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1. Introduction.

Local Hölder gradient estimates for classical solutions

of fully nonlinear, second order elliptic equations of the form,

(1 • 1 ) F[u] 2= F(x,u,Du,D u) = 0

were established by the author [12] as an extension of the'

corresponding estirnates of Ladyzhenskaya and Ural'tseva for the

quasJ linear case, (see [7], Chapter 8, [1] Chapter 13). 'In this

paper we derive such estimates for weak solutions in the

IIviscosityll sense of P-L Lions [10], also under reduced

smoothness hypotheses of the function F with respect to the

independent variables. In a sequel we permit a more general

dependence on the gradient variables, enabling us to resolve an

outstanding problem concerning obstacles for fully nonlinear

equations under natural structure conditions.

To get some grip on the viscosity solutions, we employ

the fundamental approximations of Jensen [2]. Our subsequent

analysis involves subtle techniques with difference quotients,
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whieh had previously becn developed by the,author in other

contexts ([9], [13]). We also establish loeal boundary e~timates

for viseosity solutions of the Dirichlet problem (L~mma 3.1,

Theorem 3.2) although for these, the method originating in Krylov

[4], goes through with only minor modification.

The function F in (1. 1.l is assumed defined on the set

n nr = nx JRx :m x$ ,where n denotes a domain in Euelidean n-spaee,

TOn d
.l.L'. , an $n denotes the linear spaee of real, nxn , symmetrie

matriees. Introducing, for any positive constants KO,K" the

subsets,

f O" = {(x,z,p,r) E r I Izl :$ KO' Ipl S K,}

we subject the function F to the following structural conditions:

F1. (Uniform ellipticity).

A trace n S F(x,z,p,r+n) - F(x,z,p,r) S A trace n

F2. IF(x,z,p,O) I s 11 0

F3. IF(x,z,p,r) - F(y,t,q,r) I S 11 1 (!x-yIY+lz-tIY) Irl+ 11 2
'

for all (x,z,p,r) (y,t,q,r), E f O,1
n, n ~ 0, E $ ,for any

KO,K, > 0 ,where A,A,11 0 ,11,,11 2 ,Y are positive constants, depending

possibly on KO,K, .



- 3 -

We observe that F1 irnplies the Lipschitz continuity

of F with respect to rand hence rnay be equiv~lently"

expressed as

(1 • 2 ) AI :;; F :;; AI •
r

We also point out that for cla~sical solutions, (ar at least

solutions in the Sobalev space W2 ,n(n)) , we shall be able to

permit ~O and ~2 to lie in certain LP spaces, (Remark 3

(ii)). The structure conditions, F1, F2, F3, may be usefully

viewed in conjunction with the following "exarnpie, namely the

Isaac's equation from stochastic game theory. Let {Las} be a

farnily of linear operators, indexed by two parameters

a E A , ß E Band given by

( 1 • 3 )

where

are real functions on

faß' i,j::: 1, .. n, a E A , ß E B

n . The corresponding Isaac's equation,

(1 . 4 ) F[u] ::: inf sup (L u- fa. ß) ::: 0 ,
aEA ßEB aß

will satisfy F1 to F3 if the operators L
aß

are uniforrnly

elliptic with respect to a and ß , that is,

(1 .5) AI :;; [a;~ ] :;; AI
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for all a E: A I ß E B for fixed positive constants A I !I. I

coefficients ij E cY(n) b
i co

and the aaß I aß I c
aß. I f a.ß E L (0) with

norrns bounded independently of a. and ß . When eit~er of the sets

A or Bare singletons , we obtain the Bellman equations of

stochastic control theory. The regularity results of this paper

can be used to establish the existence of continuously differentiable

solutions of equation (1.4).

