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ON RESIDUAL CATEGORIES FOR GRASSMANNIANS

ALEXANDER KUZNETSOV AND MAXIM SMIRNOV

Abstract. We define and discuss some general properties of residual categories of Lef-
schetz decompositions in triangulated categories. In the case of the derived category of
coherent sheaves on the Grassmannian G(k, n) we conjecture that the residual category
associated with Fonarev’s Lefschetz exceptional collection is generated by a completely
orthogonal exceptional collection. We prove this conjecture for k = p, a prime number,
modulo completeness of Fonarev’s collection (and for p = 3 we check this completeness).

1. Introduction

LetX be a smooth projective variety over a field k and let Db(X) be its bounded derived
category of coherent sheaves. The study of semiorthogonal decompositions of Db(X) has
received a lot of attention in the past decades. A particular instance of a semiorthogonal
decomposition is a full exceptional collection.

Definition 1.1. A collection of objects (E1, . . . , En) in Db(X) is called exceptional if

RHom(Ei, Ei) = k for all i,

RHom(Ei, Ej) = 0 for i > j.

An exceptional collection (E1, . . . , En) in Db(X) is called full, if the smallest full triangu-
lated subcategory containing all Ei is Db(X). In this case we write

Db(X) =
〈
E1, . . . , En

〉
.

Example 1.2. The simplest, and historically first, example of a variety X admitting
an exceptional collection is a projective space. In his celebrated paper [1], A. Beilin-
son showed that the lines bundles (O,O(1), . . . ,O(n)) form a full exceptional collection
in Db(Pn), i.e.

Db(Pn) =
〈
O,O(1), . . . ,O(n)

〉
. (1.1)

Many people have contributed to the further development of this subject. We refrain
from giving more details here and refer the interested reader to [10, 16] and references
therein. In what follows we assume some familiarity with the subject.

In this paper we are interested in a special type of exceptional collections that was
introduced in [13, 14]. Let X be a smooth projective variety over a field and let OX(1)
be a line bundle on X.

Definition 1.3. (i) A Lefschetz collection with respect to OX(1) is an exceptional collec-
tion, which has a block structure

E1, E2, . . . , Eσ0︸ ︷︷ ︸
block 0

; E1(1), E2(1), . . . , Eσ1(1)︸ ︷︷ ︸
block 1

; . . . ; E1(m− 1), E2(m− 1), . . . , Eσm−1(m− 1)︸ ︷︷ ︸
block m− 1

where σ = (σ0 ≥ σ1 ≥ · · · ≥ σm−1 ≥ 0) is a non-increasing sequence of non-negative
integers called the support partition of the collection. Semicolons are used in the above
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2 ALEXANDER KUZNETSOV AND MAXIM SMIRNOV

notation to separate the blocks. The block (E1, E2, . . . , Eσ0) is called the starting block.
We use notation (E•, σ) for a Lefschetz collection with support partition σ.

(ii) If σ0 = σ1 = · · · = σm−1, then the corresponding Lefschetz collection is called
rectangular. Otherwise, its rectangular part is the subcollection

E1, E2, . . . , Eσm−1 ; E1(1), E2(1), . . . , Eσm−1(1); . . . ;

E1(m− 1), E2(m− 1), . . . , Eσm−1(m− 1).

(iii) The subcategory of Db(X) orthogonal to the rectangular part of a given Lefschetz
collection is called its residual category:

RE• =
〈
E1, E2, . . . , Eσm−1 ; . . . ; E1(m− 1), E2(m− 1), . . . , Eσm−1(m− 1)

〉⊥
.

The residual category is zero if and only if (E•, σ) is full and rectangular.

Later, in Definition 2.7 we will give a generalization of these notions to the more general
case of Lefschetz decompositions of polarized triangulated categories, but for the purposes
of the Introduction the above definition is sufficient.

A Lefschetz collection is obviously determined by its starting block and its support
partition σ. It is not straightforwardly evident, but true (see [15, Lemma 2.18]) that it is
even determined by its starting block only (so that the support partition can be recovered
from it); although it is very far from being true that each exceptional collection extends
to a Lefschetz one. Anyway, with respect to inclusion of the starting block, the set of
Lefschetz collection (with fixed line bundle OX(1)) is partially ordered, and one can give
the following definition.

Definition 1.4. A Lefschetz collection is called minimal, if it is minimal with respect to
the partial order given by inclusion of the starting block.

Example 1.5. The simplest example of a Lefschetz collection is given by the exceptional
collection (1.1) on the projective space Pn. Here the starting block is (O), the support
partition is σ = (1, 1, . . . , 1), and so the collection is rectangular and minimal, and the
residual category vanishes. Let T be the tangent bundle of Pn; it is then a simple exercise
to check that for each 0 ≤ i ≤ n taking (O, T (−1), . . . ,ΛiT (−i)) as a starting block, gives
a Lefschetz collection with the support partition σ = (i+1, 1, . . . , 1). Its residual category
is generated by (O(−i), . . . ,O(−1)).

Example 1.6. Now assume that the base field k is algebraically closed of characteristic
distinct from 2 and let Qn ⊂ Pn+1 be a smooth quadric. Kapranov constructed in [11] an
exceptional collection in Db(Qn) that takes the form

Db(Qn) =

{〈
O, S;O(1); . . . ;O(n− 1)

〉
, if n is odd,〈

O, S−, S+;O(1); . . . ;O(n− 1)
〉
, if n is even,

where S and S± are the spinor bundles. Here the starting block is either (O, S) or
(O, S−, S+), and the support partition is either σ = (2, 1, . . . , 1), or σ = (3, 1, . . . , 1).
In the case of odd n the collection is minimal, while in the case of even n it is not —
there is also a Lefschetz collection with the starting block (O, S−) and with the support
partition σ = (2, 2, 1, . . . , 1). In both cases, the residual category is generated by the dual
spinor bundles (unless n = 2), i.e., it is equal to 〈S∗〉 for odd n and 〈S∗−, S∗+〉 for even n
(in this case the bundles S∗− and S∗+ are completely orthogonal).
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Example 1.7. Assume that the characteristic of the base field k is zero. Let X = G(2, n)
be the Grassmannian of 2-dimensional vector subspaces in a vector space of dimension n
and take OG(2,n)(1) to be the Plücker line bundle. Set m = bn/2c and take Ei = Si−1U∗

for 1 ≤ i ≤ m, and

σ =

{
(m2m+1), if n = 2m+ 1 is odd,
(mm, (m− 1)m), if n = 2m is even

(here the exponents stand for multiplicities of the entries). Then, (E•, σ) is a full Lefschetz
collection in Db(G(2, n)) according to [14, Theorem 4.1].

For odd n the above collection is rectangular and minimal, and its residual category
vanishes. For even n, the collection is still minimal, but no longer rectangular. More-
over, according to [5, Theorem 9.5], the residual category is generated by m completely
orthogonal exceptional objects.

Note that the exceptional collections discussed in Example 1.7 are quite far from the
Kapranov’s exceptional collections (see Example 3.2 for a comparison in the case G(2, 4)).

Example 1.8. Let us keep characteristic zero assumption and let IG(2, 2n) ⊂ G(2, 2n) be
the Grassmannian of 2-dimensional subspaces isotropic with respect to a given symplectic
form on a vector space of dimension 2n (actually, this is just a smooth hyperplane section
of G(2, 2n)). If we set Ei = Si−1U∗ for 1 ≤ i ≤ n and σ = (nn−1, (n − 1)n), then (E•, σ)
is a full Lefschetz collection in Db(IG(2, 2n)) according to [14, Theorems 5.1]. In this
example, by [5, Theorem 9.6], the residual category is equivalent to the derived category
of representations of An−1 quiver.

Example 1.9. Assume that the base field k is algebraically closed of zero characteris-
tic. Let OG(2, 2n + 1) ⊂ G(2, 2n + 1) be the Grassmannian of 2-dimensional subspaces
isotropic with respect to a given nondegenerate quadratic form on a vector space of di-
mension 2n+ 1. If we set Ei = Si−1U∗ for 1 ≤ i ≤ n − 1, En = S (again, S is the
spinor bundle, see [14, §6]), and σ = (n2n−2), then (E•, σ) is a full Lefschetz collection
in Db(OG(2, 2n + 1)) according to [14, Theorems 7.1]. This collection is rectangular, so
the residual category vanishes.

Remark 1.10. In [17] many fractional Calabi–Yau categories were constructed. Note that
by definition each of these categories is a residual category for an appropriate Lefschetz
decomposition.

