisor 6 0 is the inverse image
under 1r of the cOInpactification divisor of MI,1; thus, we Inay roplace it in calculating
intersections by any cycle of the form 1r-

1(x), where x E M 1,1' The resulting cycle has
elnpty intersection with 0, proving the lCI1una. D

This leI1uua shows that all interscctioIlS among the cyclcs 00,2, 00,3 and 00,4 anel with On
and Oß vanish.

A number of other entries in the interscction matrix vanish because thc associated strata
do not mect.: thus,

02,2 . 02,3 = 02,2 . 03,4 = 02,2 . 00,3 = 62,2 . 00 = 0,

02,3 . 02,4 = 02,3 . oß = 0,

02,4 . 00; = 02,4 . oß = 03,4 . 00 = 03,4 . oß = O.

To calculate the relnaining entries of the int.ersection nlatrix, we neeel thc cxcess inter­

section formula (Fulton [7], Section 6.3).

Proposition (2.4). Let Y be a smooth variety, let X y Y be a regular immersion 0/
codirnension dJ and let V be a closed subvariety 0/ Y 0/ dirnension n. Suppose that the
inclusion W = X n V y V is a regular immersion 0/ codimension d - e. Then

[X] . (V) = ce(E) n [W] E An-d(W),

where E = (NxY)hv/(NwV) is the exccss bundle 0/ the intersection.

Observe t.hat in calculating the top fOllr rows of our intersection Inatrix, at least one of
the cycles which wo intorsect with has a regular ilnmersion in M 1,4, since its dual graph
is a tree. This makes the application of thc exccss intersection formula straightJorward.

It remains to give a formula for the normal bundlcs to thc strata of M 1,4'
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Definition (2.5). The tautological line bundles are defined by

where (Ji : Mg,n -)- M g,n+l, 1 ::; i ::; n, are the n canonical sections of thc universal stahle

curve Mg,n+l --)- Mg,n. Dcnote thc Ohern dass CdWi) by 'l/Ji.

The following formula for thc nonnal bundle of a stratum M(G) c Mg,n may be found
in Sectioll 4 of Hain-Looijenga [12].

Proposition (2.6). Let G oe a stable graph 01 gentiS 9 and valence n J and let M(G) be

the closure 01 the associated stratum M(G) 01 Mg,n. Then M(G) is the qtiotient 01 the
product

TI Mg(u),n(u)

uE V(G)

by the atitomorphisrn group Aut(G) 01 the graph.

Each edge e 01 the graph consists 01 two fiags s(e) and t(e), whose tautological line

uundles may be ptilled back to ITu Mg(u),n(u)' The vector bundle

EB w:(e) 0 w4e)
eEE(G)

is invariant under the action 01 Aut(G) on ITuMg(u),n(u), and hence descends to a vector

bundle 011 M(G), which may oe identijied with the nONnal bundle NM(G)Mg,n- D

It is now straight.forward to calculate the rCIuaining entries of the illtersectiOll Iuatrix.
We will use the integrals

(2.7) '- 1/1i = 1,JM O,4

which are proved in Witten [23].
In pcrfonning the calculat.ions, it is hclpful to introducc a graphieal notation for thc

cydc obt.ained froIll a stratuIll by capping with a monomial in the Ohern dasses -'lj.Ji: we

point a sIHall arrow along each Hag i where we intersect by thc dass -'lj.Ji' (This notation
generalizes that of Kaufmann [14], who considers the casc of trees whcre the genus of
each vertex is O. Thc minus signs COIlle froIn the inversion accmupanyillg the talltological
line bUlldles in thc formula of Proposition (2.6).) One thcn calculatcs the contribution
of such a graph by multiplying together factors for each vertcx equal t.o the integral ovcr

Mg(u),n(u) of thc appropriate InonOInial in the cia.."ses -'lj.Jil and dividing by the order of the
autonlOrphisIIl group Aut(G): in particular, this vanishes unless there a.re 3(g(v) -1) +n(v)
arrows at each vertex v.

We illustrate thc sort of cnumeration which ariscs with OIlC of the IllOst complicated of

these calclliations, that of 62 4 • 624' Two sorts of terms contribute: 6 terms of t.he fonn
, 1

(6 .6 )2 - ~{1,2} {1 ,2,3,4} - 24'

and 6 terms of the form

1
0{1,2} . 0{1,2,3,4} . 0{3,4} . 0{1,2,3,4} = - 24'

Applying the excess interscction formula, we see that

(0{1,2)· 0{1,2,3,4))2 = c2(N.6.{l,2}n.6.{1,:l,3,4}Ml,4) n (0{1,2} . 0{1,2,3,4})'
6



Expanding the second Chern dass of the normal bundle, we see that each term contribut.es
the surn of foul' graphs:

Only thc first graph is nonzero, since in thc other cases, thc wrong nUlllbcr of arrows point
towards the vertices. And thc first graph contributes

r (-1jJ[). r (-4'd=~.
JMO ,4 1;\.1.1,1 24

In the case of tenns of thc form 0{1 ,2} . 0{1 ,2,3,4} . 0{3,4} . 0{1 ,2,3,4}, the exccss dimension e
equals 1, and we must calculate the degree of the cxcess bundle on the stratum ~{1,2} n
~{3,4} n ~{1,2,3,4}' Two graphs contribute:

Only the first of these graphs gives a nonzero vaille, namcly

r (-4'd = _..!.-.
1Jv1.I,1 24

This completes our outHne of the proof of Theorem (2.2). o
The intersection matrix of Theorem (2.2) has rank 7: We now apply thc results of [9],

where we calculated t.he character of the Sn-modules Hi(M l,n, Q): these calculations show
that d iln H 4 (M 1,4, Q) $4 = 7. This shows that our 9 cycles span H 4 (M 1,4 , Q)$4, and that
the nullspace of the intersection matrix givcs relations among thcm. We already know Olle
such relation, by LeIlllna (2.1). Ca1culating the rcmaining null-vector of the intersection
Inatrix, we obt.ain thc main theoreln of this paper.

