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Abstract. It is well known that reduced orbifolds and proper effective fo-
liation groupoids are closely related. We propose a notion of maps between
reduced orbifolds and a definition of a category in terms of (marked atlas)
groupoids such that the arising category of orbifolds is isomorphic (not only
equivalent) to this groupoid category.
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1. Introduction

The purpose of this article is to propose a definition of the category of reduced
(smooth) orbifolds and the definition of an isomorphic category in terms of a cer-
tain kind of Lie groupoids. In both categories, the morphisms will be explicitely
given. In the orbifold category morphisms are defined via local charts and maps
between them, and in the groupoid category morphisms are described as certain
equivalence classes of groupoid homomorphisms. Moreover, the isomorphism
between the two categories is explicitely given.
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2 A. POHL

It is well known that reduced orbifolds and proper effective foliation groupoids
are intimately related. More precisely, given a reduced orbifold and an orbifold
atlas representing its orbifold structure one has an explicit construction of a
proper effective foliation groupoid from this data (see, e. g., [MM03]). Moreover,
there is a natural notion of isomorphisms between orbifolds. Using this notion,
Moerdijk and Pronk [MP97] provide a precise bijection of isomorphism classes
of reduced orbifolds and Morita equivalence classes of proper effective foliation
groupoids. This bijection can be used to establish an equivalence between a cat-
egory of proper effective foliation groupoids and a category of reduced orbifolds
(see [Moe02] for details). Originally, the morphisms in this orbifold category are
defined only implicitely as the corresponding morphisms in the groupoid cate-
gory. To achieve an explicit description of these orbifold morphisms (that is, in
terms of local charts) one needs, as a first step, a characterization in local charts
of (classical) groupoid homomorphisms. Unfortunately, the characterization in
[LU04] (which to the knowledge of the author is the only attempt in the ex-
isting literature) is flawed. In this article we provide a correct characterization
of groupoid homomorphisms in local charts. We use the arising maps between
local charts to define a geometrically motivated notion of orbifold maps. Then
we characterize orbifolds and orbifold maps in terms of groupoids and groupoid
homomorphisms. This enables us to define a category in terms of groupoids
(which is not the classical category of groupoids) which is isomorphic to the
category formed by reduced orbifolds with orbifold maps as morphisms.

We start by recalling briefly the necessary background material on orbifolds,
groupoids, pseudogroups, and the well-known construction of a groupoid from
an orbifold and an orbifold atlas representing its orbifold structure. Groupoids
which arise in this way will be called atlas groupoids. We will see that different
reduced orbifolds might give rise to the same atlas groupoid. Therefore it is
not possible to find a bijection between the class of all reduced orbifolds and
the class of atlas groupoids (or the class of certain equivalence classes of atlas
groupoids). In particular, it is not possible to establish an isomorphism between
a category whose class of objects consists of all reduced orbifolds and a category
whose objects are (equivalence classes of) atlas groupoids. To overcome this
problem we introduce, in Sec. 3, a certain marking of atlas groupoids, which al-
lows to recover the orbifold. In Sec. 4 we characterize homomorphisms between
marked atlas groupoids in local charts. On the orbifold side, this characteri-
zation involves the choice of representatives of the orbifold structures, namely
those orbifold atlases which were used to construct the marked atlas groupoids.
Hence, at this point we get a notion of orbifold map with fixed representatives
of orbifold structures, which we will call charted orbifold maps. In Sec. 5 we
introduce a natural definition of composition of charted orbifold maps and a
geometrically motivated definition of the identity morphism (a certain class of
charted orbifold maps), which allows us to establish a natural equivalence re-
lation on the class of charted orbifold maps. An orbifold map (which does not
depend on the choice of orbifold atlases) is then an equivalence class. The lead-
ing idea for this equivalence relation is geometric: we consider charted orbifold
maps as equivalent if and only if they induce the same charted orbifold map on
common refinements of the orbifold atlases. Moreover, using the same idea, we
define the composition of orbifold maps. In this way, we construct a category of
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reduced orbifolds. Finally, in Sec. 6, we characterize orbifolds as certain equiva-
lence classes of marked atlas groupoids, and orbifold maps as equivalence classes
of homomorphisms of marked atlas groupoids. These equivalence relations are
natural adaptations of the classical Morita equivalence. In this way, there arises
a category of marked atlas groupoids which is isomorphic to the orbifold cate-
gory. An additional benefit is that the isomorphism functor is constructive.

We expect that the constructed category of marked atlas groupoids is isomorphic
to a category of which the class of objects consists of equivalence classes of all
marked proper effective foliation groupoids and the morphisms are given by
certain equivalence classes of groupoid homomorphisms.

Acknowledgments: This work emerged from a workshop on orbifolds in 2007
which took place in Paderborn in the framework of the International Research
Training Group 1133 “Geometry and Analysis of Symmetries”. The author
is very grateful to the participants of this workshop for their abiding interest
and enlightening conversations. Moreover, she wishes to thank Dieter Mayer
and the Institut für Theoretische Physik in Clausthal for the warm hospitality
where part of this work was conducted. The author was partially supported
by the International Research Training Group 1133 “Geometry and Analysis
of Symmetries”, the Sonderforschungsbereich/Transregio 45 “Periods, moduli
spaces and arithmetic of algebraic varieties”, and the Max-Planck-Institut für
Mathematik in Bonn.

Notation and conventions: The set N0 = N∪{0} denotes the set of non-negative
integers. If not stated otherwise, every manifold is assumed to be real, second-
countable, Hausdorff and smooth (C∞). If M is a manifold, then Diff(M)
denotes the group of diffeomorphisms of M . If G is a subgroup of Diff(M),
then G\M denotes the space of cosets {gM | g ∈ G} endowed with the final
topology. If A1, A2, B are sets (manifolds) and f1 : A1 → B, f2 : A2 → B
are maps (submersions), then we denote the fibered product of f1 and f2 by
A1 f1×f2 A2. As well known, A1 f1×f2 A2 is uniquely isomorphic to

{(a1, a2) ∈ A1 ×A2 | f1(a1) = f2(a2)}
for which reason we will identify A1 f1×f2 A2 with this set (manifold).

Finally, we say that a family V = {Vi | i ∈ I} is indexed by I if I → V, i 7→ Vi,
is a bijection.

2. Reduced orbifolds, groupoids, and pseudogroups

This section has a preliminary character. It recalls definitions and results con-
cerning reduced orbifolds and groupoids.

2.1. Reduced orbifolds. In the modern literature, two definitions of reduced
orbifolds are used. They differ in their respective concept of orbifold atlas. In
this work we prefer the definition which can be found in [BH99] and [GH06].
It is better suited to our needs than the common one used, e. g., in [MM03].
However, it is fairly easy to prove that the arising orbifold structures in both
definitions are identical (cf. [MM03, Prop. 2.13]). Therefore we may use all
results about orbifolds from [MM03].
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Definition 2.1. Let Q be a topological space.

(i) Let n ∈ N0. A reduced orbifold chart of dimension n on Q is a triple
(V,G,ϕ) where V is an open connected n-manifold, G is a finite subgroup
of Diff(V ), and ϕ : V → Q is a map with open image ϕ(V ) that induces
a homeomorphism from G\V to ϕ(V ). In this case, (V,G,ϕ) is said to
uniformize ϕ(V ).

(ii) Two reduced orbifold charts (V,G,ϕ), (W,H,ψ) on Q are called compatible
if for each pair (x, y) ∈ V ×W with ϕ(x) = ψ(y) there are open connected

neighborhoods Ṽ of x and W̃ of y and a diffeomorphism h : Ṽ → W̃ such
that ψ ◦ h = ϕ|eV

. The map h is called a change of charts.
(iii) A reduced orbifold atlas of dimension n on Q is a collection of pairwise

compatible reduced orbifold charts

V := {(Vi, Gi, ϕi) | i ∈ I}
of dimension n on Q such that

⋃
i∈I ϕi(Vi) = Q.

(iv) Two reduced orbifold atlases are equivalent if their union is a reduced
orbifold atlas.

(v) A reduced orbifold structure of dimension n on Q is a (w. r. t. inclusion)
maximal reduced orbifold atlas of dimension n on Q, or equivalently, an
equivalence class of reduced orbifold atlases of dimension n on Q.

(vi) A reduced orbifold of dimension n is a pair (Q,U) where Q is a second-
countable Hausdorff space and U is a reduced orbifold structure of dimen-
sion n on Q.

Let (Q,U) be a reduced orbifold. The term “reduced” refers to the requirement
that for each reduced orbifold chart (V,G,ϕ) in U the group G be a subgroup of
Diff(V ). Hence the action of G on V is effective. Orbifolds with this property are
also known as “effective orbifolds”. Since we are considering reduced orbifolds
only, we omit the term “reduced” from now on.

Let M be a manifold and G a subgroup of Diff(M). A subset S of M is called
G-stable, if it is connected and if for each g ∈ G we either have gS = S or
gS ∩ S = ∅.
Remark 2.2. The neighborhoods Ṽ and W̃ and the diffeomorphism h in Def. 2.1(ii)

can always be chosen in such a way that h(x) = y. Moreover Ṽ may assumed to

be open G-stable. In this case, W̃ is open H-stable by Prop. 2.12(i) in [MM03].

Definition 2.3. Let (V,G,ϕ), (W,H,ψ) be orbifold charts on the topological
space Q. Then an embedding

µ : (V,G,ϕ) → (W,H,ψ)

between these two orbifold charts is an open embedding µ : V → W between
manifolds which satisfies ψ ◦ µ = ϕ. If µ is a diffeomorphism between V and
W , then µ is called an isomorphism from (V,G,ϕ) to (W,H,ψ). Suppose that
S is an open G-stable subset of V and set GS := {g ∈ G | gS = S}, the
isotropy group of S. Then (S,GS , ϕ|S) is an orbifold chart on Q, the restriction
of (V,G,ϕ) to S.

Remark 2.4. (i) Let (V,G,ϕ) be an orbifold chart on the topological space
Q and that S is a G-stable subset of V . Then (S,GS , ϕ|S) is obviously
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embedded into (V,G,ϕ) by idS , and hence compatible with (V,G,ϕ). In
turn, restrictions of orbifold charts in an orbifold structure U are them-
selves elements of U .

(ii) Suppose now that (W,H,ψ) is an orbifold chart on Q which is compatible
with (V,G,ϕ). Further suppose that (x, y) ∈ V ×W with ϕ(x) = ψ(y).
Then Remark 2.2 shows that there exists a restriction (S,GS , ϕ|S) of
(V,G,ϕ) with x ∈ S and an embedding h : (S,GS , ϕ|S) → (W,H,ψ) with
h(x) = y.

(iii) Suppose that µ : (V,G,ϕ) → (W,H,ψ) is an embedding. In [MM03,
Prop. 2.12(i)] it is shown that µ(V ) is an open H-stable subset of W ,
and that there is a unique group isomorphism µ : G → Hµ(V ) for which
µ(gx) = µ(g)µ(x) for g ∈ G, x ∈ V .

In the following example we construct two orbifolds with the same underlying
topological space. These orbifolds are particularly simple since both orbifold
structures have one-chart-representatives. Despite their simplicity they serve as
motivating examples for several definitions in the following.

Example 2.5. Let Q := [0, 1) be endowed with the induced topology of R. The
map

f :

{
Q → Q
x 7→ x2

is a homeomorphism. Further the map pr : (−1, 1) → [0, 1), x 7→ |x|, induces a
homeomorphism {± id}\(−1, 1) → Q. Then

V1 :=
(
(−1, 1), {± id},pr

)
and V2 :=

(
(−1, 1), {± id}, f ◦ pr

)

are two orbifold charts on Q. We claim that these two orbifold charts are not
compatible. To see this assume for contradiction that they do be compatible.

Since f ◦ pr(0) = 0 = pr(0), there exist open connected neighborhoods Ṽ1, Ṽ2 of

0 in V1 resp. V2 and a diffeomorphism h : Ṽ2 → Ṽ1 such that pr ◦h = f ◦ pr |eV2
.

We construct all possible candidates for h. For each x ∈ Ṽ2 we have

|h(x)| = pr(h(x)) = f(pr(x)) = x2,

hence h(x) ∈ {±x2}. Now h being continuous reduces the possible candidates
to the four maps

h1(x) := x2

h2(x) := −x2

h3(x) :=

{
x2 x ≥ 0

−x2 x ≤ 0

h4(x) :=

{
−x2 x ≥ 0

x2 x ≤ 0,

neither of which is a diffeomorphism. This gives the contradiction.

Let U1 be the orbifold structure on Q generated by V1, and U2 be the one
generated by V2.
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2.2. Groupoids and homomorphisms. A groupoid is a small category in
which each morphism is an isomorphism. In the context of orbifolds this concept
is most commonly expressed (equivalently) in terms of sets and maps. The
morphisms are then called arrows.

Definition 2.6. A groupoid G is a tuple G = (G0, G1, s, t,m, u, i) consisting of

(a) a set G0, the set of objects, or the base of G,
(b) a set G1, the set of arrows,
(c) a map s : G1 → G0, the source map,
(d) a map t : G1 → G0, the target map,
(e) a map m : G1 s×t G1 → G1, the multiplication or composition, where

G1 s×t G1 := {(g, f) ∈ G1 ×G1 | s(g) = t(f)}
is the fibered product of s and t,

(f) a map u : G0 → G1, the unit map,
(g) a map i : G1 → G1, the inversion,

which satisfy the conditions

(i) for all (g, f) ∈ G1 s×t G1 it holds

s(m(g, f)) = s(f) and t(m(g, f)) = t(g),

(ii) for all (h, g), (g, f) ∈ G1 s×t G1 we have

m(h,m(g, f)) = m(m(h, g), f).

Note that (h,m(g, f)), (m(h, g), f) ∈ G1 s×t G1 due to (i).
(iii) for all x ∈ G0 we have

s(u(x)) = x = t(u(x)),

(iv) for all x ∈ G0 and all (u(x), f), (g, u(x)) ∈ G1 s×t G1 it follows

m(u(x), f) = f and m(g, u(x)) = g,

(v) for all g ∈ G1 we have

s(i(g)) = t(g) and t(i(g)) = s(g),

and

m(g, i(g)) = u(t(g)) and m(i(g), g) = u(s(g)).

The maps s, t,m, u, i are called the structure maps of the groupoid G. We often

use the notations m(g, f) = gf , u(x) = 1x, i(g) = g−1, and g : x → y or
g

x→ y
for an arrow g ∈ G1 with s(g) = x, t(g) = y. Moreover, G(x, y) denotes the set
of arrows from x to y.

Definition 2.7. Let G and H be groupoids. A homomorphism from G to H is
a functor ϕ : G → H, i. e., it is a tuple ϕ = (ϕ0, ϕ1) of maps ϕ0 : G0 → H0 and
ϕ1 : G1 → H1 which commute with all structure maps.

Definition 2.8. Let G be a groupoid.

(1) The orbit of x ∈ G0 is the set

Gx := t(s−1(x)) =
{
y ∈ G0

∣∣∣ ∃ g ∈ G1 : x
g→ y

}
.
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(2) Two elements x, y ∈ G0 are called equivalent, x ∼ y, if they are in the
same orbit. The quotient space G0/∼ is called the orbit space of G.
It is denoted by |G|. Further, we denote the canonical quotient map
G0 → |G| by pr or prG, and we set [x] := pr(x) for x ∈ G0.

Since we will be considering smooth orbifolds, we need groupoids with a smooth
structure as well.

Definition 2.9. A Lie groupoid is a groupoid G for which G0 is a smooth Haus-
dorff manifold, G1 is a smooth (possibly non-Hausdorff) manifold, the structure
maps s, t : G1 → G0 are smooth submersions (hence G1 s×t G1, the domain of
m, is a smooth manifold), and the structure maps m,u and i are smooth. A
homomorphism between two Lie groupoids is a homomorphism ϕ = (ϕ0, ϕ1) in
sense of Def. 2.7 such that ϕ0 and ϕ1 are smooth maps.

2.3. Pseudogroups and groupoids. In this section we recall how to construct
from an orbifold and a representative of its orbifold structure a Lie groupoid.
This construction is well known in literature, see e.g. [MM03]. It is a two-step
process in which one first assigns to the orbifold a pseudogroup, which depends
on the representative of the orbifold structure. Then one constructs from the
pseudogroup an étale groupoid. For purposes of generality and clarity we start
with the second step.

