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Introduction. In 1932, Bose [Bo] established the following formula for a given non
circular simple c10sed convex plane curve ,

(0.1 )

where s· is the number of enclosing osculating circles and t· is the number of tripie
tangent enclosed circles in ,. Haupt [Hu] (1969) extended it to simple closed curves in
the category of ordnungscharacteristiken(=OCh) mit der Grundzahl k = 3, which is
defined in Haupt and Künneth [HK].

Roughly speaking, the formula for generic simple c10sed curves can be obtained by
the following simple observations: Let, be a generic CCO-regular simple c10sed curve
and D the domain bounded by ,. The cut loeus K (c D) of, is the c10sure of the set
of points which have more than one minimizing line segments from ,. Then K has a
structure of a tree and each boundary point corresponds to the center of an enc10sed
osculating circle. (See Thom [Tm1] and [Tm2].) Moreover, it can be observed that
the branch points of Kare the centers of tripie tangent enclosed circles. Hence s· is
the number of the boundary points of K and t· is the total branching number at the
branch points. Since K is contractible, the formula s· - t· = 2 follows immediately.
(This observation is justified for any C 2-regular simple c10sed curves with s· < 00. See
the last remark in §2.)

We give here abrief history of the four vertex theorems for simple c10sed curves.
In 1909, Mukhopadhayaya [Mu1] proved it for convex c10sed curves. A. Kneser [A.K]
(1912) extended it to simple c10sed curves. But a vertex (that is, a critical point of
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the curvature function) may not be a point where the osculating circle is completely
inside and outside the curve. The inequality s· ~ 2 for simple closed curves was proved
by H. Kneser [H.K] (1922-1923) who is a son of A. Kneser. The Bose formula and its
generalization by Haupt [Hu] is a refinement of it. Jackson [Jl] (1944) gave many other
fundamental tools for the study of vertices on plane curves.

On the other hand, the four vertex theorem was extended to simple closed curves on
closed convex surfaces by Mohrmann [Mo](1917) without details and its complete proof
was given by Barner and Flohr [BF] in 1958. To generalize the four vertex theorem for
simple closed convex space curves (that is, curves lying on the boundary of their convex
hulls) with non-vanishing curvature, Romero-Fuster [R] proved a Bose type formula

(0.2) s-t=4

for convexly generic convex curves I in R 3 , where s is the number of supporting oscu
lating planes and t is the number of tritangent supporting planes. (Various approaches
for the same problem are fourid in [Bi], [RCN2] and [BRI-2].) After that, Sedykh [Sd2]
showed that (0.2) is true for simple closed strictly convex space curves. (Moreover, he
gave a generalization of (0.2) for strictly convex manifolds M k in the Euclidean space
Rn (k < n - 1).) The four vertex theorem for simple closed convex space curves with
non-vanishing curvature itself was proved in Sedykh [Sdl] by a different approach.
Recently, Kazarian [Ka] established some formulas similar to (0.1) representing the
Chern-Euler dass of a circle bundle over aRiemann surface in terms of global singu
larities of restrictions of a generic function to the fibers.

There are interesting connections between vertices and integral geometry (e.g. [BI2],
[Hy],[Ba],[Gul-2],[He5].) or contact geometry. The author was inspired by them, espe
cially recent papers [AI-4],[GMO],[OT],[Ta1-3] in which several variations of the four
vertex theorem are observed from the view of contact geometry or proved by using the
technique of disconjugate operators on SI.

The purpose of the paper is to give a unified treatment of the formulas (0.1) and
(0.2). More precisely, we will introduce a notion "intrinsic circle system" as a certain
multivalued function on the unit circle without referring to ambient spaces, which
characterizes the cut loci of plane curves intrinsically and enables us to prove the
formula (0.1) abstractly. Consequently, (0.1) or (0.2) is proved under much weaker
assumptions for the following three cases:

(1) piecewise Cl-regular simple closed curves on the Euclidean or Minkowski plane,
which bounds a domain whose internal angles are less than or equal to 7r,

(2) piecewise Cl-regular simple closed curves on an embedded surface with positive
Gaussian curvature in R 3

, which bounds a domain whose internal angles are
less than or equal to 7r,

(3) convex simple closed space curves in R 3 with some additional conditions. (As
an application, the Sedykth's 4-vertex theorem is obtained.)