Theorem (2.8). The Jollowing new relation among cycles holds:

1202,2 - 402,3 - 202,4 + 653,4 + 50,3 + 00,4 - 20ß = O. 0

Using this theorelll, it is easy to calculate thc reillaining intcrsections among our 9
strata:

00 .50 = 16, 50' 5ß = -12, oß' oß = 9.

C. Fabel' infonns U8 t.hat the dircct calculation of these intcrsection numbcrs is not difficllit.
This would allow a different approach to thc proof of Theorenl (2.8), using the theorem
of [11] that thc strata of Ml,n span the even-dinlcnsional rational COhOlllOlob'Y-
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3. GnoMov-WITTEN INVARIANTS

In the rcmainder of this paper, we apply thc ncw relation to the calculation of elliptic
Gromov-Witten invariants: we will do this explicitly for curves anel for the projective
plane (JP2, and prove sOlne general results in other ca.."es.

(3.1) The Novikov ring. Let V be a smooth projective variety of dimension d. In
studying tbe GroIllOv-Witten invariants, it is convenient to work with cohOInology with
coefficients in the Novikov ring A of V, which we now define.

Let N1(V) be thc abelian group

N1(V) = Zl (V)/numerical equivalence,

anel let NEl (V) be its sub-seIuigroup

NE l (V) = ZE1(V) /nunlerical equivalence,

where Z1(V) is the abelian group of l-cycles on V, and ZE} (V) is the sernigrollP of
effective l-cycles. (Recall that two l-cycles x and y are numerically equivalent x == y

when x . Z = y. Z for any Cartier divisor Z on V.)
The Novikov ring is

A = Q{N 1 (V)] 0Q{NEI(V)] Q[ NE} (V)]

= {a = L:ßEN 1(V) aßqß I there exists ßo E N1(V) such that supp(a) C ßo + NE} (V) },

with produet qßl qß2 = qßl+ß2 aud grading IqßI = -2cdV) n ß. That the product is
well-defined is shown by the following proposition (Kolli:ir [18], Proposition 11.4.8).

Proposition (3.2). IJ V is a projective variety with Kähler Jorm w, the set

is finite for each c > O. o

For exaluple, if V = lCIPn
, then NdClPn

) = Z . [L], where [L] is the cycle defined by a
line L c CIID'\ and A ~ Q«(q)), with grading Iql = -2(n + 1), since cdQDn) n [L] = 11 + 1.

If V = E is an clliptic curvc, then NI (E) = Z . [E], and A ~ Q(( q)), concentratcd in
degree O.

(3.3) Stahle maps. The definition of Gromov- Witten illvariants is based on the study
of the modllli stacks Mg,n(V, ß) of stable maps of Kontscvich, which have been shown by
Behrend and Manin [3] to be cOlnplet.e Delignc-Mumford stacks (t.hough not in general
smooth).

For each N 2::: 0, let 7fn ,N : Mg ,n+N (V, ß) ---7 M g,n (V, ß) be the projection wh ich forgets
thc last N marked points of the stable curve, alld stabilizcs thc rcsulting Inap. In the
special case N = 1, we obtain a fibration

which is shown by Behrend allel Manin to be the universal curvei that is, its fibre oyer a

stable nlap (J : C ---7 V, Xi) is the curve C. Denote by f : Mg,n+l (V, ß) ---7 V the universal
stable map, obtained by evaluation at Xn+l'

8



(3.4) The virtuaJ fundamental class. If 2(g -1) +71, > 0, the projeetion Mg,n (V, ß) --+
Mg,n seneIs the stahle map (f : C --+ V, xd to the stabilization cf (C, xd, obt.ained by
collapsing rational eomponents of C with fewer than 3 special points to a point..

If the sheaf RLrr*f*TV vanishes on Mg,n (V, ß), thc RiCIllann-Roch theorem preelicts

that the fibrcs of the projection Mg,n(V, ß) --+ Mg,n have diluensioll d(l - g) + Cl (V) n ß,
anel henee t hat Mg ,71 (V, ß) has cl imension

d(l - g) + cdV) n ß+ dimMg,n = (3 - d)(l - g) + Cl(V) n ß+ n.

This hypothesis is only rarely true, anel in any case only in genus 0. However, Behrend­

Fantecchi [1, 2] and Li-Tian [20] show that tllere is abivariant da.<.;s

[M (V ß)/M R·rr f*TV] E Ad(l-g)+ct{v)nß(M (V ß) --+ M )g,n, g,n, • g,n, g,n ,

the virtual relative fundamental dass, which stands in for [Mg,n (V, ß) / Mg,n] in the ob­
structed C[k"ie.

The following result is proved in [1], and sOIuetimes pcnnits the explicit calculation of
Grornov-Witten invariants, as we will see later.