Definition 2.10. Let M be a manifold. A transition on M is a diffeomorphism
f : U → V where U, V are open subsets of M . Each of the two sets U and V is
allowed to be empty. In particular, the empty map ∅ → ∅ is a transition on M .
The product of two transitions f : U → V , g : U ′ → V ′ is the transition

f ◦ g : g−1(U ∩ V ′) → f(U ∩ V ′), x 7→ f(g(x)).

The inverse of f is the transition

f−1 : V → U, f(x) 7→ x.

If f : U → V is a transition, we denote its domain by dom f := U and its
codomain, which here equals the image of f , by cod f . Further, if x ∈ dom f ,
then germx f denotes the germ of f at x, which is the set (or equivalence class)
of all transitions g on M such that x ∈ dom g and that there is an open neigh-
borhood W of x contained in dom g ∩ dom f and for which g|W = f |W .

Let A(M) be the set of all transitions on M . A pseudogroup on M is a subset P
of A(M) which is closed under multiplication and inversion. A pseudogroup P is
called full if idU ∈ P for each open subset U of M . It is said to be complete if it
is full and satisfies the following gluing property: Whenever there is a transition
f ∈ A(M) and an open covering (Ui)i∈I of dom f such that f |Ui

∈ P for all
i ∈ I, then f ∈ P .

A Lie groupoid is called étale if its source and target map are local diffeomor-
phisms. We now show how to construct an étale groupoid from a full pseu-
dogroup.

Construction 2.11. Let M be a manifold and P a full pseudogroup on M .
The associated groupoid Γ := Γ(P ) is given by

Γ0 := M, Γ1 := {germx f | f ∈ P, x ∈ dom f},
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and, in particular,

Γ(x, y) := {germx f | f ∈ P, x ∈ dom f, f(x) = y}.
For f ∈ P define

Uf := {germx f | x ∈ dom f }
The topology and differential structure of Γ1 is given by the germ topology and
germ differential structure, that is for each f ∈ P the bijection

ϕf :

{
Uf → dom f

germx f 7→ x

is required to be a diffeomorphism. The structure maps (s, t,m, u, i) of Γ are
the obvious ones, namely

s(germx f) := x

t(germx f) := f(x)

m(germf(x) g, germx f) := germx(g ◦ f)

u(x) := germx idU for any open neighborhood U of x

i(germx f) := germf(x) f
−1.

All structure maps are smooth, and s, t are local diffeomorphisms (and in par-
ticular submersions). Hence Γ(P ) is an étale groupoid.

Special Case 2.12. Let (Q,U) be an orbifold, and let

V = {(Vi, Gi, πi) | i ∈ I}
be an orbifold atlas of Q, hence a representative of U . Suppose that V is indexed
by I. We define

V :=
∐

i∈I

Vi and π :=
∐

i∈I

πi.

Then

Ψ(V) :=
{
f transition on V

∣∣ π ◦ f = π|dom f

}
.

is a complete pseudogroup on V . The associated groupoid Γ(V) := Γ(Ψ(V))
is the étale groupoid we shall associate to Q and V. Note that this groupoid
depends on the choice of the representative of the orbifold structure U of Q. A
groupoid which arises in this way we call atlas groupoid.

Example 2.13. Recall the orbifolds (Q,Ui) (i = 1, 2) from Example 2.5, and
consider the representative Vi := {Vi} of Ui. Prop. 2.12 in [MM03] implies that

Ψ(Vi) =
{
g|U : U → g(U)

∣∣ U ⊆ (−1, 1) open, g ∈ {± id}
}
.

In both cases the associated groupoid Γ := Γ(Vi) is

Γ0 = (−1, 1)

Γ(x, y) =





{
germ0 id, germ0(− id)

}
x = 0 = y{

germx id
}

x = y 6= 0{
germx(− id)

}
x = −y 6= 0

∅ otherwise.
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3. Marked Lie groupoids and their homomorphisms

In Example 2.13 we have seen that it may happen that the same atlas groupoid is
associated to two different orbifolds. The reason for this is that in the definition
of the pseudogroup which is needed for the construction of the atlas groupoid one
loses information about the projection maps ϕ of the orbifold charts (V,G,ϕ).
To be able to distinguish atlas groupoids constructed from different orbifolds,
we mark the groupoids with a topological space and a homeomorphism. It will
turn out that this marking suffices to identify the orbifold one started with from
any (properly) marked atlas groupoid associated to it.

Recall that for a groupoid G we use |G| to denote its orbit space, and that [x] =
prG(x) denotes the image of x ∈ G0 under the quotient map prG : G0 → |G|.

Definition 3.1. A marked Lie groupoid is a triple (G,α,X) consisting of a Lie
groupoid G, a topological space X, and a homeomorphism α : |G| → X.

Proposition 3.2. Let (Q,U) be an orbifold and V = {(Vi, Gi, πi) | i ∈ I} an
orbifold atlas of Q indexed by I. Define

V :=
∐

i∈I

Vi and π :=
∐

i∈I

πi : V → Q.

Then

α :

{
|Γ(V)| → Q

[x] 7→ π(x)

is a homeomorphism.

Proof. To show that α is well-defined, suppose [x1] = [x2]. Then there is an
arrow x1 → x2. Hence there exists f ∈ Ψ(V) such that x1 ∈ dom f and f(x1) =
x2. From this it follows that π(x1) = π(f(x1)) = π(x2).

Obviously, α is surjective. For the proof of injectivity let π(x1) = π(x2) for some
x1, x2 ∈ V . Then there are orbifold charts (Vi, Gi, πi) ∈ V with xi ∈ Vi (i = 1, 2).
By compatibility of these orbifold charts and Remark 2.2 there is f ∈ Ψ(V) such
that x1 ∈ dom f and f(x1) = x2. This means that germx1

f : x1 → x2 is an
element of Γ(V)1. Thus, [x1] = [x2].

Consider now the commutative diagram

V

pr

��

π

""E
EEE

EE
EEE

|Γ(V)| α // Q

where pr is the canonical quotient map on the orbit space. One easily proves
that π is continuous and open. Therefore α is continuous and open (see [Bou98,
I.2.4.6, I.5.2.3]). Hence α is a homeomorphism. �

Let (Q,U) be an orbifold. To each orbifold atlas V of Q we assign the marked
atlas groupoid (Γ(V), αV , Q) with αV being the homeomorphism from Prop. 3.2.
We often only write Γ(V) to refer to this marked groupoid.
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Example 3.3. Recall from Example 2.13 the orbifolds (Q,Ui) (i = 1, 2), their
respective orbifold atlases Vi, and the associated groupoids Γ = Γ(Vi). The
orbit of x ∈ Γ0 is {x,−x}. Hence the homeomorphism associated to (Q,Ui) is

αV1 :

{
|Γ| → Q
[x] 7→ |x| for i = 1,

resp.

αV2 :

{
|Γ| → Q
[x] 7→ x2 for i = 2.

Thus, the associated marked groupoids (Γ, αV1 , Q) and (Γ, αV2 , Q) are different.

Proposition 3.4. Let (Q,U) and (Q′,U ′) be orbifolds. Suppose that V is a
representative of U , and V ′ a representative of U ′. If the associated marked
atlas groupoids (Γ(V), αV , Q) and (Γ(V ′), αV ′ , Q′) are equal, then the orbifolds
(Q,U) and (Q′,U ′) are equal. More precisely, we even have V = V ′.

Proof. Clearly, Q = Q′. Suppose that

V = {(Vi, Gi, πi) | i ∈ I} and V ′ = {(V ′
j , G

′
j , π

′
j) | j ∈ J},

where V is indexed by I and V ′ is indexed by J . From Γ(V) = Γ(V ′) it follows
that ∐

i∈I

Vi = Γ(V)0 = Γ(V ′)0 =
∐

j∈J

V ′
j .

Since each Vi and each V ′
j is connected, there is a bijection between I and J .

We may assume I = J . Then Vi = V ′
i for all i ∈ I. Let x ∈ Vi. Then

πi(x) = αV([x]) = αV ′([x]) = π′i(x).

Therefore πi = π′i for all i ∈ I. In turn,

∐

i∈I

πi =
∐

i∈I

π′i,

and thus Ψ(V) = Ψ(V ′). Let g ∈ Gi. Then g ∈ Ψ(V) = Ψ(V ′). Hence, for each
x ∈ Vi we have π′i(g(x)) = π′i(x). This shows that g(x) ∈ G′

ix for each x ∈ Vi.
By [MM03, Lemma 2.11] there exists a unique element g′ ∈ G′

i such that g = g′.
Since this argument is symmetric in Gi and G′

i, it follows that Gi = G′
i (as

acting groups). Thus, V = V ′. �

A homomorphism between marked Lie groupoids is a pair consisting of a ho-
momorphism between the Lie groupoids and a continuous map (i. e., a homo-
morphism in the continuous category) between the topological spaces such that
these two maps are compatible.

Definition 3.5. Let (G,α,X) and (H,β, Y ) be marked Lie groupoids. A homo-
morphism (G,α,X) → (H,β, Y ) is a pair (ϕ,ψ) consisting of a homomorphism
ϕ = (ϕ0, ϕ1) : G → H of Lie groupoids and a continuous map ψ : X → Y such
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that the diagram

G0
ϕ0 //

prG

��

H0

prH

��
|G|
α

��

|H|
β

��
X

ψ // Y
commutes.

In the following we show that homomorphisms of Lie groupoids naturally extend
to homomorphisms of marked Lie groupoids. In turn, the category of marked
Lie groupoids is an “infinite cover” of the category of Lie groupoids.

Lemma 3.6. Let G be a Lie groupoid. Then prG is open.

Proof. Let U ⊆ G0 be open. Then

pr−1
G (prG(U)) =

{
y ∈ G0

∣∣∣ ∃x ∈ U ∃ g ∈ G1 : x
g→ y

}

= t(s−1(U)).

Since s is continuous, s−1(U) is open. The map t : G1 → G0 is a submersion,
hence open. Therefore t(s−1(U)) is open. This means that prG(U) is open. �

Lemma 3.7. If ϕ = (ϕ0, ϕ1) : G→ H is a homomorphism of groupoids, then ϕ
induces a unique map |ϕ| : |G| → |H| such that the diagram

G0
ϕ0 //

prG

��

H0

prH

��
|G| |ϕ|

// |H|
commutes. If ϕ is a homomorphism of Lie groupoids (or, more generally, if ϕ0

is continuous), then |ϕ| is continuous.

Proof. Let x, y ∈ G0. If there is an arrow g : x→ y, then ϕ1(g) : ϕ0(x) → ϕ0(y).
Hence |ϕ| : |G| → |H|, [x] 7→ [ϕ0(x)] is a well-defined map. Now let G0 and
H0 be topological spaces, and ϕ0 be continuous. Due to the definition of the
topology on |G|, the map |ϕ| is continuous if and only if |ϕ| ◦ prG is continuous.
But |ϕ| ◦ prG = prH ◦ϕ0, which is continuous. �

Let (ϕ,ψ) : (G,α,X) → (H,β, Y ) be a homomorphism of marked Lie groupoids.
Lemma 3.7 implies that ψ is completely determined by ϕ, α and β, namely
ψ = β ◦ |ϕ| ◦α−1. Hence we may and shall skip the map ψ from the notation of
a homomorphism of marked Lie groupoids.

4. Groupoid homomorphisms in local charts

In this section we characterize homomorphisms between atlas groupoids on the
orbifold side, i. e., in terms of local charts. We proceed in a two-step process.
At first we define representatives of orbifold maps, each of which gives rise
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to exactly one homomorphism between the associated atlas groupoids. Since
each groupoid homomorphism corresponds to several such representatives, we
then impose an equivalence relation on the class of all representatives for fixed
orbifold atlases. The equivalence classes turn out to be in bijection with the
homomorphisms between the atlas groupoids. The constructions in this section
are subject to a fixed choice of representatives of the orbifold structures. In the
following sections we extend the constructions to be independent of the chosen
orbifold atlases.

Throughout this section let (Q,U), (Q′,U ′) denote two orbifolds.

Definition 4.1. Let f : Q→ Q′ be a continuous map, and suppose that (V,G, π) ∈
U , (V ′, G′, π′) ∈ U ′ are orbifold charts. A local lift of f w. r. t. (V,G, π) and

(V ′, G′, π′) is a smooth map f̃ : V → V ′ such that π′ ◦ f̃ = f ◦ π:

V
f̃ //

π

��

V ′

π′

��
Q

f // Q′

In this case, we call f̃ a local lift of f at q for each q ∈ π(V ).

Recall the definition of the maximal pseudogroup A(M) from Def. 2.10.

Definition 4.2. Let M be a manifold and A a pseudogroup on M which is
closed under restrictions, i. e., if f ∈ A and U ⊆ dom f is open, then the map
f |U : U → f(U) is in A. Suppose that B is a subset of A(M). Then A is said
to be generated by B if B ⊆ A and for each f ∈ A and each x ∈ dom f there
exists some g ∈ B with x ∈ dom g and an open set U ⊆ dom f ∩ dom g such
that x ∈ U and

f |U = g|U .
We remark that each subset B of A(M) generates a unique pseudogroup on M
which is closed under restrictions. If we drop the latter closeness condition, then
B obviously is generating for more than one pseudogroup on M .

A subset P of A(M) is called a quasi-pseudogroup on M if it satisfies the fol-
lowing two properties:

(i) If f ∈ P and x ∈ dom f , then there exists an open set U with x ∈ U ⊆
dom f and g ∈ P such that there exists an open set V with f(x) ∈ V ⊆
dom g and (

f |U
)−1

= g|V .
(ii) If f, g ∈ P and x ∈ f−1(dom g), then there exists h ∈ P with x ∈ domh

such that we find an open set U with x ∈ U ⊆ f−1(dom g) ∩ domh and

g ◦ f |U = h|U .

A quasi-pseudogroup is designed for work with the germs of its elements. There-
fore identities (like inversion and composition) of elements in quasi-pseudogroups
are only required to be satisfied locally, whereas for (ordinary) pseudogroups
these identities have to be valid globally.
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In the following definition of a representative of an orbifold map, the underlying
continuous map f is the only entity which is stable under change of atlases or, in
other words, under the choice of local lifts. The pair (P, ν) should be considered
as one entity. It serves as a transport of changes of charts. We ask here for a
quasi-pseudogroup P instead of working with all of Ψ(V) for two reasons. In
general, P is much smaller than Ψ(V). Sometimes it may even be finite. In
Example 4.6 below we see that for some orbifolds, P might even happen to
consist of only two elements. Moreover, if the orbifold is a connected manifold,
P can always be chosen as a singleton. The other reason is that it is much
easier to construct some quasi-pseudogroup P and compatible map ν from a
given groupoid homomorphism than a map ν defined on all of Ψ(V).

The examples below show that in the following definition the requested objects
in general are not immediate or uniquely determined.

Definition 4.3. A representative of an orbifold map from (Q,U) to (Q′,U ′) is
a tuple

f̂ := (f, {f̃i}i∈I , P, ν)
where

(R1) f : Q→ Q′ is a continuous map,

(R2) for each i ∈ I, the map f̃i is a local lift of f w. r. t. some orbifold charts
(Vi, Gi, πi) ∈ U , (V ′

i , G
′
i, π

′
i) ∈ U ′ such that

⋃

i∈I

πi(Vi) = Q

and (Vi, Gi, πi) 6= (Vj , Gj , πj) for i, j ∈ I, i 6= j,
(R3) P is a quasi-pseudogroup which consists of changes of charts of the orbifold

atlas

V := {(Vi, Gi, πi) | i ∈ I}
and generates Ψ(V).

(R4) Let ψ :=
∐
i∈I f̃i. Then ν : P → Ψ(U ′) is a map which assigns to each

λ ∈ P an embedding

ν(λ) : (W ′,H ′, χ′) → (V ′, G′, ϕ′)

between some orbifold charts in U ′ such that
(a) ψ ◦ λ = ν(λ) ◦ ψ|dom λ,
(b) for all λ, µ ∈ P and all x ∈ domλ ∩ domµ with germx λ = germx µ,

we have germψ(x) ν(λ) = germψ(x) ν(µ),

(c) for all λ, µ ∈ P , for all x ∈ λ−1(domµ) we have

germψ(λ(x)) ν(µ) · germψ(x) ν(λ) = germψ(x) ν(h)

where h is some element of P with x ∈ domh such that there is an
open set U with x ∈ U ⊆ λ−1(domµ) ∩ domh and µ ◦ λ|U = h|U ,

(d) for all λ ∈ P and all x ∈ domλ such that there exists an open set U
with x ∈ U ⊆ domλ and λ|U = idU we have

germψ(x) ν(λ) = germψ(x) idW ′

where W ′ :=
∐
i∈I V

′
i .
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The orbifold atlas V is called the domain atlas of the representative f̂ , and the
set

{(V ′
i , G

′
i, π

′
i) | i ∈ I}

is called the range family of f̂ . The latter set is not neccessarily indexed by I.

