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Introduction

Le¢ S be a compact simply—connected elliptic surface and & —S be a
holomorphic 2—bundle with c¢,( &) = 0. In light of Donaldson’s work in [D1] it has become
clear that one can choose some special polarization « on S and have a good
understanding on the nature of w-stable 2—bundles & — S with cy( &)= 1. See for
instance [FM], [LO] or [OV]. Recently this idea has been extended to the cases when
co( &) > 1. Working with certain carefully chosen polarizations, Friedman has had an
extensive investigation in [F] on such stable bundles and obtained some nice qualitative
information on their moduli spaces provided c2( %) is larger than some specified constant.
The purpose of this note is to depict another nice aspect of the theory through a particular
example concerning ¢,( &) = 2. We shall be more attentive to the problem of multiplicity
two structures on some surface and our discussion here should be viewed as a slight

supplement to that of [F].

To be more precise, let S3 be a homotopy K3 surface having precisely a multiple
fibre F3 of multiplicity three. We study here holomorphic 2—bundles & — 53 with
(c;(&).co( &) = (0,2) which are stable in certain polarization w of S4. The first issue of
our discussion is to give a complete description of the moduli space M,(w) of these
bundles. A peculiar feature of My(w) is that due to the appearance of Hz(sl( &) =C in

the deformation complex its dimension is higher than the "virtual" one. Nevertheless this



moduli space is smooth. In order to describe My(w) recall a known fact that as an elliptic
surface S3 is a fibration over the complex projective line IPI. We denote the projection
map from Sq onto [P1 by ¥.

“ Theorem 1 The moduli space Mo(w) is a smooth complex 3—dimensional manifold

modelled on the proper transformation ¥ of

Y = {(z,29) € (S5\F3) % (S3\Fy) : ¥(z;) = ¥(z5); 2,2, distinct}

in the blow—up of (83\F3) x (S3\F3) along the diagonal after dividing by the involution
I, on (S3\F,) * (S4\F;) of interchanging factors.

This theorem in essence asserts My(w) > ¥/Z,. Over the moduli space My(w) thereis a
complex line bundle (—My(w) of interest, arising from the assignment
£— Hz(sl( &) ~ €. The second issue of our discussion is to identify this bundle, or rather

its square (02 , over M2(w). Let [A? Iz ] denote the line bundle over My(w) associated
2

to the diagonal divisor A¢ /z, °n My(w).
2
Theorem 2 (,‘92 ~[Ay /212} as line bundles on Mo(w).

We shall show this result by constructing explicitly a universal bundle £ over ?/le x S3,

despite the existence of such a bundle does not follow from general consideration.

The motive of this work is to provide certain necessary material in a calculation
related to the work of Donaldson in [D1] and [D2] while the interest of Theorem 2 lies in
that after identifying M,(w) with the corresponding moduli space of anti—self—dual (ASD)
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connections (c.f. [D1]) determination of the "cokernel bundle" (-— Mz(“’) gives vital
information on how to recover certain transversal intersections cutting moduli spaces of

ASD connections sufficiently close to My(w). This will be discussed elsewhere.

In the course of establishing these two results it requires a lot of checkings just
applying the same technique to many different situations in question. For this reason we do
not find it too enlightening to give all the details here and shall gross over those points
which can be settled by straightforward arguments once the idea of the proof for one or two
cases has been given. Those interested are referred to [Mo] for a more detailed discussion

explaining these results.
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Let 83 N IP1 be a homotopy K3 surface as mentioned in the introduction and

suppose always & — S, i8 a holomorphic 2—bundle with (¢, ( &),co( &)) = (0,2). We shall
assume the surface Sq has the following generic properties:

(P1) the multiple fibre F, CS, is smooth, and
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(P2) any other (simple) singular fibre F, = i-l(a.u) of S, contains only, and
v

precisely one, node n € Fa as singularity.
v
Here in (P2) a point n € F, is called a node if there are local coordinates (u v ) on
v
S3 centred at n , Such that ¥ = ug + vi. The goal of this section is to determine and
construct all stable 2—bundles & — S3 relative to Kahler forms « obtained by adding to

arbitrary ones a large multiple of ﬁ*wﬂ, , where wp denotes the Fubini—Study form on
1 1

Il’l.