The structure of the residual category of Db(X) can be predicted by Homological
Mirror Symmetry. Assume that X is a complex Fano variety of Picard rank one, and
let f : Y → A1 be a Landau–Ginzburg model associated with X by HMS. One expects
that the derived category of X is equivalent to the Fukaya–Seidel category of (Y, f):

Db(X) ' FS(Y, f), (1.2)

while the Jacobian ring of the function f is isomorphic to the small quantum cohomology
ring of X.

Jac(Y, f) ∼= QH(X). (1.3)

Assume that QH(X) is generically semisimple and critical points of f are isolated. Then
by (1.3) all critical points of f are simple, and the Fukaya–Seidel category FS(Y, f) is
generated by the corresponding Lefschetz thimbles, that form an exceptional collection
(this is the HMS explanation for the Dubrovin’s conjectures [6]).
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Assume now that the Fano index of X is m, i.e., −KX = mH for the ample generator H
of Pic(X). We expect that there exists a µm-equivariant Landau–Ginzburg model (Y, f)
for X (i.e., with a µm-action on Y and f equivariant with respect to the standard µm-
action on A1). Then the nonzero critical values of f decompose into a number of free µm-
orbits. We expect that there is a Lefschetz exceptional collection in Db(X) such that its
rectangular part via the equivalence (1.2) is generated by the thimbles associated with
critical points of f with nonzero critical values, and the residual category of X is generated
by the thimbles associated with critical points over 0 ∈ A1.

So, since the critical points of f are isolated and simple, the corresponding vanishing
cycles do not intersect over a neighborhood of 0. Since these Lefschetz thimbles are
obtained by parallel transport of these vanishing cycles over the same path in A1, starting
at a chosen regular point of A1 and ending at 0 ∈ A1, the corresponding vanishing
cycles over the chosen regular point of A1 do not intersect either. Hence, the respective
exceptional objects in FS(Y, f) are completely orthogonal.

This leads to the following variant of the Dubrovin’s conjecture:

Conjecture 1.11. Let X be a complex Fano variety of Picard rank one with −KX = mH.
If the small quantum cohomology ring QH(X) of X is generically semisimple, then Db(X)
has a full minimal Lefschetz collection with respect to OX(H), whose residual category is
generated by a completely orthogonal exceptional collection.

This conjecture agrees with the above examples. Indeed, in Examples 1.5, 1.6, 1.7,
and 1.9 the small quantum cohomology ring is generically semisimple [9, 4, 3], while in
Example 1.8 one of the factors of QH is isomorphic to Q[t]/tn−1 (see [5]), the Jacobian
ring of the singularity of type An−1, which explains the appearance of the category of
representations of the quiver An−1 in the residual category.

Remark 1.12. We expect Conjecture 1.11 to hold more generally for a complex Fano
variety with arbitrary Picard rank. However, due to the present lack of interesting exam-
ples, where both the derived category and quantum cohomology are understood, we have
formulated the conjecture more restrictively.

In this paper we discuss Conjecture 1.11 for Grassmannians X = G(k, n). In this case,
a nice Lefschetz collection in Db(X) is known after Fonarev’s work [7]. In general this
collection is not known but expected to be full (Conjecture 3.5). We consider the residual
category Rk,n associated with the Fonarev’s collection in Db(G(k, n)) and conjecture that
it is generated by a completely orthogonal exceptional collection (Conjecture 3.11).

If k and n are coprime, the Fonarev’s collection is known to be full, and it is also
rectangular. Consequently, the residual category Rk,n vanishes in this case (Corollary 3.7),
in particular Conjecture 3.11 holds.

The main result of this paper is formulated in Theorem 3.14. It says that Conjec-
ture 3.11 also holds modulo Conjecture 3.5 in the simplest case of non-coprime k and n,
that is in the case of the Grassmannian G(p, pm), where p is a prime number.

To prove this result we show in Proposition 4.2 that Conjecture 3.11 can be deduced
from yet another conjecture (Conjecture 4.1), which we verify for (k, n) = (p, pm).

In the Appendix we prove that the Fonarev’s collection is full for (k, n) = (3, 3m)
(Proposition A.1). In a combination with other results of the paper, this proves Conjec-
ture 3.11 for k = 3.
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To conclude, we should say that it would be very interesting to describe the residual
category for homogeneous varieties other than G(k, n). For instance, following Exam-
ple 1.8, symplectic isotropic Grassmannians IG(k, 2n) are expected to produce interesting
residual categories. The main problem here is that nothing is known about minimal Lef-
schetz collections in the derived categories of IG(k, 2n) beyond the case k = 2 treated
in [14] and some sporadic cases [20, 19].

The paper is organized as follows. In Section 2 we introduce the general formalism
of residual categories. In Section 3 we describe the Fonarev’s exceptional collection and
state our main results and conjectures. In Section 4 we prove Theorem 3.14. Finally, in
Appendix A we prove the fullness in case p = 3.

Acknowledgements. We would like to thank Anton Fonarev, Sergey Galkin, and An-
ton Mellit for useful discussions. A.K. was partially supported by the Russian Academic
Excellence Project “5-100”, and by the Program of the Presidium of the Russian Acad-
emy of Sciences No. 01 “Fundamental Mathematics and its Applications” under grant
PRAS-18-01. M.S. thanks Max Planck Institute for Mathematics (MPIM) in Bonn for
hospitality and financial support at the final stage of this project.

2. Residual categories

Let T be a saturated (i.e., smooth and proper) triangulated category over a field. Denote
by ST its Serre functor. For instance, if T = Db(X) is the derived category of a smooth
projective variety X then the Serre functor is

ST(F ) ∼= F ⊗ ωX [dimX],

the twist by the canonical bundle and the dimension shift.

2.1. Lefschetz decompositions with respect to a polarization. In this section we
introduce a generalization of the notion of a Lefschetz decomposition from [13].

Definition 2.1. A polarization of T of index m > 0 is an autoequivalence τ : T → T such
that the composition ST ◦ τm is a shift, i.e.,

τm ∼= S−1T [s] (2.1)

for some integer s.

Example 2.2. If T = Db(X) and ω−1X
∼= OX(mH) for a divisor class H then the twist

by the line bundle OX(H) is a polarization of index m. So, in this case, if additionally H
is ample, then the notion of a polarization is a generalization of the usual notion, and the
notion of the index is a generalization of the Fano index of X. The shift s in this example
is equal to the dimension of X.

Note that if τ is a polarization of T of index m and d is a (positive) divisor of m
then τm/d is a polarization of T of index d. In particular, every triangulated category has
a polarization of index 1 (provided by τ = S−1T ), but it is much more interesting to find a
polarization of biggest possible index.

Definition 2.3. A Lefschetz decomposition of T with respect to a polarization τ is a
semiorthogonal decomposition

T = 〈T0, τ(T1), τ
2(T2), . . . , τ

i−1(Ti−1)〉,
whose components are obtained from a chain T0 ⊃ T1 ⊃ T2 ⊃ · · · ⊃ Ti−1 of admissible
subcategories of T by iterated application of τ .
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In the case when T = Db(X) and τ is the twist by a line bundle OX(1), this coincides
with the definition of a Lefschetz decomposition from [13]. Note also, that if the compo-
nents Ti of a Lefschetz decomposition are generated by compatible exceptional collections,
this agrees with Definition 1.3(i) from the Introduction.

Note that if m is the index of τ , then i = m is the maximal possible length for a
Lefschetz decomposition as above. Indeed, if 0 6= F ∈ Tm then

RHom(τm(F ), F ) ∼= RHom(S−1T (F [s]), F ) ∼= RHom(F, F [s])∨ 6= 0,

so τm(Tm) and T0 are not semiorthogonal. On the other hand, we can always extend a
Lefschetz decomposition of length less than m to the one of length m by adding several
zero components. So, we may safely assume that any Lefschetz decomposition with respect
to a polarization τ has length equal to the index of τ .

An approximation to a Lefschetz decomposition is given by the next notion.

Definition 2.4. Assume given a polarization τ of T of index m. An admissible subcate-
gory a ⊂ T is primitive with respect to τ if the collection of subcategories

(a, τ(a), . . . , τm−1(a))

is semiorthogonal in T.

Of course, if a Lefschetz decomposition of T of length m with respect to a polarization τ
is given then a = Tm−1 is a primitive subcategory of T with respect to τ .