Remark 4.4. (i) We show that the condition (R4c) is independent of the choice
of h. Suppose that h1, h2 ∈ P with x ∈ domh1 ∩ domh2 such that there
exist open sets U1, U2 with x ∈ Uj ⊆ λ−1(domµ) ∩ domhj and µ ◦ λ|Uj

=
hj |Uj

. Then there exists an open set V ⊆ U1∩U2 with x ∈ V . It follows that
h1|V = h2|V and hence germx h1 = germx h2. By (R4b), germψ(x) ν(h1) =

germψ(x) ν(h2).

(ii) The additional condition “(Vi, Gi, πi) 6= (Vj , Gj , πj) for i 6= j” in (R2) is
not a restriction. By considering Vi as identified with Vi × {i} one can
always consider two charts as being distinct. We require this property
because we use I as an index set for V in (R3) and other places.

Example 4.5 below shows that the continuous map f in (R1) cannot be chosen
arbitrarily. It is not even sufficient to require f to be a homeomorphism.

Example 4.5. Recall the orbifold (Q,U1) from Example 2.5. The map f : Q→
Q, f(x) =

√
x, is a homeomorphism on Q. We show that f has no local lift

at 0. Each orbifold chart that uniformizes a neighborhood of 0 is of the form
(I, {±1},pr) where I = (−a, a) for some 0 < a < 1. Seeking a contradiction

assume that f̃ is a local lift of f at 0 with domain I = (−a, a):

(−a, a)
pr

��

f̃ // (−√
a,
√
a)

pr

��
[0, a)

f // [0,
√
a)

For each x ∈ I, necessarily f̃(x) ∈
{
±

√
|x|

}
. Since f̃ is required to be contin-

uous, there only remain four possible candidates for f̃ , namely

f̃1(x) =
√

|x|, f̃2 = −f̃1,

f̃3(x) =

{√
x x ≥ 0

−√−x x ≤ 0,

f̃4 = −f̃3.

But none of these is differentiable in x = 0, hence there is no local lift of f at 0.

The following example shows that the pair (P, ν) is not uniquely determined by
the choice of the family of local lifts.

Example 4.6. Recall the orbifold (Q,U1) and the representative V1 = {V1} of
U1 from Example 2.5. The map

f :

{
Q → Q
q 7→ 0
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is clearly continuous and has the local lift

f̃ :

{
(−1, 1) → (−1, 1)
x 7→ 0

with respect to V1 and V1. Consider the quasi-pseudogroup P = {± id(−1,1)} on

V1. Prop. 2.12 in [MM03] implies that P generates Ψ(V1). The tuple (f, f̃ , P )
can be completed in the following two different ways to representatives of orbifold
maps on (Q,U1):

(a) ν1(± id(−1,1)) := id(−1,1),
(b) ν2(id(−1,1)) := id(−1,1), ν2(− id(−1,1)) := − id(−1,1).

We will see in Example 4.8 below that (f, f̃ , P, ν1) and (f, f̃ , P, ν2) give rise to
different groupoid homomorphisms.

Given a representative f̂ = (f, {f̃i}i∈I , P, ν) with domain atlas V and range

family contained in V ′, the following proposition shows that f̂ determines a
homomorphism ϕ = (ϕ0, ϕ1) : Γ(V) → Γ(V ′) of marked atlas groupoids. The

map ϕ0 only depends on the family {f̃i}i∈I , whereas ϕ1 also involves the change-
of-charts-transport (P, ν). Recall the definition of αV from Prop. 3.2.

Proposition 4.7. Let f̂ = (f, {f̃i}i∈I , P, ν) be a representative of an orbifold
map from (Q,U) to (Q′,U ′). Suppose that

V = {(Vi, Gi, πi) | i ∈ I},
is the domain atlas of f̂ , which is an orbifold atlas of (Q,U) indexed by I. Let
V ′ be an orbifold atlas of (Q′,U ′) which contains the range family

{
(V ′
i , G

′
i, π

′
i)

∣∣ i ∈ I
}
.

Define the map ϕ0 : Γ(V)0 → Γ(V ′)0 by

ϕ0 :=
∐

i∈I

f̃i.

Suppose that ϕ1 : Γ(V)1 → Γ(V ′)1 is determined by

ϕ1(germx λ) := germϕ0(x) ν(λ)

for all λ ∈ P , x ∈ domλ. Then

ϕ = (ϕ0, ϕ1) : Γ(V) → Γ(V ′)

is a homomorphism. Moreover, αV ′ ◦ |ϕ| = f ◦ αV .

Proof. Let V ′ be indexed by J , and set

V :=
∐

i∈I

Vi, π :=
∐

i∈I

πi, V ′ :=
∐

j∈J

V ′
j and π′ :=

∐

j∈J

π′j.

The differential structure on V implies immediately that ϕ0 is smooth.

We now show that ϕ1 is a well-defined map on all of Γ(V)1. To that end let
g ∈ Ψ(V) and x ∈ dom g. Then there exists λ ∈ P such that x ∈ domλ and

g|U = λ|U
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for some open subset U ⊆ dom g∩domλ with x ∈ U . Hence germx g = germx λ.
So

ϕ1(germx g) = ϕ1(germx λ) = germϕ0(x) ν(λ).

If there is µ ∈ P such that x ∈ domµ and g|W = µ|W for some open subset W of
dom g∩domµ with x ∈W , then germx µ = germx λ. By (R4b), germϕ0(x) ν(µ) =

germϕ0(x) ν(λ) and thus

ϕ1(germx µ) = ϕ1(germx λ).

This shows that ϕ1 is indeed well-defined on all of Γ(V)1. By definition, ϕ
commutes with the source maps. The properties (R4a), (R4c) and (R4d) yield
that ϕ commutes with the other structure maps as well. It remains to show
that ϕ1 is smooth. For this, let germx λ ∈ Γ(V)1 with λ ∈ P . The definition of
ν shows that ϕ1 maps

U := {germy λ | y ∈ domλ}
to

U ′ := {germz ν(λ) | z ∈ dom ν(λ)}.
Now the diagram

U

s

��

ϕ1 // U ′

s

��

germy λ
� //

_

��

germϕ0(y) ν(λ)
_

��
domλ

ϕ0 // dom ν(λ) y � // ϕ0(y)

commutes, the vertical maps (restriction of source maps) are diffeomorphisms
and ϕ0 is smooth, so ϕ1 is smooth. Finally, suppose x ∈ Vi. Then

(αV ′ ◦ |ϕ|)
(
[x]

)
= αV ′

(
[ϕ0(x)]

)
= αV ′

(
[f̃i(x)]

)
= π′i(f̃i(x)) = f(πi(x))

= (f ◦ αV)
(
[x]

)
.

�

Example 4.8. Recall the setting of Example 4.6 and the associated groupoid
Γ := Γ(V1) from Example 2.13. The homomorphism ϕ = (ϕ0, ϕ1) : Γ → Γ

induced by (f, f̃ , P, ν1) is ϕ0 = f̃ and

ϕ1(germx(± id(−1,1))) = germ0 id(−1,1) .

The homomorphism ψ = (ψ0, ψ1) : Γ → Γ induced by (f, f̃ , P, ν2) is ψ0 = f̃ and

ψ1(germx id(−1,1)) = germ0 id(−1,1), ψ1(germx(− id(−1,1))) = germ0(− id(−1,1)).

The following proposition is the first step towards a converse of Prop. 4.7. It is
complemented by Prop. 4.11 and 4.12.

Proposition 4.9. Let V be an orbifold atlas of (Q,U), and V ′ an orbifold atlas
of (Q′,U ′). Suppose that

ϕ = (ϕ0, ϕ1) : Γ(V) → Γ(V ′)

is a homomorphism. For each f ∈ Ψ(V) and each x ∈ dom(f) there exist an
element g ∈ Ψ(V ′) and an open neighborhood U of x (which may depend on g)
with U ⊆ dom(f) such that for each y ∈ U we have

ϕ1(germy f) = germϕ0(y) g.
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Proof. By definition of Γ(V)1 and ϕ1, there exists g ∈ Ψ(V ′) such that

ϕ1(germx f) = germϕ0(x) g.

Since ϕ1 is continuous, the preimage of the germϕ0(x) g-neighborhood

U ′
g = {germz g | z ∈ dom g}

is a neighborhood of germx f . Hence there exists an open neighborhood U of x
with U ⊆ dom f such that

Uf |U = {germy f | y ∈ U} ⊆ ϕ−1
1

(
U ′
g

)
.

Thus, for all y ∈ U we have

ϕ1(germy f) = germϕ0(y) g.

�

Remark 4.10. We remark that in Prop. 4.9 each two possible choices for g
coincide on some neighborhood of ϕ0(x).

The proof of the following proposition is constructive. Moreover, we will use
this construction to define the functor between the category of orbifolds and
that of marked atlas groupoids.

Proposition 4.11. Under the hypotheses of Prop. 4.9, there exist a family P
of changes of charts of V and a map ν : P → Ψ(V ′) satisfying (R3) and (R4)
with ψ = ϕ0.

Proof. Let f ∈ Ψ(V) and x1, x2 ∈ dom f , x1 6= x2. For j = 1, 2 we choose,
using Prop. 4.9, a pair (gj , Uj) where gj ∈ Ψ(V ′) is an embedding between some
orbifold charts in U ′ and Uj is an open neighborhood of xj such that f |Uj

is a
change of charts of V. Clearly, the in respect to Prop. 4.9 additional conditions
can be fulfilled. Further, to make sure that the map ν defined below is well-
defined, we require that either U1 6= U2 or g1 = g2. This condition can equally
well be satisfied. Let P be the family of all changes of charts which we have
chosen. By construction, P is a quasi-pseudogroup which generates Ψ(V). We
define the map ν : P → Ψ(V ′) by

ν(λ) := g

where g is the unique element in Ψ(V ′) attached to λ ∈ P by our choices. For
λ ∈ P and x ∈ domλ we clearly have

(1) ϕ1(germx λ) = germϕ0(x) ν(λ).

Now (R4a) is satisfied for each λ ∈ P and x ∈ domλ since

ϕ0(λ(x)) = ϕ0(t(germx λ)) = t(ϕ1(germx λ))

= t(germϕ0(x) ν(λ)) = ν(λ)(ϕ0(x)).

For λ, µ ∈ P and x ∈ λ−1(domµ), (R4c) is proven as follows. Suppose that
h ∈ P and U is an open set with x ∈ U ⊆ λ−1(domµ) ∩ domh such that
h|U = µ ◦ λ|U . Then

germϕ0(λ(x)) ν(µ) · germϕ0(x) ν(λ) = ϕ1(germλ(x) µ · germx λ)

= ϕ1(germx µ ◦ λ) = ϕ1(germx h) = germϕ0(x) ν(h).

Conditions (R4b) and (R4d) are proven along the same lines. �
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Proposition 4.12. Let V be an orbifold atlas of (Q,U), V ′ an orbifold atlas of
(Q′,U ′), and

ϕ = (ϕ0, ϕ1) : Γ(V) → Γ(V ′)

a homomorphism. Then ϕ induces a representative of an orbifold map

(f, {f̃i}i∈I , P, ν)
with domain atlas V, range family contained in V ′, and

f̃i = ϕ0|Vi

for all i ∈ I. Moreover, we have

f = αV ′ ◦ |ϕ| ◦ α−1
V .

Proof. It remains to show that the image of ϕ0|Vi
is contained in V ′

j for some

(V ′
j , G

′
j , π

′
j) ∈ V ′. The claim then follows from the definition of αV , αV ′ and

Prop. 4.11. To that end let x ∈ Vi. Then there is a unique (V ′
j , G

′
j , π

′
j) ∈ V ′

with ϕ0(x) ∈ V ′
j . We consider

A := {y ∈ Vi | ϕ0(y) ∈ V ′
j }.

Let y ∈ A. Since ϕ0 is continuous and V ′
j open, there exists an open neighbor-

hood U of y in Vi such that ϕ0(U) ⊆ V ′
j . Thus U ⊆ A, which shows that A is

open. By the same reasoning, for each z ∈ Vi \ A there is a neighborhood U of
z in Vi such that U ⊆ Vi \A. Hence A is closed. By the choice of V ′

j , the set A
is nonempty. Thus, A is an open and closed nonempty subset of the connected
set Vi. Therefore A = Vi. So, ϕ0(Vi) ⊆ V ′

j . �

Prop. 4.12 guarantees that each homomorphism

ϕ = (ϕ0, ϕ1) : Γ(V) → Γ(V ′)

induces a representative of an orbifold map (f, {f̃i}i∈I , P, ν) with domain atlas

V, range family contained in V ′, f̃i = ϕ0|Vi
, and f = αV ′ ◦ |ϕ| ◦α−1

V . For the pair
(P, ν), Prop. 4.11 allows (in general) a whole bunch of choices. On the other
hand, different representatives of orbifold maps may induce the same groupoid
homomorphism.

The following definition and the proposition below serve to characterize these
classes of representatives, and to show that the constructions are bijective on
equivalence classes. In view of Prop. 4.7 and Remark 4.10, the relevant infor-
mation stored by the pair (P, ν) are the germs of the elements in P and the via
ν associated germs of elements in Ψ(V ′). This observation is the motivation for
the equivalence relation.

Definition 4.13. Let f̂ := (f, {f̃i}i∈I , P1, ν1) and ĝ := (g, {g̃i}i∈I , P2, ν2) be
two representatives of orbifold maps with the same domain atlas V representing
the orbifold structure U on Q and both range families being contained in the

orbifold atlas V ′ of (Q′,U ′). Set ψ :=
∐
i∈I f̃i. We say that f̂ is equivalent to ĝ

if

f = g,

f̃i = g̃i for all i ∈ I,
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and if

germψ(x) ν1(λ1) = germψ(x) ν2(λ2)

for all λ1 ∈ P1, λ2 ∈ P2, x ∈ domλ1 ∩ domλ2 with germx λ1 = germx λ2.

Equivalence is clearly an equivalence relation. The equivalence class of f̂ will

be denoted by [f̂ ] or

(f, {f̃i}i∈I , [(P1, ν1)]).

It is called an orbifold map with domain atlas V and range atlas V ′, in short
orbifold map with (V,V ′) or, if the precise atlases are not important, a charted
orbifold map. The set of all orbifold maps with (V,V ′) is denoted Orb(V,V ′).
It will often be convenient to denote by

V f̂−→ V ′

an element f̂ ∈ Orb(V,V ′).

Proposition 4.14. Let V be an orbifold atlas of (Q,U), and V ′ an orbifold atlas
of (Q′,U ′). Then the set Orb(V,V ′) of all orbifold maps with (V,V ′) and the set
Hom(Γ(V),Γ(V ′)) of all homomorphisms from Γ(V) to Γ(V ′) are in bijection.
More precisely, the construction in Prop. 4.7 provides a bijection

F1 : Orb(V,V ′) → Hom(Γ(V),Γ(V ′)),

and the constructions in Prop. 4.11 and 4.12 define a bijection

F2 : Hom(Γ(V),Γ(V ′)) → Orb(V,V ′),

which is inverse to F1.

Proof. We start by showing that F1 is well-defined and injective. Suppose that f̂
and ĥ are two equivalent orbifold maps with (V,V ′). The definition in Prop. 4.7
of the homomorphism from Γ(V) to Γ(V ′) depends only on the germs of the ele-

ments in P resp. {ν(λ) | λ ∈ P} and not on the specific choice of P . Hence f̂ and

ĥ induce the same homomorphism from Γ(V) to Γ(V ′). Thus, the construction
in Prop. 4.7 induces indeed a well-defined map

F1 : Orb(V,V ′) → Hom(Γ(V),Γ(V ′)).

