
Cayley Surfates In AffIne Dlfrerentlal 6eometry

by Katsum1 Nom1zu and Ulr1ch PInkall

Katsum1Nom 1zu .

Department of M6thematlcs
Brown Unlvers1ty
Prov1dence, RI 02912
USA

end

Max-Plancl<-I nst1tut für Mathemat1k
6ottfr1ed-Claren-Strasse 26
5300 Bann 3

The nrsl aulhor would .lIke lo lhank TU, Berlln

ror lls hospilallly durlng his vlsll.

Ulr1ch P1nkatl

Fochberetch Mathematik 3
Technische Univers1tät I Berl1n
Stresse des 17. Juni 135. .

D-l000 Berl1n 12

MPI/88-20



. 1

Cayley Surf·aces .In Affine Differential Ge~metry

by Katsum1 Nom1zu ~rid Ulr1ch Pinkall

A Cayley surf~ce 1n afffne ,space R3 1s g1ven as the graph of a c,vb1c

po1ynomfa 1, say, Z = xy + y3/6. Thf s ru1 ed sv rfa ce 1s an Improper aff1ne

sphere wh1ch 1s also one of the homogeneous nondegenerate aff1ne

surfaces (see [1], p.243, also [2], Chapter 12).

- One of the further prop"ert1e5 of the surface 1s that tts. (nonzero ) eubic

form 15 paralle1.re1atlve to the 1nduced aff1ne conneet1on. The purpose of

try15 paper 15 to snow that th1s property alone character1ze5 the Cayley

surfaee up to an equ1aff1ne transformation 10 R3. Nam'e1y, we prove the

foll ow1ng

Theorem. ~M2 be a oondeaenerate surfaee 1n R3 • .L.tl 9 be the'

lnduced affine coo08ct10n and let h b8 the fundamenta) form (afffoe

metr1e). lf yt 2h = 0 Jll!1. vh ~ 0, 1Mn M2 15 cong ruent to (an open subset

of) the Cayley surface by an egujaff10e tran5format1oo of R3.

We shall follow the term1nology and notat10n 1n [3] and [4], wh1ch

prov1de a modern lntroductlon to aff1ne dtfferent1a1 geometry. A qu1ck

rev1ew of the bas1c not10ns and facts 1s provfded 1n Sect10n I. In Sect10n

2, we study the behav10r of the eub1e form for dtmenston 2. In .Sectfon 3

we .show that the assumpt10n .V2h = 0 but 9h ~ 0 ImplIes that the 1nduced
. .

cqnnect10n isf1at and, consequently, the surface 1s the graph of a certa1n

fu'nct1on z = F(x, y) such that the Hess1an determlnant 1s ± 1. In Sectton

4 we d1scuss the reduet10n of the Hess1an matr1x to a s1mple form by an'

equ1afflne change of the coord1~ates system x,y. Th1s argument .makes

use of an inner produet of s.1gnature( -, +. +) in the space of symmetr1e

2 x 2 matr1ces. Once we obta1n the funct10n F from the reduced Hess1an

matr\x, our surface 1s shown to be eQuiaffine1y congruent to the standard

Cayley surface.
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1. Affine surfaces.

Let f be an 'immersion of an n-d1mensional d1fferentlab1e manHold Mn

10to an (0+1 )-d"1mensl0nal affine spaee Rn+l w1th,a f1xed parallel volume

element w. Choose any transversal vector field ~ onM. For vector

f1e1ds X and Y, ·we may wrlte

DX f*(Y) =. f*(9 XY) + h(X,y ) ~

0x ~ = - f*(SX) + T ( X) ~ ,

where 9 ls the 10duced affine eonneetion on Mn, the b111near symmetrie

tensor h the'furidarnental.form, ~he (t, t) tensor S the shape operator,

and'r' the transversal connection form. We also introduce a volume

element e on Mn by setting

8(X t , ••• ,Xn) =w (Xl, ••• ,Xn'~)

for any tangent vectors .Xl' .•.• ,Xn.

Whether h Is degenerate or nondegenerate fs independent of the cholee

· of ~. When h 15 nondegenerate ,we say that the hypersurface Mn 15

nondegenerate. It 1s a fundame,ntal fact 1n classlcal affine different1al

geometry that it'Mn ls nondegenerate, then' we ca~ choose ~ uniquely such

that

1) T = 0, wh1ch impl1esJh~t e 1s paranel re1a'tlve to Vi .