We begin with an observation that ho( £® [F3]) > 0 regardless & is stable or not.
This i8 a consequence of the Riemann—Roch formula applied to &@ [F3] incorporate with
the (Serre duality) isomorphism

B%( 88 [F,]) ~ B #@ [F,))*

a3 Kg = [F3]02 on S, Now by following the line of arguments given for instance in {LO]
3 _

one deduces that if & is to be w—stable then every section s of 4@ [F3] has to vanish on
a codimension two subset Z = Z(s) of S,. Consequently &® [F,] is an extension

(L1) 0— 02 £ [F,] — [Fy]%81 — 0

for some ideal sheaf I of isolated zero(s) on S, and such locally free extensions are that

we have interest to construct.



Despite having codimension two zero set Z, the section s of &® [F3] does ngt
necessarily induce an ideal sheaf I of gimple zeros on S, 28 L [F3]) = 2 and this is
where our discussion diverges from previous ones concerning questions of similiar kind.

Indeed one finds in (1.1) the ideal sheaf I is either that of

(a) two isolated simple zeros 2,2 OD 83, or in degenerate cases,

(b) a single zero 2z € S, with a multiplicity two structure of some kind.

To be more precise in case (b), we put & = 0/1. Then we say I is an ideal sheaf of a
zero z € S3 with a multiplicity two structure if dimg az,z =2

Having specified the nature of the ideal sheaf I we proceed to study, separately for
the cases (a) and (b), if there are locally free extensions &® [F,] in (1.1). The results we

obtain for case (a) can be summarized as follows.

(1.2) Proposition There is a 1-1 correspondence between

(i) equivalence classes of w—stable bundles &— S, fitting into an exact sequence

8 @2
0 — 00— 2® [F3] — [F3] 0121,22 —0

for some ideal sheaf Iz of two simple zeros Z,,29 O S3’ and

1'%
(ii) pairs of distinct points 21,2y on a common fibre of S, other than Fj.

This proposition follows from the residue theorem for vector bundles (c.f. [GH] p. 731)

asserting in this particular case the condition for a locally free extension &® [F3] to exist



in (1.2) is equivalent to that the points z,,z) in {8 =0} are to satisfy the
Cayley—Bacharach property relative to the linear system |KS ® [F3]@2| ; that is, any
3

section of the bundle KS ® [F3]92 vanishing at either of the two points has to vanish at
3

the other. As [F3]33 ~ §* ﬁ,l(l), one infers readily this is the case only if the points z;,2,
lie on a common fibre of SS‘ Assuming & is stable, we may rule out the possibility that
this common fibre is F, since in which case one finds 1°(#)=hU([Fyl®N) =1, an
obvious violation to the stability condition. It is a routine matter then to check 2—bundles
& otherwise obtained in (1.2) are w—stable and moreover determines uniquely a pair of
points z,,2, on S, as ho( &® [F,]|) = 1. However the converse that such an w—stable
bundle is uniquely determined up to isomorphism by the associated pair of points on S,
requires a study of certain spectral sequence that we are not to discuss here; similar

problems will come up later and it will be clear how the argument should go.

Now we consider case (b). In order to state the result we need a more vivid
interpretation of an ideal sheaf I of a zero ‘z € S with a multiplicity two structure. For
gimplicity write Iz for such an ideal sheaf. In principle a multiplicity two structure
defined by Iz is a tangential direction in which the point z 1is approached. This is
indicated in that after making suitable choices one can find generators s5,,8, of I taking
the following form locally at z:

8; = (au + bv)z, 85 = cu + dv

where a,d,c,d are complex numbers satisfying ad-bc # 0. We say in this situation Iz has
a multiplicity two structure along ad=+ b0 at z and idemtify I with the
projectivized element [a-gu— + b-g;] € P(T,S,). Now we can state the result for case (b) as

follows.



(1.3) Proposition. There is a 1-1 correspondence between
(i) equivalence classes of w—stable bundle &— §, fitting into an exact sequence
0— 0— 88 [Fy] — [Fy] 2 @1 —0

for some ideal sheaf I on S3 with a multiplicity two structure, and
(ii) the points in {d$ = 0} C P(T(S5\F,)) .