Suppose now that f̂ := (f, {f̃i}i∈I , P1, ν1) and ĝ := (g, {g̃i}i∈I , P2, ν2) are two

representatives of orbifold maps with (V,V ′) such that F1([f̂ ]) = F1([ĝ]). We

set ϕ = (ϕ0, ϕ1) := F1([f̂)] = F1([ĝ]). Then

f̃i = ϕ0|Vi
= g̃i for all i ∈ I.

Further for all λ1 ∈ P1, λ2 ∈ P2, x ∈ domλ1 ∩domλ2 with germx λ1 = germx λ2

we have

germϕ0(x) ν1(λ1) = ϕ1(germx λ1) = ϕ1(germx λ2) = germϕ0(x) ν2(λ2).

Finally ϕ determines f and g via

f = αV ′ ◦ |τ | ◦ α−1
V = g.

Thus [f̂ ] = [ĝ], which shows that F1 is injective.

We now prove that F2 is well-defined. Let

ϕ = (ϕ0, ϕ1) : Γ(V) → Γ(V ′)
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be a homomorphism, and let (f, {f̃i}i∈I , P1, ν1) and (g, {g̃i}i∈I , P2, ν2) be two
representatives of orbifold maps with (V,V ′) which are given by the construc-

tions in Prop. 4.9, 4.11 and 4.12. We have to show that f̂ and ĝ are equivalent.
By construction we have

f = αV ′ ◦ |ϕ| ◦ α−1
V = g,

and for each i ∈ I
f̃i = ϕ0|Vi

= g̃i.

Finally, let λ1 ∈ P1, λ2 ∈ P2, x ∈ domλ1 ∩ domλ2 with germx λ1 = germx λ2.
From the definitions of ν1 and ν2 (see (1) in the proof of Prop. 4.11) it follows
that

germϕ0(x) ν1(λ1) = ϕ1(germx λ1) = ϕ1(germx λ2) = germϕ0(x) ν2(λ2).

Thus, f̂ and ĝ are indeed equivalent, and hence F2 is well-defined. The identity
F1 ◦ F2 = id is obvious from the definitions. This and the previous observation
show that F1 is bijective. In turn, F2 is bijective with inverse map F1. �

5. The category of reduced orbifolds

We are aiming at the definition of an orbifold category where the objects are
orbifolds and the morphisms are equivalence classes of charted orbifold maps.
To that end we have to answer the following questions:

(i) When shall two charted orbifold maps be considered as equal? In other
words, what shall be the equivalence relation?

(ii) What shall be the identity morphism of an orbifold?
(iii) How does one compose ϕ ∈ Orb(V,V ′) and ψ ∈ Orb(V ′,V ′′)?
(iv) What is the composition in the category?

The leading idea is that charted orbifold maps are equivalent if and only if they
induce the same charted orbifold map on common refinements of the orbifold
atlases. Therefore, we will introduce the notion of an induced charted orbifold
map.

It turns out that answers to the questions (ii) and (iii) naturally extend to
answers of (i) and (iv), and that the arising category has a counterpart in terms
of marked atlas groupoids and homomorphisms. We start with the definition of
the identity morphism of an orbifold. The definition is based on the idea that
the identity morphism of (Q,U) shall be represented by a collection of local
lifts of idQ which locally induce idS on some orbifold charts, and that each such
collection which satisfies (R2) shall be a representative.

5.1. The identity morphism.

Definition and Remark 5.1. Let (Q,U) and (Q′,U ′) be orbifolds and let

f : Q → Q′ be a continuous map. Suppose that f̃ is a local lift of f w. r. t. the
orbifold charts (V,G, π) ∈ U and (V ′, G′, π′) ∈ U ′. Further suppose that
λ : (W,K,χ) → (V,G, π) and µ : (W ′,K ′, χ′) → (V ′, G′, π′) are embeddings be-

tween orbifold charts in U resp. in U ′ such that f̃(λ(W )) ⊆ µ(W ′). Then the
map

g̃ := µ−1 ◦ f̃ ◦ λ : W → W ′
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is a local lift of f w. r. t. (W,K,χ) and (W ′,K ′, χ′). We say that f̃ induces the

local lift g̃ w. r. t. λ and µ, and we call g̃ the induced lift of f w. r. t. f̃ , λ and µ.

V
f̃ // V ′

λ(W )
f̃ |λ(W )//

?�

OO

µ(W ′)
� ?

OO

W

λ

EE���������������� g̃ //
<< λ

<< <<yyyyyyyy

W ′

µ

YY4444444444444444cc
µ

ccccGGGGGGGG

Suppose that f̃ is a local lift of the identity idQ for some orbifold (Q,U).

Prop. 5.3 below shows that f̃ induces the identity on sufficiently small orbifold
charts. This means that locally f̃ is related to the identity itself via embeddings.
In particular, f̃ is a local diffeomorphism. For its proof we need the following
lemma.

Lemma 5.2. Let M be a manifold, G a finite subgroup of Diff(M), and x ∈M .
There exist arbitrary small open G-stable neighborhoods S of x. Moreover, one
can choose S so small that GS = Gx, the isotropy group of x.

Proof. Let U be a neighborhood of x, and let

{x1, . . . , xn} := Gx

be an enumeration of the G-orbit of x, i. e., xi 6= xj for i 6= j. Suppose that x =
x1. Since M is Hausdorff, we can choose for each i = 1, . . . , n a neighborhood Ui
of xi such that these are pairwise disjoint and U1 ⊆ U . For i = 1, . . . , n define

G1
i := {g ∈ G | gxi = x}

and set

U ′
1 :=

n⋂

i=1

{gUi | g ∈ G1
i }.

For h ∈ G with hx = xi we have h−1 ∈ G1
i . Then U ′

1 ⊆ h−1Ui yields hU ′
1 ⊆ Ui.

If i 6= 1, then Ui ∩ U1 = ∅ and U ′
1 ⊆ U1, hence

hU ′
1 ∩ U ′

1 = ∅.
But for i = 1 we have h ∈ Gx and

hU ′
1 =

n⋂

j=1

{hgUj | g ∈ G1
j} =

n⋂

j=1

{gUj | g ∈ G1
j} = U ′

1.

This means that U ′
1 is G-stable. Now let T be the connected component of

U ′
1 which contains x. Then M being a locally Euclidean space (hence each

point has arbitrary small connected neighborhoods) shows that T is a closed
neighborhood of x. Therefore S := T ◦ is an open G-stable neighborhood of x
with GS = Gx. �

Proposition 5.3. Let (Q,U) be an orbifold and suppose that f̃ is a local lift
of idQ w. r. t. (V,G, π), (V ′, G′, π′) ∈ U . For each v ∈ V there exist a restric-
tion (S,GS , π|S) of (V,G, π) with v ∈ S and a restriction (S′, (G′)S′ , π′|S′) of
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(V ′, G′, π′) such that f̃ |S is an isomorphism from (S,GS , π|S) to (S′, (G′)S′ , π′|S′).

In particular, f̃ |S induces the identity idS w. r. t. idS and
(
f̃ |S

)−1
.

Proof. Let v ∈ V and set v′ := f̃(v). Then π(v) = π′(v′). By compatibility of
orbifold charts there exist a restriction (W,H,χ) of (V,G, π) with v ∈ W and
an embedding

λ : (W,H,χ) → (V ′, G′, π′)

such that λ(v) = v′. Since M := f̃−1(λ(W )) ∩W is an open neighborhood of
v in V . Lemma 5.2 yields an open H-stable neighborhood S of v with S ⊆ M .
Then f̃(S) ⊆ λ(W ). Let

g̃ := λ−1 ◦ f̃ |S : S →W

denote the induced lift of idQ. Since

χ ◦ g̃ = χ,

Lemma 2.11 in [MM03] shows the existence of a unique h ∈ H such that g̃ = h|S .
Therefore the diagram

S
f̃ //

h ""F
FFFFFFFF λ(h(S))

h(S)

λ

OO

commutes, where the non-horizontal arrows are diffeomorphisms. Hence the
restriction f̃ |S : S → λ(h(S)) is a diffeomorphism, and in turn

f̃ |S : (S,HS , χ|S) → (f̃(S), G′
f̃(S)

, π′|
f̃(S))

is an isomorphism of orbifold charts. �

Not each local lift of the identity is a global diffeomorphism, as the following
example shows.

Example 5.4. Let Q be the open annulus in R
2 with inner radius 1 and outer

radius 2 centered at the origin, i. e.,

Q := {w ∈ R
2 | 1 < ‖w‖ < 2} = {w ∈ C | 1 < |w| < 2}

where we use the Euclidean norm on R
2. The map α : Q→ C × R,

α(w) :=

(
w2

|w|2 , |w| − 1

)

maps Q onto the cylinder
Z := S1 × (0, 1).

Note that α(Q) covers Z twice. Then the map β : Z → C,

β(z, s) :=
2

2 − s
z

is the linear projection of Z from the point (0, 2) ∈ C×R to the complex plane.

The composed map f̃ = β ◦ α : Q→ C,

f̃(w) :=
2w2

(3 − |w|)|w|2
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is smooth and maps Q onto Q. Further it induces a homeomorphism between
Q/{± id} and Q. Hence, if we endow Q with the orbifold atlas

{(
Q, {± id}, f̃

)
,
(
Q, {id}, id

)}
,

then f̃ is a local lift of idQ w. r. t. (Q, {± id}, f̃) and (Q, {id}, id) which is not a
global diffeomorphism.

For the proof of the following proposition recall from Remark 2.4 the notation µ
for the group isomorphismG→ Hµ(V ) induced by the embedding µ : (V,G,ϕ) →
(W,H,ψ) between orbifold charts.

Proposition 5.5. Let (Q,U) be an orbifold and let {f̃i}i∈I be a family of lo-
cal lifts of idQ which satisfies (R2). Then there exists a pair (P, ν) such that

(idQ, {f̃i}i∈I , P, ν) is a representative of an orbifold map on (Q,U). The pair
(P, ν) is uniquely determined up to equivalence of representatives of orbifold
maps (see Def. 4.13).

Proof. For i ∈ I we suppose that f̃i is a local lift of idQ w. r. t. the orbifold
charts (Vi, Gi, πi), (V ′

i , G
′
i, π

′
i) ∈ U . We let

V := {(Vi, Gi, πi) | i ∈ I}
be the arising representative of U , indexed by I, and set ψ :=

∐
i∈I f̃i. We define

P to be the quasi-pseudogroup of all changes of charts λ of V for which ψ|domλ

and ψ|cod λ are open embeddings. We claim that P generates Ψ(V). To that
end let g ∈ Ψ(V) and x ∈ dom g. Suppose that x ∈ Va and g(x) ∈ Vb. Prop. 5.3
shows that there is a restriction (Wb,Hb, χb) of (Vb, Gb, πb) such that g(x) ∈
Wb ⊆ cod g and f̃b|Wb

is an open embedding. Then (g−1(Wb), g
−1(Hb), g

−1 ◦χb)
is a restriction of (Va, Ga, χa). Invoking again Prop. 5.3 we find a restriction

(Wa,Ha, χa) of (Va, Ga, πa) such that x ∈ Wa ⊆ g−1(Wb) and f̃a|Wa is an open
embedding. Then g|Wa ∈ P . Therefore P satisfies (R3).

Let λ ∈ P and suppose that S := domλ ⊆ Va and codλ ⊆ Vb. To satisfy
property (R4a) we define

(2) ν(λ) := f̃b ◦ λ ◦ (f̃a|S)−1.

Any other possibility to define ν(λ) must coincide with this one on domλ. We
have to show that ν(λ) is an embeddig between some orbifold charts in U . Since

ψ|S = f̃a|S : (S, (Ga)S , πa|S) → (V ′
a, G

′
a, π

′
a)

is an open embedding, [MM03, Prop. 2.12] shows that S′ := f̃a(S) is a G′
a-

stable open set. The definition (2) yields that ν is functorial and commutes
with restrictions. Hence ν satisfies (R4).

Finally let (P1, ν1) be any pair such that (idQ, {f̃i}i∈I , P1, ν1) becomes a repre-
sentative of an orbifold map on (Q,U). Let λ ∈ P1 and x ∈ domλ. Then we
find an open neighborhood U of x such that λ|U ∈ P . In particular, ψ|U is an
open embedding. Therefore

ν1(λ)|ψ(U) = ψ ◦ λ ◦ (ψ|U )−1 = ν(λ|U ).

This yields immediately that (idQ, {f̃i}i∈I , P, ν) and (idQ, {f̃i}i∈I , P1, ν1) are
equivalent. �
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The following proposition shows that whenever one has a charted orbifold map
(f, {f̃i}i∈I , [P, ν]) between orbifolds with the same underlying topological space
Q such that the continuous map f : Q→ Q is the identity idQ and such that all

elements of the family {f̃i}i∈I are local diffeomorphisms, then the orbifolds are
identical.

Proposition 5.6. Let Q be a topological space and suppose that U and U ′ are
orbifold structures on Q. Let

f̂ =
(
f, {f̃i}i∈I , [P, ν]

)

be a charted orbifold map for which

• f = idQ,
• the domain atlas V is a representative of U ,
• the range family V ′, which here is an orbifold atlas, is a representative

of U ′, and
• for each i ∈ I, the map f̃i is a local diffeomorphism.

Then U = U ′.

Proof. Let (Vi, Gi, πi) ∈ V, (V ′
j , G

′
j , π

′
j) ∈ V ′ and x ∈ Vi, y ∈ V ′

j such that

πi(x) = π′j(y). Since f̃i : Vi → V ′
i is a local diffeomorphism, there are open

neighborhoods U of x in Vi and U ′ of f̃i(x) in V ′
i such that f̃i|U : U → U ′ is a

diffeomorphism. We have

π′i
(
f̃i(x)

)
= πi(x) = π′j(y).

Therefore there exist open neighborhoods W of f̃i(x) in U ′ and W ′ of y in V ′
j

and a diffeomorphism h : W → W ′ satisfying π′j ◦ h = π′i. Shrinking U shows

that (Vi, Gi, πi) and (V ′
j , G

′
j , π

′
j) are compatible. Thus U = U ′. �

The following example shows that the requirement in Prop. 5.6 that the local
lifts be local diffeomorphisms is essential.

Example 5.7. Recall the orbifolds (Q,Ui), i = 1, 2, from Example 2.5, the
representatives V1 := {V1} and V2 := {V2} of U1 resp. U2, and set g(x) := x2

for x ∈ (−1, 1). Then g is a lift of idQ w. r. t. V2 and V1. Further let P :=
{± id(−1,1)} and ν(± id(−1,1)) := id(−1,1). Then (idQ, {g}, [P, ν]) is an orbifold
map with (V2,V1) from (Q,U2) to (Q,U1), but U1 6= U2.

Motivated by Prop. 5.5 and 5.6 we make the following definition.

Definition 5.8. Let (Q,U) be an orbifold and let f̂ = (f, {f̃i}i∈I , [P, ν]) be a
charted orbifold map whose domain atlas is a representative of U . If and only
if f = idQ and f̃i is a local diffeomorphism for each i ∈ I, we call f̂ a lift of the
identity id(Q,U) or a representative of id(Q,U). The set of all lifts of id(Q,U) is the
identity morphism id(Q,U) of (Q,U).

5.2. Composition of charted orbifold maps. We present natural definitions
for the composition of two charted orbifold maps and for induced charted orb-
ifold maps. These we use to construct the category of reduced orbifolds. The
proofs and constructions in this section are quite technical due to the fact that
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we have to work with local charts. In Section 6 we characterize all these orbifold
concepts in terms of atlas groupoids and their homomorphisms.

Construction 5.9. Let (Q,U), (Q′,U ′) and (Q′′,U ′′) be orbifolds, and V, V ′

resp. V ′′ be representatives for U , U ′ resp. U ′′. Suppose that

f̂ = (f, {f̃i}i∈I , [Pf , νf ]) ∈ Orb(V,V ′)

and
ĝ = (g, {g̃j}j∈J , [Pg, νg]) ∈ Orb(V ′,V ′′)

with I ⊆ J . The composition

ĝ ◦ f̂ =: ĥ = (h, {h̃i}i∈I , [Ph, νh]) ∈ Orb(V,V ′′)

is given by h := g ◦f and h̃i := g̃i ◦ f̃i for all i ∈ I. To construct a representative
(Ph, νh) of [Ph, νh] we fix representatives (Pf , νf ) and (Pg, νg) of [Pf , νf ] and
[Pg, νg], resp. The leading idea to define (Ph, νh) is to take Ph = Pf and νh =
νg ◦ νf . But since νf (λ) is not necessarily in Pg for λ ∈ Pf , the composition
νg ◦ νf might be ill-defined. Therefore we have to refine this idea.