2.2. Residual category. In this section we define residual categories and discuss some
of their properties.

Lemma 2.5. If τ is a polarization of T of index m and a ⊂ T is a primitive subcategory,
there is an admissible subcategory Ra ⊂ T and a semiorthogonal decomposition

T = 〈Ra, a, τ(a), . . . , τm−1(a)〉. (2.2)

Proof. Semiorthogonality of the collection (a, τ(a), . . . , τm−1(a)) and admissibility of a
imply that the subcategory 〈a, τ(a), . . . , τm−1(a)〉 ⊂ T generated by a, τ(a), . . . , τm−1(a)
is admissible. So, the category Ra can be defined as the orthogonal

Ra := 〈a, τ(a), . . . , τm−1(a)〉⊥

and (2.2) follows. �

Remark 2.6. Setting T0 = 〈Ra, a〉 and T1 = T2 = · · · = Tm−1 = a we obtain a Lefschetz
decomposition of T.

This observation will be generalized in Proposition 2.10 below.

Definition 2.7. The triangulated category Ra defined by Lemma 2.5 is called the resid-
ual category of the polarized triangulated category (T, τ) with respect to the primitive
subcategory a.

When the primitive category a is clear from the context, we will abbreviate the notation
for the residual category to just R. The simplest example of a primitive subcategory in a
geometrical context (i.e., for T = Db(X), where X is a Fano variety over a field of zero
characteristic with an ample polarization H of index m) is the subcategory a = 〈OX〉
generated by the structure sheaf. Indeed, OX is exceptional and the collection

〈OX ,OX(H), . . . ,OX((m− 1)H)〉
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is exceptional by Kodaira vanishing. If X is a hypersurface, the corresponding residual
category first appeared in [12] and was shown to be a fractional Calabi–Yau category.
Another example can be found in Section 3.3.

The main observation about the residual category is that it inherits a polarization from
the ambient category. Denote by La,Ra : T → T the left and the right mutation functors
through a.

Theorem 2.8. Let τ be a polarization of index m of a saturated triangulated category T,
let a ⊂ T be a primitive subcategory with respect to τ , and let R ⊂ T be the corresponding
residual category. Then R is saturated, the functor

τR := La ◦ τ (2.3)

gives an autoequivalence of R, and is a polarization of index m on it.

Proof. The category R is a component of a semiorthogonal decomposition (2.2) of a sat-
urated category T, hence is itself saturated. So, we only need to check that τR has all
the necessary properties. Most of the arguments can be found in [17] and [18], where
the functors La ◦ τ come under the name rotation functors. We give a complete proof for
reader’s convenience.

First, let us check that τR preserves R (this is [18, Lemma 7.6]). For this note, that
applying τ to (2.2) we obtain

T = 〈τ(R), τ(a), τ 2(a), . . . , τm(a)〉,
hence τ(R) ⊂ 〈τ(a), τ 2(a), . . . , τm−1(a)〉⊥. On the other hand, the mutation functor La

preserves the subcategory 〈τ(a), τ 2(a), . . . , τm−1(a)〉⊥ and takes T to a⊥. Therefore, the
subcategory La(τ(R)) is contained in

a⊥ ∩ 〈τ(a), τ 2(a), . . . , τm−1(a)〉⊥ = 〈a, τ(a), τ 2(a), . . . , τm−1(a)〉⊥.
which is just R.

Next, let us check that the functor τR is an autoequivalence of R. For this we check
that the functor τ−1 ◦ Ra is its inverse. Indeed, note that

τ(R) ⊂ (τm(a))⊥ = (S−1T (a))⊥ = ⊥a

and the functors La and Ra induce mutually inverse equivalences between ⊥a and a⊥.
Therefore, for any F ∈ R we have

τ−1(Ra(La(τ(F )))) ∼= τ−1(τ(F )) ∼= F.

On the other hand, La(τ(τ−1(Ra(F )))) ∼= La(Ra(F )) ∼= F for any F ∈ a⊥, hence τ−1 ◦Ra

is indeed the inverse of τR.
Finally, let us check that τR is a polarization of R of index m (this is a combination

of [17, Lemma 2.6 and Lemma 3.13]). Indeed, for any i ≤ m we have

τ iR
∼= La ◦ τ ◦ La ◦ τ ◦ La ◦ τ ◦ · · · ◦ La ◦ τ
∼= La ◦ (τ ◦ La ◦ τ−1) ◦ (τ 2 ◦ La ◦ τ−2) ◦ · · · ◦ (τ i−1 ◦ La ◦ τ−(i−1)) ◦ τ i

∼= La ◦ Lτ(a) ◦ Lτ2(a) ◦ · · · ◦ Lτ i−1(a) ◦ τ i

∼= L〈a,τ(a),...,τ i−1(a)〉 ◦ τ i,

(2.4)

the first isomorphism is just the definition of τR, the second is clear, the third and the
fourth are standard properties of mutation functors. Moreover, we have

L〈a,τ(a),...,τm−1(a)〉 ◦ τm ∼= L〈a,τ(a),...,τm−1(a)〉 ◦ S−1T [s] ∼= S−1R [s],
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by (2.1) and the standard formula for the (inverse) Serre functor of a semiorthogonal
component, see [2, Proposition 3.7]. Combining this with (2.4), we see that τR is a
polarization of index m. �

Remark 2.9. One can weaken the hypothesis on polarization of T to get the same result.
Indeed, it is enough to assume that τ is any autoequivalence of T and a ⊂ T is a primitive
with respect to τ subcategory of T such that the functor ST ◦ τm preserves a (when this
functor is a shift as in (2.1), it preserves any subcategory of T).

Note that there is a natural partial inclusion ordering on primitive subcategories. Of
course, for a given polarized triangulated category T it is interesting to find a maximal
primitive subcategory; it will yield the finest semiorthogonal decomposition (2.2) with a
minimal residual category R.

The next simple proposition shows that passing to a residual category is useful for
construction of Lefschetz decompositions.

Proposition 2.10. Let τ be a polarization of T of index m, let a ⊂ T be a primitive
subcategory, let R ⊂ T be the corresponding residual category, and let τR be the induced
polarization of R. There is a bijection between

• the set of all Lefschetz decompositions of R with respect to τR, and
• the set of all Lefschetz decompositions of T with respect to τ , such that a ⊂ Tm−1.

The bijection takes a Lefschetz decomposition

R = 〈R0, τR(R1), . . . , τ
m−1
R (Rm−1)〉 (2.5)

to the Lefschetz decomposition

T = 〈T0, τ(T1), . . . , τ
m−1(Tm−1)〉, (2.6)

where

Ti = 〈Ri, a〉 ⊂ T. (2.7)

Proof. Assume (2.5) is given. Using (2.4) we can rewrite

T = 〈R0, τR(R1), . . . , τ
m−1
R (Rm−1), a, τ(a), . . . , τm−1(a)〉

= 〈R0,La(τ(R1)), . . . ,L〈a,τ(a),...,τm−2(a)〉(τ
m−1(Rm−1)), a, τ(a), . . . , τm−1(a)〉

= 〈R0, a, τ(R1), τ(a), . . . , τm−1(Rm−1), τ
m−1(a)〉

= 〈T0, τ(T1), . . . , τ
m−1(Tm−1)〉,

i.e., deduce Lefschetz decomposition (2.6) with components defined by (2.7).
Conversely, given a Lefschetz decomposition (2.6) with a ⊂ Tm−1, we define

Ri := Ti ∩ a⊥,

so that (2.7) holds. Then reverting the argument above we deduce the required Lefschetz
decomposition of R. �

For instance, by taking the stupid Lefschetz decomposition of the residual category, i.e.,
by setting R0 = R, R1 = · · · = Rm−1 = 0, we recover the Lefschetz decomposition of
Remark 2.6.
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3. Lefschetz decompositions for Grassmannians

In this section we remind known facts about exceptional collections in the derived
categories of Grassmannians G(k, n), and state our conjectures and results about their
residual categories. ¿From now on we assume that characteristic of the base field k is
zero.

3.1. Kapranov’s exceptional collection. Let Yk,n be the set of Young diagrams in-
scribed in a rectangle of size k× (n− k), i.e., having k rows and n− k columns. In other
words

Yk,n = {λ = (λ1, . . . , λk) | n− k ≥ λ1 ≥ · · · ≥ λk ≥ 0}.

The set Yk,n has a partial order ⊆ given by inclusion of Young diagrams. The cardinality
of Yk,n is

(
n
k

)
.