2) the vo1ume element for h coincldes w1th 8.

The unique1y determined ~ 1s ca11ed the affine normal and the

correspond1ng h the aff1ne metr1e. The'induced connectlon V and the

vo1um e e1emant 8 together define an equia ffi ne st ructure on Mn.

The ,covariant differential C = 9h1s called the cubie form of Mn. It 1s

related to the difference tensor Kbetween the 1nduced connection ·9 and ,

the Lev1-C1v1ta connectlon '9 for the aff1ne metrie. If KXY = QXY - QXY'

then we have'

h(KXY,Z) = -, C(X,Y;Z) for any tangent vectors X,Y,Z.

Thus C = O'lf and only lf Q and V co1nc1de.

Because of cond1t1on 2) above, we have apolar1ty: trace KX c O.

If we express hand C by thei r components rel'atlve to any basis in the

tangent space or any 10ca1 coordlnate system, apolarity can be expressed

by

,11

"
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It 1s a classical theorem due to Pick. and Berwald that a nondegenerate.
hypersurface w1th vanish1ng cub1c form 1s a quadrlc. This result has been

extended. See [5] for the proof 1nclud1ng the classical case.

2. Cub1c form on an aff1ne surface.

We now cons1der exclus1vely nondegenerate aff1ne surfaces M 1n R3.

We w1sh to study the behavlor of the cub1c forro 1n more detail. Some of.

the 1nformation g1ven below appears 1n [6].

Let V be a Z- d1 menslona 1 rea 1vecto r spac e w1th a nondegene rate lnner

product h. Let C be a nonzero cub1c form., namely, a 3-l1near symmetr1e

fuoct1on V x V x V, wh1ch sat1sf1es the apolar1ty condit10n relat1ve to h. By

a null d1rect1on of C, ws roean a d1rect10n of a vector X~ 0 such that

C(X,X,X) = O.

Lemma 1. llh 18 ell1pt1e (that iso posit1ye-def1nUe), then C has three

d1st1oct nun dtrect1oos.

Proof. Tak.e a basts {el' ezl such that hll = h22 = 1, h12 = h21 ::::z O•.

By apol arity we, have C111 + C221 ::::z 0 and C112 + C222 CI, O. S,ett1ng a:=

Cll1·and b = C112, we have for xc x1el + x2eZ

C(x,'x,x):: a (xl)3 + 3b (xl)2 x2 - 38 xl (x2)2 - b <xZ)3,.

Case where b = O. Then

C(x, x, x) = a xl [( xl)Z - 3 (x2) 2]

so th at (0, 1), (0/3" , 1), end ( ..f3" , - 1) g1ve th fee d1st1nct null dl reet19n5.

Case where b;.! O. Wr1t1ng t = xZ/x 1 and c = alb, solving the equat10n

C( x, x, x) = 0 15 reduced to solv1ng

f(t) _t3 + 3 ct2 - 3t - c=O.

One can sh OW, th 8t th1s equat10n has th ree dlst1net roots by check.1ng th e

values of f at two cr1tlcal potnts:

f(-c - (c 2+ 1)1") >0 . and f( -c+ (c2+ 1)1") <o.

Lern ma 2. II h 15 hype rbol1 c (that 15, 1ndef1nite) " then ~ has e1the r

a) ooe null 9' rect10p of mult1pl1c1ty 1~C can be wrttten 10 the form
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'C(X,x,x) = p.(X) g(X,X), where p. a...a ]-fbrm and 9 1s a def1n1te inner
. , '

product·oo V, each uniaue up to a scalarj oc

b) a null d1cect1oo of mult1pl1c1ty 3, 10 wh1ch case there 1s a oonzeco x

in V such that h(x, x) = 0 Allil C( x, y, z) = 0 f2.c. all y,-z in V. The d1rect1on

of x 15 un1guely determ1oed.

Ws haye'case b) 1fand ooly if Pjck's Inyarjant h(C,C) ~O.

PeooL Ws use a null basts {e.l ,e2l so that"h 11 = h22 = 0 and h12 = 1.

From apolar1ty we gat Cl fz = C122 = 0.' Thus

. C(x,x,x) = Cl11 ,(xl)3 + C222 (x2 )3.

ilü....a). If C111 ~ 0 -and C222;c 0, let Cl and ß be thejr raa I cubic

roots. Then

C(x,x,x) = (ax1+ ß x2) «X2 (x l )2 - aß x 1x2 + p2(x2 )2) .