It is easy to check topologically {d¢ =0} in P(S3\F,) is just the blow—up
S:YF3 of Sg\F, at all the nodes n, on singular fibres of S, . In this topological
model, a point z of S;\\\F3 not lying in the exceptional curves En” is to be identified
with the projectivized tangent vector [Tsz(z')] € IP(TzS3) where Fw(z) denotes the fibre:
to which z belongs. Note that points in the exceptional curves E,  C S;\\\F3 are already

v
elements of [P(Tnys3) C P(T(S4\F;)) in a natural way.

In order to show this proposition we need a few facts of the residue theorem for vector

~ bundles applying to

(1.4) 0— [Fal 2 £ 88 [Fy] 1 =1 —0

where [F3]_2 denotes ([F3])"1)@2, the square of the dual bundle [F3]_'1 for [F,]. As
Hl([Fs]"z) = 0, the spectral sequence relating global and local Ext groups takes the form

0 — Ext (I, [Py %) — Ext (1, [Fy ™) — B([F,] ) — ..

gl



with both ]_i};tl(I z[F3]_2) ~ g, and H2([F3]—2) are isomorphic to €2, For our purpose it
is enough to consider Iz is locally generated by 8) = 10,8 = v2 in some local coordinates
(u,v) of z Insuch cases ¢ =~ {[1,v] and an element ¢, € Eﬂl(lz,[Fa]_z) corresponding
to A_+4,vE (g liftato Extl(Iz,[F3]_2) provided that the residue pairing

(A +s,v)é(u,v)durdy
{0} av2

vanighes for all ¢ € HO(KS Q[Fs]m). Finally, such a lifting gives locally free extension
3

precisely when e_ if a unit in Ext'(I,[F4] ™).

We apply this framework to many different situations when showing proposition
(1.3). Consider first z € S3\F3 is not a node. Let ¥ =1u so that the multiplicity two
structure is along the fibre direction TQ(Z)F. In this case we have

(A +4,7)é(u,v)durdv _

{0} - = 4, #0)

for all ¢ € H'(Kg @[F,|°%) and so precisely the unit A_ lifts to Ext!(L,[Fyl2). Now
3

we can check in (1.3) corresponding to I there is an w—stable bundle & which is unique
up to isomorphism as the proposition asserts. Suppose now ¥ = v 3o that the multiplicity

two structure is transversal to the fibre direction. We get this time

A +4.v)d(u,v)duadv
Re}"{0}( M )2(u -~ = 1,90) + 3, 52(0) .

uv




b o A o b 6 o e b At S 1 = At = e S 4 R R o s Ay A 4t 28 i kR B 8 LTy . T S T

-9 -
Note that ¢ is a section of Kg G[Fa]02 o~ [Fs]Oi*q, (1) and hence we have
3 1
gg(o) #0 whenever ¢(0) = 0. Thus the above expression vanishes for all ¢ only if
A g = 0 but then the same requirement forces B, = 0 as well. Thus there is no locally free
extension in (1.4) for such I. To complete the proof of proposition (1.3) we are to study

the cases when z is a point of F, or a node on a singular fibre. A straightforward

investigation as in previous cases yields the desired result.

Remark This line of arguments in fact applies equally well to study w—stable 2—bundles
with (c;,¢9) = (0,1) over S5 but shows that such bundles do not exist at all (c.f. [LOJ).

In §3 we shall be discussing a cokernel bundle {— M,(w) and the following

proposition ensures the existence of such a bundle.

(1.5) Proposition For every w-stable 2-bundle & — S, with (c,(&),c5( &)) =(0,2) we
have h2(End & =2, where End & denotes the endomorphism bundle of &.

Proof. By previous discussions, & comes from an extension

0— 0— 88 [F,] — [F,] %81 — 0

3l

and it is easy to deduce from this

h%(End # =1 + b0(#® [F,]™%81) and n0(#® [Fy®3) = 2.

3l

For our purpose it suffices to check in the exact sequence
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(1.6) 0— [Fy]®2 — 2@ F,]% — [F,|™e1 — 0
the lift § € HO( &® [F3]®3) of a non—trivial section 8 € HO([F3]@4®I) is not an element
of E'(#@® [F,/®%I). This can be accomplished by considering the Koszul complex

associated to the exact sequence (1.6) just as in [FM] and therefore we omit the argument

here.