Proposition (3.5). If the coherent sheaf RLrr*f*TV on Mg,n is loclLlly trivial of dimen­
sion e (the excess dimension), then Mg,n(V, ß) is smooth of dimension

(3 - d) (1 - g) + Cl (V) n ß+ n + e,

and [Mg,n(V, ß)/Mg,n, R-1r.j*TV] = ce (R'7r*j*TV) n [Mg,n(V, ß)/Mg,n]. o

(3.6) Gromov-Witten invariants. The Gl"omov-Witten invariant of genus 9 ~ 0, va­

lence n ~ °anel degree ß E NE} (V) is a cohomology operation

IV : H 2d(1-y)+2c 1(v)nß+· (Vn 1f1\) --+ H·(M rf1I)g,n,ß ,'l.J:: 9,n, '\! ,

defined by the formula

I};,n,ß(al,'" ,on) = [Mg,n(V, ß)/Mg,n, R·1r*f*TV] n ev*(o! [8J ... [8J an),

where ev : Mg ,n (V, ß) --+ V n is evaluation at the marked points:

Note that I:'n,ß is invariant nndel" the action of thc symnlct.ric grollp Sn on V n.

Capping I~~n,ß with the fundanlCntal dass [My,n], wc obtain a lllullerical invariant

This is the n-point correlation fuuction of two-dimensional topological gravity with the

topological a-model associated to V as a background [23]. Note that if ß :I 0, (I~~n,ß) may

bc definccl even when 2(g - 1) + n ::; 0, even though IV ß does not exist.g,n,
Introdllcing the Novikov ring, wc may defille thc generating funct.iOll

I~~n = L qß I;~n,ß : H*(V, A)0n --+ H-(Mg,n, A),
ßENE1(V)

along with its integral over the fundamental dass [Mg,n]

(I~~n) = L qß(I~~n,ß): H$(V, A)0n --+ A,
ßENEI (V)

9



In the special ease of zero degree, the nloduli spaee M g,n (V, ß) is isomorphie to Mg,n x V.
This allows 11S to ealculate the Gromov-Wittell invariants (1630) and (lit 0)' The former

t , .,. )

is given by thc explieit fonllula

(Ira,o(O'\, 0'2, O'a)} = Iv 0'1 U 0'2 U 0'2·

This formula is very simple to prove, since the moduli spaee MO,3(V, 0) ~ V is smooth,
with dimension equal to its virtual dimension d, anel thus the virtual fundmnental da.ss
[MO,3(V, 0), R·7r.j*TV] tnay bc identified with thc fundamental dass of V. A sitnilar

proof shows that (lci1
n 0) vanishes if n > 3.

The ealeulation oi the Gromov-Witten invariant (Irl,O) (see Bcrshadsky et al. [4]) is a
gooel illustration of the applieation of Proposition (3.5).

Proposition (3.7).

vii(11,1,0(0')) = - 24 V cd-dV) U 0',

while (ltn,o) = °ij n > 1.

Prooj. The nloduli stack M1,n(V,O) is iSOlIlorphic to M1,n X V, and the obstruction
bundle RLTr*j*TV is isomorphie to the vector buudle W

V [8J TV, of rank d , where w =

7r*WMt ,n+I/Mi,n' Rcuce R 17r*j*TV has top ehern dass

By Proposition (3.5),

(Irn,0(al 1 "" an)) = '- Cd(W
V

(2) j*TV) [8J (al U ... U an)
JMi,n XV

= - ~ cdw)·1 Cd~l(V) Ual u··· UO'n'
JMl,n V

On diIuensioual grollnds, (Irn 0) vanishes if n > 1, while thc fornmla follows when 11 = 1
- 1 "

from CI (w) n [M1,d = 24' 0

(3.8) The puncture axiom. One of thc fundamental axiOIllS satisficd by GrOlllov-Witten
cxpressed in the relationship between virtual fundamental classes

[Mg,n+l (V,ß)/Mg,n+1, R·7r*!*TV] = 1I"*[M g,n(V, ß)/Mg,nl R·1I".!*TV].

k- - k- -
Here, 11"* : A (M g,71 (V, ß) -7 M g,71) -7 A (Mg,n+dV, ß) -+ Mg,n+d is the operation of
ftat pullback assoeiated to the diagrmll

Mg,71+1 (V, ß) -r Mg,n+1

nl nl
M g,71(V,ß) -7 Mg,n

This axionl implies that if a is a cohomology dass on V of clegrec at most 2 and 2(g ­
1) + TL > 0,

(3.9)
10'1 = 0,1,

lai = 2.



(3.10) Generating functions. Let A[H] be the power series ring A[He+2(V, Q)]. Let
{,a }~=o be a hOIllogeneous basis of the graded vcctor space He (V, Q) J with ,0 = 1, and
let {ta} ~=O be the dual basis; the (homological) degrcc of ta cquals the (cohomological)
elegrcc of ,a lllilltlS 2. We rnay identify thc ring A[H] with A[to,· .. , td.