The formula like as (0.1) will be shown for these three cases. (See Theorem 2.7 and
Theorem 3.2.) However, the formula like as (0.2) requires C 2 -regularity of curves. (See
Corollary 3.3 and Theorem 4.14.) Haupt's proof partially covers the cases (1)-(2) but
not (3). (In his paper, the existence of osculating circles is assumed.) Here the vertices
on curves defined for the cases (1)-(2) include singular points of curves. This gives a
new interpretation for the existence of the unique inscribed circle in a triangle. (In this
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ease, s· = 3 is the number of vertiees and t· = 1 is the number of inseribed eircles
and they satisfy the relation s· - t· = 2 trivially.) Though it is not direetly eoneerned
with the Bose-type formulas, several generalization of four vertex theorems without
differentiability have been investigated by [LSc),[J2],[LSp),[Spl-4] etc. It should also
be remarked that vertiees for polygons are studied by several authors. (See [Sa] ,[W2]
and [Sd3].) But their definition of vertex is different from ours. (In our setting, the
vertiees of polygons have the usual meaning.)

Finally, we remark here that this paper is prepared for the ensuing paper Thorbergs
son and Umehara [TU), in whieh we shall prove in the same axiomatie setting that for
any C2 -regular simple closed curve , : [a, b] -+ R 2 , there exist Jour points t l , t2, t 3, t 4
(tI < t 2 < t 3 < t 4 ) such thai the osculating circles at t l and t 3 are enclosed in , and
the osculating circles at t2 and t4 enclose ,. (Here the the order of the osculating
circles is important. The eorresponding version for eonvex simple closed spaee eurves
also holds.) The statement looks obvious at the first glanee, but it is one of the deepest
versions of the four vertex theorems, and provides many applications.

§1 Intrinsic circle systems.
We fix an oriented unit eircle SI. Let ;- denote the order indueed by the orientation

on the eomplement of any interval in SI. Any two distinet points p, q E SI divide SI
into two closed ares [p,q] and [q,p] such that on [p,q] we have q;- p and on [q,p] we
have p ;- q. We let (p, q) and (q,p) denotes the eorresponding open ares. We also use
the notation p ;:: q, whieh meanS p = q or p ;- q. Let A be a subset of SI and p E A.
We denote by Zp(A) the conneeted eomponent of A eontaining p.

Definition 1.1. A family of non-empty closed subsets F := (Fp)pESl of SI is called an
inirinsic circle system on SI if it satisfies the following three eonditions for any p E SI.

(11) If q E Fp , then Fp = Fq •

(12) If q E SI \ Fp, then Fq C Zq(SI \ Fp). (Or equivalently, if p' E Fp, q' E Fq and
q ;:: p' t q' t p(;:: q), then Pp = Fq holds.)

(13) Let (Pn )nEN and (qn)nEN be two sequenees in SI such that limn~ooPn = P
and limn~ooqn = q respeetively. Suppose that qn E Fpn (n = 1,2,3, ... ). Then
q E Fp holds.

Remark. Let , be a pieeewise Cl-regular simple closed eurve in R 2 . Let C; be the
maximal eircle whieh is eontained in, and tangent to , at p. Then Fp := l'nC; satisfies
the above three eonditions. (See Proposition 3.1.) The definition of the intrinsie eircle
system eharaeterizes the properties of maximal eircIes of a eurve without referring to
an ambient space, whieh enable us to generalize the Bose type formula to eonvex simple
closed spaee eurves. This is the reason for the terminology "intrinsic circle system".
By (11), F induees an equivalenee relation. Later (See the last remark in §3), we will
show that the quotient topological spaee SI / F is homeomorphie to the cut loeus !{
of ,. In this sense, the intrinsic circle system ean also be interpreted as an abstract
charaeterization of the cut loci of plane eurves. We give here two elementary examples.

