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Ko of Skew Group Rings and Simple Noetherian Rings without Idempotents

Martin Lorenz

Abstract. We construct simple Noetherian rings S of characteristic p,

for any prime p, such that S has zero divisors but no non-trivial idempotents.
Our methods are non-camputational and rely on a description of K for certain
skew groaup rings.

Introduction

In [2-N], Zalesskii and Neroslavskii constructed a simple Noetherian ring
S of Goldie rank 2 which does not contain any non-trivial idempotents, thereby
answering a question of Faith [F] in the negative. The camputations carried out
by Zalesskii and Neroslavskii to verify the nonexistence of idempotents are
quite difficult, and our goal here is to present a nunber of general results on
skew group rings which allow as an application the painless construction of
many further examples of simple Noetherian rings with zero divisors but without
non-trivial idempotents.

The first section conta.ins same results on the structure of K, for
skew group rings S = R« of a finite p~group G over a ring R with pR = {0}
(p any prime). Our basic technical tool here is a Morita context for group
actions which was introduced in a commtative setting by Chase, Harrison, and
Rosenberg [C-H-R] and has recently been studied for general rings by M. Cchen
[Col. These results are then applied in the second section to construct simple



Noetherian rings of the desired kind. The actual examples exhibited
here are similar to (and include) the original Zalesskii-Neroslavski
construction and involve central localizations of group rings of

finitely generated nilpotent groups. Essential in our method is the

use of trace functions for the rings under consideration.

Notations and Conventions. The following notation will be kept

throughout this article:

R will be a ring with 1 ,
G a finite group with a homomorphism G - Aut(R), written
as‘ X P (.)x,

S = RxG the corresponding skew group ring, with elements

s = I s X (sx € R) and multiplication (sxxh(syy) =
X€G
-1
sxs§ Xy .,
RG the fixed subring of R under the action of G,
tG: R -» RG, re» ¥ rX , the trace map.
XEG

Furthermore, we set

t= I xX€8S8, and T = tG(R) » an ideal of RG.

X€EG
Finally, KO(R) denotes the Grothendieck group of all finitely
generated projective right R-modules, and GO(R) the Grothendieck
group of all fin. gen. right R-modules. The element of KO(R)
corresponding to the fin. gen. projective R-module P will be

written as ([P} , and similarly for »GO(R).



1. 50 of some skew group rings

(1.1) The Morita context (cf. [Co]). We view R as (S,RG)-bimodule

and as (RG,S)—bimodule via the obvious isomorphisms R =~ St = Rt

and R « tS = tR . One has bimodule homomorphisms

orz Lad r tr

S RG S S S 1 1772
and
: RO®R G e .
g G 8 &G - RGR RG ’ r1 o r2 tG(r1r2)

These maps satisfy the associativity conditions

r1-f(r20r3) g(r1or2)-r3 ’

f(r1or2)-r3 = r1-g(r20r3)

for r1,r2,r3 € R. Thus (S,RG, R ’

R
s R¢ RG s
context or a set of pre-equivalence data, in the terminology of

« £, g) 1is a Morita
(Ba, p. 61ff]. Note that if S is a simple ring, then f must be
surjective. Therefore, in the following, we will concentrate on the
case where f is surjective, i.e.

S = StS (= RtR).

In our later applications, g will in general not be surjective,



i.e. T = t (R) will be a proper ideal of R®. (1f both £ and

g are surjective, then S and RG are Morita-equivalent [Ba,

p.62-65].)

(1.2) Lemma. Suppose StS = S. Then

i. R and R are finitely generated projective,
RG RG
RG
iii. R =~Hom ( R, R® , R =~Hom (R _,R® ),
S RG RG RG 5 RC RG s RG s RG RE
iv. £: Re® R = S, is an (S,S)-bimodule isomorphism.
s RG s S8

Proof. All assertions follow from [Ba, Theorem (3.4), p.62].

(1.3) Lemma. Suppose StS = S.
i. The tensor product . ® R defines a map o¢: KO(S) - KO(RG)

s RG
which makes the following diagram commute

K, (RG)
reSR*RG 0

KO(R) 6= . R KO(R)

]

=

o

2

e
\t:
B \3
1 @
0

e

{Note that R G and sR are fin. gen. projective so that the
R
restrictions are defined.) The image aKO(S) is contained in the

kernel K (T) of the map . ® RG/T: K,(RG) - K, (RG/T).
=G 0 0

ii. . & R defines a map Tt: G (RG) = G,{(S) such that the
R® s 0 0
composition KO(S) - KO(RG)-——-———;GO(RG) - GO(S) is the Cartan
Cartan T

o
map KO(S) - GO(S) (cf.[Ba, p.453]}).