Let Fg(V) be the generatillg function

00

Fg(V) = L(I~n) E A[H].
n=O

This is apower scries ofdegrcc 2(d-3)(1-g). This suggests a..c;signing to Planck's constant
11, thc degree 2(d - 3)(g - 1), and fonning the total gcnerating function, homogeneous of
degree 0,

00

F(V) = L ng- 1Fg(V).
g=O

(3.11) The composition axiom. The composition axiom for Gromov-Witten illvariallts
gives a fonnula for thc integral of thc Gromov-Wit.ten invariant IJ,n over thc cyclc [M(G)]
associated to a stable graph Gwhich bears a strong rescmblance to the Fcynman rules of
quantum field thcory:

Let 1]ab be the Poincare form of V with respect to thc basis {1a }~=o of He (V, Q). Then

k1- I~n(Q'l, ... ,Q'n)= Au~(G) L rr '7a(e),b(e) rr (I~v),n(v)("'))'
J\1(G) a(e),b(e)=O eEE(G) vE V(G)

eEE(G)

Here, the Gromov-Wittcn inva.riant (I~v),n(v) (... )) is evaluatcd on thc cohomology classes

Cti corresponding to thc tails of Gwhich mect the vertex v, on the ,aCe) corrcsponding to
edgcs e which start at the vertex v, and on the ,b(e) corrcsponding to edgcs e which end
at v. (The right-hand siele is independent of the chosen orientation of the edges, by thc
synulletry of the Poincare fonn.)

(3.12) Relations among Gromov-Witten invariants. The subvariety 7r~,~ (M(G))
is the union of strata associatcd to the set of stahle graphs obtained froln G by aeljoining
N tails {n + 1, ... ,n + N} in all possible ways to the vcrtices of G.

For cxample, consider the stratum .6.12134 C MO,4, associated to the stable graph

3 4

~'2134 = X
1 2

43

The inverse inlagc 7l'".l,1 (.6.12134) consists of the union of all strata in M 0,4+N a..c;sociated to
stable graphs

1 2

where I anel J form a partition of thc set {5, ... ,N + 4}.
11



Ir J is a cycle in Mg,n, define thc generating function

In particular, if n= [M(G)] where G is a stable graph, we set F(G, V) = F([M(G)], V).
If 9 > 1, Fg(V) is a special ca..o:;e of this construction, with J = [M g,o].

A littlc exercise involving Leibniz's rule shows that the composition axiom ilnplies the

following fonllula for these generatings functions:

(3.13)
1 k

F(G, V) = Aut(G) L II 11a(e),b(c) II an(v) Fg(v) (V)( .. . ),
a(e),b(e)=O eEE(G) vE V(G)

eEE(G)

where as before, the llluitilinear form an(v) Fg(v) (V) is cvaluated on the cohomology classes

Gi corresponding to thc tails of G meeting the vertex v, on the ')'a(e) corresponding to
edgcs e which start at the vertex v, and on the ')'b(e) corresponding to edges e which cnd

at v.
Thc cOIuposition axiom iIllplies that any relation among the cyclcs [M(G)] is refiected

in a relation anlong Gromov- WittCIl invariants, whieh, by (3.13) may bc translated into
a differential equatioll amollg generating functions Fg (V). An example is the rational

equivalence of tlle cycles associated to the three strata of MO,4 of codintension 1:

3 4 2 4 2 3

X~X X
1 2 1 3 1 4

The equality of the Gromov- Witten invariant F(J, V) when evaluated on these cycles is
the Witten-Dijkgraaf-Vcrlinde-Verlinde eqllation.

In order to express the relation among the Gromov-Witten invariants iluplied by Thco­
rem (2.8), it is useful to introduce certain operators which act. on elcments of A[H] 0 A[H]
through differentiation in the first factor: the Laplacian

and the sequence of bilinear differential operators f n by f o(1, g) = 19 anel

(We will abbreviate fd1, g) to f(!, g).)

Proposition (3.14). Denote the derivative an(v) Fg(v)(V)jn(v)! E A[H] 0 A[HJ by fg,n.
(Note that 19 ,n = F([Mg,n], V).) Then

6f(f l (fI,2l 10,3), 10,3) - Sf(JI,2l f(JO,3l 10,3))

- 2f(!0,3, f(fl,ll /0,4)) + 6f(/0,4l f(JI,t, /0,3))

+ f(fo,4l 1:110,4) + r(10,s, /),,10,3) - f 2(/O,4, JO,4) = O.

12



Proof. This follows from the following table, which is obtained by application of (3.13).

0 F(o, V)

02,2 ~r(r(/l,2, 10,3), 10,3) 00,2 r(IO,31 ß/o,5)

- !f(fl,21.f (!0,3, 10,3)) 00,3 r(!0,4, ß/o,4)

02,3 ~r(fl,21 r(/o,3, 10,3)) 00,4 f(!0,51 ß/O,3)

02,4 r(fO,31 r(fl,l, 10,4)) On f 2(/o,3,/0,5)

03,4 f(!0,41 f(ll,l, 10,3)) Oß ~r2(/O,41 fO,4)

o

When we apply Proposition (3.14) with V = l[]l'2 and evahIate thc rcsulting multilin­

ear form to w04 , we obtain thc recursion relation (1.1) for the elliptic Gromov-Witten

invariants N~l) of l[]l'2.

4. THE SYMBOL OF THE NEW RELATION

We may introduce a filtration on Gromov- Witten invariants with respect to which the
leading order of our new relation takes a relativcly simple form; by analogy with the case
of differential operators, we call this lcaeling order relation the syrrlbol of the fuIl relation.
In Sülne cases, this symbol may be used to prove that elliptic Gromov-Witten invariants
are dctermined by rational ones.