Let,: x2ja2 +y2/b2 = 1 (a > b) be an ellipse in R 2 . Then the maximal eircle C;
at eaeh point p = (x, y) on I has two eontaet points at p and p = (x, -y) unless y =1= o.
So if we set Fp := C; n" then

F .= { {p,p}
p • {p}
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One can easily verify that (Fp )PE"Y is an intrinsic circle system.
Another typical example is the triangle 6abc as in Figure 1.1, which is invariant

under the reflections 0', ß and ,. We consider the maximal circle C; at each point on
the triangle. Then C; has two contact points to the triangle unless p = a, b, c, X, y, z,
where x := (a + b)/2, y := (b +c)/2 and z := (c +a)/2. So if we set Fp := C; n" then

{p, O'(p)}

{p, ß(p)}

Fp := {p, ,(p)}

{p}

{x,y,z}

if p E ay U az and P # a, y, Z

if p E bz U bx and p =f. b, z, x

if P E cx U cy and p # c, x, Y

if p = a, b, c

if p = x, y, z.

One can also easily verify that (Fp )PE6abc is an intrinsic circle system. We will give
further examples of intrinsic circle systems in §3 and §4.

a

b .....__........ .a C

xI

~a
Figure 1.1

Let A be a subset of SI. The number of connected components of A is called the rank
of A and is denoted by rank(A). For a family of non-empty closed subsets (Fp)PES1,

we set

rank(p) := rank(Fp ).

The next lemma, which plays a fundamental role in this paper, is a generalization of
the main argument in H. Kneser [K.H].

Lemma 1.1. Let (Fp)PES1 be a Jamily oJ non-empty closed subsets satisJying (12). Let
p, q be points on SI such that q E Fp • Suppose that (p, q) ct. Fp . Then there exists a
point x E (p, q) such that rank(x) = 1.

Proof. If necessary, taking a subarc in (p, q), we may assume that Fp n (p, q) is empty.
We fix a metric d(, ) on 51. Let x be the middle point of [P, q] with respect to the
distance function. If rank(x) = 1, the proof is finished. So we may assume that
rank(x) > 1. By (12), Fx C (p,q). Since SI \ Fx is an open subset, we can choose a
connected component (PI, ql) of SI \ Fx such that (PI, ql) c [P, q]. Then PI, qI E Fx ·

Instead of p and q, we apply the above argument far PI and ql. Let Xl be the middle
point of the arc [Pl,ql]. Then we find a subarc [P2,q2] such that P2,q2 E FX1 and
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(P2, q2) C SI \ FX1 ' Continuing this argument, we get a sequence of arcs {[Pn, qn]}nEN
such that

1
d(Pn,qn) < 2d(Pn-l,Qn-l).

Thus, there exists a point y E (p, q) such that

y = lim Pn = lim qn'
n--+oo n--+oo

If rank(y) =I- 1, then there exists an element z E Fy different from y. Then z rJ.
(Pn,qn) = Zy(SI \ Fpn ) for a sufficiently large n. This contradicts (12). Thus we have
rank(y) = 1. 0

Remark. Suppose that I is a simple closed curve in R 2 . Let C; be a maximal circle
and Fp = C; n I' Then the argument above was applied to show the existence of
two distinct enclosed osculating circles in H. Kneser [H.K]. In fact, using Lemma 1.1,
one can easily get the existence of two distinct maximal circles C; and C; (x =1= y),
which are tangent to 1 with only one connected component. If the curve I is C 2_

differentiable, then C; and C; must coincide with the osculating circles at x, y E I

respectively. (See Proposition A.5 in Appendix A.) We remark that Thorbergsson [Tr]
generalized this argument for a certain class of simple closed curves in any complete
Riemannian 2-manifold.

From now on, we fix an intrinsic circle system F = (Fp)PES1 on 51.

Definition 1.2. p E SI is called regular (resp. weakly regular) if rank(p) = 2 (resp.
2 :::; rank(p) :::; (0). A subarc I of 51 whose elements are all regular (resp. weakly
regular) is called a regular are (resp. weakly regular are).

The following lemma immediately follows from Lemma 1.1.

Corollary 1.2. Let I be an open weakly regular are. Then for eaeh P E I, the set

is eontained in SI \ I. In particular, the closure Yp lies in 51 \ I.

Definition 1.3. Let I be a closed arc on SI and A be a subset in I. Then the points
sUPI(A) and infJ(A) which are called the least upper bound and the greatest lower
bound of A, are defined as the smallest (resp. greatest) points satisfying

sup(A) t x
I

x ~ inf(A)
- I

(for all x E A),

(for all x E A).