§2. Construction of the moduli space

The purpose of this section is to construct the moduli space Mz(w) of w—stable
2-bundles &— Ss- with (c;(&),c5(¥)) =(0,2) and then show such a moduli space is
smooth. We first define a variety ¥ which "doubly" parametrizes all such stable bundles.
To begin with, let

Y = {(51332) € ((53\_F3) x (53\F3))\A53\F3 : i(”1) = i'(52)]' .

Then we blow up (S3\F3)x(S3\F3) along the diagonal AS3\F3 and obtain a new

N
manifold (83\F3)X(S3\F3) on where there is a projection x mapping onto
((Sq\F4)x(S5\F4))\4g \Fy We define ¥ to be the closure of #x (Y) in
3

(55\F5) %(S5\Fy)

(2.1) Proposition ¥ is a smooth complex 3—dimensional manifold.
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Proof: It is not difficult to see firstly Y C ¥ is always a smooth manifold. Indeed, as long
as neither of the points z,,2, € Sq\F, i a node on a singular fibre of SS\F:’.’ we can
easily find local coordinates for the pair (zl,z2) € Y. It is just a simple application of the
fact that the symmetric product of a Riemann surface is a smooth manifold. In the case
when the point, say, Z is a node on a singular fibre of 83\F3, we choose local coordinates
(u;,v;) for the points z € S5\F, so that

¥ = u% + vf near 2, and

V= U, near  z,.

A neighbourhood of (z,,25) € Y is then given by {f=0} where f=1uy—u’—v2. As
df # 0, it follows Y is smooth.

To prove Y is also smooth, we let U CS,\F, be a neighbourhood of a point
3\"3

z € Sa\F3 and (u,v) be local coordinates on U. Denote by (u;,v;) the local coordinates
on thei-th U factorin U x U. Let

be a change of coordinates on U x U. Clearly, the diagonal AU of UxU is given by
{w1 =Wy = 0} and the blow—up UXU of U x U along Ayy is the manifold

{(w W, Wa Wy, [£1, L) EUX U X Py w ly =Wl ).

Now if z € S3\F3 is not a node on a singular fibre of S3\F3 , we can take ¥ =u on U.
It follows Y N (U x U) = {w, =0} and from which one infers
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(2.2) ¥ n(ux0) = {¢, =0}

On the other hand, if z is a node on a singular fibre, we let ¥ = 112 + v2 on U. The

condition ¥(z,) = ¥(z,) on U x U\AU reads uf + vf = u% + vg, or
(u;—09)(uy+u,) + (vl—v2)(v1+v2) =0. In terms of coordinates (wl’w2’w3’w 4 it
becomes w,w, + W,w, = 0. By the fact that [£,,45] = [w,wy] for (w,wy) #(0,0), one

finds then
(2.3) ¥ n(uxT) = {4wy = Lywy; LWy + Low, =0}
It is clear both in (2.2) and (2.3) ¥ N (UXD) is smooth and so the proposition follows.

Now we wish to explain what the relation between the manifold ¥ and the moduli
space Moy(w) is.

(2-4) Proposition The manifold ¥ naturally parametrizes all w—stable 2-bundles §— S,
with (c;(#),c9( &) = (0,2). On the submanifold Y of ¥, the parametrization is two to

one.

Proof Understandably this parametrization is induced from the nature of the zero(s)
associated to sections s € HO( §® [F,]) by previous discussion in §1. Hence the second
assertion is obvious. We are to show points z in Y\Y correspond to ideal sheaves I in
a natural way. It is enough to work with local models UXU on where points in Y\Y are
characterized by the conditions W = Wo =0. One observes in such situations Wa =2u
and Wy =2v,. Thus Wa and W, are essentially local coordinates on U. Meanwhile,

along w; = w, =0 there are natural identification (cf. [GH] p. 603) as follows:
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(0,0,W4,%,,[£,,£,]) € UXT — [£ -a% + ¢ 3-%] € P((NAU)(O,O’Ws'w4)) .

The latter is identified with [‘1?%4‘ A 3%] € IP((TAU)(O ; )) gince in the
Waq,W
At | 3’ 4

present context the normal bundle N AU of Ay in UxTU is in essence the tangent
bundle T, of Ay If z € U is not a node on a singular fibre of S,\Fj, we may take
U

¥ = u and obtain as before
(Y\Y) N (UXD) = {(0,0,%4,w,[£;,L,]) : £, =0} .