Definition (4.1). Thc symbol ofa relation 0 = 0 among cycles ofstrata in Mg,n is the set
of relations arnong GroIIlov- Witten invariants obtained by taking, for each ß E NE) (V),

the coefficient of qß in I~n n [0]' expanding in Feyuluan diagrams using thc conlposition

axiOIll, and setting all Gromov-Witten invariants (I~~,n',ß') other than (I~n,ß) and (IJ~3,o)

to zero.

We deRne a total order on the symbols (I~~n,ß) by setting (1~~,n',ß') -< (1~:n,ß) if g' < g, 01'

g' = 9 anel 11,' < 11" 01' g' = 91 11,' = n anel ß = ß' +ß" where ß" E NE1 (V) is non-zero. Thus,
knowleelge of thc symbol determines relations among Gromov- Witten invariants such that

the error in the relat.ion on (1~~n,ß) involves invariantH (1~,n' ,ß') with (I~,n',ß') -< (I~~n,ß)'

(Here, we Blust of course excludc (IJ~3,0)') We use thc symbol f".J to denote this equivalence
relation.

For example, the sYlnbol of the Witten-Dijkgraaf-Verlinde-Verlindc equation is

(a,b, c Ud) + (a U b, c, d) '" (-1) lal( Ibl+Icl) ( (b1 c, a U d) + (b U c, a, d) ) ,

where we have abbreviated (Iri,n,ß (0'1,0'21 0'3,0'4,0'5, ... , an») to (0'1,0'2,0'3,0'4),

Next, eonsider thc symbol of the relation

1r4,~-4 (1202,2 - 402,3 - 202,4 + 603,4 + 00,3 + 00,4 - 2ß) = 0

in H2n- 4(M 1,u,Q). Qnly thc cycles 02,2 and 02,3 contribute tenns to the sYlnbol. Abbre­
viate thc Gromov-Wit tcn dass (lin ß(0'110'2,0'3, ... 1O'n)) to {O'l, 0'2}' Up to a nUIllerieal
factor to be determined, the eyeIe '0~,2 contributes thc expression

{a U b, c U d} + (-1) Ibllcl {a U c, b U d} + (-1) (Ibl+Icl) Idl { a U d
j
b U c}.

This nUlIlerieal factor equals
1

24 . 3 . 12 . 8 = 12.

The factor 1/24 COllleR from sylnmctrization over thc four inputs, the factar of 3 from
the thrcc strata making up 02,2, thc factor of 12 is the eoefficient of thc eycle in the

13



relation, and the factor 8 is illustrated by listing all of the graphs which contribute a tenn

{a U b, c Ud}:
a b a b b a b a c d d c c d d c

c d d c c d d c a b a b b a b a

Similarly, the eyeIe 02,3 contributcs the expression

{a, bUcUd} +(-1) lallbl {b, aUcUd} +(-1) (Ial+lb[)lcl {c, aUbUd} +(-1) (lal+lbl+lcl)ldl {d, aUbUc},

with uumerieal factor
1

- . 12 . (-4) . 6 = -12'
24 '

the factor 12 counts the strata lllaking up 02,3, -4 is the coefficient of the cycle in the
relation, and we illustrate the factor 6 by listing all of the graphs which coutribute a term
{a, b U cU d}:

a a a a a

d ccb c c b d d b

In COUclllSiou, we obtain the following result.

Theorem (4.2). Abbremating (Irn,ß(al,0:'2,a3"",O:'l1)) to {al,0:'2}, we have

\lJ(a, b, c, d) = {a U b, c Ud} + (-1 )lb1lcl{a U c, b U d} + (-1 )(lbl+1cl)lrl l{a Ud, b U c}

- {a, bU c U d} - (-1) lallbl {b, a U c U d}

- (_1)(lal+1bl)lcl{c, aU bUd} - (_l)(Ial+lbl+lcl)ldl{d, aU bU c} '" O.

Note timt thc linear form \lJ (a, b, c, d) is (graded) symmetrie in its foul' arguments, anel
vanishes if any of thern equals 1.

Corollary (4.3). 1f w E H 2 (V, Q) and a, b E He(V, Q), then for j ~ i + 3,

{wi U a, wi-i U b} = (it2
) {a, wi U b}.

Proof. By Theorem (4.2), we have for i ~ 0 and j ~ 3,

\II(W,W i+1 Ua,w,wi- i- 3 Ub) - \II(w,wi Ua,w,wi- i- 2 Ub)

(2{w i+2 U a, w-i- i - 2 U b} + {w 2 , w-i- 2 U a U b}

- {wi +1 U a, wi- i - l U b} - {w i+3 U a, wi- i - 3 U b})

- (2{wi +t U a, wi- i - 1 U b} + {w2
, wi-2 U a U b}

- {wi U a, wi-i U b} - {wi+2 U a, w-i- i - 2 U b} )

'" {wiUa,wl-iUb} _3{wi+1 Ua,wi- i- 1 Ub}

+ 3{wi +2 U a, wi-i - 2 U b} - {wi +3 U a, w-i -i-3 U b} '" O.