. We may def1ne a 1-form p. by p.(x) = (Xx l + ßx2 and an inner product 9 by
~

g(x,y) = (X2 xlyl - ,aß (xly2 + x2yl.)+_ ß2 x2y2. Clearly, 9 15 pos1t1ve

def1n1te and C has only one nulJ d1rect10n. The uniquensss assert10n 1s

als 0 0 bv j 0 us .

illl b). If C111 = 0, then X = (1,0) 1s a nulJ d1rectjon of muJt1pl1clty

3. S1nce C(X,ei,ej) = Cl1 j = 0 for all 1,j, we see that X 1s 1nthe kernel of

C. 0bv10US1y, h(X, X) = o. If C22Z = 0, t hen X = (0, 1) 1s the vector. The

un1queness 15 easy to see.

The additional statement in Lemma 2 follows from

h(C,C)=L: h
'
PhjqhKr C'jk Cpqr =2'CI11C222

tn terms of the same null basts {el, ezl. 0

RemarK. fach of the two cases 1n Lemma 2 1s actually posslble at a

point of an affine surface. For example, for the graph of

z = xy + (x3 + y3 )/6 at the point (0,-0,0) the vector olox- oloy g1ves

the only null dlrect10n of the cub1c form. On the other hand, for the

Cayley surface, namely, for the graph o( Z =xy + y3/6, the cub1c form
. ,

has a null d1rectlon of mult1pl1city ~ at every po1nt.

3. Consequence of QC = 0 ~ C~O.

We prove
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Lemma 3. ~ M be a nondegenerate surface 10 R3 such that the cub1c'

for m 1s pa rall el but not 0.- IMn V 15 f1 at and M 15 th e graph of a functioo

. z = F(x,Y) defined on a certain doma1n Dof the (x~Y)-Dlaoe aod the

Hess1an determinant Qf F ll. ± 1. '

Proof. First assurne that h 15 ell1pt1c. Let p be a point of M and

cons1der the three d1st1nct null direct10ns at p that ex1st by Lem~a 1. We

may'assume that they are given by two l1nearly independent tangent

vectors e1' e2 and the vector e1 + e2. S1nce e 18 parallel, parallel

displacement of these tangent vectors a100g any curve from p gives rise'

to three distinct null direct10ns at each point. Tn1s means that each linear

transform at1 00 , bel ong1rg to the l1nea r ho1onomy 9roup of 'V based at p

leaves the d1rect10ns of 91' e2' and e1 + e2 invariant. Thus, must be a

scalar mult1ple of the 1dentity transformation. But slnce there 1s a

. parallel volume element e, the determinant of, 1s 1, wh1ch means that"

1s tho 1dent1ty. Thls. shows that the holonomy group conslsts of the

1dent1ty transformation and 'V 1s flat, that Is, the curvature tensor R Is 0.

Now for an affine sur,face (or hypersurface), 1t Is known that R= '0

impl1es that the shape operator S is O. Indeed, this follows easl1y from

the Gauss equat10n: R(X, Y)2 = h(Y, 2 )SX - h(X, 2)SY, see [5]. From t~e

second basic equation in SecUon 1 the affine normal t 1s parallel1n R3. It

~ollows that M 1~ aff1nely equ1valent to the graph of a certa1n funct10n z =

F( x, y) 0 n a dom aln 0 of t he (x t Y) - P1ane• S1 nce t he aff1ne nQr mal t 1s

thus Ident1f1ed w1th the vector (0,0,1) 1n the (x,Y,z)-space, the Hess1an

matrix of Fexpresses the fundamental form h relative to al"ox,alay. The

condit1on that e co1nc1des w1th, the volume element of h 1s equ1valent to

the fact that the Hess1an determ1nant has absolute value 1. (For,the

detail, see the ~emark follow1ng (7) in [3].) The components of C = vh

- are the th1rd partial derivatives of Fand those of ve ~ V2h are the fourth

partial derivat1ves of F. Henee ve = V2h = 0 means that' each second

part1a 1 derivative of F 15 an affine funct10n of the form ax + by +c.