Definition 1.4. Let I = (Xl, X2) be a weakly regular arc. For any P E I, we set
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where Yp := Fp \ Zp(Fp ). Moreover, we extend the definition of I-l± to the boundary of
I as follows. If Xj (j = 1,2) is weakly regular, we set

(1.1 )

On the other hand, if x j is of rank 1, we set

(1.2)

We will call1-l± antipodal maps. By definition, J.l±(l) C SI \ I holds.

The following lemma is a simple consequence of the properties (11) and (12).

Lemma 1.3. Let I = (Xl, X2) be an open weakly regular arc and P, q E I two points
such that p >- q on I. Then the Jollowing relations hold.

(on SI \ I).

Moreover ij Fp # Fq , then J.l- (q) >- I-l+ (p) holds on SI \ I.

Proof. We only prove the first relation. (The second relation is obtained if one reverses
the orientation of SI and replaces P by q.) Suppose that J.l+ (p) >- J.l+ (q) on SI \ I.
Then we have

on [P, q].

By (12), we have Fp = Fq • Since I contains no points of rank 1, Lemma 1.1 yields
that Zp(Fp) = Zq(Fq). Hence J.l+(p) = J.l+(q) hut it is a contradiction. Thus we have
J.l+ (q) ;:: J.l+ (p) .

Next we suppose that J.l+(p) t J.l-(q) holds. Then we have

Since Fp and Fq are closed subsets of SI, we have I-l±(q) E Fq and I-l+(p) E Pp. Thus
(12) yields that Fp = Fq , which proves the second assertion. 0

Theorem 1.4. Let I = (Xl, X2) be an open weakly regular arc. Then the Jollowing two
formulas hold:

lim J.l+(X) = J.l+(p) +0
x~p-O

lim J.l- (x) = J.l- (p) - 0
x~p+O

(Jor P E (Xl, X2]),

(for pE [Xl, X2)).

ProoJ. We shall prove the first formula. The second formula follows by the same
arguments. We take a sequence (Pn)nEN such that Pn -+ P - o. Since Pn -+ P - 0,
we mayassume that Pn+l >- pn for any n E N. Since SI is compact, (J.l+(Pn))nEN
contains a convergent subsequence. Thus, without loss of generality, we may assume
that there exists a point q E SI \ I such that J.l+(Pn) -+ q. Since Pn+l >- Pn, it holds
that 1-l+(Pn) ;:: J.l+(Pn+l) by Lemma 1.3. So we have J.l+(Pn) -+ q + o. Then the proof
of the formula follows from the following lemma. 0
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Lemma 1.5. Let (Pn)nEN be a sequenee in an open weakly regular are I == (Xl, X2)
such that Pn -+ P - 0) where P E (Xl, X2]. Suppose there exists q E SI \ I such that

f.1+(Pn) -+ q +O. Then q == fL+(P)·

Proof. First, we consider the case that rank(p) ~ 2. By (13), we have p, q E Fp . Since
f.1+ (I) C SI \ I, Lemma 1.3 yields

By taking the limit fL+(Pn) -+ q, we have

on SI \ I.

(1.3) on SI \ I.

In particular P =I- q. Suppose that q E Zp(Fp). Then [q,p] C Fp. Since fL+(Pn) -+ q+ 0,
we have Pn E Zp(Fp) and thus f.l+(Pn) == f.l+(p) for sufficintly large n. Hence we have
q == f.l+(p), So we may assurne that q E Yp • Since f.l+(p) == SUPS1\I(Yp ), we have
q == f.l+(p) by (1.3).

Next we consider the case that rank(p) == 1. This case happens only if p == X2. By
(13), we have q E FX2 ' If FX2 == {X2}, then we have q == X2 == fL+(X2)' So we may
assume that FX2 consists of more than two points. Then FX2 is written as

(y E SI \ 7).