14



This inlplies that. the funGtion a(i, j) = {Wi U a, wi- i U b} satisfies the differcnce equation

a(i, j) - 3a( i + 1, j) + 3a(i + 2, j) - a(i + 3, j) ......, 0

with solution a(i,j) ......, e~2)a(O,J). D

We can now provc a weak allalogue for clliptic Grornov-Wittcn illvariants of thc (first)
Reconstruction Theorem of Kontsevich-Manin (Theorem 3.1 of [19]). Denote the primitive
cohOlnology

coker(Hj-2(V, 10) ~ Hj(V, Q))

by pj (V), and let H[~] (V, Q) be thc graded subspace of H- (V, Q) associated by the Lef­

schetz dccomposition to the priInitive cohOlnology classes of degl'ec at most i. Let rr4 (V)
be the projcctioll of the image of the ClIp prodllct H 2 (V, Q) 0 H 2 (V, Q) ~ H 4 (V, Q) to
p4(V).

Theorem (4.4). {1} On restrietion to H[l) (V, Q), the elliptic Gromov- Witten invariants

of V are determined by its rational Gromov- Witten invariants together with the Grom01J­

Witten invariants (II,1,ß(w i+1)) for 0 ~ Cl (V) n ß = i < d.
(2) On restrietion to H[;] (V, Q), the elliptic Gromov- Witten invariants of V are deter­

rnined by its rational Grornov- Witten invariants togethe1' with tILe Gromov- Witten invari­
ants

• (h,l,ß( -)) : H[~it2 (V, Q) ---+ Q for 0 ~ Cl (V) n ß = i < d, and

• (lt,2,ß(W2, -)) : rr4(V) --+ Q for cdV) nß = 2.

Proo]' We procccd by indllctioll: by hypothcsis, (I~n,ß) is known for 9 = 0 01' g = 1 and

11 = 1. Now consieler the Gromov- Witten invariant (Irn ß(al, ... , an)), where n > 1. By
(3.9), we Inay aSSlIIlle that lai! > 2, and lInder thc hyp~thcses of the proposition, we may

write it as wPi U 1i where ITil ~ 2 is a primitive cohomology dass.

Step 1: If any two indices Pi anel Pj satisfy Pi + Pj > 2, we may apply Corollary (4.3)

to replace the pair (wPi U 1i, wPj U rj) by (')'i, wPi+Pj U rj). If 1')'11 = 1, thc result vanishes
by (3.9), while if 11d = 2, we Illay apply (3.9) to reduce n by 1.

Step 2: We are reducecl to cOllsidering (Irn,ß (w U ')'1 , ... , w U rn) ), where thc dasses ')'i

havc degree 1 01' c1cgree 2. Applying Theorem (4.2), we sec that

In particular, we may assllIlle that 11. = 2, since otherwisc, we would be able to return to
Step 1. There are two cases.

Step 2a: If thc classes 1i are both of dcgree 1, we see t hat {w Url, wU 12} ......, 0, since in
that case rl U r2 has degree 2 anel we may apply (3.9). (This completes thc proof of part
(1) of thc proposition.)

Step 2b: If thc dassc<;J Ti are both of dcgree 2, we scc that it sufficcs to know thc

invariant (Ir2,ß (w2
,/1 U r2)), 01' rather, since wc have alrcady handled (n~2,ß(w2, W U ')')),

we only nccel to kllOW thc invariant (I~~2,{j(w2 , a)), where a E n4 (V) is tllc projcction of

rl U 12 E H 4 (V, Q) to p4(V). D

Three special cases of this rcsult. seem worth siugling out:

i) If V is a surface, H~] (V, Q) = H- (V, Q), anel rr4 (V) = 0; thus, aH cHiptic GrOInov­

Wittcn invariants are detennined by thc rational invariants together with (I1,1,ß ( - )) :

H2q (V}nß+2(V, lQ) --+ Q for Cl (V) n ß = 0,1.
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(5.3)

ii) If V is a threefold, H[;] (V, Q) eontaills the even degree eohomology of V, and Ollee

more n4(V) = 0; thus, all elliptie Gromov-Wit.ten invariants with arguments of
even dcgree are detennined by the rational invariants togcther with (II,I,ß( -)) :
H 2cI(v)nß+2(V, Q) -t Q for Cl (V) n ß = 0,1,2.

iii) In all eases, thc elliptie Gromov-Witten invariants with arguments in the sllbalgebra
of He(V, Q) generated by w are determined by thc rational invariants together with
(lt,l,ß(W i )) for 1 :::; i = 1 + Cl (V) n ß ~ d. In particular, for V = CJFDd, thc elliptic
Gromov-Witten invariants are detcrmined by the rational Gromov-Witten invariants.

5. GROMOV-WITTEN INVARIANTS OF CURVES

To illustrat.c our new relation, we start with the case wherc V is a curve. We will only
disCllSS curves of genus °and 1, since for curvcs of higher genus, I~~n,ß = 0 if ß f=. 0, and
the new relation is identically satisfied.

(5.1) er1. When V = Cl? I, thc potential Fg is apower series of degree 49 - 4 in variables
to and tl (ofdegree -2 and O).and the generator q of A, ofdegree -4 = -2cdCIfD 1)n[CIfD I ].

By degree counting, together with (3.9), we sec that

I {t6tl/2+Qetl, g=O,
Fg(CIP ) = -tl/24, 9 = 1,

0, 9> 1;

thc only thing which is not immediate is thc coefficicnt of q in Fo(CIIld ), whieh is the
Ilumber of Illaps of dcgree 1 fr0111 r.[IPi to itself, up to isomorphisIn, anel dem"ly cquals 1.