Now constder the case where h 1s hyperbol1c. Again, we show th'at V 1s .

flat and hence M is the graph In the manner stated JU5t above.. .
Since e i5 parallel, the behavlor of C as Lemma 2 rema1ns the same

for all po1nts. Namely, we have e1ther case a) at every p01nts or case b)
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at every point. In- the f1 rst case, we have a positive defin1te 1nner product
~ ~..

9 at each point. S1nce C 1s parallel', the holonomy group of '9 at a po1nt p

,leaves Qp 1nvar1ant up to a scalar. S1nce each'element, 'has determtnant

1, 1t must leave gp 1nvar1ant, that 1s, It 1s a rotation. On the other hand,

, leaves the only. null dl,rect1on 1nvar1ant and c'annot be aproper rotat1on.

Thu~ .the holonomy group cons1sts of the 1dent1ty transformation and h 15

flat.

We now deal w1th the second case so we have. at each po1nt a vector X,

unlque ':lP to a 5calar, such ~hat h(X,X) = 0 and ~(X,U, V) = 0 for a11 U and

V. We may choosel oe al1y two vector f1e 1ds X and Y sut h that

1) h( X,X) =0·; 2) h(X, Y) = 1; 3) h(Y , Y) = 0;

4) C(X,. U, V) =0 tor a11 veetors U, V;

5) C(Y,Y,Y) =1•

. In the fo11ow1ng ws use the fact that (9Xh)(U, V) c C(X,U" V) cO for all U

and'y and (V'yh) (X, U) ~ C(Y ,X, U) ::: 0 for a11 U. Now,tak1ng '9X of 1) we

obta1n h(9XX,X) = 0, ythtCh 1mpl1es .9XX = ~'for soma .funct10n x.. From

5) we get C(vXy , Y, Y) = 0, wh1ch 1mpl1es that- VXY == v X. (We sha11 see

1n a moment that x.::: V '::: O. )

From 2) we get h(V'XX, y~ + heX, VxY) = O. S1nce h(V'XX, Y) ~ x. and

h(X, 9 XY) = h(X, 'V X) = 0, we 9et x. =O. F. rom 3) we 9et h(9XY , Y) = 0,

wh1ch 1mpl1es v = O. Ws have thus far'shown VXX = 0 and VXY = O.

From 1) we get h( 9yX,X) = Ö, whlch 1mpl1es VyX =)J. X tor so.me

funct10n )J.. From 5) we get c( Vyy , y, y) cO, wh1ch 1mp11es' 9yY = T'X.

From 2) we get h( V'yX, y) + h(X, 9yY) = 0, whlch Impl1es jJ. =0, t.hat

15, 'VyX = O. F1nally, from 3) we get (Vyh)(Y,Y) +.2 h(VyY,Y) =,0. By

5) and h('VyY,Y) = h(TX,Y) = T, we f1nd T = -1: namely, 9yY = -1X ..
To summar1ze: VXX c VxY = VyX =0 and 9yY = - 'X.' We. get [X, YJ .=

O. Also we have R(X, Y)Y = R(X, Y)X = 0, that 1s, R= O. Agaln, we have M

as the graph of a funct10n z ::: F(x, y) as betore. . 0

4.· Reduct10n of the Hess1an matr1x.

We cons1der a ditferenttable funct10n x3 = F(xl ,x2) defined on a doma1n. '

"
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D of the (xl ~x2)-plane. We may assume that D conta1ns (0,0). penote the

Hessian matrix b~ H = [Flj], where" Fij ~ o2F/ox toxJ •

We assume that

(I) det [F1j]'= ± 1 at a11 points; ,

(11) eachFij 1sanafflnefunctiono'fx1 andx2. Not all F1j are

constant functions (corresponding to the condition C~ 0).

We shall show ~hat actually qet [Fij] :::: 1, at a11 p~ints and find an.

equiaffine change of the coordinates (xl ,xZ) to "(x,y) wh1ch reduee5 the
, ,

Hessian matrix to the form'

[
0 1 0]' ,
1 ßy, ' ~;it 0.

, o.

We beQin by stating without proof

Lemma 4. Cons1der a coord1nate change Qf'the for m

X 1 = P11 xl + ,p 12 x2

.x2 = p2 1 x2 + p22 x2

and thjnk of the function F( xi ,xZ) as a functjoo -r CX" '1 "x 2). Theo th6

Hess1an matrix H" = ['F""ij] , where 'F""jj = o2r- lox 1ox j, 1s relate~ 10 the

orjainal Hessian matrix H= [Fij].b::i H= tp Fr P, where P 1s the matrix

Whose'(~,j )-comQooent is p1j .