Suppose that q E [X2, y). Since f.l+(Pn) -+ q + 0, we have f.l+(Pn) E (X2, y). Then by
(11), F pn == FJL+(Pn) == F X2 ' But this contradicts the fact rank(Pn) ~ 2. Hence we have
q == y == f.l+(X2) because of q E FX2 ' 0

Theorem 1.6. Let I == (Xl, X2) be an open weakly regular are. Then fL- (Xl) >- f.l+ (X2)
holds on the are SI \ I. Moreover) for any q E (f.1+(X2),f.l-(XI)), there exists a point

p E I such that

(1.4) (on SI \ I).

Proof. We divide the proof into three steps.
(Step 1) First prove the relation f.l- (Xl) >- I-l+ (X2) on SI \ I. Suppose F X2 == FX1 ' Then
there is a point of rank 1 on I by Lemma 1.1. But this contradicts the weak regularity
of I. So we have FX2 =1= FX1 ' Then fL-(X1) >- f.l+(X2) holds by Lemma 1.3.
(Step 2) Next we prove the second assertion. We set

where Bq is the set defined by

B q :== {x E 7; q t f.l+(Y) for all X2 t y t x}.·

For any z E I which is sufficiently elose to X2, it holds that q >- f.l+ (z) by Theorem 1.4.
This implies z E Bq, and thus Bq is non-empty. Moreover, definition of P yields that

X2 >- z >- p.
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In particular p =1= X2. Next we suppose that p == Xl. By Theorem 1.4, we have
limW -t X l+0 Il-(w) == 1l-(xI). In particular, it holds that Il-(w) ?- q for W E I suffi
ciently elose to Xl. On the other hand, the definition of p yields q t Il+(w). Thus (1.4)
holds for p == w.
(Step 3) So we may assurne that p EI. By Theorem 1.4, we have

(1.5)

(1.6)

Il+(p) == lim Il+(x),
x-tp-O

J-t- (p) == lim j.l- (x).
x-tp+O

Suppose that q ?- J.l+(p) on 51 \ I. Then (1.5) implies that there exists u(-< p) such
that q?- J.l+(x) for X E (u,p). This means that q t Il+(x) holds for x E (U,X2)' Hence
u E Bq. But this contradicts that p == infy(Bq). So we have Il+(p) t q on 51 \ I.
Next we suppose that Il-(p) ?- q on SI \ I. Then (1.6) implies that there exists v(?- p)
such that /-L-(v) ?- q. Since /-L+(v) t Il-(v), we have J.l+(v) ?- q. On the other hand,
since v ?- p, we have v E Bq. This contradicts the relation 11+ (v) ?- q. So we have
q E [J.l-(p) ,J.l+(p)]. 0

If the are I is regular, the following stronger assertion follows immediately.

Corollary 1.7. Let I == (Xl, xz) be a regular are. Then J.l- (Xl) >- IJ+ (xz) holds on
the are Sl \ I. M oreover, for any q E (11+ (X2), 11- (Xl)), there exists a point p E I such
that Fp == Fq • In partieular, (J.l+(X2),IJ-(XI)) is also a regular are.

§2 A generalization of the Bose formula.
In this section, we fix an intrinsic circle system F == (Fp )PES1. We define a relation

r-v on Sl as follows. For P, q E Sl, we denote p r-v q if Fp == Fq . Then by (11), this is an
equivalenee relation on Sl. We denote by Sl / F the quotient space of Sl by the relation.
The equivalence elass containing p E Sl is denoted by [p]. Then rank([p]) :== rank(p)
is weIl defined on 5 1 / F by (11).

Definition 2.1. We set

S(F) :== {[P] E Sl / F; rank([PD == I},

T(F) :== {[P] E Sl / F; rank([PD 2:: 3}.

The set S(F) is called the single tangent set and T(F) is caIled the tritangent set.
Moreover, we set

s(F) :== the cardinality of the set S(F),

t(F):== L (rank(p) - 2).
[p]ET(F)

Definition 2.2. The single tangent set S(F) is said to be supported by a eontinuous
function T: Sl ---t R if for each [P] E S(F), Fp is a connected component of the zero
set of T.

In §3, we will give several examples of intrinsic cirele systems whose single tangent
sets are supported by continuous functions. (See Remark of Theorem 3.2.)
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Lemma 2.1. Suppose that 3 ::; s(F) < 00. Let p, q E SI be points such that rank(p) =

rank(q) = 1 and Fp i= Fq • Then there is a point x E (p,q) such that rank(x) ~ 3.
Moreover, if the single tangent set S(F) is supported by a continuous function T) the
assumption s(F) < 00 is not needed.