Let E be a vector bundle on a scheme X. Given a Young diagram λ, one defines
a vector bundle ΣλE, called the Schur functor of λ applied to E, as a certain direct
summand of the tensor product

⊗
SλiE, see [8, §6.1]. In particular, if λ = (m, 0, 0, . . . ),

then Σλ(E) = SmE, and if λ = (1, . . . , 1, 0, 0, . . . ), then Σλ(E) = ΛmE.
Let V be a vector space of dimension n and consider the Grassmannian G(k, V ) of

linear subspaces of V of dimension k. Consider the short exact sequence of vector bundles

0→ U→ V→ V/U→ 0,

where U is the tautological subbundle. Recall that O(1) = ΛkU∗ and ωG(k,n)
∼= O(−n).

Theorem 3.1 ([11]). Vector bundles〈
ΣλU∗

∣∣∣ λ ∈ Yk,n
〉
,

with any total order refining the inclusion order ⊆ on Yk,n (e.g., the lexicographic order
from §3.2.2), form a full exceptional collection in Db(G(k, n)).

Example 3.2. Let us make Kapranov’s collection explicit for G(2, 4). The above theorem
implies that we have a full exceptional collection

Db(G(2, 4)) =
〈
O, U∗, S2U∗; O(1), U∗(1); O(2)

〉
. (3.1)

Note that (3.1) is a Lefschetz collection with the blocks divided by semicolons and support
partition (3, 2, 1). However, this collection is not minimal. Indeed, results of [14] imply
that there is also a full exceptional collection

Db(G(2, 4)) =
〈
O, U∗; O(1), U∗(1); O(2); O(3)

〉
. (3.2)

Collection (3.2) is also Lefschetz with support partition (2, 2, 1, 1) and, clearly, is smaller
than (3.1). In fact, it is a minimal Lefschetz collection.

3.2. Fonarev’s exceptional collection. In [7] an exceptional collection in the derived
category Db(G(k, n)) generalizing (3.2) was suggested. To describe it we introduce some
combinatorics of Young diagrams. For more details we refer to [7].
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3.2.1. Cyclic action. We define an action of the group Z/nZ on the set Yk,n by letting
the generator act as

λ 7→ λ′ =

{
(λ1 + 1, λ2 + 1, . . . , λk + 1), if λ1 < n− k,
(λ2, λ3, . . . , λk, 0), if λ1 = n− k.

(3.3)

See [7, §3.1] for a useful geometric description of this action.
We denote by o(λ) the length of the orbit of λ ∈ Yk,n under this action. Note that

if gcd(k, n) = 1 then all orbits of this action are free, so that o(λ) = n for all λ ∈ Yk,n.

3.2.2. Lexicographic order. Let us define an order on Yk,n by setting

λ < µ ⇔ ∃ t ∈ [1, k] such that

{
λi = µi , if i ∈ [1, t− 1],
λt < µt .

Note that the lexicographic order ≤ is a total order refining the partial inclusion order ⊆.

3.2.3. Upper triangular diagrams. A Young diagram λ ∈ Yk,n is called upper triangular if
it lies above the diagonal of the rectangle that goes from the lower-left to the upper-right
corner, i.e. we have

λi ≤
(n− k)(k − i)

k
(3.4)

for all i ∈ {1, . . . , k}. By [7, Lemma 3.2] every orbit of the cyclic group action on Yk,n con-
tains an upper triangular representative. Moreover, if gcd(k, n) = 1, such representative
is unique. We denote the set of upper triangular diagrams by Yu

k,n.

3.2.4. Minimal and strictly upper triangular diagrams. A Young diagram λ is called min-
imal upper triangular if it is the smallest among all upper triangular representatives in its
orbit with respect to the lexicographic order. By definition, every orbit of the cyclic group
action on Yk,n contains a unique minimal upper triangular representative. Moreover, if λ
is strictly upper triangular, i.e., all inequalities in (3.4) for 1 ≤ i ≤ k−1 are strict, then λ is
the unique upper triangular representative of its orbit, hence is minimal upper triangular.
We denote the set of minimal upper triangular diagrams by Ymu

k,n. If gcd(k, n) = 1 all
upper triangular diagrams are strictly upper triangular, hence minimal: Ymu

k,n = Yu
k,n. In

general, this is not true as the next example shows.

Example 3.3. Consider the set Y3,6. The orbits of the action of Z/6Z are

1) empty

2)

3)

4)
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Note that there are three orbits of maximal possible length six and one shorter orbit of
length two. The upper triangular diagrams are

empty, , , , ;

the first two are strictly upper triangular, all except for are minimal.

Now we are ready to introduce the main objects of this paper. Following [7, Section 4.1]
we consider full triangulated subcategories Ai ⊂ Db(G(k, n)) defined as

Ai =
〈

ΣλU∗
∣∣∣ λ ∈ Ymu

k,n , i < o(λ)
〉
, for 0 ≤ i ≤ n− 1, (3.5)

where o(λ) is the length of the (Z/nZ)-orbit of λ, see §3.2.1.
Note that if gcd(k, n) = 1, we have o(λ) = n for all λ, hence A0 = A1 = · · · = An−1.

Theorem 3.4 ([7, Theorem 4.3 and Proposition 4.8]). The collection of subcategories

A0,A1(1), . . . ,An−1(n− 1) (3.6)

is semiorthogonal. Moreover, if gcd(k, n) = 1 the collection (3.6) generates Db(G(k, n)),
i.e., there is a Lefschetz rectangular (and minimal) decomposition

Db(G(k, n)) =
〈
A0,A1(1), . . . ,An−1(n− 1)

〉
. (3.7)

Since the components of (3.6) are generated by compatible exceptional collections, we
can think of (3.6) as of a Lefschetz collection in Db(G(k, n)). Note that its support
partition is obtained from the partition of orbits’ lengths by transposition.

It is expected, but not proved yet, that the collection (3.6) generates Db(G(k, n)) for
all k and n. Without this result, we still have a Lefschetz decomposition

Db(G(k, n)) =
〈
Ck,n,A0;A1(1); . . . ;An−1(n− 1)

〉
, (3.8)

where Ck,n ⊂ Db(G(k, n)) is the orthogonal to the collection (3.6), and we consider the
subcategory 〈Ck,n,A0〉 in the above decomposition as the starting block.

We will call the subcategory Ck,n ⊂ Db(G(k, n)) defined by (3.8) the phantom category
of G(k, n). The reason for that name is that the Grothendieck group and the Hochschild
homology of Ck,n both vanish.

The expectation that (3.6) generates Db(G(k, n)) can be rephrased as follows.

Conjecture 3.5 ([7, Conjecture 4.4]). The phantom category Ck,n of G(k, n) vanishes for
all k and n, i.e., Ck,n = 0.

This conjecture is a particular case of a more general [16, Conjecture 1.10].
As we already mentioned, so far Conjecture 3.5 is known for gcd(k, n) = 1 ([7, Propo-

sition 4.8]), for k = 2 ([14, Theorem 4.1]) and (k, n) = (3, 6) ([7, Proposition 5.7]). In
Appendix A we will work out the case k = 3 and any n.

Example 3.6. Continuing with Example 3.3, on G(3, 6) we get a minimal Lefschetz
collection with support partition (4, 4, 3, 3, 3, 3)

Db(G(3, 6)) =
〈
O, U∗, Λ2U∗,Σ(2,1,0)U∗;O(1), U∗(1), Λ2U∗(1),Σ(2,1,0)U∗(1);

O(2), U∗(2), Λ2U∗(2); . . . ; O(5), U∗(5), Λ2U∗(5)
〉
.

As usual, semicolons separate the blocks.
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3.3. Residual categories for G(k, n). In this section we consider the derived category
Db(G(k, n)) as a polarized triangulated category (in the sense of Definition 2.1 and Ex-
ample 2.2) with polarization of index n given by the autoequivalence

τ(−) = −⊗ O(1).

Note that (3.8) is a Lefschetz decomposition with respect to this polarization.
Consider a full triangulated subcategory of Db(G(k, n)) defined as

a =
〈

ΣλU∗
∣∣∣λ ∈ Ymu

k,n , o(λ) = n
〉
. (3.9)

Comparing this with (3.5) we see that a = An−1. Therefore, by Theorem 3.4 the
subcategories a, a(1), . . . , a(n − 1) are semiorthogonal, i.e., a is a primitive subcategory
in Db(G(k, n)) in the sense of Definition 2.4.