It is easy to calculate F(8, ClP 1
) for 8 eqllal to one of our nine 2-cycles: all of them

vanish exccpt

t4 t4

F(83,4, (]DI) = 2~ 0 (_qe t1 /6), F(8o,4, CJIDl) = 2~ 0 qe t1
,

Wc see that the new relation holds anlOng these potentials.

(5.2) Elliptic curves. Let E be an elliptic curve. Denote by €,1] variables of degree -1
corresponding to a basis of H 1(E, Z) such that (E,7]) = 1. Thc ring A has one generator q,

of degree °(since Cl (V) = 0). Since there are no rational curves in E of positive degree,
we have

It is shown in [4] that

Pj (E) = - ~~ + f a~) qfi (efit1 - 1),
ß::::l

since (l~l,ß(W)) = u(ß) counts thc number of unrarnified covers of degree ß of the curvc
E up to aut01norphisIIlS, which are casily enuIllcrated. An equivalent form of (5.3) is

8F1(E) _ G ( t1 )
8t\ - 2 qe ,

where
1 00

G2(q) = - 24 + L u(ß)qß
ß::::I

is the Eisenst.ein series of weight 2. By degree counting, we also see that Fg(E) = °for
g> 1.
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Note that. the GrolIlov-Witt.en invariants of an ellipt.ic curve are invariant Hudel' de­

formation; this is true for any smooth projective variety V (Li-Tian [20]). In fact, the

definit.ion of GrOlllov-Witten invariants extends to any almost-Kählcr manifold (a sym­

plcctic lnallifold with compatible almost-complex structure), and the reslliting invariants

are independent of the ahnost-cOlnplex strllcture (Li-Tian [21]).

It is sinlple to calculate thc GrOlnov-Witten potentials F(0, E) for our nine 2-cycles in

M 1,4.

Lemma (5.4). We have

F(02,2, E) = (1
5
2G4(qet1

) - G2(qe t1 )2) (totl + ery)2 = ~(tOtl + ~'f})2 + O(q2),

F(02,3, E) = 3F(02,2, E), while the rernaining 7 potentials vanish. 0

Again, we see that the new relation holds.

6. THE GROMOV-WITTEN INVARIANTS OF ClP2

The GrOlnov-Witten potential Fg (ClF 2
) is apower series of degrce 2g - 2 in variables

to, tl and t2, of degrees -2, °and 2, where ti is dual to wi, and the generator q of A, of

degree -6 = -2Cl (CIF2 ) n [L].
By degree coullting, together with (3.9), we see that

1 ( 2 2) ~ N(O) ß ßtl t~ß-l
2" tot l + tOt2 + L ß q e (3ß _ 1)1' 9 = 0,

ß=l
00 3ß

Fg {(]'2) = - t; + ]; N~l)l eßt! (~ß)!, 9 = 1,

00 3ß+g-l
'"" N(g)qßeßt 1 t2 1
L ß (3ß+g-l)!' g> ,
ß=l

where N~g) are certain rational coefficients.

Using the Severi theory of plane curves, we will show that N~g) is thc answcr to an

enulnerative problein for plane curves; in particular, it. is a non-negative integer. This

phenomenon is special to deI Pezzo surfaces: we have alrcady seen that. t.he clliptic Gromov­

Witten invariants of an elliptic curvc are non-integral, whilc for Cl?3, they are not even

positive.

We apply the following result., which is Proposition 2.2 of Harris [13].

Proposition (6.1). Let S be a smooth rational s'Ur/ace. Let 7f : C -t M be a /amily 0/
e'Urves 0/ geometrie genus 9 with M irreducible, and let f : C -t M be a rnap such that
on eaeh eomponent 0/ a general fibre Cz 0/7f, the restrietion /z 0/ / to Cz is not constant
and f;ws has nego.tive degree.

Let W be tlLe irnage 0/ the map /rom M to the Chow variety 01 eurves on S dejined by
sending z E M to the curve Cz . Then clim(W) ~ - deg(/;ws) + 9 - 1, and i/ equality
holds, then fz is bi1'ational for aU z E M. 0

Corollary (6.2). The coejJicient Nh9) equals the Tlumber 0/ irreducible plane curves 0/
arithmetic genus 9 and degree ß passing th1'ough 3ß + 9 - 1 general ]Joints in CIP2 .

Proof. Let M be a component of the boundary M g ,n(CIP2, ß) \Mg,n((()F2, ß), and consider

the family of curves C -7 M 0 btained by restricting the universal curve M g+ 1,n (V, ß) --+
Mg,n(V,ß) to M anel cOlltracting to a point all cOluponents of thc fibres on which f ha..')

c1egree O.
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The geOInetric gCBUS of t.he fibres of this family is boullded above by g - 1. Applyillg
Proposition (6.1), wc see that t.he image of M in the Chow variety of plane curves has
dimension at most 3ß + 9 - 2.

011 the other hand, if M is a component of M g,n (C]D2
, ß), and C -7 M is the universal

fanüly of curves C -7 M, we sec timt the ilnage of M in the Chow variet.y of plane curves
ha.., dilnension less than 3ß+g-l unless the stahle maps parametrized by Mare birational
to their image.