Proo/. Suppose that there are no points x E (p,q) such that rank(x) ~ 3. Sinee
s(F) < 00, we mayassume that there are no points of rank = 1 on (p, q). Then (p, q)
is a regular are. By Corollary 1.7, the open are (J.l+(q),J.l-(p)) is also a regular are.
On the other hand, we have J.l+(p) = P and f.l-(q) = q by (1.2). So all the elements in
[f.l-(p),p] U [q, J.l+(p)] are of rank one. Since I is expressed as

there are no elements of rank(~ 3) and s(F) =·2. But this contradiets s{F) ~ 3.
This proves the first assertion. When S(F) is supported by T, we do not need the
assumption s(F) < 00. In fact, we get the same contradiction if we can take an open
subarc (pI, ql) of (p, q) satisfying the following three properties;

(1) [pI], [ql] E S (F) ,
(2) Fp' i= Fq"

(3) (p', q') is a regular arc.

If there are no such p' and q', then the subset

{x E (p,q); [x] E S(F)}

is dense in (p, q). This implies that the funetion T vanishes identically on (p, q) and
thus Fp = Fq , whieh is a contradiction. 0

Theorem 2.2. If s(F) < 00 then t(F) < 00. The converse is also true if the single
tangent set S(F) is supported by a continuous function T : SI -+ R.

Remark. In general, t(F) < 00 does not imply s(F) < 00. For example, we set Fp :=

{p} (p E SI). Then F = (Fp)PES1 is an intrinsie eircle, whieh satisfies s(F) = 00 but
t(F) = O.

The theorem follows from the following three lemmas.

Lemma 2.3. If there exists a point p E SI such that rank(p) = 00) then s(F) = 00.

Proo/. Let 0 be the open subset of SI given by 0 := SI \ Fp . We take a sequence
(Xn)nEN in 0 such that Xi and Xj are in mutually different components of 0 unless
i = j. Let (Pn, qn) be the maximal open interval in 0 containing x n' Then Pn, qn E Fp •

By Lemma 1.1, there exists [Yn] E S(F) on (Pn, qn)' By (12), we have FYn C (Pn, qn)'
Thus (FYn )nEN are all disjoint. Henee s(F) = 00. 0

Lemma 2.4. Suppose that 5(F) is supported by a continuous function T : 51 -+ R. If
s(F) = 00, then t(F) = 00.

Proo/. Let n ~ 3 be a fixed integer. We assume that s(F) = 00. Then there exists a
mutually distinet equivalence classes [Xl], ... ,[Xn ] E S(F). We set

n

M:= UFxj •

j=1

9



Then SI \ M is a union of disjoint open subsets {(Ph Qj)}j=I, ... ,n. By Lemma 2.1, there
exists a point Yj (j == 1, ... ,n) on (pj,qj) such that rank(Yj) ~ 3. This implies that
t(F) ~ n. Sinee n is an arbitrary integer, we have t(F) == 00. 0

Definition 2.3. Let ~ be a subset ofT(F) such that rank([x]) < 00 for all [x] E ~. Then
for eaeh x E ~, SI \ Fx is a union of disjoint open ares I;, ... ,I;~, where T x :== rank(x).
Such an open are I; is ealled a primitive are with respeet to the subset ß if I; n Fy is
empty for all [y] E ß. If ß is a finite subset and given by ß :== {[Xl], ... , [Xn]}, then we
set
(2.1)

N(~) :== ~{I~~ ; 1 ~ j ~ n, 1 :::; Rj :::; rXj and I~~ n FXk == 0 for all k == 1, ... ,n},

that is N(.6) is the total number of primitive ares with respeet to ~ among {I;~}.

We give an example whieh will be helpful for the arguments below.