We denote by Rk,n the corresponding residual category, see Definition 2.7, so that we
have a semiorthogonal decomposition

Db(G(k, n)) =
〈
Rk,n , a, a(1), . . . , a(n− 1)

〉
. (3.10)

The category Rk,n is the main character of the rest of the paper.
A simple consequence of the fullness of Fonarev’s collection in the case gcd(k, n) = 1 is

the following.

Corollary 3.7. If gcd(k, n) = 1 the residual category Rk,n vanishes, i.e., Rk,n = 0.

Remark 3.8. For arbitrary (k, n) the residual category Rk,n by construction contains the
phantom category Ck,n.

Lemma 3.9. The Grothendieck group of the category Rk,n is a free abelian group of rank

Rk,n = −
∑

d | gcd(k,n)
d>1

µ(d)

(
n/d

k/d

)
, (3.11)

where the sum is over all common divisors of k and n greater than 1, and µ(d) is the
Möbius function.

Recall that the Möbius function is defined by

µ(d) =


1, if d is a square-free integer with an even number of prime factors,

−1, if d is a square-free integer with an odd number of prime factors,

0, if d has a squared prime factor.

Proof. Since the category Db(G(k, n)) is generated by a full exceptional collection of
length

(
n
k

)
, its Grothendieck group is free abelian of rank

(
n
k

)
. Since Grothendieck groups

are additive with respect to semiorthogonal decompositions, it follows that K0(Rk,n) is
free abelian, and

Rk,n = rk(K0(Rk,n)) =

(
n

k

)
− n rk(K0(a)).

Furthermore, since a is generated by the exceptional collection (3.9), and since each
orbit of the cyclic action on Yk,n of length n contains a unique minimal upper triangular
representative, we have

n rk(K0(a)) = #{λ ∈ Yk,n | o(λ) = n}.
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Denote this number by Nk,n, so that Rk,n =
(
n
k

)
− Nk,n is the number of Young dia-

grams λ ∈ Yk,n with o(λ) < n.
If the length of the orbit of λ is less than n, then the border of λ consists of several

repeating fragments. If d is the number of such fragments, the length of the orbit is n/d.
Moreover, there is an obvious bijection between Young diagrams λ ∈ Yk,n with o(λ) = n/d
and Young diagrams µ ∈ Yk/d,n/d with o(µ) = n/d. Therefore(

n

k

)
=

∑
d | gcd(k,n)

Nk/d,n/d.

Using the Möbius transformation formula, we deduce

Nk,n =
∑

d | gcd(k,n)

µ(d)

(
n/d

k/d

)
,

This immediately implies the desired formula (3.11). �

Remark 3.10. It is not difficult to see that the number Rk,n is equal to the number of zero
eigenvalues of the operator of multiplication by the anticanonical class in QH(G(k, n)).
Further, under mirror symmetry the latter are identified with the critical points of the
Landau–Ginzburg model for G(k, n) with zero critical value.

In view of the above remark, Conjecture 1.11, and generic semisimplicity of the small
quantum cohomology ring QH(G(k, n)) we propose the following conjecture.

Conjecture 3.11. The residual category Rk,n defined by (3.10) is generated by a com-
pletely orthogonal exceptional sequence of length (3.11).

We note that this conjecture implies Conjecture 3.5.

Lemma 3.12. If Conjecture 3.11 holds, then the phantom category Ck,n vanishes.

Proof. If Conjecture 3.11 holds the Serre functor of the residual category Rk,n is trivial
(since a category generated by a completely orthogonal exceptional collection is equivalent
to the derived category of a finite reduced scheme). Therefore, the Serre functor of the
phantom category Ck,n ⊂ Rk,n (see Remark 3.8) is also trivial, i.e., Ck,n is a Calabi–Yau
category. But a Calabi–Yau category with zero Hochschild homology is itself zero by [17,
Corollary 5.3]. Thus Ck,n = 0. �

Remark 3.13. As we observed in the proof of Lemma 3.12, Conjecture 3.11 implies trivi-
ality of the Serre functor of Rk,n. Conversely, if we could establish triviality of the Serre
functor of Rk,n, then Conjectures 3.5 and 3.11 would follow.

Indeed, vanishing of the phantom category Ck,n was deduced in the proof of Lemma 3.12,
and it implies the semiorthogonal decomposition (3.7). Applying Proposition 2.10 (i.e.,
projecting to Rk,n the representatives of the short orbits in the Fonarev’s collection) we
obtain an exceptional collection of length Rk,n generating Rk,n. By triviality of the Serre
functor of Rk,n it is completely orthogonal.

If gcd(k, n) = 1, we have Rk,n = 0 and indeed, the category Rk,n vanishes by Theo-
rem 3.4. If k = p is a prime number the residual category is nontrivial only for n divisible
by p; and in this case we have Rp,n =

(
n/p
1

)
= n/p. The main result of this paper is a

proof of Conjecture 3.11 in the case k = p (modulo Conjecture 3.5).
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Theorem 3.14. Let p be a prime number. The residual category Rp,pm is generated by
the phantom category Cp,pm and a completely orthogonal exceptional sequence of vector
bundles of length m, i.e. there is a semiorthogonal decomposition

Rp,pm = 〈Cp,pm, F0, F1, . . . , Fm−1〉, (3.12)

where Fi form a completely orthogonal exceptional collection of vector bundles. In par-
ticular, if Cp,pm = 0 then Conjecture 3.11 holds. Moreover, the induced polarization τR
of Rp,pm permutes up to a shift the bundles Fi, and preserves the phantom category Cp,pm.

The proof will be given in the next section. Now let us mention again that the case p = 2
was treated previously in [5, Theorem 9.5]. Besides the case k = p we managed to prove
an analogue of Theorem 3.14 in the case of G(4, 8) and G(6, 12), see Remark 4.13.

4. Short diagrams conjecture and residual category

In this section we state a different (more technical) conjecture and show that it implies
Conjecture 3.11 modulo vanishing of the phantom category Ck,n. After that we check that
this conjecture holds for G(p, pm) and prove Theorem 3.14.

4.1. Short diagrams conjecture. If µ ∈ Ymu
k,n is a minimal upper triangular Young

diagram with o(µ) < n, we will say that µ is a short diagram, and its (Z/nZ)-orbit is
a short orbit. Recall from the proof of Lemma 3.9 that the orbit length of any short
diagram µ can be written as o(µ) = n/d, where d > 1 is a common divisor of k and n.

Let µ be a short diagram with o(µ) = n/d, so that d > 1. Then

Extk(n−k)/d(ΣµU∗,ΣµU∗(−n/d)) ∼= k.
This follows from an iterated application of [7, Lemma 5.1], or can be proved directly
by the same argument (see also the proof of Lemma 4.6 below). Consider the object
Cµ ∈ Db(G(k, n)) defined as the shifted cone of the corresponding morphism, so that we
have a distinguished triangle

Cµ −→ ΣµU∗ −→ ΣµU∗(−n/d)[k(n− k)/d]. (4.1)

On the other hand, define the subcategories

a+µ =
〈

ΣλU∗ | λ ∈ Ymu
k,n , o(λ) = n, µ ⊆ λ

〉
⊂ a,

a−µ =
〈

ΣλU∗ | λ ∈ Ymu
k,n , o(λ) = n, µ ⊇ λ

〉
⊂ a.

(4.2)

They are generated by exceptional collections, hence are admissible subcategories in a.

Conjecture 4.1. For any short diagram µ ∈ Ymu
k,n with o(µ) = n/d, d > 1 one has

Cµ ∈
〈
a+µ (−n

d
), a(1− n

d
), . . . , a(−1), a−µ

〉
, (4.3)

where the object Cµ is defined by the distinguished triangle (4.1).

Here is the main result of this subsection.

Proposition 4.2. If Conjecture 4.1 holds for some (k, n), then the residual category
Rk,n is generated by the phantom category Ck,n and a completely orthogonal exceptional
sequence of length (3.11).