Let µ ∈ Pf and suppose that domµ ⊆ Vi and codµ ⊆ Vj for the orbifold charts
(Vi, Gi, πi) and (Vj , Gj , πj) in V. By (R4a)

f̃j ◦ µ = νf (µ) ◦ f̃i|dom µ,

where νf (µ) ∈ Ψ(V ′). For x ∈ domµ we set yx := f̃i(x), which is an element of
dom νf (µ). Hence we find (and fix a choice) ξµ,x ∈ Pg with yx ∈ dom ξµ,x and
an open set U ′

µ,x ⊆ dom ξµ,x ∩ dom νf (µ) such that yx ∈ U ′
µ,x and

ξµ,x|U ′

µ,x
= νf (µ)|U ′

µ,x
.

Then we find (and fix) an open set Uµ,x ⊆ domµ with x ∈ Uµ,x such that

f̃i(Uµ,x) ⊆ U ′
µ,x. We may and will suppose that for µ1, µ2 ∈ Pf and x1 ∈ domµ1,

x2 ∈ domµ2 we either have

(3) µ1|Uµ1,x1
6= µ2|Uµ2,x2

or ξµ1,x1 = ξµ2,x2 .

Now we define
Ph :=

{
µ|Uµ,x

∣∣ µ ∈ Pf , x ∈ domµ
}
,

which obviously is a quasi-pseudogroup generating Ψ(V). Further we set

νh
(
µ|Uµ,x

)
:= νg(ξµ,x)

for µ|Uµ,x ∈ Ph. Property (3) yields that νh is a well-defined map from Ph to
Ψ(V ′′). One easily sees that νh satisfies (R4a) - (R4d), and the equivalence class
of (Ph, νh) does not depend on the choices we made for the construction of Ph
and νh.

Remark 5.10. Recall the maps F1 and F2 from Prop. 4.14. Then the con-
struction of the composition of two charted orbifold maps f̂ ∈ Orb(V,V ′) and
ĝ ∈ Orb(V ′,V ′′) immediately implies that

F1(ĝ ◦ f̂) = F1(ĝ) ◦ F1(f̂).

Conversely, if ϕ ∈ Hom(Γ(V),Γ(V ′)) and ψ ∈ Hom(Γ(V ′),Γ(V ′′)), then

F2(ψ ◦ ϕ) = F2(ψ) ◦ F2(ϕ).

The reason for this is that the construction of (Ph, νh) (in the notation of Con-
struction 5.9) only depends on germs.
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The following lemma provides the definition of induced charted orbifold map
and shows its relation to lifts of the identity.

Lemma and Definition 5.11. Let (Q,U) and (Q′,U ′) be orbifolds. Further
let

V = {(Vi, Gi, πi) | i ∈ I} be a representative of U ,

V ′ = {(V ′
l , G

′
l, π

′
l) | l ∈ L} be a representative of U ′, and

f̂ =
(
f, {f̃i}i∈I , [Pf , νf ]

)
∈ Orb(V,V ′).

Suppose that we have

• a representative W = {(Wj ,Hj , ψj) | j ∈ J} of U , indexed by J ,
• a subset {(W ′

j ,H
′
j, ψ

′
j) | j ∈ J} of U ′, indexed by J (not necessarily an

orbifold atlas),
• a map α : J → I,
• for each j ∈ J , an embedding

λj :
(
Wj,Hj, ψj

)
→

(
Vα(j), Gα(j), πα(j)

)
,

and an embedding

µj :
(
W ′
j,H

′
j , ψ

′
j

)
→

(
V ′
α(j), G

′
α(j), π

′
α(j)

)

such that

f̃α(j)

(
λj(Wj)

)
⊆ µj(W

′
j).

For each j ∈ J set

h̃j := µ−1
j ◦ f̃α(j) ◦ λj : Wj → W ′

j.

Then

(i) ε :=
(
idQ, {λj}j∈J , [R,σ]

)
∈ Orb(W,V) (with [R,σ] provided by Prop. 5.5)

is a lift of id(Q,U).
(ii) The set {(W ′

j ,H
′
j , ψ

′
j) | j ∈ J} and the family {µj}j∈J can be extended to

a representative

W ′ =
{
(W ′

k,H
′
k, ψ

′
k)

∣∣ k ∈ K
}

of U ′ and a family of embeddings {µk}k∈K such that

ε′ :=
(
idQ′ , {µk}k∈K , [R′, σ′]

)
∈ Orb(W ′,V ′)

(again with [R′, σ′] provided by Prop. 5.5) is a lift of id(Q′,U ′).
(iii) There is a uniquely determined equivalence class [Ph, νh] such that

ĥ := (f, {h̃j}j∈J , [Ph, νh]) ∈ Orb(W,W ′)

and such that the diagram

V
f̂ // V ′

W

ε

??~~~~~~~~
ĥ // W ′

ε′
aaBBBBBBBB

commutes.

We say that ĥ is induced by f̂ .
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Proof. (i) is clear by Prop. 5.3 and 5.5. To show that (ii) holds we construct
one possible extension: Let

y ∈ Q′ \
⋃

j∈J

ψ′
j(W

′
j).

Then there is a chart (V ′, G′, π′) ∈ V ′ such that y ∈ π′(V ′). Extend the set
{(W ′

j ,H
′
j , ψ

′
j) | j ∈ J} with (V ′, G′, π′) and the family {µj}j∈J with idV ′ . If

this is done iteratively, one finally gets on orbifold atlas of Q′ as wanted. Then
Prop. 5.3 and 5.5 yields the remaining claim of (ii). The following considerations
are independent of the specific choices of extensions.

Concerning (iii) we remark that each h̃j is obviously a local lift of f . Fix a
representative (Pf , νf ) of [Pf , νf ]. In the following we construct a pair (Ph, νh)

for which ĥ is an orbifold map and the diagram in (iii) commutes. It will be
clear from the construction that the equivalence class [Ph, νh] is independent of
the choice of (Pf , νf ) and uniquely determined by the requirement of the com-
mutativity of the diagram. Let γ ∈ Ψ(W) and x ∈ dom γ. Possibly shrinking
the domain of γ, We may assume that dom γ ⊆ Wj and cod γ ⊆ Wk for some
j, k ∈ J . In the following we further shrink the domain of γ to be able to define
νh as a composition of νf with elements of {µj}j∈J . Let y := λj(x). Since

γ̃ := λk ◦ γ ◦ (λj|dom γ)
−1 : λj(dom γ) → λk(cod γ)

is an element of Ψ(V), we find βγ ∈ Pf such that y ∈ domβγ and germy βγ =
germy γ̃. Then

z := f̃α(j)(y) ∈ dom νf (βγ) ∩ µj(W ′
j).

Since

νf (βγ)(z) = f̃α(k)(βγ(y)) ∈ µk(W
′
k),

the set

U ′ := dom νf (βγ) ∩ µj(W ′
j) ∩ νf (βγ)−1(µk(W

′
k))

is an open neighborhood of z. Define

U1 := {w ∈ domβγ ∩ λj(dom γ) | germw βγ = germw γ̃},
which is an open neighborhood of y. Then also

U := U1 ∩ f̃−1
α(j)(U

′)

is an open neighborhood of y. We fix an open neighborhood Uγ,x ⊆ λ−1
j (U) of

x. Further we suppose that for γ1, γ2 ∈ Ψ(W), x1 ∈ dom γ1, x2 ∈ dom γ2, we
either have

(4) γ1|Uγ1,x1
6= γ2|Uγ2,x2

or νf (βγ1) = νf (βγ2).

Then we define

Ph :=
{
γ|Uγ,x

∣∣ γ ∈ Ψ(W), x ∈ dom γ
}

and set

νh
(
γ|Uγ,x

)
:= µ−1

k ◦ νf (βγ) ◦ µj
for γ|Uγ,x ∈ Ph with x ∈ Wj and γ(x) ∈ Wk (j, k ∈ J). By (4), the map
νh : Ph → Ψ(W ′) is well-defined. One easily checks that (Ph, νh) satisfies all
requirements of (iii). �
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We consider two charted orbifold maps as equivalent if they induce the same
charted orbifold map on common refinements of the orbifold atlases. The fol-
lowing definition provides a precise specification of this idea.

Definition 5.12. Let (Q,U) and (Q′,U ′) be orbifolds. Further let V1,V2 be

representatives of U , and V ′
1,V ′

2 be representatives of U ′. Suppose that f̂1 ∈
Orb(V1,V ′

1) and f̂2 ∈ Orb(V2,V ′
2). We call f̂1 and f̂2 equivalent (f̂1 ∼ f̂2) if

there are

• a representative W of U ,
• a representative W ′ of U ′,
• ε1 ∈ Orb(W,V1), ε2 ∈ Orb(W,V2) lifts of id(Q,U),
• ε′1 ∈ Orb(W ′,V ′

1), ε
′
2 ∈ Orb(W ′,V ′

2) lifts of id(Q′,U ′), and

• a map ĥ ∈ Orb(W,W ′)

such that the diagram

V1
f̂1 // V ′

1

W

ε1
>>~~~~~~~~

ĥ //

ε2   @
@@

@@
@@

@ W ′

ε′1
``AAAAAAAA

ε′2~~}}
}}

}}
}}

V2
f̂2

// V ′
2

commutes.

Prop. 5.15 below states that ∼ is indeed an equivalence relation. For its proof we
need the following two lemmas. The first lemma discusses how local lifts which
belong to the same charted orbifold map are related to each other, the second one
shows that two charted orbifold maps which are induced from the same charted
orbifold map induce the same charted orbifold map on common refinements of
atlases. This means that ∼ satisfies the so-called diamond property.

Lemma 5.13. Let (Q,U) and (Q′,U ′) be orbifolds and let

f̂ := (f, {f̃i}i∈I , [P, ν]) ∈ Orb(V,V ′)

be a charted orbifold map where V is a representative of U and V ′ one of U ′.
Suppose that we have orbifold charts (Va, Ga, πa), (Vb, Gb, πb) ∈ V and points
xa ∈ Va, xb ∈ Vb such that πa(xa) = πb(xb). Then there are orbifold charts
(W,K,χ) ∈ U , (W ′,K ′, χ′) ∈ U ′ and embeddings

λ : (W,K,χ) → (Va, Ga, πa)

λ′ : (W ′,K ′, χ′) → (V ′
a, G

′
a, π

′
a)

µ : (W,K,χ) → (Vb, Gb, πb)

µ′ : (W ′,K ′, χ′) → (V ′
b , G

′
b, π

′
b)
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with xa ∈ λ(W ), xb ∈ µ(W ) such that the induced lift g of f w. r. t. f̃a, λ, λ
′

coincides with the one induced by f̃b, µ, µ
′. In other words, the diagram

Va
f̃a // V ′

a

W

λ
>>~~~~~~~~ g //

µ
  @

@@
@@

@@
@ W ′

λ′
``AAAAAAAA

µ′~~}}
}}

}}
}}

Vb
f̃b // V ′

b

commutes.

Proof. By compatibility of orbifold charts we find a restriction (W,K,χ) of
(Va, Ga, πa) with xa ∈W and an embedding

µ : (W,K,χ) → (Vb, Gb, πb)

such that µ(xa) = xb (cf. Remarks 2.2 and 2.4). Then µ : W → µ(W ) is an
element of Ψ(V), hence there is a γ ∈ P with xa ∈ dom γ and an open neigh-
borhood U of xa such that U ⊆ dom γ ∩W and

µ|U = γ|U .
W.l.o.g., γ = µ. Property (R4a) yields that

ν(µ) ◦ f̃a|W = f̃b ◦ µ.
By shrinking the domain of ν(µ), we can achieve that cod ν(µ) ⊆ V ′

b and still

f̃a(W ) ⊆ dom ν(µ) =: W ′. With µ′ := ν(µ) it follows

f̃b(µ(W )) = µ′(f̃a(W )) ⊆ µ′(W ′)

and further
f̃a|W = (µ′)−1 ◦ f̃b ◦ µ.

This proves the claim. �

Lemma 5.14. Let (Q,U) and (Q′,U ′) be orbifolds, V a representative of U ,

and V ′ one of U ′. Further let f̂ ∈ Orb(V,V ′). If the charted orbifold maps ĥ ∈
Orb(W1,W ′

1) and ĝ ∈ Orb(W2,W ′
2) are induced by f̂ , then we find a representa-

tive W of U and two charted orbifold maps ε1 ∈ Orb(W,W1), ε2 ∈ Orb(W,W2)
which are lifts of id(Q,U), and a representative W ′ of U ′ and two charted orbifold
maps ε′1 ∈ Orb(W ′,W ′

1), ε
′
2 ∈ Orb(W ′,W ′

2) which are lifts of id(Q′,U ′), and a

charted orbifold map k̂ ∈ Orb(W,W ′) such that the diagram

W1
ĥ // W ′

1

W

ε1
>>||||||||

k̂ //

ε2   B
BB

BB
BB

B W ′

ε′1
aaCCCCCCCC

ε′2}}{{
{{

{{
{{

W2
ĝ // W ′

2

commutes.
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Proof. Let

f̂ = (f, {f̃a}a∈A, [Pf , νf ]),
ĥ = (f, {h̃i}i∈I , [Ph, νh]),
ĝ = (f, {g̃j}j∈J , [Pg, νg]),

and

W1 := {(W1,i,H1,i, ψ1,i) | i ∈ I}, indexed by I,

W ′
1 := {(W ′

1,k,H
′
1,k, ψ

′
1,k) | k ∈ K}, indexed by K,

W2 := {(W2,j ,H2,j, ψ2,j) | j ∈ J}, indexed by J ,

W ′
2 := {(W ′

2,l,H
′
2,l, ψ

′
2,l) | l ∈ L}, indexed by L,

where I ⊆ K and J ⊆ L. Further suppose that

δ1 = (idQ, {λ1,i}i∈I , [R1, σ1]) ∈ Orb(W1,V),

δ′1 = (idQ′ , {µ1,k}k∈K , [R′
1, σ

′
1]) ∈ Orb(W ′

1,V ′),

δ2 = (idQ, {λ2,j}j∈J , [R2, σ2]) ∈ Orb(W2,V),

δ′2 = (idQ′ , {µ2,c}l∈L, [R′
2, σ

′
2]) ∈ Orb(W ′

2,V ′)

are lifts of id(Q,U) resp. id(Q′,U ′) such that

f̂ ◦ δ1 = δ′1 ◦ ĥ and f̂ ◦ δ2 = ĝ ◦ δ′2.
Further we assume that all λ1,i, µ1,b, λ2,j and µ2,c are embeddings.

We will use Lemma 5.11 to show the existence of k̂. More precisely, we attach to
each q ∈ Q an orbifold chart (Wq,Hq, ψq) ∈ U with q ∈ ψq(Wq) and an orbifold
chart (W ′

q,H
′
q, ψ

′
q) ∈ U ′ with f(q) ∈ ψ′

q(W
′
q). We may consider orbifold charts

defined for distinct q to be distinct. In this way, we get an orbifold atlas

(5) W := {(Wq,Hq, ψq) | q ∈ Q}
of U which is indexed by Q, and a subset {(W ′

q,H
′
q, ψ

′
q) | q ∈ Q} of U ′ indexed

by Q as well. Moreover, we will find maps α : Q → I and β : Q → J and
embeddings

ξ1,q : (Wq,Hq, ψq) → (W1,α(q),H1,α(q), ψ1,α(q))

ξ2,q : (Wq,Hq, ψq) → (W2,β(q),H2,β(q), ψ2,β(q))

χ1,q : (W ′
q,H

′
q, ψ

′
q) → (W ′

1,α(q),H
′
1,α(q), ψ

′
1,α(q))

χ2,q : (W ′
q,H

′
q, ψ

′
q) → (W ′

2,β(q),H
′
2,β(q), ψ

′
2,β(q))

such that for each q ∈ Q the local lift k̃q of f induced by h̃α(q), ξ1,q and χ1,q coin-

cides with the one induced by g̃β(q), ξ2,q and χ2,q. Lemma 5.11 shows that ĥ resp.