Next, we cons1der, in the vector sp.ace gl(2,R), the lnner product

with s1gnatu re .( • , -" +. +) glven by _

<A,A:> = - ad' - a'd + bc"+b'c.

- The corresponding quadrat1c form 15 5imply <A,A> = .. det·A. Let 8(2)

deoote the subspaee 'of a11 symmetrie matr1ees 1n gl(2,R). The

rest riet1 on cf the jone r .product to s (2) ha s 51g nature ( •. +, +), th at 15, 11

1s a Lorentz1an inner produeL

Now for any P E SL( 2, R), the mappiog

X E & ( 2) ...... tp X Pes ( 2)

preserves the inner produet and henee 15 a l,1near 1sometry. We may

easily verify that SL( 2, R)/ {± I2} 1s isomorphie to the rotation 9roup of

s(2). In other w6rds, tor any linear 1sometry of 8(2) there 1s a 5u1table

I .
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P which 1nduces 1t 1n the manner above.

We now cons1der the' aff1n~ mapp1ng given by the Hess1an matrix

- (x1, x2) t-+ H (x1, x2 ) E 8 ( 2) ,

which we may wr1te 1n the form

H (xl ,.xZ) = xl A + x2 B + C, w1th constant A,B,C 1n 8(2).

If we set x1 = 0, the determ1nant of x2B +C must be ± 1. Thus

~ det (x2B +C):::J <x2ß +t,xZB +C> = <B,B>(x~)2 + 2 <B,C>x2 + <C,C~ = ±1.

So we must have <8, B> = <8, C> c 0 and <C, C> = ±1. Now we c,~n el1minate

the case <C, C> = -1, because ~hen the restr1ct1on of the '1nner product to

{X E 8 (2); <X, c> = o} 1s posit1ve def1n1te and ca nnot contaln a. null. vector

B, unles~ B = 0.' ]f B:;: 0, conslderat1on of the l1ne xlA ~ C ~tlllead to

<A, A>. = <A, C> :;: 0 and thus A =0 by the same arQument. Thus <C, C> = -,1

1ea ds to constancy of ~ (x1,x2 ): cont ra ry to the as sumption. He.nc e, <C, C>

= 1•

Slnce A and Bare two null.vectors 1n' {X E S (2)j <X, C> = ö} whose

d1 mens10n 18 2, th sy are Hnea r ly dependent, say, A· = kB. Thus H( x 1,x2)

= Uc'x 1+ x2 ) B + C. Now s1nce <B,B> = <B,C> = 0 and <C,C> = 1, we cao ftnd

-an lsometry X t-+ tp X P of 8(2), wtth P ~ SL(2,R) wh1ch takes B Into B,·

and C tnto Cl where. ,

BI =r: ~1and ,Cl =t ~1
By using th1s mat rix P, we conslder an equlaff1ne change of the coordinate

systemfrom (xl,~?)to, say, (x,y). ByLemma4weseethatthe

Hesst an of F re1atlve to (x, y) i8 of th e for m (ax + ßy)8 1 + Cl' 1. e.

r0 .1 1l1 ax+py

So the or1g1nal funct10n as a·funct1on of x, y 1s' such that

Fxx =:=.0, Fxy = Fyx = 1, Fyy = a x+ßy .

Then Fyyx =(X. On the other hand, Fyxy = O. Hence a = ° and Fyy =
ßy. We have thus proved the assertion 1n the beginning of th1s sectlon.

Inc1dentally, WS should remark that the aff1ne metr1c of our surface turns

o.ut to be hyperboltc,.
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From the Hess1an matr1x in our hand we f1nd

F(x, y) = ßy3/6 ~ xy + ax + by + c,

where a, b, c are certa1n constants. By changing the coordinates from

(x,y,z) to .Cx,y,~, where x=x, y=y, z=z - (ax+by+c), we can

assume F(x, y) = ßy3/6 + xV. Now change (x, y) to (ß 1/3x, y/ßl/3) " We

f1nal1y get the form z =xy + y3/6. Thus our surface 1s equ1aff1nely

'congruent to the graph of th1s funct1on.
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