Unless otherwise indicated , all notation in this paper

follows the book [1].
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2. Interior estimates

In order to forrnulate our estirnates, we first define the

notion cf viscosity solution for equation (1.1). Let u be a

continuous function in n . The second superdifferential of· u

at a point x in n is defined, by

while the corresponding subdifferential is defined by

We then call u a viscos i ty subsolution of (1. 1) , . (or say that

u satisfies F[u] ~ 0 in the vi?cosity sense), if

(2.3) F(x,u(x) ,p,r) ~ 0 for all (p, r) E D1 , 2u (x), x E n ,
+

and a viscosity supersolution of (1.1), (or u satisfies

F[u) ~ 0 in the viscosity sense) I if-

(2 4) F( () ) <!' 0 f 11 (p,r) E D_1 ,2 u (x), xE ().. x,u x ,p,r _ or a a

The function u is a viscosity solution cf (1.1) if it 1s both

a viscosity subsolution and supersolution. Some basic properties

of viscosity solutions are treated in the papers [2], [10] and

[ 15 ] •
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We can now state the follqwing interior estimate and

regularitY,assertion.

Theorem 2.1. Let u be a uniformly Lipschitz ·continuous viscosity

solution of equation (1.1) in the dornain n ,where F satisfies

the structure conditions, F1, F2 and F3. Then u possesses Hölder

continuous first derivatives in n and for any subdornain n l c c n

we have the estimate,

(2 .5)

where a 1s ~ positive constant depending only on n,A/).. and y

while C depends also on ~o/).., ~1/A, ~2/).. , diam n and IUI 1;n'

and 0 = dist (ni ,on)

Proof of Theorem 2.1.

We first observe that we can, without loss of generality,

restriet attention to functions F that are independent of z .

Let us recall some basic properties of the Jensen approximations

([2J,· [15J). Setting, for e: > 0 ,

n = {x E n I dist (x,on) > e:} ,e:

we define two functions ±
u

E:
whose graphs have fixed

distance E from the graph of u and which l1e respectively above

and below the graph of u.



- 7 -

It follows that

(2.6)
+IDu ~ I ~ IDu I° .-: and

2 3/2
(1 + I Du 1

0
)

± D2 u ± 2: -
e: E:

in the sense of distributions. Accordingly the functions

possess second differentials almost everywhere in n
E

and

moreover at any point x of twice differentiability,

(2.7)

where

Consequent~y if u E C O,1 (n) is a viscosity subsolution (o~

supersolution) of (1.1) we have the differential inequalities,

(2.8)

almost everywhere. in n.

We shall approach the estimation of first derivatives,

through the approximating difference quotients, .
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h > 0

which we shall regard as functions of 2n variable9 on the

dornain n ' x lRn where

that

n' = n . In particular we observeE:+h

(2.10) De , v (x, ~)
\0. E:

1.

+= D.u (x+h~)
1. E:

D~.S.VE:(X,tP)
1. ]

Using the inequalities (2.8) we now obtain

(2.11) F(x-E:V

so that, writing

+ + 2 +- F (x+hs+E:v , DUE: (x+hs), D ,uE: (x+hs))

where

+= tu (x+hs) + (1-t) U (x)E: E:
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and using the structural condition F3, we have'

(2.12) ij
Lv e a Di.Ve: J e:

-1 Y 2 + '
;;: -h {~1 (h+2e:) In U s (x+hEJ I + ~2} :

-1
h 11 2 (if 2 e: S h ) ,

1 i O -1
= -2hY- 11 0 J D . v - h 11

2
,

1 1~ ° E
J

by (2.10), where

+n .. u
02u +1.) e: if * 0

In2u+1 E
,

ij Ea =

0 if n2 + = 0 .ue:

Consequently we obtain a differential inequality in both x and

e , namely

(2.13)
ij Y 1 . . -1

a n .. V - 2h - 11 ol.J n . v ~ -h 11
2

.
1J E 1 1.~j E

,The inequality (2.13) can be made uniformly elliptic by addition

of a suitable elliptic inequality in the ~ variables. But

first, to simplify matters, let us rescale ~ through a

transformation
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( 2 • 14 ) t:: 1--> 2h y -1 111 A-1 t::"

to give in place of (2.13),

(2.15) ija D .. v
~J E:

ij -1
AG D· c v ~ -h 112 •

~s. E:
]

Next we write the differential inequality (2.8) for

the form, .