Proof. (i). By Lemma (1.2), R G is fin. gen. projective and
R
R oGR >« S as (S,S)-bimodules. Therefore, ¢ defines a map KO(S)
R
- KO(RG) such that, for all [Q] € K,(S),

((. ® R)eo)[Q] = [Q
RG

Furthermore, for [P] € KO(R), one has

(ce(. ® S))[P] = [P ® S

o ; R 1 =[PeR G] = restRglP].

®
s RG R R

Thus the above diagram is commutative. From R = S*R = StS°R =

ST = RT one obtains R oGRG/T = 0 and hence, for [Q] € KO(S),
R

((. ® RG/T)og)[Q] = [Q ® R ® RG/T] = 0.
RG S RG

This proves (i).

(ii). As GR is projective, hence flat, 1t defines a map
R
GO(RG) » Gy(s). For [Q] € K, (S), one has

(roCartanoo)(Q] = [Q® Re R ] =[Qe SS] = [Q] € GO(S),

s RG S s

which completes the proof of the lemma.

(1.4) Operation of G on K,(R). The operation of G on R

induces an operation on KO(R) which can be described as follows.

For any fin. gen. projective right R-module P , one has P @& S
R

= ® P e x, where each P ® x is an R-module direct summand of

XE€G

R



Peo SR and as such is fin. gen. projective. The operation of G
R

is now given by
[p1* = (P @ x] ([P] € Ky(R), x € G).

The operation on the subgroup <[R]> of Ky(R)  is trivial, because

the map R ® x » R, rex » rX, is an isomorphism of R-modules. Set

Ky(R) o = KO(R)/<[P]x - [P] I [P] € Ko(R), x € G>

Hy (G,Kq (R))

and denote the canonical surjection KO(R) - KO(R)G by . The

maps . ® S: Ky(R) = K, (S) and res Ko (R) -~ KO(RG) factor
R

R-RG*
through KO(R)G so that, in particular, one has a map

¢: Ky(R) . =+ Ko (S) , TPT » [P ;;s].

Furthermore, define

b: Ky (S) = Ko(R), , [o] » TQT .

Then, in case S = StS, Lemma (1.3) yields the following commutative

diagram:
K, (RG)
\Q’G
Ky (R) ——» K, (R) ¢ , o = Ky (R) — K, (R)
KO(S)




(1.5) Lemma.
i. voé: KO(R)G-—>KO(S)-)K°(R)G is multiplication by |G}

on KO(R)G .

ii. Suppose that (1) for some prime p one has pR = {0}
and G 1is a finite p-group, and
(2) sts = s,
Then ¢oy: KO(S)-)KO(R)G—Q»KO(S) is multiplication by |Gl

on KO(S).

Proof. (i). For [P] € K_(R), one has

(¥04)TPT = TP @ 5.7 = =PI = lo| -[F7 -
R XEG

(iil). First note that S has a series O = Soc S1 < ...C

~
Si61 1-1 - oGS

all i . To see this, consider the group ring FPEG] c s,

=S of (RG,S)~subbimodules with Si/S for

where F, 1is the field with p elements. By (1), Fp[G] has

a series of right ideals 0 =W < W, € ... €W, = E‘p[G] with

1
W, /W, o Fp , the trivial Fp[G]-module. Therefore, setting

Sy = wis = wiR € S one obtains the required (RG,S)-subbimodules
~ ~ .
with 81/51_1-— LIVA PP ; R RGRS . Since RRG is flat, by
Lemma (1.2), we further ogtain short exact sequences of (S,S)-
bimodules
= = ~

0— V,_,4 R ;Gsi‘1 - Vi R ;Gsi — R ;GR S —» 0.
Thus, for Q fin. gen. projective over S , we deduce exact
sequences 0->QoV1_1—->QoVi->Qns'l'Q—>0,

S S S
whence

Qev, 2ot

S

i (131,2100"|G')0



Using the commutative diagram in (1.4), we finally obtain
(¢e9)[Q] = [l e Re R) ©5] = [0e (Re s)] =

s RS R s RrG
as we have claimed.

|
(1.6) Corollary. Suppose that (1) for some prime p one has

pR = {0} and G 1is a p-grour
and (2) Sts = S.
o~

Then KO(R)G ;ZZZD/p]— KO(S) %Zﬁ/p] , and KO(S) ;E[‘I/p]

o oK_(S) e zZ[1/p] is a direct summand of KO(RG) ® ZZ[1/p] .
z Z

Proof. By Lemma (1.5), the mappings ¢ © id and ¢ o IGI—1
yield isomorphisms between K (R). ® Z[1/p] and K_(S) o zz.[1/p]
o G 7z o z
which are inverse to each other. Moreover, by the commutative
diagram in (1.4), (¢ e l6l™1) (v e id) = ia

z Z xo(snzz]] /0]
through KO(RG) o z[i/p] via o e id , which profes the second
z

factors

assertion.