ĝ induce a charted orbifold map (f, {k̃q}q∈Q, [P1, ν1]) resp. (f, {k̃q}q∈Q, [P2, ν2]).
Then it remains to show that [P1, ν1] = [P2, ν2]. For that purpose we will show
that one may choose χ1,q = id for each q ∈ Q.

Let q ∈ Q. We fix a chart (W1,i,H1,i, ψ1,i) ∈ W1 with q ∈ ψ1,i(W1,i) and we
pick w1 ∈ W1,i with q = ψ1,i(w1). We set α(q) := i. Further we fix a chart
(W2,j ,H2,j, ψ2,j) ∈ W2 with q ∈ ψ2,j(W2,j) and and element w2 ∈ W2,j with
q = ψ2,j(w2). We set β(q) := j. Lemma 5.13 shows the existence of orbifold
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charts (Wq,Hq, ψq) ∈ U with q ∈ ψq(Wq), say q = ψq(wq), and (W ′
q,H

′
q, ψ

′
q) ∈ U ′

with f(q) ∈ ψ′
q(W

′
q) and embeddings ξ1,q, ξ2,q, χ1,q, χ2,q and a local lift k̃q of f

such that the diagram

λ1,α(q)(W1,α(q))
f̃α(q) // µ1,α(q)(W

′
1,α(q))

W1,α(q)

λ1,α(q)

OO

h̃α(q) // W ′
1,α(q)

µ1,α(q)

OO

Wq

ξ1,q

99rrrrrrrrrrrr

ξ2,q %%LLLLLLLLLLLL

k̃q // W ′
q

χ1,q

ffLLLLLLLLLLL

χ2,qyyrrrrrrrrrrr

W2,β(q)

g̃β(q) //

λ2,β(q)

��

W ′
2,β(q)

µ2,β(q)

��
λ2,β(q)(W2,β(q))

f̃β(q) // µ2,β(q)(W
′
2,β(q))

commutes. Now

η := λ2,β(q) ◦ ξ2,q ◦ ξ−1
1,q ◦ λ−1

1,α(q) : λ1,α(q)

(
ξ1,q(Wq)

)
→ λ2,β(q)

(
ξ2,q(Wq)

)

is an element of Ψ(V) with y := λ1,α(q)(ξ1,q(wq)) in its domain. We pick a
representative (Pf , νf ) of [Pf , νf ]. Then there is γ ∈ Pf with y ∈ dom γ and an
open neighborhood U of y such that U ⊆ dom γ ∩ dom η and

η|U = γ|U .
By (R4a),

νf (γ) ◦ f̃α(q)|U = f̃β(q) ◦ γ|U = f̃β(q) ◦ η|U .
The map

µ := µ2,β(q) ◦ χ2,q ◦ χ−1
1,q ◦ µ−1

1,α(q) : µ1,α(q)

(
χ1,q(W

′
q)

)
→ µ2,β(q)

(
χ2,q(W

′
q)

)

is a diffeomorphism as well. Further there exists an open neighborhood V of y
such that

f̃β(q) ◦ η|V = µ ◦ f̃α(q)|V .
Hence

νf (γ) ◦ f̃α(q) = µ ◦ f̃α(q)

on some neighborhood of y. Therefore, after possibly shrinking Wq, we can

redefine W ′
q, χ1,q, χ2,q and k̃q such that

(6) χ2,q = µ−1
2,β(q) ◦ νf (γ) ◦ µ1,α(q)|W ′

q
and χ1,q := id

and the diagram above remains commutative. We remark that this redefinition
might be quite serious if f̃α(q) and hence h̃α(q), g̃β(q) and f̃β(q) are of low regu-
larity. But since these maps all have the same regularity, we may perform the
changes without running into problems. Let W be defined by (5). Lemma 5.11,

more precisely its proof, shows that ĥ resp. ĝ induces the orbifold maps

k̂1 = (f, {k̃q}q∈Q, [P1, ν1]) resp. k̂2 = (f, {k̃q}q∈Q, [P2, ν2])
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with (W,W ′), where W ′ is a representative of U ′ which contains the set

{(W ′
q,H

′
q, ψ

′
q) | q ∈ Q}

(the proof of Lemma 5.11 shows that we can indeed have the same W ′ for k̂1

and k̂2).

It remains to show that [P1, ν1] = [P2, ν2]. Recall from Lemma 5.11 that

[P1, ν1] is uniquely determined by ĥ, {ξ1,q}q∈Q and {χ1,q}q∈Q, and analogously

for [P2, ν2]. Alternatively, we may consider k̂1 and k̂2 to be induced by f̂ . Thus,

[P1, ν1] is uniquely determined by f̂ , {λ1,α(q) ◦ ξ1,q}q∈Q and {µ1,α(q) ◦ χ1,q}q∈Q,

and [P2, ν2] is uniquely determined by f̂ , {λ2,β(q)◦ξ2,q}q∈Q and {µ2,β(q)◦χ2,q}q∈Q.
We fix a representative (Pf , νf ) of [Pf , νf ]. Let γ be a change of charts in Ψ(W)
and x ∈ dom γ. Suppose dom γ ⊆ Wp and cod γ ⊆ Wq. Using the same ar-
guments and notation as in the proof of Lemma 5.11 (without discussing the
necessary shrinking of domains, since we are only interested in equality in a
neighborhood of x) we have

βh = λ1,α(q) ◦ ξ1,q ◦ γ ◦ ξ−1
1,p ◦ λ−1

1,α(p),

βg = λ2,β(q) ◦ ξ2,q ◦ γ ◦ ξ−1
2,p ◦ λ−1

2,β(p),

ν1(γ) = χ−1
1,q ◦ µ−1

1,α(q) ◦ νf (βh) ◦ µ1,α(p) ◦ χ1,p,

ν2(γ) = χ−1
2,q ◦ µ−1

2,β(q) ◦ νf (βg) ◦ µ2,β(p) ◦ χ2,p.

Hence

β2 = λ2,β(q) ◦ ξ2,q ◦ λ−1
1,α(q) ◦ ξ

−1
1,q ◦ β1 ◦ λ1,α(p) ◦ ξ1,p ◦ ξ−1

2,p ◦ λ−1
2,β(p).

Definition (6) shows that

νf (λ2,β(q) ◦ ξ2,q ◦ ξ−1
1,q ◦ λ−1

1,α(q)) = µ2,β(q) ◦ χ2,q ◦ µ−1
1,α(q).

Then

ν2(γ) = µ−1
1,α(q) ◦ νf (βh) ◦ µ1,α(p) = ν1(γ).

Hence the induced equivalence classes [P1, ν1] and [P2, ν2] indeed coincide. The
lift ε1 of id(Q,U) is given by the family {ξ1,q}q∈Q, the lift ε2 by {ξ2,q}q∈Q, the lift

ε′1 of id(Q′,U ′) is any extension of {χ1,q}q∈Q, and the lift ε′2 is any extension of
{χ2,q}q∈Q. �

Proposition 5.15. The relation ∼ from Def. 5.12 is an equivalence relation.

Proof. Let (Q,U) and (Q′,U ′) be orbifolds. Suppose that for all i ∈ {1, 2, 3}
the orbifold atlases Vi are representatives of U and V ′

i are representatives of U ′,

and f̂i ∈ Orb(Vi,V ′
i) are charted orbifold maps such that f̂1 ∼ f̂2 and f̂2 ∼ f̂3.

This means that we find representatives W1, W2 of U , representatives W ′
1, W ′

2

of U ′, charted orbifold maps ĥ1 ∈ Orb(W1,W ′
1), ĥ2 ∈ Orb(W2,W ′

2) and lifts of
the respective identities ε1 ∈ Orb(W1,V1), ε2 ∈ Orb(W1,V2), ε

′
1 ∈ Orb(W ′

1,V ′
1),

ε′2 ∈ Orb(W ′
1,V ′

2), η1 ∈ Orb(W2,V2), η2 ∈ Orb(W2,V3), η
′
1 ∈ Orb(W ′

2,V ′
2),
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η′2 ∈ Orb(W ′
2,V ′

3) such that the diagram

V1
f̂1 // V ′

1

W1
ĥ1 //

ε1

>>}}}}}}}}

ε2
  A

AA
AA

AA
A

W ′
1

ε′1
``AAAAAAAA

ε′2~~}}
}}

}}
}}

V2
f̂2 // V ′

2

W2
ĥ2 //

η1

>>}}}}}}}}

η2
  A

AA
AA

AA
A

W ′
2

η′1
``AAAAAAAA

η′2~~}}
}}

}}
}}

V3
f̂3 // V ′

3

commutes. Since ĥ1 and ĥ2 are both induced by f̂2, Lemma 5.14 shows that there
are representatives W of U , W ′ of U ′, a charted orbifold map k̂ ∈ Orb(W,W ′)
and lifts of identity δ1 ∈ Orb(W,W1), δ2 ∈ Orb(W,W2), δ

′
1 ∈ Orb(W ′,W ′

1),
δ′2 ∈ Orb(W ′,W ′

2) such that the diagram

V1
f̂1 // V ′

1

W1
ĥ1 //

ε1

>>}}}}}}}}
W ′

1

ε′1
``AAAAAAAA

W k̂ //

δ1
>>||||||||

δ2   B
BB

BB
BB

B W ′

δ′1
aaCCCCCCCC

δ′2}}{{
{{

{{
{{

W2
ĥ2 //

η2
  A

AA
AA

AA
A

W ′
2

η′2~~}}
}}

}}
}}

V3
f̂3 // V ′

3

commutes. Since compositions of lifts of identity remain lifts of identity, it
follows that f̂1 ∼ f̂3. �

5.3. The orbifold category. Now we can define the category of reduced orb-
ifolds.

Definition 5.16. The category Orb of reduced orbifolds is defined as follows:
Its class of objects is the class of orbifolds. For two orbifolds (Q,U) and (Q′,U ′)

the morphisms from (Q,U) to (Q′,U ′) are the equivalence classes [f̂ ] of charted

orbifold maps f̂ ∈ Orb(V,V ′) where V is any representative of U , and V ′ is any
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representative of U ′, that is

Morph
(
(Q,U), (Q′,U ′)

)
:=

:=
{[
f̂
] ∣∣∣ f̂ ∈ Orb(V,V ′), V representative of U , V ′ representative of U ′

}
.

The composition is described in the following. Let [f̂ ] ∈ Morph((Q,U), (Q′,U ′))

and [ĝ] ∈ Morph((Q′,U ′), (Q′′,U ′′)). Choose representatives f̂ ∈ Orb(V,V ′) of

[f̂ ] and ĝ ∈ Orb(W ′,W ′′) of [ĝ]. Then find representatives K, K′, K′′ of U , U ′, U ′′,
resp., and lifts of identity ε ∈ Orb(K,V), ε′1 ∈ Orb(K′,V ′), ε′2 ∈ Orb(K′,W ′),

ε′′ ∈ Orb(K′′,W ′′) and charted orbifold maps ĥ ∈ Orb(K,K′), k̂ ∈ Orb(K′,K′′)
such that the diagram

V f̂ // V ′ W ′
ĝ // W ′′

K

ε
??��������

ĥ // K′

ε′1
``AAAAAAA

ε′2
==||||||||

k̂ // K′′

ε′′
aaDDDDDDDD

commutes. The composition of [ĝ] and [f̂ ] is defined to be

[ĝ] ◦ [f̂ ] := [k̂ ◦ ĥ].

We have to prove that the composition in the category of reduced orbifolds is
always possible and well-defined. This means that we have to show that the
induced charted orbifold maps ĥ and k̂ indeed exist and that the composition
does not depend on the choice of the representatives f̂ and ĝ, and neither on
the choice of K, K′, K′′, ĥ or k̂. The existence is shown by the following lemma,
the independence of the choices by Prop. 5.18 below.

Lemma 5.17. Let (Q,U), (Q′,U ′) and (Q′′,U ′′) be orbifolds. Further let V be a
representative of U , V ′ and W ′ be representatives of U ′, and W ′′ a representative
of U ′′. Suppose that f̂ ∈ Orb(V,V ′) and ĝ ∈ Orb(W ′,W ′′). Then there exist
representatives K of U , K′ of U ′, K′′ of U ′′, lifts of the respective identities
ε ∈ Orb(K,V), η1 ∈ Orb(K′,V ′), η2 ∈ Orb(K′,W ′), δ ∈ Orb(K′′,W ′′), and

charted orbifold maps ĥ ∈ Orb(K,K′), k̂ ∈ Orb(K′,K′′) such that the diagram

V
f̂ // V ′ W ′

ĝ // W ′′

K ĥ //

ε
??��������

K′ k̂ //

η1
``AAAAAAA

η2
==||||||||

K′′

δ
aaDDDDDDDD

commutes.

Proof. To fix notation suppose that

f̂ =
(
f, {f̃i}i∈I , [Pf , νf ]

)
,

ĝ =
(
g, {g̃j}j∈J , [Pg, νg]

)
.
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Further suppose that

V = {(Vi, Gi, πi) | i ∈ I}, indexed by I,

V ′ = {(V ′
c , G

′
c, π

′
c) | c ∈ C}, indexed by C with I ⊆ C,

W ′ = {(W ′
j ,H

′
j, ψ

′
j) | j ∈ J}, indexed by J ,

W ′′ = {(W ′′
d ,H

′′
d , ψ

′′
d ) | d ∈ D}, indexed by D with J ⊆ D.

By Lemma 5.11 it suffices to find

• a representative K = {(Ka, La, χa) | a ∈ A} of U , indexed by A,
• a representative K′ = {(K ′

b, L
′
b, χ

′
b) | b ∈ B} of U ′, indexed by B,

• a set {(K ′′
b , L

′′
b , χ

′′
b ) | b ∈ B} of orbifold charts of Q′′, indexed by B,

• a map α : A→ I,
• an injective map β : A→ B,
• for each a ∈ A, an embedding

λa : (Ka, La, χa) → (Vα(a), Gα(a), πα(a))

and an embedding

µa : (K ′
β(a), L

′
β(a), χ

′
β(a)) → (V ′

α(a), G
′
α(a), π

′
α(a))

such that
f̃α(a)

(
λa(Ka)

)
⊆ µa(K

′
β(a)),

• a map γ : B → J ,
• for each b ∈ B, an embedding

̺b : (K ′
b, L

′
b, χ

′
b) → (W ′

γ(b),H
′
γ(b), ψ

′
γ(b))

and an embedding

σb : (K ′′
b , L

′′
b , χ

′′
b ) → (W ′′

γ(b),H
′′
γ(b), ψ

′′
γ(b))

such that
g̃γ(b)

(
̺b(K

′
b)

)
⊆ σb(K

′′
b ).

Let q ∈ Q and set r := f(q). We fix i ∈ I and j ∈ J such that q ∈ πi(Vi) and
r ∈ ψ′

j(W
′
j). Further we choose v′ ∈ V ′

i and w′ ∈ W ′
j such that π′i(v

′) = r =

ψ′
j(w

′). By compatibility of orbifold charts we find a restriction (K ′
q, L

′
q, χ

′
q) of

(V ′
i , G

′
i, π

′
i) with v′ ∈ K ′

q and an embedding

̺q : (K ′
q, L

′
q, χ

′
q) → (W ′

j ,H
′
j, ψ

′
j).

Since f̃i is continuous, there is a restriction (Kq, Lq, χq) of (Vi, Gi, πi) such that

q ∈ χq(Kq) and f̃i(Kq) ⊆ K ′
q. We set (K ′′

q , L
′′
q , χ

′′
q) := (W ′′

j ,H
′′
j , ψ

′′
j ). We may

and shall consider charts constructed for distinct q to be distinct. Then we set

A := Q, α(q) := i, λq := id, µq := id,

B := Q ∪Q′ \ f(Q) (disjoint union), β(q) := q, γ(q) := j, σq := id .

For q′ ∈ Q′ \ f(Q) we fix j ∈ J with q′ ∈ ψ′
j(W

′
j) and set γ(q′) := j. Further we

set (K ′
q′ , L

′
q′ , χ

′
q′) := (W ′

j ,H
′
j, ψ

′
j) and (K ′′

q′ , L
′′
q′ , χ

′′
q′) := (W ′′

j ,H
′′
j , ψ

′′
j ). Again we

consider orbifold charts build for distinct q′ to be distinct and define ̺q′ := id
and σq′ := id. Then all requirements are satisfied. �

Proposition 5.18. The composition in Orb is well-defined.
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Proof. Recall the notation from the definition of the composition. We have to
show that the composition of [f̂ ] and [k̂] does not depend on the choice

(i) of the induced orbifold maps ĥ and k̂,

(ii) of the representatives of [f̂ ] and [ĝ].