This corresponds under the identification the element [-ag] € P(T(2u,2v)s3) which is
precisely the tangential direction T\Il(2u,2v)F of the fibre. Therefore at the point z€ U
the element {¢; =0} in H’(Tzsa) corresponds to the ideal sheaf I = (u,v2) as wished.
On the other hand, if z € U is a node on a singular fibre, we assume ¥ = u2 + v2 as

before and find for any point y € U that

(Y\Y) 0 (U%D)) N P(T,.S,)
= {[51:52] € [P(Tys3) : £1w2 = lzwl; l1w3 + £2w4 =0}.

Since the point 2€ U s given by w;=w,= Wa=w, =0, it follows
(¥\Y) N (UXT)) NP(T,S,) is the whole of P(T,S;). We conclude therefore
¥ N P(T(S;\F,)) parametrizes all stable bundles & in our consideration having a section

8 of &®[F,] with a zero of multiplicity two. The proposition follows.
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Now we are in a position to describe the moduli space M,(w). On the manifold Y
there is an Z,—action interchanging the order of the pair (z,,2,) € (33\F3)x(S3\F3). In

terms of coordinates (wl,wz,ws,w4) the Z,—action is given by
(wl,wz,wa,w 4) —_ (—wl,—wz,w3,w 4) .

This action extends to the blow—up model UXU in the obvious way and it is clear My(w)
models ¥/,

(2.5) Proposition ?/H2 is smooth.

Proof. It is enough to check local models ¥ N (Ufﬁ)/ﬂ2 are smooth. In general, the

manifold

is covered by the patches {£,#0} and {£,#0}. On {£,#0} there are local coordinates

14
(wl,w3,w 4,1%) and we define on {514&0}/ I,, local coordinates

V4
(zlrwavw@z%) = (W%,W3,W4,z%) .

14
Clearly (zl,w3,w 4,22) corresponds precisely to the pair of points
1

14 14 »
2 2
(wy,wy Tl,ws,w4,[£1,l2]), (—w,—w, z-l,wa,w4,[ll,l2])
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F4A
on UXU as wo=Ww 2.Likewise we write
2 1?;

- tl 2 1
(321W3:W4125) = (W2:W3vw432;)

for local coordinates on {£, # 0}/I,. Now in (2.2) we define for the local neighbourhood
¥n (U{U)ﬂlz , where

¥ n(URD) = {(w W Wqwy,[£y,85]) : 4wy = Lywy; £, =0},

local coordinates _(z2,w3,w4)=(w§,w3,w4). Similarly in (2.3) we write for
¥n (Uﬁ)/llw where

¥ 0 (UX0) = {(w), W0, Wg,w,[£1,45]) : £yWg = Lowy 5 LWy + Low, =0},

local coordinates

¢ 2 4 -
(Zl,w4,2—1) = (wl’w4’T1) on {£1 # 0]’/”2 and
L, 2 4

This shows ?/ ZI2 admits a smooth manifold structure and proves the proposition.

Before closing this section we wish to discuss two more things required later. The first
one is that when constructing a universal bundle ¥ over ?/H2NS3 in the next section we
shall come across two line bundles on ?/122 which are more convenient to describe here.

Using previous notations the local functions z =0 on {¢ # 0}/Z, define a diagonal
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divisor Ay /L, on ?/712 and we write [A¢ /221 for the associated line bundle. Likewise

one can introduce a line bundle C—l over ?/l2 using defining functions

£,=0 on  {¢ #0}/Z, and
£, =0 on  {&,#0}/1,.

Note that the dual bundle ( of (™' when restricted to the diagonal Ag 1, Y/, is
2
in- fact the tautological bundle over A?/E L-II’(T(S3\F3)). From the relation
2
£,Wy = {yw, one infers t%z2 = lgzl which gives

z, l%
§= -Zg on {£; #0}/I,N {4y #0}/L,.

As a consequence the bundle ( over ?/222 is a root of [A? /T ] or that (@2 = [Ay /Zl]'
2

The second thing we shall need is that this root is unique up to equivalence. The following

proposition ensures this is the case.