(1.7) The case |G| = 2., We conclude this section with a few

remarks concerning the simplest case, |G| = 2 and 2R = {0}.
These will not be needed in the second section, and possibly

hold more generally. Thus assume that

(1) YGl=2 and 2R = {0}, and

(2) sts = s.

Recall from Lemma (1.3) that oK _(S) & K_(T) = ,xer(xo(RG)—>

KO(RG/T)). Our goal here is to show that



Z-Ko (T) < Q‘KO(S) .

To see this, first note that 0 - R® - GRRG fG RG -» RG/T » 0

is an exact sequence of (RG,RG)-bimodulgs. Let a = [V] - [W] €
KO(T), with V and W fin. gen. projective over RG. Then, for
some s > 0, (V ;GRG/T) ® (R6/T)% « (W OGRG/T) @ (RG/T)S and,
after replacing V by V & (RG)S and S by W @& (R6)S, we may
assume that s = 0. Since V and W are flat, the above exact

RG RG
sequence yields exact sequences of right RCG-modules

0+ VeVeRE3VER ->VaeVeR +vVe R0
RC RG RrG RG RG

0 +WoWoRS +W oR -~ WaWe® R® + W e RG/T -» 0 .
RG R® RG RG RC

As the first three terms in each row are projective, the Schanuel-

Lemma [Ba, Cor. 6.4, p.36] yields an isomorphism

~
Ve Woe R _)OGV=W®E& (VoOR ) o&W.
RG RC RG RG

Thus, in KO(RG), we have
2-a = (. ;GRRG) (a) € Im(resp o) = oK,(S) ,
where the latter inclusion uses the diagram in Lemma (1.3). This

shows that 2-K0(T) c cKo(S) . as we have claimed. As a consequence,

we deduce that

oKy (S) © Z[1/2] Ky (T) © z[1/2]
Z Z

and, using Corollary (1.6),

K,(RC) o Z[1/2] « (K,(S) ® Im(.e RG/T)) @ Z[1/2]
0 2z 0 RG Z

o (KQ(R)G ® Im(.;ﬁRG/T)-) ; 2[1/2']-




(1.8) Example. We briefly discuss the original example of
Zalesskii and Neroslavskii [Z-N] in a slightly modified form.
Let k be a field of char 2 containing a non-root of unity X €

k* and consider the k-algebra R = B, = k{xi1,yi1}/(xy - AYX).

Then R 1is a simple Noetherian domain with KO(R) = <[R]> =« Z
[Lo 1, Section 1]. Moreover, the automorphism ¢ of R given
by x° = x7, y® = y—1 is easily seen to be outer so that the

skew group ring S = Rx<o> 1is simple (cf. [Mo, Example 2.81).
We claim that RG/T =~ k. Indeed, R can be viewed as a twisted
group algebra,

R ~ k¥[r]

with T = <x,y>k*/k* free abelian of rank 2. Thus each element

a € R has a unique expression as

I a g,
gerT d

V]
L}

with ag € k (almost all 0) . The automorphism o operates as

follows:

-1 -
a’® = x agg = I ag_1g .

ger ger
It is easy to check that T = {a + a’° | a € R} = {a € RC | a, = 0}

so that RG = T & k. Therefore, (1.7) implies that

Ko (RC) ® zZ[1/2] = (K (R), © K (k)) e Z[1/2] ~ z[1/2] e z[1/2].
Z /A
In particular, RS has fin. gen. projectives which are not stably
free. Finally, in view of Lemma (1.5), the isomorphism KO(R) > 72
implies that

KO(S) ~ Z ® (2-torsion).



2. Simple Noetherian rings without idempotents

We keep our general notations R, G, S = R*G from the previous

section.