The objects that form a completely orthogonal exceptional sequence are defined explic-
itly in the proof of the proposition — these are the objects F i

µ defined by the triangles (4.7).
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Proof. For each 0 ≤ i < −n/d consider the natural semiorthogonal decomposition〈
a+µ (−n

d
), a(1− n

d
), . . . , a(−1), a−µ

〉
=

〈〈
a+µ (−n

d
), a(1− n

d
), . . . , a(−1− i)

〉
,
〈
a(−i), . . . , a(−1), a−µ

〉〉
and let C<−i

µ , C≥−iµ be the components of Cµ with respect to it, so that we have a distin-
guished triangle

C≥−iµ → Cµ → C<−i
µ (4.4)

and inclusions

C≥−iµ ∈
〈
a(−i), . . . , a(−1), a−µ

〉
, (4.5)

C<−i
µ ∈

〈
a+µ (−n

d
), a(1− n

d
), . . . , a(−1− i)

〉
. (4.6)

Consider the composition C≥−iµ → Cµ → ΣµU∗ of the first map in (4.4) and the first

map in (4.1), and define an object F i
µ as the cone of its twist by O(i), so that we have a

distinguished triangle
C≥−iµ (i)→ ΣµU∗(i)→ F i

µ. (4.7)

Below we show that when µ runs over the set of short diagrams and 0 ≤ i < o(µ) the
objects F i

µ generate the category Rk,n modulo Ck,n and are completely orthogonal.
To start with let us check that

F i
µ
∼= L〈a,...,a(i−1),a−µ (i)〉(Σ

µU∗(i)). (4.8)

Indeed, it is enough to show that (4.7) is the mutation triangle, i.e., that

C≥−iµ (i) ∈ 〈a, . . . , a(i− 1), a−µ (i)〉 and F i
µ ∈ 〈a, . . . , a(i− 1), a−µ (i)〉⊥,

The first of these inclusions is just equivalent to (4.5). To prove the second inclusion
note that the octahedron axiom (applied to the triangles (4.1) and (4.4) twisted by O(i),
and (4.7)) implies that F i

µ also fits into a distinguished triangle

ΣµU∗(i− n/d)[k(n− d)/d− 1]→ C<−i
µ (i)→ F i

µ. (4.9)

So, it remains to note that we have even stronger inclusions

ΣµU∗(i− n/d) ∈ 〈a, a(1), . . . , a(i)〉⊥

by Theorem 3.4 (indeed, ΣµU∗ ∈ A0, while a(n/d − i + j) ⊂ An/d−i+j(n/d − i + j) for
each 0 ≤ j ≤ i since 0 < n/d− i+ j ≤ n/d < n), and

C<−i
µ (i) ∈ 〈a, a(1), . . . , a(i)〉⊥

by (4.6) in view of semiorthogonality of the collection a(i− n
d
), . . . , a(−1), a, . . . , a(i). So,

we finally proved (4.8).
By Proposition 2.10 applied to (3.8) we conclude that the residual category Rk,n is

generated by the phantom category Ck,n and the objects F i
µ for all short diagrams µ and

all 0 ≤ i < o(µ), and moreover, that the objects F i
µ and F j

ν are semiorthogonal if i < j,
or if i = j and ν is not a subdiagram in µ.

So, it remains to show that if diagrams µ and ν and integers i and j are such that{
µ, ν ∈ Ymu

k,n, o(µ) = n/d < n, o(ν) = n/e < n,

0 ≤ i < n/d, 0 ≤ j < n/e, and i ≤ j,
(4.10)
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then Ext•(F i
µ, F

j
ν ) = 0 unless µ = ν and i = j.

To show this we use triangle (4.7) for F i
µ and (4.9) for F j

ν . Consequently, it remains to
show that then next four spaces vanish:

Ext•(C≥−iµ (i),ΣνU∗(j − n/e)), Ext•(ΣµU∗(i),ΣνU∗(j − n/e)),
Ext•(C≥−iµ (i),C<−j

ν (j)), Ext•(ΣµU∗(i),C<−j
ν (j))

This is done in the next four lemmas, which thus finish the proof of the proposition. �

Lemma 4.3. We have Ext•(C≥−iµ (i),ΣνU∗(j − n/e)) = 0.

Proof. By (4.5) we have an inclusion

C≥−iµ (i) ∈ 〈a, . . . , a−µ (i)〉 (4.11)

On the other hand, ΣνU∗(j − n/e) ∈ A0(j − n/e). Note also that

j − n/e < 0 and j − n/e+ n ≥ n− n/e ≥ n/2 ≥ n/d > i

by (4.10). Thus semiorthogonality in (3.6) twisted by j − n/e applies. �

Lemma 4.4. We have Ext•(C≥−iµ (i),C<−j
ν (j)) = 0.

Proof. We still have (4.11). On the other hand,

C<−j
ν (j) ∈ 〈a+ν (j − n

e
), a(j − n

e
+ 1), . . . , a(−1)〉 (4.12)

by (4.6). We still have j − n/e + n > i (similarly to Lemma 4.3), so semiorthogonality
in (3.10) twisted by j − n/e applies. �

Lemma 4.5. We have Ext•(ΣµU∗(i),C<−j
ν (j)) = 0.

Proof. By Serre duality, this is equivalent to

Ext•(C<−j
ν (j),ΣµU∗(i− n)) = 0

We still have j − n/e > i− n. Moreover, i > −1 by (4.10). So semiorthogonality in (3.6)
twisted by i− n applies. �

Lemma 4.6. If i ≤ j we have Ext•(ΣµU∗(i),ΣνU∗(j−n/e)) = 0 unless µ = ν and i = j.

Proof. The required vanishing is equivalent to

H•(G(k, n),ΣµU⊗ ΣνU∗(−t)) = 0

where t = i+ n/e− j, so that by (4.10) we have

0 < t < n/e.

To prove this we use the argument from the proof of Theorem 4.3 in [7]. It is shown there
that the cohomology space is non-trivial if and only if ν is obtained from µ by the t-th
iteration of the cyclic group action. But since we assumed that both µ and ν are minimal
upper triangular, it follows that µ = ν and t is proportional to o(µ) = o(ν) = n/e. This,
however, contradicts the above inequalities on t. �

As an extra result we describe the action of the induced polarization τRk,n (see Theo-
rem 2.8) of the residual category and of its Serre functor SRk,n .
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Proposition 4.7. Set R = Rk,n. If the inclusion (4.3) holds for a short diagram µ
with o(µ) = n/d, then

τR(F i
µ) =

{
F i+1
µ , for 0 ≤ i ≤ n/d− 2

F 0
µ [k(n− k)/d], for i = n/d− 1.

In particular, SR(F i
µ) ∼= F i

µ for all short diagrams µ and all 0 ≤ i < o(µ).

Proof. We have

τR(F i
µ) = La(F

i
µ(1)) ∼= La(L〈a,...,a(i−1),a−µ (i)〉(Σ

µU∗(i))(1))

∼= La(L〈a(1),...,a(i),a−µ (i+1)〉(Σ
µU∗(i+ 1))) ∼= L〈a,a(1),...,a(i),a−µ (i+1)〉(Σ

µU∗(i+ 1)),

the first equality is the definition of τR, the second is (4.8), the third is a standard
property of mutation functors, and the last is evident. When 0 ≤ i ≤ n/d− 2, the right
side equals F i+1

µ by (4.8), hence we have τR(F i
µ) = F i+1

µ .
Now, assume i = n/d− 1. Then

τR(F n/d−1
µ ) = L〈a,a(1),...,a−µ (n/d)〉(Σ

µU∗(n/d)).

Applying the mutation functor L〈a,a(1),...,a−µ (n/d)〉 to the defining triangle (4.1) of Cµ twisted

by O(n/d), and using (4.3), also twisted by O(n/d), we deduce that

L〈a,a(1),...,a−µ (n/d)〉(Σ
µU∗(n/d)) ∼= L〈a,a(1),...,a−µ (n/d)〉(Σ

µU∗[k(n− k)/d]).

It remains to note that ΣµU∗ is orthogonal to 〈a(1), . . . , a−µ (n/d)〉 by (3.6) (note that we
have n/d < n), hence

L〈a,a(1),...,a−µ (n/d)〉(Σ
µU∗[k(n− k)/d]) ∼= La(Σ

µU∗[k(n− k)/d])

∼= La−µ
(ΣµU∗[k(n− k)/d]) ∼= F 0

µ [k(n− k)/d]

(by Theorem 3.1 the bundle ΣµU∗ is orthogonal to all exceptional objects generating a
that are not contained in a−µ , hence the second isomorphism above). This shows that

τR(F
n/d−1
µ ) ∼= F 0

µ [k(n− k)/d] and completes the proof of the first part of the proposition.
For the second part, note that the composition of the Serre functor of G(k, n) with

the n-th power of the twist by O(1) is isomorphic to the shift by the dimension k(n− k)
of G(k, n). Therefore, by Theorem 2.8 we have

τnR
∼= S−1R [k(n− k)].