(2.6) Proposition The moduli space Mq(w) = ?/12 is simply-connected.

Proof Observe first for a smooth fibre F of 53-!—»IP1 the symmetric product

S%F = (FxF)/L,, is a smooth manifold admitting a fibration structure

(2.7) P, —— SF

|”

~ 2
FxAp CSF
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via a projection map pr sending a pair of points on F to their sum. By applying this
framework to all smooth fibres F of S, we obtain naturally a fibration in the following

way:

(2.8) P— (HT)\¥H(A)

l

(S3\F)\ ¥ (A)

where A = {a €P, : thefibre F, = 'Il"l(a) of S, is singular} while the map ¥ when

restricted to smooth copies of 52F < ?/12 is simply the projection map pr in (2.7). As

x,(P,) = 0, we deduce from (2.8) that every essential loop of (?/ﬂz)\ﬁ_l(A) is realized
. -1

by one in (S5\F3)\¥ (A).

Now to show rl(Y/ Z,) = 0 observe first there is an obvious surjective map
) .
* (F/INTA) — = (Y1) .
- For our purpose we argue every loop in (?/Zlé)\ﬁ-l(A) deforms to the trivial one in
¥/1,. As explained above such a loop can be chosen to be in (ss\Fs)\w‘I(A) and hence

must be trivial in ?/Hz using the facts x,(S5/F3) =0 (c.i (K] lemma 4) and
S3\F3 ~ AS3\F3 < ?/Hz. The proposition follows.
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§3. Determination of the cokerne] bundle

As explained in (1.5) for every element [&] € M,(«) we have H2(End &)~ ¢ 1
we denote sl(#)C End & the bundle of trace—free endomorphisms, then one finds
H2(sl( &)) ~ € since Hz(é) =€ on S,. Thus the assignment &— Hz(sl( &)) defines a
line bundle over M2(w) o~ ?/Hz. We shall show in this section the square of such a bundle
identifies with the diagonal divisor A¢ /71'2 611 ?/1‘12.

Note first on the product space Y/ I, x S, there exists tautologically a "universal”
ideal sheaf # whose defining functions when restricted to {y} x S, is precisely the one
on S3 parametrized by ;" € ?/ EZ. For our purpose, it is enough to construct a universal
bundle #—r Mz(w) x S, in an exact sequence

* * *
(3.1) 0 —pr;L— #‘0 pro[Fy] — pr2[F3]®2® F— 0.
Here pr; denotes the obvious projection map from ¥/ZyxS; to the i—th factor while L
ig' some line bundle over ?/ Hz. The reason for this is as follows. Granted the existence of

f in (3.1) we observe the ¢2—bundle over ?/2’12 given by &— ‘H2(End &) is just the
 second direct image sheaf (pr,),,(End #). By Serre duality this ¢%—bundle is dual to

* b 3 @2
(prl)*((End ]g) ® Prnga) = (pr;),(End #) ® pr, [F,) )
and it is easy to deduce from this

((Pry) g o8l I)* 2 L2 @ ((pr,), ( #8 pri[F,])*?

as End g~ f£*@ £ and
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Fraa¥(ghe Lo f.
Using (pr, ), (pra[Fsl"2@,#) = 0 in (3.1) we obtain
(pr)){ FODTIF,]) = (pr;), (pr]L) ~ L
and hence that
(Pry) qlel( #) = (L OLF) 2 17t

We shall see in the explicit construction of £ the bundle L will be taken to be the dual of
(— Mz(w) = Y/I, defined in §2. Therefore we have

(pry)y (s1(#) = ¢

and moreover that
(b (A2 = ¢ = gy ]
as asserted in Theorem 2.