+
U

E
in

+ +
F(x+E:'J , Du , 0)

E:

+ +
~ - F(x+E:'J , Du , 0)

E

so that by (2.10), (2.14) and F2 ,

(2.16) 2y-1 2 ij +
4h (lJ

1
/A) a D ... u (x+h~)

~J E

where the coefficients ij
a are given by

1
=: I

o

Therefore, we now have
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e

ij
a a Di,V

J e:
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ij .
+ AG Dif;,ve +

J

~ _4h 2y- 1 ( /A)2lJ O 111

with L uniformly elliptic in n I x]Rn .

We are now essentially ready to invoke the weak Harnack

inequality for non-negative supersolutions .([11], Theorem 2,

[ 1] Theorem 9.22). To do this, we ff1~st.. fix points X o E n ,

~ 0 E lR
n

wi th Is;'O I = 1 andIe t R < 1/3 dis t (x0 ' arn. , h < R/ 2 .

Denoting

we then set

(2.18)

and apply the weak Harnack inequality to the function

w = M2 - ve: in the set B2R . We mention here that although

w does not necessarily lie in the Sobolev space W2,2n(B~R)

the weak Harnack inequality is still applicable by virtue of the

upper bound on D
2

w resulting from (2.6), [15]. Consequently

(2.19)
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where p and C are positive constants depending' only on

n, A/A . At this stage we can let E ~ 0 , thereby obtaining

(2.19) for the difference quotient,

1 . { '}
v(x,~) = vo(x,~) = h u(x+h~) - u(x)

By replacing u by -u, we see that (2.19) also holds for

the function -v and addition of the two inequalities yields

the oscillation estirnate,

(2.20)

where x = 1-.C-1 • Next using (2.6) and (2.14), we can 'reduce

(2.20) to an estimate in the x variables only, .namely

and henee we obtain, for any R < RO ' dist(xO,an) < RO/2 ,

h ~ R , the Hölder estirnate

(2.22) ose v
B

R
_

( )

u
R 1 2 2y-1 2

~ C R {ose v + X [llO(ll,/A) h RO. 0 BRa .

where C and a depend on n and A/A . Of course we cannot

send h to zero in (2.22) but we ean proeeed with the aid of

the following trick. Fix a subdornain n l c c n and scale x
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so that ö; dist(n',an) = 2 • Choosing in (2.22), R ; h < 1

RO = h B , for some B < 1 , we obtain

so that, with a + y = 1, y S 1/2 we have

(2.23)

} S C { I Du 1 0 + t [lJ 0 (lJ 1 / A) 2 + lJ 1 I Du 1 0 +. lJ 2 ] }

for all h S 1, ~O E n l
, [i; o l = 1 • Co~sequently 'u E ~1,aY'(rn

and eliminating the normalization 8 = 1 , we,'obtain the

estimate

from which (2.5) follows. I I

Remarks. (i) If condition F3 is strenghtened to the Lipschitz

condition,
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rF (x ,z,p , r) -F (y , t ;q , r )" I S 111 ( Ix-y I+ Iz- t"1 ) Ir 1

then we can send h to zero in the proof of Theorem 2.1, with

the effect that the constant C in the estimate (2.5) will

be independent,of ~O ·

(ii) If the solution u lies in the Sobolev space W2 ,n(n) ,

±
there is no need for the approximations u , whence the funetions

E:
p

~O and 112 can be permitted to lie in eertain L" ~paces. In

particular we can allow llO E Ln Ul) , while setting h = x-y ,

112 = ~2(x,h) we can assurne 112 E LCXl{Lq(n) i Ihl S hOl for some

q > n and h O > 0 . The estimate (2.5) then depends on

IllJo l1 n , 111l 2 1I q ,oo' h O instead of llO and ~2 .,

(iii) If in eonditions F1, F2, F3 , the quantities A,A,y

are independent of K1 ' while

for constants llO' lJ 1, lJi depending only on Ka ' then by

interpolation ([14], Lemma 1) we ean eonelude an interior bound

for the gradient of u, namely

(2.27)

where C depends on n, A/A, Y, lJO/ A, ~1/A, ~2/A , diam n and

luloin · For this we need also.the loeal Hölder estimate [15]