Since n/d divides n, the left hand side acts on F i
µ as the shift by d ·k(n−k)/d = k(n−k),

hence the Serre functor SR acts identically. �

Corollary 4.8. If Conjecture 4.1 holds then the residual category Rk,n has a completely
orthogonal decomposition

Rk,n = Ck,n ⊕
〈
F i
µ

〉
,

where the second summand is generated by the completely orthogonal exceptional sequence
of objects F i

µ of length (3.11).

Proof. The objects F i
µ form a completely orthogonal exceptional collection by Proposi-

tion 4.2 and the subcategories Ck,n and
〈
F i
µ

〉
are semiorthogonal by definition. On the

other hand, for any object F ∈ Ck,n we have

Ext•(F, F i
µ) ∼= Ext•(S−1R (F i

µ), F ) ∼= Ext•(F i
µ, F ) = 0,
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the second holds by Proposition 4.7 and the last equality holds by semiorthogonality
mentioned above. Therefore, the decomposition is completely orthogonal. �

Remark 4.9. If one assumes that (4.3) holds for all µ ∈ Ymu
k,n (not only for short ones),

then Conjecture 3.5 would also follow.

4.2. Staircase complexes and proof of Theorem 3.14. The goal of this section is to
prove Theorem 3.14. By Corollary 4.8 it is enough to check that (4.3) holds for each short
diagram µ ∈ Ymu

p,pm, and to check that the corresponding objects F i
µ are shifts of vector

bundles. We start by proving (4.3) in a slightly more general situation.
Assume that k divides n, i.e., n = km, and define the Young diagram

θk,km = ((k − 1)(m− 1), (k − 2)(m− 1), . . . , (m− 1), 0) ∈ Yk,km. (4.13)

Clearly, o(θk,km) = m, so θk,km is a short diagram. We will prove that (4.3) holds
for µ = θk,km. For this we use the staircase complexes defined by Fonarev. Recall the
notation of Section 3.2, especially the cyclic action λ 7→ λ′ of the group Z/nZ, see (3.3).

Proposition 4.10 ([7, Proposition 5.3]). Let λ ∈ Yk,n be a Young diagram with λ1 = n−k.
There exists an exact sequence of vector bundles

0→ Σλ′U∗(−1)→ Λcn−kV ∗ ⊗ Σµn−kU∗ → · · · → Λc1V ∗ ⊗ Σµ1U∗ → ΣλU∗ → 0, (4.14)

where integers 0 < ci < n and Young diagrams µi ∈ Yk,n are described below.

Represent λ as a path going from the lower-left corner of the k by (n − k) rectangle
to the upper-right corner. Further, do the same for λ′(−1) (starting one step to the left
from the lower-left corner of the rectangle). The two paths form a stripe of width 1.

The diagram µi in (4.14) corresponds to the path that coincides with the path of λ
until the point with abscissa n− k− i and then “jumps” upward onto the path of λ′(−1).
The number ci is the number of boxes one needs to remove from λ to get µi.

Example 4.11. Let k = 4, n = 13, λ = (9, 8, 5, 2), so that λ′(−1) = (7, 4, 1,−1).
Picturing the path of λ in green and that of λ′(−1) in red we obtain

To get µ5 one jumps from the green path to the red one at the point with abscissa 4:

The black path gives µ5 = (7, 4, 4, 2). The gray boxes represent the difference between λ
and µ5, and so we have c5 = 7.

Recall that θk,km is defined by (4.13). Using the staircase complex (4.14), we deduce
the following.
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Lemma 4.12. For each k and m there exists an exact sequence on G(k, km)

0→ Σθk,kmU∗(−m)→ Λck(m−1)V ∗ ⊗ Σαk(m−1)U∗(1−m)→ · · · →
→ Λc(k−1)(m−1)+1V ∗ ⊗ Σα(k−1)(m−1)+1U∗(−1)→ Λc(k−1)(m−1)V ∗ ⊗ Σα(k−1)(m−1)U∗ →

→ · · · → Λc1V ∗ ⊗ Σα1U∗ → Σθk,kmU∗ → 0, (4.15)

with αi ∈ Ymu
k,km and ci ∈ Z≥0. In particular, the inclusion (4.3) holds for µ = θk,km.

Proof. We consider the staricase complex (4.14) for the diagram λ = θk,km(m − 1) (the
twist is necessary to satisfy the condition λ1 = n− k = k(m− 1)) and then twist it back
by O(1−m).

We have
α1 = µ1(1−m)

. . .

α(k−1)(m−1) = µ(k−1)(m−1)(1−m)

α(k−1)(m−1)+1 = µ(k−1)(m−1)+1(2−m)

. . .

αk(m−1) = µk(m−1),

and to finish the proof of the first part of the lemma we need to show that all diagrams αi
are contained in Ymu

k,km.
For this we just note that for 1 ≤ i ≤ (k − 1)(m − 1) the diagram αi is obtained

from θk,km by removing some boxes from the stripe of width 1 going along its border,
while for (k−1)(m−1) < i ≤ k(m−1) the diagram αi is obtained from θk,km by removing
several of its first columns. In particular, αi ⊆ θk,km for each i, hence is upper-triangular.

To show that αi is minimal in its cyclic orbit, just note that the first row of αi has
length less than (k−1)m and the first row of any other (not necessarily upper-triangular)
Young diagram in the orbit of αi has length greater or equal than (k − 1)m.

Let us show that (4.3) holds for µ = θk,km. Comparing the definition of the object Cθk,km

in (4.1) with the staircase complex (4.15) we see that Cθk,km is quasiisomorphic to the
complex{

Λck(m−1)V ∗ ⊗ Σαk(m−1)U∗(1−m)→ · · · → Λc(k−1)(m−1)+1V ∗ ⊗ Σα(k−1)(m−1)+1U∗(−1)→

→ Λc(k−1)(m−1)V ∗ ⊗ Σα(k−1)(m−1)U∗ → · · · → Λc1V ∗ ⊗ Σα1U∗
}

(that is obtained from (4.15) by dropping the first and the last terms). The terms of its
first line are contained in the subcategories a(1−m), . . . , a(−1) since the corresponding
Young diagrams αi are minimal upper triangular, and the terms in the second line are all
contained in a−θk,km , since all of them are obtained from θk,km by removing some boxes. �

Now we can give a proof of Theorem 3.14.

Proof of Theorem 3.14. First note that θp,pm is the only short diagram in Yp,pm; indeed, we
have o(θp,pm) = m and at the same timeRp,pm = m by (3.11). Moreover, the inclusion (4.3)
holds for θp,pm by Lemma 4.12. So, the first part of the theorem follows from Corollary 4.8.

Since the action of the polarization of the residual category is described in Proposi-
tion 4.7, to finish the proof of the theorem it remains to show that the objects F i

θp,pm
,

where 0 ≤ i < m, that form the completely orthogonal exceptional collections in Rp,pm,
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are shifts of vector bundles. For this just note, that the defining triangle (4.7) for these
objects shows that F i

θp,pm
is quasiisomorphic to the complex{

Λc(p−1)(m−1)+iV ∗ ⊗Σα(p−1)(m−1)+iU∗ → · · · → Λc(p−1)(m−1)+1V ∗ ⊗Σα(p−1)(m−1)+1U∗(i− 1)→

→ Λc(p−1)(m−1)V ∗ ⊗ Σα(p−1)(m−1)U∗(i)→ · · · → Λc1V ∗ ⊗ Σα1U∗(i)→ Σθp,pmU∗(i)
}
.

This complex is a truncation of the exact sequence (4.15), hence its only cohomology
sheaf is in the leftmost term, and the complex gives a right locally free resolution for this
cohomology sheaf. Therefore, this cohomology sheaf is a vector bundle, hence F i

θp,pm
is a

shift of a vector bundle. �

Remark 4.13. Let us sketch a description of the residual category R4,8 for the Grass-
mannian G(4, 8). It is easy to see that the set Y4,8 contains only two short diagrams:
θ4,8 = (3, 2, 1, 0) and (2, 2, 0, 0). Since the inclusion (4.3) is proved for θ4,8 in Lemma 4.12,
it remains to prove (4.3) for µ = (2, 2, 0, 0).