(2.1) Traces. A trace function of R 1is an additive map
tr: R+ A , where A is some abelian group, such that tr(ab) =
tr(ba) holds for all a,b € R. We shall be interested in traces
tr such that tr(1) # 0 in A. Such a trace exists if and only
if 1 ¢ [R,R], the additive subgroup of R generated by the Lie
commutators [a,b] = ab-ba (a,b € R). Indeed, if 1 ¢ [R,R],
then the canonical map R - R/[R,R] = A defines a trace ¢tr of
R with ¢tr(1) # 0. For the converse just note that any trace of
R vanishes on [R,R]. Two standard facts that we will use are as
follows:

(a) Any trace tr: R- A gives rise to a trace tr.: Mn(R)
-+ A of the matrix ring M_(R) by setting trn([ri.]) = I tr(r;

J
i
If tr(1) # 0 in A and multiplication by n is injective on

i)o

A , then trn(1) = netr(1) # 0.

(b) Let kE[r] be a twisted group algebra of the group T
over the field k. Thus k°Ir'] has a k-basis {g | g € '} and
multiplication is defined distributively using g-h = t(g,h)gh
(g,h €T), where s I'xI' » k* 1is a 2~-cocycle. In particular, all
g are units in kti{r] and 7 € k*. The map tr: xt(r1 -~ k,

T ag§ - a1T , defines a trace of k(r] with tr(1) = 1. The
gcenl;anty tr(ab) =tr(ba) for all a,b € k°[F] follows from the

fact that t(g,g-1) = t(g_1,g) holds for all g € T.
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{(2.2) Lemma. Assume that R has a trace tr with tr(1) # 0

and tr(ax) = tr(a) for all a € R, x € G. Then 1 £ [S,S].

Proof. Suppose that

1 = i [ui,vi]

for suitable u,,v, € S and write u, = Zu, X , VvV, = IV, X
i’’i X€G i,x i %€G i,x
with Uy otV o« € R. Comparing identity coefficients in the above
’ 14

equation we obtain

1= X % (u v x~1 - v u X )

i xeg 11X i,x~1 i, x~1i,x -
. x=1
Applying tr to the right hand side yields 0 , since tr(ui Vi x_1)
7 ’

= x - X .
= tr(ui,x Vi,x“1) tr(vi,x‘1ui,x) holds for all i and x. Thus

we get tr(1) = 0, contradiction.
E

(2.3) Reduced (Goldie-) ranks (cf. [Ch-Hal]). If R is a semiprime

Noetherian ring, then R has a semisimple Artinian classical ring
of quotients Q(R). For any fin. gen. right R-module V, the
reduced rank p(V) is then defined by
p(V) = composition length of V ® Q(R) over Q(R) .
R
Clearly, p(.) is additive on direct sums of modules, and hence
defines a function on KO(R). We write p(R) for the reduced rank

of the regular R-module RR , often called the Goldie rank of R .



(2.4) Theorem. Let p be a prime number and assume that

(1) R is a simple Noetherian domain with PpR {0}, and

(2) G (# 1) 4is a finite p-group of outer automorphisms of R.
Then S = RxG is a simple Noetherian ring with p(S) = |G|. If,
in addition,

(3) Ky(R) = <[R]> , i.e. all fin. gen. projectives over R
are stably free, and

(4) 1 ¢ [s,s],

then p divides p(P) for all fin. gen. projectives P over S.

In particular, if |G| = p, then S has no non-trivial idempotents.

Proof. The first assertion is well-known (and independent of
the assumptions on |G| and char R). Indeed, S is clearly
Noetherian, as R 1is, and (1) and (2) imply that S is a simple
ring (cf. [Mo,Theorem 2.3]). The equality p(S) = |G| follows from
the fact that the classical ring of quotients Q(S) has the form
Q(S) = M. (Q(RIC) , where Q(RIG = {q € Q(R) | q" = q for all
x € G} is a division ring ([Lo 2, pf. of Lemma 1.1iiil, e.g.).

Assume now that (3) and (4) are satisfied, but there exists
a fin. gen. projective module P over S with p 4 p(P). By
Lemma (1.5ii), assumption (3) implies that |G|°K0(S) c <[sl]>

so that, in particular,

|G| -[P] = n-[s] for some n .
Taking reduced ranks we see that
n=p(P) .

Moreover, the above equality in KO(S) says that, for some r > 0,

|G| n+r

plCl @ s & sM'F,
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Here, we may assume that pl|r, say r = p-r'. Thus setting V =

we have S ~ VP and taking endomorphism rings
we obtain

Mn+r(s) o Mp(End VS) .

By (4), the canonical trace tr: S -» S/[{S,8] = A does not

vanish on 1 , Also, our assumption on p(P) implies that n+r

is nonzero in :Fp © S and hence acts injectively on A. Thus,

by (2.1a), we know that 1 ¢ [Mn+r(s)'Mn+r(S)]' on the other hand,

using the standard matrices Eij € Mp(End VS), we have

PLePs . .. +EP +x

1= (B, +E 12 23 p1

P _
23 + LI +Ep1) -E

X,

where X € [Mp(End VS),MP(End VS)] (cf. [Pa, Lemma 2.3.11]).
Thus 1 € [Mp(End VS),MP(End VS)], contradiction. Therefore, p (P)
must be divisible by p .