To prove (i) suppose that we have two pairs (ĥj , k̂j) of induced orbifold maps

ĥj ∈ Orb(Kj ,K′
j), k̂j ∈ Orb(K′

j ,K′′
j ) (j = 1, 2) such that the diagram

K1
ĥ1 //

��?
??

??
??

?
K′

1
k̂1 //

~~~~
~~

~~
~

  B
BB

BB
BB

B
K′′

1

}}{{
{{

{{
{{

V
f̂ // V ′ W ′

ĝ // W ′′

K2
ĥ2 //

??��������
K′

2

k̂2 //

``@@@@@@@

>>||||||||
K′′

2

aaCCCCCCCC

commutes. The non-horizontal maps are lifts of identity. Lemma 5.14 shows the
existence of representatives H of U , H′,I ′ of U ′, I ′′ of U ′′, and charted orbifold

maps ĥ3 ∈ Orb(H,H′), k̂3 ∈ Orb(I ′,I ′′), and appropriate lifts of identity such
that the diagrams

K1
ĥ1 // K′

1 K′
1

k̂1 // K′′
1

H ĥ3 //

>>~~~~~~~~

  @
@@

@@
@@

@ H′

``AAAAAAAA

~~}}
}}

}}
}}

I ′
k̂3 //

>>~~~~~~~

  @
@@

@@
@@

I ′′

``AAAAAAAA

~~}}
}}

}}
}}

K2
ĥ2 // K′

2 K′
2

k̂2 // K′′
2

commute. By Lemma 5.17 we find representatives K,K′,K′′ of U ,U ′,U ′′, resp.,
charted orbifold maps ĥ ∈ Orb(K,K′), k̂ ∈ Orb(K′,K′′), and appropriate lifts of
identity such that

H ĥ3 // H′ I ′
k̂3 // I ′′

K ĥ //

??��������
K′ k̂ //

>>}}}}}}}

``BBBBBBBB

K′′

aaBBBBBBBB

commutes. Hence, altogether we have the commutative diagram

K1
ĥ1 // K′

1
k̂1 // K′′

1

K ĥ //

OO

��

K′ k̂ //

OO

��

K′′

OO

��
K2

ĥ2 // K′
2

k̂2 // K′′
2

which shows that k̂1 ◦ ĥ1 and k̂2 ◦ ĥ2 are equivalent.
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For the proof of (ii) let f̂1 ∈ Orb(V1,V ′
1), f̂2 ∈ Orb(V2,V ′

2) be representatives of

[f̂ ], and ĝ1 ∈ Orb(W ′
1,W ′′

1 ), ĝ2 ∈ Orb(W ′
2,W ′′

2 ) be representatives of [ĝ]. Fur-

ther, for j = 1, 2, let ĥj ∈ Orb(Kj ,K′
j) be induced by f̂j, and k̂j ∈ Orb(K′

j ,K′′
j )

be induced by ĝj :

V1
f̂1 // V ′

1 W ′
1

ĝ1 // W ′′
1

K1
ĥ1 //

??~~~~~~~~
K′

1
k̂1 //

__@@@@@@@

>>}}}}}}}}
K′′

1

``BBBBBBBB

V2
f̂2 // V ′

2 W ′
2

ĝ2 // W ′′
2

K2
ĥ2 //

??~~~~~~~~
K′

2

k̂2 //

__@@@@@@@

>>}}}}}}}}
K′′

2

``BBBBBBBB

Since f̂1 and f̂2 are equivalent, we find representatives V, V ′ of U , U ′, resp., and
a charted orbifold map f̂ ∈ Orb(V,V ′), and analogously for ĝ1 and ĝ2, such that
the diagrams

V1
f̂1 // V ′

1 W ′
1

ĝ1 // W ′′
1

V
f̂ //

??��������

��?
??

??
??

? V ′

__@@@@@@@

��~~
~~

~~
~

W ′
ĝ //

=={{{{{{{{

!!C
CC

CC
CC

C W ′′

aaDDDDDDDD

}}zz
zz

zz
zz

V2
f̂2 // V ′

2 W ′
2

ĝ2 // W ′′
2

commute. Lemma 5.17 yields the existence of ĥ ∈ Orb(K,K′) and k̂ ∈ Orb(K′,K′′)
such that

V f̂ // V ′ W ′
ĝ // W ′′

K ĥ //

??��������
K′ k̂ //

``AAAAAAA

==||||||||
K′′

aaDDDDDDDD

commutes. Since ĥ is induced by f̂1 and by f̂2, and likewise, k̂ is induced by ĝ1
and by ĝ2, part (i) shows that k̂1 ◦ ĥ1 and k̂2 ◦ ĥ2 are both equivalent to k̂ ◦ ĥ.
This yields that the composition map is well-defined. �

We end this section with a discussion of the equivalence class represented by a
lift of identity. The following proposition shows that it is precisely the class of
all lifts of identity of the considered orbifold. This justifies the notion “identity
morphism” in Def. 5.8.

Proposition 5.19. Let (Q,U) be an orbifold and ε a lift of id(Q,U). Then the
equivalence class [ε] of ε consists precisely of all lifts of id(Q,U).
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Proof. Let ε1 ∈ Orb(V1,W1) and ε2 ∈ Orb(V2,W2) be two lifts of id(Q,U).
Prop. 5.3 (together with Prop. 5.5) implies that there is a representative V
of U such that ε1 and ε2 both induce the orbifold map

îdQ := (idQ, {idVi
}i∈I , [R,σ])

on V. Thus, each two lifts of id(Q,U) are equivalent.

Let now f̂ be a charted orbifold map which is equivalent zu ε. W.l.o.g. we may

assume that ε = îdQ. To fix notation let

V = {(Vi, Gi, πi) | i ∈ I}, indexed by I,

K1 = {(K1,a, L1,a, χ1,a) | a ∈ A}, indexed by A,

K2 = {(K2,b, L2,b, χ2,b) | b ∈ B}, indexed by B,

W1 = {(W1,j ,H1,j, ψ1,j) | j ∈ J}, indexed by J ,

W2 = {(W2,k,H2,k, ψ2,k) | k ∈ K}, indexex by K,

be representatives of U . Further let

α : A→ I, β : A→ J, γ : A→ B

and

δ : B → I, η : B → K, ζ : J → K

be maps, and suppose that

f̂ =
(
f, {f̃j}j∈J , [Pf , νf ]

)

ĝ =
(
g, {g̃a}a∈A, [Pg, νg]

)

are charted orbifold maps and

ε1 =
(
idQ, {λ1,a}a∈A, [P1, ν1]

)

ε2 =
(
idQ, {λ2,a}a∈A, [P2, ν2]

)

δ1 =
(
idQ, {µ1,b}b∈B , [R1, σ1]

)

δ2 =
(
idQ, {µ2,b}b∈B , [R2, σ2]

)

are lifts of id(Q,U) such that the diagram

V
bidQ // V

K1

ε1

=={{{{{{{{

ε2 !!C
CC

CC
CC

C

ĝ // K2

δ1

aaCCCCCCCC

δ2}}{{
{{

{{
{{

W1
f̂ // W2

commutes. Clearly, g = idQ and hence f = idQ. Further for each a ∈ A, we
have

idVα(a)
◦λ1,a = µ1,γ(a) ◦ g̃a.

Since idVα(a)
, λ1,a and µ1,γ(a) are local diffeomorphisms, so is g̃a. Now

f̃β(a) ◦ λ2,a = µ2,γ(a) ◦ g̃a
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for each a ∈ A. Hence f̃β(a) is a local diffeomorphism. Lemma 5.13 implies that

f̃j is a local diffeomorphism for each j ∈ J . Therefore, f̂ is a lift of id(Q,U). �

6. The orbifold category in terms of marked atlas groupoids

Prop. 4.14 and Remark 5.10 show that charted orbifold maps and their com-
position correspond to homomorphisms between marked atlas groupoids and
their composition. By characterizing lifts of identity and equivalence of charted
orbifold maps in terms of marked atlas groupoids and their homomorphisms, we
construct a category for marked atlas groupoids which is isomorphic to the one
of reduced orbifolds. To that end we first show that lifts of identity correspond
to unit weak equivalences, a notion we define below. Throughout this section
let pr1 denote the projection to the first component.

A homomorphism ϕ = (ϕ0, ϕ1) : G→ H between Lie groupoids is called a weak
equivalence if

(i) the map

t ◦ pr1 : H s×ϕ0 G0 → H0

is a surjective submersion, and
(ii) the diagram

G1
ϕ1 //

(s,t)
��

H1

(s,t)
��

G0 ×G0
ϕ0×ϕ0// H0 ×H0

is a fibered product.

Two Lie groupoids G,H are called Morita equivalent if there is a Lie groupoid
K and weak equivalences

G K
ϕoo ψ // H.

Definition 6.1. Let (G1, α1,X1) and (G2, α2,X2) be marked atlas groupoids.
A homomorphism ϕ = (ϕ0, ϕ1) : (G1, α1,X1) → (G2, α2,X2) is called a unit
weak equivalence if ϕ : G1 → G2 is a weak equivalence and α2 ◦ |ϕ| ◦α−1

1 = idX1:

(G1)0
ϕ0 //

prG1

��

(G2)0

prG2

��
|G1|

|ϕ|
//

α1

��

|G2|
α2

��
X1 X2

Hence necessarily, X1 = X2 =: X. A unit Morita equivalence between (G1, α1,X)
and (G2, α2,X) is a pair (ψ1, ψ2) of unit weak equivalences

ψj : (G,α,X) → (Gj , αj ,X)

where (G,α,X) is some marked atlas groupoid. If such a unit Morita equivalence
exists, then (G1, α1,X) and (G2, α2,X) are called unit Morita equivalent.
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In contrast to Morita equivalence of Lie groupoids, unit Morita equivalence of
marked atlas groupoids requires the third (marked) Lie groupoid to be an atlas
groupoid. In Prop. 6.4 below we will show that unit Morita equivalence of
marked atlas groupoids is indeed an equivalence relation.

The proof that lifts of identity correspond to unit weak equivalences needs the
following lemma. Recall that a groupoid is étale if its source and target map
are local diffeomorphisms.

Lemma 6.2. Let G,H be étale groupoids and ϕ = (ϕ0, ϕ1) : G → H a weak
equivalence. Then ϕ0 : G0 → H0 is a local diffeomorphism.

Proof. We show first that ϕ0 is a submersion. Let (h, x) ∈ H1 s×ϕ0G0. Choose an
open neighborhood Uh of h in H1 such that s|Uh

and t|Uh
are open embeddings.

Further choose an open neighborhood Ux of x in G0 such that ϕ0(Ux) ⊆ s(Uh).
Then Uh s×ϕ0 Ux is an open subset of H1 s×ϕ0 G0. By definition,

t ◦ pr1 : H1 s×ϕ0 G0 → H1

is a submersion, hence also its restriction

t ◦ pr1 : Uh s×ϕ0 Ux → t(Uh).

Since
s ◦ t−1 : t(Uh) → s(Uh)

is by construction a diffeomorphism, the map

s ◦ pr1 = s ◦ t−1 ◦ t ◦ pr1 : Uh s×ϕ0 Ux → s(Uh)

is a submersion. From the commutativity of

Uh s×ϕ0 Ux
pr2 //

pr1

��

Ux

ϕ0

��
Uh

s // s(Uh)

it follows that
ϕ0 ◦ pr2 : Uh s×ϕ0 Ux → s(Uh)

is a submersion. For a manifold M and an element m ∈M let TmM denote the
tangent space to M at m. Since (1x, x) ∈ H1 s×ϕ0 G0 for each x ∈ G0, we know
that

ϕ′
0(x) ◦ pr′2(1x, x) = (ϕ0 ◦ pr2)

′(1x, x) : T(1x,x)H1 s×ϕ0 G0 → Tϕ0(x)H0

is surjective. In particular,

ϕ′
0(x) : TxG0 → Tϕ0(x)H0

is surjective for each x ∈ G0. This shows that ϕ0 is a submersion and

m := dimG0 ≥ dimH0 =: n.

We now prove that m = n. Set

M := (G0 ×G0) ϕ0×ϕ0×(s,t) H1.

From ϕ being a weak equivalence, we know that the map

β :

{
G1 → M
g 7→ (s(g), t(g), ϕ1(g))
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is a diffeomorphism. Let (x, y, h) ∈ M . The submersion theorem (cf. [BG05,
Thm. 1.9.11]) shows that there are (manifold) charts (U1, ψ1) with x ∈ ψ1(U1),
(U2, ψ2) with y ∈ ψ2(U2), (V1, χ1) with ϕ0(x) ∈ χ1(V1) and (V2, χ2) with ϕ0(y) ∈
χ2(V2) such that

ηi := χi ◦ ϕ0 ◦ ψ−1
i : (x1, . . . , xn, xn+1, . . . , xm) 7→ (x1, . . . , xn)

for i = 1, 2. Now we choose an open neighborhood Uh of h in H1 such that s|Uh

and t|Uh
are open embeddings, and such that s(Uh) ⊆ V1 and t(Uh) ⊆ V2. By

shrinking the charts and Uh we can achieve that s(Uh) = V1, t(Uh) = V2 and

ψ2(U2) = V2 = I × J

with dim I = n, dim J = m− n. The open subset

(U1 × U2) ϕ0×ϕ0×(s,t) Uh

of M reads in local coordinates as

N := (ψ1(U1) × ψ2(U2)) η1×η2×(χ1◦s,χ2◦t) Uh

= {(z,w, k) ∈ V1 × V2 × Uh | (η1(z), η2(w)) = (χ2(s(k)), χ1(t(k))}
= {(z,w, k) ∈ V1 × V2 × Uh | ((z1, . . . , zn), (w1, . . . , wn)) = (χ1(s(k)), χ2(t(k)))}
=

{(
(z1, . . . , zn, z̃), (χ2(t(s

−1(χ−1
1 (z1, . . . , zn)))), w̃), s−1(χ−1

1 (z1, . . . , zn))
)
|

| (z1, . . . , zn, z̃) ∈ V1, w̃ ∈ J }
since k and (w1, . . . , wn) are determined by (z1, . . . , zn). Therefore

dimM = dimN = n+ 2(m− n).

On the other hand,
dimM = dimG1 = n,

and so m = n. Hence ϕ0 is a submersion between manifolds of same dimension,
which implies that it is a local diffeomorphism. �

Recall the maps F1 and F2 from Prop. 4.14.

Proposition 6.3. Let U and U ′ be orbifold structures on the topological space
Q. Further let

V = {(Vi, Gi, πi) | i ∈ I} resp. W ′ = {(W ′
j ,H

′
j , ψ

′
j) | j ∈ J}

be a representative of U resp. of U ′, indexed by I resp. by J .

(i) Suppose that U = U ′. Let f̂ = (idQ, {f̃i}i∈I , [P, ν]) ∈ Orb(V,W ′) be a lift

of id(Q,U). Then F1(f̂) : (Γ(V), αV , Q) → (Γ(W ′), αW ′ , Q) is a unit weak
equivalence.

(ii) Let ε ∈ Hom(Γ(V),Γ(W ′)) be a unit weak equivalence. Then U = U ′, and
F2(ε) is a lift of id(Q,U).

Proof. Let G := Γ(V) and H := Γ(W ′). We will first prove (i). By Prop. 4.7 it

suffices to show that ε = (ε0, ε1) := F1(f̂) is a weak equivalence. We first show
that

t ◦ pr1 :

{
H1 s×ε0 G0 → H0

(h, x) 7→ t(h)

is a submersion. Let (h, x) ∈ H1 s×ε0G0. Recall from Prop. 5.3 that ε0 is a local
diffeomorphism, and from Special Case 2.12 that G and H are étale groupoids.
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Choose open neighborhoods Ux of x in G0 and Uh of h in H1 such that ε0|Ux

and s|Uh
are open embeddings with s(Uh) = ε0(Ux). Then Uh s×ε0 Ux is open in

H1 s×ε0 G0. Further

Uh s×ε0 Ux = {(k, y) ∈ Uh × Ux | s(k) = ε0(y)}
=

{
(k, ε−1

0 (s(k)) | k ∈ Uh
}
.

Therefore,

pr1 : Uh s×ε0 Ux → Uh

is a diffeomorphism. Since t is a local diffeomorphism, t ◦ pr1 is a submersion.

Now we prove that t ◦ pr1 is surjective. Let y ∈ H0, say y ∈ W ′
j , and set

ψ′
j(y) =: q ∈ Q. Then there is an orbifold chart (Vi, Gi, πi) ∈ V such that

q ∈ πi(Vi), say q = πi(x).

Vi
f̃i //

πi ��>
>>

>>
>>

>
W ′
i

ψ′

i��~~
~~

~~
~~

Q

Set z := f̃i(x), hence ψ′