- 15 -

hut for the Isaac's equation (1.4) where we have a linear

structure,

the estimate (2.27) follows by the standard Hölder interpolation,

([1], Lemma 6.32).
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3. Boundary estimates

As indicated in [15], certain pointwise estimates'for

classical solutions of (1.1), such as the Harnack "and Hölder

estirnate of Krylov and Safonov [6], (see [1], Chapter 9),

carry ove~ to viscosity solutions. This can be dernonstrated

by writing the inequalities (2.8) to the form,

(3.1) .

~ -11
°

by F2 , where the coefficients ija given by

1
= f

o
± ± 2 ±

F (x ± E: \.I , Du (x), t D u (v» d t ,r. . E: E:
~J

satisfy the uniform elliptic condition,

(3.2)

by F1 . In particular we infer the following local boundary

estirnate, from the proof of the corresponding result for

classical solutions, due to Krylov [4], [5] (see also [8],

[13]) •

Lemma 3.1. Let u E CO,1(O) be a viscosity solution of

equation (1.1) where F satisfies the structure conditions
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F1

an

and F2 . Let T be ~ open

with u = tP on T for some

c 1 ,y boundary.portion of

1 y ,
tP E C ' (n U T), 0 < y ~ 1

Then for any Xo E T, R S RO < dist(xO' an-Tl , the funetion

v .given EY.

(3.3) v(x) u (x) -tP (x)
::

dist(x,T)

satisfies the estimate

(3.4)

where

ose v :i C (RROr' I ose v + R6[D9]y + R01.l0 InnB R nnB
R0

a. > 0 depends on n,A/).., and .y and C depends also

on T

Lemma 3.1 provides a Hölder estimate for the normal

derivative of v restrieted to T. By eombination of Theorem

2.1 and Lemma 3.1, we arrive at the following global estimate.

Theorem 3.2. Let u be a CO,1 (n) viseosity solution of the

Dirichlet problem.

(3.5) F[u] = 0 in n, u :: tP on an,

where F satisfies the struetural conditions F1, F2, F3 and

an E c1 'Y<n) . Then u E C1 ,a(n) for some positive a. depending

only on n, AI).., and y and we have the estirnate

(3 .6) [ Du ]a. i n :i C ,
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where C depends on n, A/"A, Y, 1-1 0 /"A, 1-I 1 /"A, 1-1 2 /"A, luJ
1if2

and n.

Remarks. (i) An examination of the form of the estimate

(2.24) and ( 3 • 1 ) shows that we can replace 1-1 0 ' 1-1 1 ' 1-1 2
in

conditions F2, F3 by
y-1

by l-l d-Y and bylJ Od , l-l1 1 112
-1 where d = dist(x, an)l-l d ' .2

(ii) From Remark (iii) of the proceeding section, if the

constants satisfy (2.26), we deduce a global

gradient bound, so that

(3.7)

where C depends on n, A/"A, Y, lJÜ/"A, lJi/"A, lJ 2/"A, [uJ
OiO

and

n . Again for the case of the Isaac's equation, this can be

deduced directly from (3.6) by the standard Hölder interpolation,

( [ 1 ], Lemma 6. 35) •

(iii) It follows from [15], that if F1 holds, F is non-

decreasing in z , and F3 is strenghtened so that

(3.8) [F(x,z,p,r) - F(y,t,q,r) I ~ 1-1 1{(lx-Y.I+lz-t l) ]rl+jp-ql}

+ 'J ( Ix-y I+ Iz -t I)

where v(a) ~ 0 as a ~ 0 , then viscosity solutions of the

Dirichlet problem (3.5) are unique.
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