Combining the self-dual exact sequence

0→ Σ(2,2)U(−2)→ V ⊗ Σ(2,1)U(−2)→ S2V ⊗ Λ2U(−2)⊕ Λ2V ⊗ S2U(−2)

→ Σ2,1V ⊗ U(−2)→ Σ2,2V ⊗ O(−2)→ Σ(2,2)V ∗ ⊗ O→ Σ(2,1)V ∗ ⊗ U∗

→ S2V ∗ ⊗ Λ2U∗ ⊕ Λ2V ∗ ⊗ S2U∗ → V ∗ ⊗ Σ(2,1)U∗ → Σ(2,2)U∗ → 0,

with the self-dual exact sequence

0→ S2U(−2)→ V ⊗ U(−2)→ Λ2V ⊗ O(−2)

→ Λ2V ∗ ⊗ O(−1)→ V ∗ ⊗ U∗(−1)→ S2U∗(−1)→ 0

tensored by Λ2V , and using natural identifications

Σ(2,2)U(−2) ∼= Σ(2,2,0,0)U∗(−4), Σ(2,1)U(−2) ∼= Σ(2,2,1,0)U∗(−4),

Λ2U(−2) ∼= Λ2U∗(−3), U(−2) ∼= Λ3U∗(−3),

we obtain an exact sequence

0→ Σ(2,2,0,0)U∗(−4)→ V ⊗ Σ(2,2,1,0)U∗(−4)

→ S2V ⊗ Λ2U∗(−3)⊕ Λ3V ⊗ Λ3U∗(−3)

→ V ⊗ Λ3V ⊗ O(−2)

→ Λ2V ∗ ⊗ Λ2V ⊗ O(−1)

→ Λ2V ⊗ V ∗ ⊗ U∗(−1)⊕ Σ(2,2)V ∗ ⊗ O

→ Λ2V ⊗ S2U∗(−1)⊕ Σ(2,1)V ∗ ⊗ U∗

→ S2V ∗ ⊗ Λ2U∗ ⊕ Λ2V ∗ ⊗ S2U∗

→ V ∗ ⊗ Σ(2,1,0,0)U∗

→ Σ(2,2,0,0)U∗ → 0,

which shows that (4.3) holds for µ = (2, 2, 0, 0). This proves Conjecture 4.1 for G(4, 8)
and by Corollary 4.8 gives a description of its residual category.

We also checked that Conjecture 4.1 holds for G(6, 12), but the complexes proving it
are too complicated to write down.
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Appendix A. Fullness for G(3, 3m)

The goal of this appendix is to establish fullness of Fonarev’s collection on G(3, n).
Recall that the case of n coprime to 3 is covered by Theorem 3.4, so we assume n = 3m.

Proposition A.1. On G(3, 3m) the collection (3.6) is full. In other words, the phantom
category C3,3m vanishes.

We start with a couple of lemmas.

Lemma A.2. (i) Non-minimal upper triangular diagrams in Y3,3m are given by

λi = (2(m− 1), i, 0) for 0 ≤ i ≤ m− 2.

(ii) For any λ as above there is a staircase complex

0→ Σ(m−1+i,m−1,0)U∗(−m)→ · · · → Λc2(m−1)+1V ∗ ⊗ Σµ2(m−1)+1U∗(−1)→
→ Λc2(m−1)V ∗ ⊗ Σµ2(m−1)U∗ → · · · → V ∗ ⊗ Σ(2(m−1)−1,i)U∗ → ΣλU∗ → 0,

where all µi, as well as the leftmost diagram (m− 1 + i,m− 1, 0), are in Ymu
3,3m.

Proof. The first is evident, the second is straightforward. �

Lemma A.3. Let (a, b, 0) ∈ Y3,3m be a Young diagram such that b ≥ m and a−b ≤ m−1.
Then the bundle Σ(a,b,0)U∗ is contained in the subcategory

〈
A0(b−m+ 1), . . . ,A0(b+ 1)

〉
,

where A0 was defined in (3.5).

Proof. Consider the staircase complex for Σ(3(m−1),a,b)U∗. The next table lists the Young
diagrams that appear in it; we distinguish two cases, a 6= b and a = b:

a 6= b a = b
λ (3(m− 1), a, b) (3(m− 1), a, a)
µ1 (3(m− 1)− 1, a, b) (3(m− 1)− 1, a, a)
. . . . . . . . .
µ3(m−1)−a (a, a, b) (a, a, a)
µ3(m−1)−a+1 (a− 1, a− 1, b) (a− 1, a− 1, a− 1)
µ3(m−1)−a+2 (a− 1, a− 2, b) (a− 1, a− 1, a− 2)
. . . . . . . . .
µ3(m−1)−b (a− 1, b, b) . . .
µ3(m−1)−b+1 (a− 1, b− 1, b− 1) . . .
µ3(m−1)−b+2 (a− 1, b− 1, b− 2) . . .
. . . . . . . . .
µ3(m−1)−b+m (a− 1, b− 1, b−m) (a− 1, a− 1, a−m)

. . . . . . . . .
λ′(−1) (a− 1, b− 1,−1) (a− 1, a− 1,−1)

Note that for diagrams α = (α1, α2, α3) contained in the part of the table above the double
horizontal line the bundles ΣαU∗ are contained in A0(α3).

In particular, taking b = m, we obtain immediately that

Σ(a,b,0)U∗(−1) ∈
〈
A0(b−m), . . . ,A0(b)

〉
,

which is equivalent to the original claim of the lemma.
Next, we argue by induction on b, taking the case b = m as the base. So, assume that

the statement of the lemma is known for any Σ(a′,b′,0)U∗ with m ≤ b′ < b. Now we look
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at the diagrams in the staircase complex that lie below the double line in the table. As
they are of the form

(a− 1, b− 1, b−m− j) for 1 ≤ j ≤ b−m,
by the induction hypothesis we conclude that

Σ(a−1,b−1,b−m−j)U∗ ∈
〈
A0(b−m), . . . ,A0(b)

〉
.

This gives the induction step and finishes the proof. �

Proof of Proposition A.1. By [7, Theorem 4.1] it is enough to show that for any λ ∈ Yu
3,3m

we have

ΣλU∗(t) ∈ A for 0 ≤ t ≤ 3m− 1,

where A is the full triangulated subcategory of Db(G(3, 3m)) generated by the Fonarev
collection

A =
〈
A0,A1(1), . . . ,A3m−1(3m− 1)

〉
.

Lemma A.2(i) describes non-minimal upper triangular diagrams in Y3,3m. Thus, we
only need to consider bundles

Σ(2(m−1),i,0)U∗ for 0 ≤ i ≤ m− 2.

The staircase complex of Lemma A.2(ii) twisted by O(t) for m ≤ t ≤ 3m− 1 implies

Σ(2(m−1),i,0)U∗(t) ∈ A for m ≤ t ≤ 3m− 1.

To treat the cases with 0 ≤ t ≤ m− 1 we consider the staircase complex for the bundle
Σ(3(m−1),2(m−1),i)U∗. The next table lists the Young diagrams that appear in it:

λ (3(m− 1), 2(m− 1), i)
µ1 (3(m− 1)− 1, 2(m− 1), i)
. . . . . .
µm−1 (2(m− 1), 2(m− 1), i)
µm (2(m− 1)− 1, 2(m− 1)− 1, i)
µm+1 (2(m− 1)− 1, 2(m− 1)− 2, i)
. . . . . .

µ2(m−1)−i (2(m− 1)− 1,m− 1 + i, i)
. . . . . .
µ3(m−1)−i (2(m− 1)− 1, i, i)
µ3(m−1)−i+1 (2(m− 1)− 1, i− 1, i− 1)
µ3(m−1)−i+2 (2(m− 1)− 1, i− 1, i− 2)
. . . . . .

λ′(−1) (2(m− 1)− 1, i− 1,−1)

Note that for diagrams α = (α1, α2, α3) contained in the part of the table between the
double horizontal lines the bundles ΣαU∗ are contained in A0(α3). Thus, all of them
together are contained in

〈
A0, . . . ,A0(i)

〉
.

On the other hand, for the diagrams contained in the part of the table above the upper
double horizontal line the conditions of Lemma A.3 are satisfied, and we conclude that
all of them together are contained in

〈
A0(i + 1), . . . ,A0(2(m − 1) + 1)

〉
. Therefore, we

obtain

Σ(2(m−1),i,0)U∗(−1) ∈
〈
A0, . . . ,A0(2(m− 1) + 1)

〉
.
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Twisting the above inclusion we obtain

Σ(2(m−1),i,0)U∗(t) ∈ A for 0 ≤ t ≤ m.

This finishes the proof of Proposition A.1. �
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