The Gromov-Witten invariant N~g) equals thc degree of the intersection of the iluage

of M 9 ,3ß+g-l (Y, ß) in the Chow variety of curves in Y wit.h the cyc1e of curvcs passing
through 3ß + 9 - 1 general point.s. By Bertini's theorem for homogenous spaces [16], wo
see timt the points of intersection are reduced and lie in thc cOluponents of M g ,n(ClP'2, ß)
on which the map f is birational t.o its iluage, and henee an immersion. (This argument.
is borrowed from Section 6 of Fulton-Pandharipande [8].) The result folIows. 0

(6.3) Comparison with the formulas of Caporaso and Harris. Caporaso and Harris

(5] have calculated the numbers N~g) for all 9 ~ 0, and we now turn the comparison of

our results for Ny) . We have not. been able to find a proof that our answers agree, but
we have verified timt. this is so for ß :S 6.

The recursion of Caporaso and Rarris for t.he Gromov-Wit.ten invariants of ClP'2 is more
easily applied if it is recast in terms of generatillg functions.

Definition (6.4). If a is a partition, denot.e by l(O') the nllmber of parts of 0' and by 10'1
the sum 0'1 + ... + O'i(o) of thc parts of a. Let a! be the product a! = O'd ... O'l(o)!'

Fix a line L in CI?2. Ir a and ß are partitions with lai + IßI = d, and n is a eollection of
l (Q:') general points of L: let y d,6 (a, ß)(n) = Vd,o (0', ß) be the generalized Severi variety:
the closure of the loeus of reduced plane curvcs of degree d not containing L, smooth except
for 8 double points, having order of contact 0i with L at Oi, and to order ß1, ... ,ßf(ß) at
R.(ß) further unassigned points of L. For example, yd,o (0, 1d) is the classical Severi variet.y
of plane curves of elegree d with 8 double points, while yd,o (0,21d-l) is the closure of thc
locus of plane curves tangent to L at a smooth point.

Denote by Vod,o (0', ß) the union of the cOlnponents of yd,o (0, ß) whose general point. is
an irreducible Cllrve. (By the main result of Harris [13], there is actually only one Ruch
component.) Let Nd,o (0', ß) be the degree of Vd,o (0', ß) anel let N;,6 (0', ß) be the degrce

of VOd,o (0', ß). Form the generating functions

Z(dt1)-o+l(ß) pO:
Z - '"' qß Nd,O(a ß)

-L...-((d!I)_8+1(ß))!0'! "

Z(d!l)-O+l(ß) po
F = '"' - ßNd,O(a ß)

L...- ((d~l) _ 8 + f.(ß))! O',q 0 , .

The int.eger (dt1) - 8+ f.(ß) is the dimension of t.he variety y d ,6 ((Y, ß). Tltc union of Cllrves
of dcgree di, 1 :S i :S n, with 8i double point.s and partitions 0i anel ßi is a (reduciblc)
curve has degree d = d1 + ... + d,. with

8 = 81 + ... + 8n + L 8i 8j

i<j

double points allel partitions 0' = (al,"" On) and ß = (ßl,"" ßn). This formula for J
amounts to the eondition that thc sum of thc dimensions of the generalized Severi varietics
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VO
di

,l5i (ai, ßd equals thc el inlension of V d,15 (a, ß). The rclationship of these two generating
functions,

Z = exp(F),

is an exercise in the definition of degrec (see Ran [22]).
Capora,so anel Harris prove arecuTsion which in tenns of thc generating function Z may

be written

az 00 az [00 00 a]oz =L:kqka+rcst=o exp(L:t-kPk+L:ktka) Z,
k=l Pk k=l k=l qk

where reSt=o is thc residue with respect to the formal variable t, in othcr words, the
coefficient of t- l when the exponential is expanded. * Dividing by Z, we obtain

8F 00 8F [00 ]
8z = L: kqka + reSt=o cxp(L: t-kpk + F(qk + ktk) - F(qk)) ,

k=l Pk k=l

which clcarly allows thc recursive calculation of the cocfficients Nt,15 (0:, ß).
As a special case of Z = exp(F), wc have

1 Z(dt2)-I5-l qdNd,15 _. ( Z(dt 2)-15-1 qdNg,l5)
+ L: ((d!2) _ r5 _ I)! - cxp L: ((d!2) _ r5 _ I)! '

For example, with d = 5, we obtain

N 5,4 = N 5,4 _ ~N4,ON1,o = 36975 - 120·1 = 36855° 14!2! ° 0 ,

N 5 ,5 = N 5 ,5 _ ~N4,1N1,o = 90027 - 105·27 = 87192
o 13!2! ° ° ,

whilc with d = 6 and r5 = 9, we obtain

N,6,9 = N 6,9 _ ~N,5,4NI,o _ ~N4,1N 2,o _ ~ 18! (N3,o)2 _ ~ 18! N4,o(N,I,O)2
° 16!21 ° ° 13!5! 0 ° 2 m9! ° 2 1412!2! 0 0

= 63338881 - 153 . 36855 . 1 + 8568 . 27· 1 + ~ ·48620 . 12 + ~ .18360 . 1 . 12

= 57435240

in agrcCIucnt wit.h the rccursion (1.1).

By Proposition (6.2), the relation between the nUlubers Nt,15 anel the GroIllov-Witten

invariants is very sirnple: NJg) = Ng,15 where 9 = (d;l) - 8. In tenus of F, t.he GrOIllov­
Witten potentials Fg ((]D2) are given by the formula

•Thc resemblance of thc right-hand side to the Hamiltonian of thc Liouvillc model is striking - we
have Da idea why operators so closely resembling vertex operators make their appearance here.
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