i(z) = q = ψ′

j(y). Hence, there are a restriction

(S′,K ′, χ′) of (W ′
i ,H

′
i, ψ

′
i) with z ∈ S′ and an embedding

λ : (S′,K ′, χ′) → (W ′
j ,H

′
j, ψ

′
j)

such that λ(z) = y. Then λ ∈ Ψ(W ′) and (germz λ, x) ∈ H1 s×ε0 G0 with
t ◦ pr1(germz λ, x) = t(germz λ) = y. This means that t ◦ pr1 is surjective.

Set

K := (G0 ×G0) (ε0,ε0)×(s,t) H1.

It remains to show that the map

β :

{
G1 → K

germx g 7→ (x, g(x), ε1(germx g))

is a diffeomorphism. Note that β = (s, t, ε1). Let (x, y, germε0(x) h) ∈ K, hence

germε0(x) h : ε0(x) → ε0(y). By the definition of H1 there are open neighbor-

hoods U ′
1 of ε0(x) and U ′

2 of ε0(y) in W ′ :=
∐
j∈JW

′
j such that h : U ′

1 → U ′
2

is an element of Ψ(W ′). Since ε0 is a local diffeomorphism, there are open
neighborhoods U1 of x and U2 of y in V :=

∐
i∈I Vi such that ε0|Uk

is an open
embedding with ε0(Uk) ⊆ U ′

k (k = 1, 2). After shrinking U ′
k we can assume that

ε0(Uk) = U ′
k. Let γk := ε0|Uk

. Then

g := γ−1
2 ◦ h ◦ γ1 : U1 → U2

is a diffeomorphism, hence g ∈ Ψ(V). Note that ε1(germx g) = germε0(x) h by
Prop. 5.5. Finally, we see

β(germx g) = (x, g(x), ε1(germx g)) = (x, y, germε0(x) h).

Therefore β is surjective. Since germx g does not depend on the choice of Uk
and U ′

k, the map β is also injective. Finally, we will show that β is a local
diffeomorphism. Since s and t are local diffeomorphisms, we only have to prove
that ε1 is one, too. Let germx f ∈ G1. Choose an open neighborhood U of x
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such that U ⊆ dom f and ε0|U : U → ε0(U) is a diffeomorphism. By the germ
topology, the set

Ũ := {germy f | y ∈ U}
is open in G1, and the set

Ṽ := {germz ν(f) | z ∈ ε0(U)}

is open in H1. Further the diagrams

Ũ
ε1 //

��

Ṽ

��

germy f
� ε1 //

_

��

germε0(y) ν(f)
_

��
U ε0

// ε0(U) y �
ε0

// ε0(y)

commute. The vertical arrows are diffeomorphisms by definition. Therefore
ε1|Ũ : Ũ → Ṽ is a diffeomorphism. This completes the proof of (i).

We will now prove (ii). Prop. 3.4 shows that the orbifold atlases V and W ′ are
determined completely by the marked atlas groupoids Γ(V) and Γ(W ′), resp.
Hence we can apply Prop. 4.12, which shows that F2(ε) is well-defined. Suppose
that

F2(ε) =
(
f, {f̃i}i∈I , [P, ν]).

Prop. 4.12 yields f = idQ. By Lemma 6.2 ε0 is a local diffeomorphism. Thus,

Prop. 4.12 implies that each f̃i is a local diffeomorphism. The domain atlas of
F2(ε) is V, its range family is W ′. From Prop. 5.6 it follows that U = U ′. By
Def. 5.8 F2(ε) is a lift of id(Q,U). �

Proposition 6.4. Unit Morita equivalence of marked atlas groupoids is an
equivalence relation.

Proof. Since reflexivity and symmetry are easily verified, it suffices to show tran-
sitivity. Suppose that Γ(V1), Γ(V2), and Γ(V3) are marked atlas groupoids such
that Γ(V1) is unit Morita equivalent to Γ(V2), and Γ(V2) is unit Morita equivalent
to Γ(V3). Hence there exist marked atlas groupoids Γ(W1), Γ(W2) and unit weak
equivalences ε1 : Γ(W1) → Γ(V1), ε2 : Γ(W1) → Γ(V2), ε3 : Γ(W2) → Γ(V2),
ε4 : Γ(W2) → Γ(V3):

Γ(W1)
ε1

zzuu
uu

uuu
uu ε2

$$I
III

II
II

I
Γ(W2)

ε3

zzuu
uuu

uu
uu

ε4

$$I
II

III
II

I

Γ(V1) Γ(V2) Γ(V3)

Prop. 6.3(ii) (in combination with Prop. 3.4) shows that the orbifold atlases
V1, V2, V3, W1, and W2 are all representatives of the same orbifold struc-
ture U on some topological space Q. Further F2(ε1) and F2(ε4) are lifts of
id(Q,U). Prop. 5.19 states that F2(ε1) and F2(ε4) are equivalent. Hence there
exist a representative W of U and charted orbifold maps δ1 ∈ Orb(W,W1),
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δ2 ∈ Orb(W,W2):

W1
F2(ε1)

// V1

W

δ1
=={{{{{{{{

δ2 !!C
CC

CC
CC

C

W2
F2(ε4)

// V3

The maps η1 := F2(ε1)◦δ1 and η2 := F2(ε4)◦δ2 are lifts of id(Q,U). By Prop. 6.3(i)
F1(η1) and F1(η2) are unit weak equivalences. Hence Γ(V1) and Γ(V3) are unit
Morita equivalent. �

For an orbifold (Q,U) we define

Γ(Q,U) :=
{(

Γ(V), αV , Q
) ∣∣ V is a representative of U

}
.

Proposition 6.5. Let (Q,U) be an orbifold and let V be any representative of U .
Then Γ(Q,U) is the unit Morita equivalence class of the marked atlas groupoid
(Γ(V), αV , Q).

Proof. Let (Γ(W), αW , Q) be a marked atlas groupoid which is unit Morita
equivalent to (Γ(V), αV , Q). Then there exist a marked atlas groupoid (Γ(K), αK, Q)
and two unit weak equivalences (Γ(K), αK, Q) → (Γ(V), αV , Q) and (Γ(K), αK, Q) →
(Γ(W), αW , Q). Prop. 3.4 shows that the orbifold atlases W and K on Q are de-
termined completely by (Γ(W), αW , Q) resp. (Γ(K), αK, Q). Then Prop. 6.3(ii)
yields that W and K are representatives of U .

Now let W be a representative of U . Consider the charted orbifold maps

f̂ =
(
idQ, {f̃i}i∈I , [P, ν]

)
∈ Orb(V,V),

ĝ =
(
idQ, {g̃j}j∈J , [R,σ]

)
∈ Orb(W,W)

where all f̃i and g̃j are identities (and [P, ν] and [R,σ] are given by Prop. 5.5).

Then f̂ and ĝ are clearly lifts of id(Q,U). By Prop. 5.19 f̂ and ĝ are equiv-
alent. Hence there exist a representative K of U and charted orbifold maps
ε1 ∈ Orb(K,V), ε2 ∈ Orb(K,W) which are lifts of id(Q,U). The charted orbifold

maps η1 := f̂ ◦ ε1 and η2 := ĝ ◦ ε2 are lifts of id(Q,U). Prop. 6.3(i) shows that

F1(η1) : (Γ(K), αK, Q) → (Γ(V), αV , Q),

F1(η2) : (Γ(K), αK, Q) → (Γ(W), αW , Q)

are unit weak equivalences. Thus, (Γ(W), αW , Q) is in the unit Morita equiva-
lence class of (Γ(V), αV , Q). �

Equivalence of charted orbifold maps now translates to atlas groupoids as fol-
lows.

Definition 6.6. Let (G1, α1,X), (G2, α2,X), (H1, β1, Y ), and (H2, β2, Y ) be
marked atlas groupoids. For j = 1, 2 let

ψj : (Gj , αj ,X) → (Hj, βj , Y )
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be a homomorphism of marked Lie groupoids. We call ψ1 and ψ2 unit Morita
equivalent if there exist marked atlas groupoids (G,α,X) and (H,β, Y ), a homo-
morphism χ : (G,α,X) → (H,β, Y ), and unit weak equivalences εj : (G,α,X) →
(Gj , αj ,X), δj : (H,β, Y ) → (Hj, βj , Y ) such that the diagram

(G1, α1,X)
ψ1 // (H1, β1, Y )

(G,α,X)

ε1
77ppppppppppp

ε2 ''NNNNNNNNNNN

χ // (H,β, Y )

δ1
ggNNNNNNNNNNN

δ2xxppppppppppp

(G2, α2,X)
ψ2 // (H2, β2, Y )

commutes.

Remark 6.7. For j ∈ {1, 2} let (Gj , αj , Q) and (G′
j , α

′
j , Q

′) be marked atlas
groupoids and

ψj : (Gj , αj , Q) → (G′
j , α

′
j , Q

′)

unit Morita equivalent homomorphisms. By definition there exist marked atlas
groupoids (K,α,Q) and (K ′, α′, Q′), a homomorphism

χ : (K,α,Q) → (K ′, α′, Q′),

and unit weak equivalences

δj : (K,α,Q) → (Gj , αj , Q)

δ′j : (K ′, α′, Q′) → (G′
j , α

′
j , Q

′)

such that the diagram

(G1, α1, Q)
ψ1 // (G′

1, α
′
1, Q

′)

(K,α,Q)

δ1
88ppppppppppp

δ2 &&NNNNNNNNNNN

χ // (K ′, α′, Q′)

δ′1
ggOOOOOOOOOOO

δ′2wwooooooooooo

(G2, α2, Q)
ψ2 // (G′

2, α
′
2, Q

′)

commutes. Let V1, V2 and W be orbifold atlases on Q such that

(Gj , αj , Q) = (Γ(Vj), αVj
, Q)

and

(K,α,Q) = (Γ(W), αW , Q).

Likewise let V ′
1, V ′

2 and W ′ be orbifold atlases on Q′ such that (G′
j , α

′
j , Q

′) =

(Γ(V ′
j), αV ′

j
, Q′) and (K ′, α′, Q′) = (Γ(W ′), αW ′ , Q′). By Prop. 3.4 all these

orbifold atlases are uniquely determined. Prop. 6.3(ii) shows that V1, V2 and
W determine the same orbifold structure U on Q, and that F2(δj) : W → Vj are
lifts of id(Q,U). By the same reason, V ′

1, V ′
2 and W ′ determine the same orbifold

structure U ′ on Q′, and F2(δ
′
j) : W ′ → V ′

j are lifts of id(Q′,U ′). Hence the charted
orbifold maps

F2(ψj) : Vj → V ′
j
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are equivalent, and this equivalence is shown by the commutative diagram

V1
F2(ψ1)// V ′

1

W

F2(δ1)
>>~~~~~~~~

F2(δ2)   @
@@

@@
@@

@

F2(χ)
// W ′

F2(δ′1)
``AAAAAAAA

F2(δ′2)~~}}
}}

}}
}}

V2
F2(ψ2)

// V ′
2

An analogous argumentation allows to canonically convert equivalence of charted
orbifold maps f̂ and ĝ to unit Morita equivalence of F1(f̂) and F1(ĝ). In turn,
equivalence of charted orbifold maps canonically corresponds to unit Morita
equivalence of homomorphisms between marked atlas groupoids, and vice versa.

Proposition 6.8. Unit Morita equivalence of homomorphisms between marked
atlas groupoids is an equivalence relation.

Proof. This follows immediately from Rem. 6.7 and Prop. 5.15. �

We define the category Agr of marked atlas groupoids as follows. Its class
of objects consists of all Γ(Q,U). The morphisms from Γ(Q,U) to Γ(Q′,U ′)
are the unit Morita equivalence classes [ϕ] of homomorphisms ϕ : (G,α,Q) →
(G′, α′, Q′) where (G,α,Q) is a representative of Γ(Q,U) and (G′, α′, Q′) is a
representative of Γ(Q′,U ′). More precisely,

Morph
(
Γ(Q,U),Γ(Q′,U ′)

)
=

=
{
[ϕ]

∣∣ ϕ ∈ Hom
(
(G,α,Q), (G′ , α′, Q′)

)
, (G,α,Q) ∈ Γ(Q,U),

(G′, α′, Q′) ∈ Γ(Q′,U ′)
}
.

To define the composition in Agr let [ϕ] ∈ Morph
(
Γ(Q,U),Γ(Q′,U ′)

)
and

[ψ] ∈ Morph
(
Γ(Q′,U ′),Γ(Q′′,U ′′)

)
. Choose representatives ϕ : (G,α,Q) →

(G′, α′, Q′) of [ϕ] and ψ : (H ′, β′, Q′) → (H ′′, β′′, Q′′) of [ψ]. Then find repre-
sentatives (K,γ,Q), (K ′, γ′, Q′), (K ′′, γ′′, Q′′) of Γ(Q,U), Γ(Q′,U ′), Γ(Q′′,U ′′),
resp., and unit Morita equivalences

ε : (K,γ,Q) → (G,α,Q),

ε′1 : (K ′, γ′, Q′) → (G′, α′, Q′),

ε′2 : (K ′, γ′, Q′) → (H ′, β′, Q′),

ε′′ : (K ′′, γ′′, Q′′) → (H ′′, β′′, Q′′),

and homomorphisms of marked Lie groupoids

χ : (K,γ,Q) → (K ′, γ′, Q′),

κ : (K ′, γ′, Q′) → (K ′′, γ′′, Q′′)
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such that the diagram

(G,α,Q)
ϕ // (G′, α′, Q′) (H ′, β′, Q′)

ψ // (H ′′, β′′, Q′′)

(K,γ,Q)

ε

OO

χ // (K ′, γ′, Q′)

ε′1
ggOOOOOOOOOOO

ε′2
77ooooooooooo

κ // (K ′′, γ′′, Q′′)

ε′′

OO

commutes. Then the composition of [ϕ] and [ψ] is defined as

[ψ] ◦ [ϕ] := [κ ◦ χ].

Proposition 6.9. The composition in Agr is well-defined.

Proof. This follows immediately by invoking Rem. 6.7, Lemmas 5.11 and 5.17,
and Prop. 5.18. �

Recall the orbifold category Orb from Sec. 5.3. We define an assignment F from
Orb to Agr as follows. On the level of objects, F maps the orbifold (Q,U) to

Γ(Q,U). Suppose that [f̂ ] is a morphism from the orbifold (Q,U) to the orbifold

(Q′,U ′). Then F maps [f̂ ] to the morphism [F1(f̂)] from Γ(Q,U) to Γ(Q′,U ′).
Now one easily deduces the following theorem.

Theorem 6.10. The assignment F is a covariant functor from Orb to Agr.
Even more, F is an isomorphism of categories.

Remark 6.11. The functor F is constructive. With an easy extension of [MM03,
Cor. 5.31], also F−1 is constructive.
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[MM03] I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge
Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge,
2003.

[Moe02] I. Moerdijk, Orbifolds as groupoids: an introduction, Orbifolds in mathematics and
physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., Provi-
dence, RI, 2002, pp. 205–222.

[MP97] I. Moerdijk and D. Pronk, Orbifolds, sheaves and groupoids, K-Theory 12 (1997),
no. 1, 3–21.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

E-mail address: pohl@mpim-bonn.mpg.de


	1. Introduction
	2. Reduced orbifolds, groupoids, and pseudogroups
	2.1. Reduced orbifolds
	2.2. Groupoids and homomorphisms
	2.3. Pseudogroups and groupoids

	3. Marked Lie groupoids and their homomorphisms
	4. Groupoid homomorphisms in local charts
	5. The category of reduced orbifolds
	5.1. The identity morphism
	5.2. Composition of charted orbifold maps
	5.3. The orbifold category

	6. The orbifold category in terms of marked atlas groupoids
	References