Finally, if |G| = p and there exists an idempotent e = e?
€ S,e#0 or 1, then P = eS satisfies 0 < p(P) < p(S) = p,
yet p divides p(P), which is impossible.

|

(2.5) Example. As a first application of the above theorem, we
discuss the Zalesskii-Neroslavskii example. So let k be a field
with char k = 2 containing an element X € k* of infinite order
and let R = B,, o € Aut(R) and S = Rx<o> be as in Example (1.8).
Then, as we have seen, assumptions (1),(2), and (3) of Theorem (2.4)
are satisfied, with p = 2. In particular, S has Goldie rank 2.
As to (4), we use the structure of R as a twisted group algebra,
R = kt[P], and the trace map tr: R -+ k sending a = I agg € R

- ge€T
to a11 € k, as in (2.1b). The expression for a® in (1.8) gives



tr(a°) = tr(a), and hence Lemma (2.2) implies that 1 ¢ [S,S].

Therefore, S has no non-trivial idempotents.

(2.6) Lemma. Let k be a field and let T be a finitely

generated torsion-free nilpotent group with center 2. Set

R = kirdy 2310}

the localization of the group algebra k[r] at the nonzero

elements of k[2]. Then R is a simple Noetherian domain with
KO(R)= <[R]>. Let G be a finite group of outer automorphisms
of r such that G acts trivially on 2. Then G acts on R
by outer k-algebra automorphisms so that S = R«G is a simple

ring with 1 ¢ [S,s].

Proof. Since I is poly-(infinite cyclic), the group
algebra k[r'] is a Noetherian domain ([Pa, Cor. 10.2.8 and
Theorem 13.1.11]). Hence R also is a Noetherian domain. The fact
that R 1is simple is a result due to Zalesskii (see [Pa, Theorem
8.4.10]1). Again, since I is poly-(infinite cyclic), the "twisted
Grothendieck theorem"” ([Pa, Theorem 13.4.9 and Lemma 13.4.3]) implies
that KO(R) = <[R]>.

By Lemma (2.2), in order to show that 1 ¢ [S,S], it suffices
to construct a trace map tr: R -+ F = Q(k[z]), the field of fractions
of k[2], such that tr(1) = 1 and tr(a¥) = tr(a) holds for
all a € R, x € G. For this, note that R has the structure of a
twisted group algebra of r/Z over F, R « F lr/z]. Indeed,
every element a € R can be uniquely expressed as

a= I ayy,
YEr/2 Y



where a, €F and {y | y € r/2} is a fixed transversal for 2
in T . pDefine tr: R- F by tr(a) = a1T , as in (2.1b). Since
G acts trivially on 2 , it also acts trivially on F = F1 .
Furthermore, G permutes the sets F*§ (y €r/2 ~ {1}) among
themselves so that tr(ax) = tr(a) holds for all a € R, xXx € G.
Finally, since T/Z is poly-{(infinite cyclic), the units of

R = Ft[F/Z] are all of the form
u=f£fg (f €F* ger)

([Pa, Section 13.1]). Thus if the automorphism of R given by x €
G 1is conjugation by u , then x acts on T by conjugation with
g , contradicting the fact that G consists of outer automorphisms
of T. Therefore; G acts by outer automorphisms on R , and S

is simple, by [Mo, Theorem 2.3]. .

(2.7) Example. We close with a series of explicit examples based
on the above lemma. Clearly, many further examples could be
constructed along the same lines.

Fix a prime p and let T be the group

I = <X, ,X5,e00,X 1Y¥qi¥oreeasy | [xi,xj] = [yi,yj] = [xi,y.] = 1

P P J
for all i # j , [x1,y1] = [xz,yzl = ... = [xp,yp] = z is

central> .

Then T 1is fin. gen. torsion-free nilpotent of class 2 , with
center 2 = <2>, Let o be the automorphism of T which cyclically
permutes the .xi's and yi's. Then o¢ has order p , it acts
trivially on 2 and is outer, since it acts non-~trivially on

r/{r,r]. Thus, if k is a field of char p and R = k[r]ktzl\{O}'
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then we conclude from Lemma (2.6) and Theorem (2.4) that S =
Rx <&y is a simple Noetherian ring of Goldie rank p without

non~trivial idempotents.
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