A main problem of constructing the universal bundle £— ¥/ I, xS, in (3.1) is to
find a root for the diagonal divisor Ag /z on ?/212 but we have already known in §2
2

there is indeed one, namely, the bundle { — ?/Ilz. Nevertheless it might not be entirely
obvious why such a root should exist in the first place. It is undoubtedly the case however

if we restrict our attention to a subfamily J o of bundles parametrized by the
S°F
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symmetric product 52F ?/le of a smooth fibre F on §, since in which case we may
explicitly determine the second Stiefel-Whitney class wz([AS2 1) for the line bundle
F

A 9 ] associated to the diagonal divisor A on S2F and conclude whereby [A
F

S sF
always has a root as wz([AS2 ]) = 0. In fact we may further deduce in such cases the
F

S2F]

manifold S2F is free of torsion and so the topological obstruction to the existence of § 9
S°F
imposed by the Brauer class on S%F x S3 automatically vanishes. All these nice properties

of S°F have been discussed by Macdonald in {Ma)]. As a matter of fact the construction of

F)

is fundamental to the existence of the universal bundle )8‘ in (3.1) as we shall see in

S2F
a moment. To avoid repeating material however we play low the role of ;f 9 here in this
S°F ,
discussion.

A standard procedure of finding whether or not a universal bundle #— ¥/Z, x S,
exists in (3.1) i8 to study the spectral sequence

(3.2) 0 — BY(Y/T, x Sypr} 8 pri[F, )
— Ext'(¥/Z, x 5.4, priL @ prj[Fyl )
— B (Y/1, x 5,; Ext'( for}L @ pry[F,] )
— Hz(?/le % Sg; pr;[Fa]—z) — ...

which we shall examine very carefully. Observe first
1 * ¥ 1—2
H (?/22 % 855 prL @ pry[Fo] ) = 0

by the Kinneth formula as H'(Sy;[Fy] ™) = B'(S4i[F,] ™) = 0. To proceed on, let
X = supp( &y [TxS /A C ?/lz x S5. Note that X is a manifold and the restricted
273
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projection pr; | x:X— ?/H is a two—to—one covering map branched along the diagonal
A¢/z, of ¥/1,. Via the local duality theorem (c.f. [GH]) we have an isomorphism
2 .

(33)  Ext'(#priL®pry[Fy 2 m&(ﬁ( F1 A, priLepry[F 2 ® 4)

and our task is to find a line bundle L — Y/l2 to make the sheavf above a copy of %(
This suggests taking L ~ (—1 as we are going to explain.

Note first Az( F#l ,}2) is the determinant of the conormal bundle N; of X in
Y/l2 x S, and so we have

(3.4) A2 A = “5(('1"$‘/zz2xs2 |x) @ A°Ty
= (priKy/q, ® P’;Ksa) Ix @ ATy

o or* 3.
_prlK?/E2|x0A TX

since Kg is trivial on S3\F3. On the other hand, as X is a branched covering of ¥/ I,
3
there is a ramification divisor on X which we denote by prIl(A? /T ). Substituting the
2

Hurwicz formula
Ky = priKy g, ® &7 (0g/z,)

in (3.4) we obtain
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(35) NEET @((przl(amz))‘l = (pr¢ Yy -

* Note that the second isomorphism comes from the facts (m o [A? /T ] on ¥/ Iz and
2

pri([A? /12]) |x & (prIl(A? /ﬂ2) | x)32 on X. These two identifications combine to give
(b3 0% 1 = (b1 (g )10

and hence the asserted isomorphism as the manifold X is simply~connected (c.f.

proposition (2.6)).

It is now clear after taking L ~ (-1 in (3.2) one deduces from (3.3) and (3.5) that

BO(Y /1S Ext’(Apr} @ prlFl ) = B &)

as pr;[F3]—2 | x i8 trivial. Since HO( ) contains the constant function 1 as an element,
the universal bundle £ in (3.1) exists if the obstruction

(Y /1,xSypr} (T pry[F,l2) = BU(Y/1,, ¢ )0B3(S (7, 72)

vanishes or equivalently that HO(Y/HL,,(—I) =0 as (H2(S3;[F3]_2) ~ €2 To see it is
indeed the case we note first the bundle (‘1 when restricted to copies 5%F Y/ﬂz of
symmetric products of smooth fibre F on S3 has no holomorphic section. This is a
consequence of the fact that (,’@2|S2F ~ [A? /122]|52F is represented by an effective

divisor on SzF. As the union of such copies of S2F is a dense open set in Y/ﬂ, we
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divisor on SzF. As the union of such copies of 82F i8 a dense open set in ?/21, we

conclude HO(?/ZZ ;C_l) =0 and therefore the existence of the universal bundle # in

(3.1). This completes our discussions here.
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