Example. Let I be the smooth eurve as shown in Figure 2.1 and C; the maximal
circle C; at each point p E I' We set Fp := C; n l' Then it ean be easily eheeked
that (Fp)PE"Y is an intrinsic eircle system. The points ab ... , a12 are of rank one and
the points bl , b2, b3 , Cl, C2, C3, dl , d2, d3 , e1, e2, e3, 11, 12, 13, 91,92, g3 are of rank three.
Finally, hl , h2 , h 3 , R4 and i b i2 , i3 , i 4 are of rank four. Other points of 1 are all regular.
In this ease,

S(F) :== {[al], ... , [al2]},

T(F) := {[bI], [cl], [dl ], [eI], [!1], [gI], [h l ], [i l ]}.

For example, /\Fh has three eomponents J I :== /(b 1 ,b 2 ), J2 :== 1(b2 ,b3 ) and J3 := /(b 3 ,bd'

In this case J1 and J2 are primitive with respeet to T(F), but J3 is not.

f'J 9'J

Figure 2.1

Definition 2.4. Let ß be a subset of T(F). An element [x] E ~ (x E SI) is called
totally primitive if there exists a non-primitive are I; such that all the other ares

are primitive with respeet to ß.

Let I be the eurve as in Figure 2.1 and F the intrinsic eirc1e system defined in
Example. Then [bI], [cl], [dl ], [el], [!1], [gI] are totally primitive with respeet to T(F),
hut [h l ], [i l ] are not.
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Lemma 2.5. 1/ s(F) < 00, then t(F) < 00.

Proof. We prove the lemma by induction. If t(F) 2:: 1, then by Lemma 1.1, we have
s(F) 2:: 3. Thus the lemma holds for s(F) ::; 2. So we assume that t(F) < 00 holds
if s(F) < n (n 2:: 3) and prove the assertion in the case s(F) = n. We suppose that
t(F) = 00. Although the set T(F) need not to he finite, hut the rank of each element
is finite by Lemma 2.3.
(Step 1) 5uppose that there is a totally primitive element [x] E T(F) with respect to
T(F). Without 10ss of genera1ity, we may assume that I; is not a primitive arc and
the other ares 1~, "., 1;:z: are all primitive. We eonsider the quotient topological spaee
S1 / (Sl \ I;) and 7r : Sl --+ Sl / (Sl \ I~) by the eanonical projection. Then Sl / (Sl \ I;)
is also homeomorphic to Sl. For each p E S1, we set

if p EI;,
if p ~ 1~.

Then it can be easily checked that P is an intrinsic circle system on Sl/(Sl \ I;). By
Lemma 1.1, each 1~ (f =1= 1) contains at least one components ofrank one points. On
the other hand, 1~ has at most one component of rank one points by Lemma 2.1. Thus
each 1~ (R =I- 1) contains exactly one component of rank one points. Thus, we have

(2.2)

(2.3)

s(F) = s(F) - (rank(x) - 2),

t(F) = t(F) - (rank(x) - 2).

Since s(F) < n, we have t(F) < 00. So t(F) is also finite by (2.3).
(Step 2) Next we consider the ease that there are no total1y primitive elements in
T(F). Assume that t(F) = 00. We take two mutually different elements [Xl] and [xz].
Without 10ss of generality, we may assume that FX1 C 1;2' Sinee [xz] is not totally
primitive, there exists an element X3 (X3 =1= Xl, xz) such that FX3 is contained in 1:

2

for some k =1= 1. By (12), FX2 is eontained in one of (I;Je=1, ... ,r:z:
3

, here we may assume
FX2 C 1;3' Then we also have Fx ! C 1;3 by (12). Since [X3] is not totally primitive,
there exists an element X4 (X4 =1= Xl, Xz, X3) such that FX4 is contained in 1:

3
for some

k =1= 1. Repeating this argument inductively, we can find a sequence ([Xn])nEN such
that

(2.4) FXj C I~n

FXn +1 C 1:n

(j=l,.",n-l),

for sorne k (1 < k ::; T Xn )'

By Lemma 1.1, we have

(2.5)

On the other hand, by (2.4), we have

Thus N({[XiI], ... , [XikJ}) --+ 00 if k --+ 00. Hence s(F) = 00, a contradiction. So t(F)
is finite. D
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Corollary 2.6. Suppose that s(F) < 00. Then the set of alt regular (resp. weakly
regular) points is an open subset of SI.

Proof. Since s(F) < 00, t(F) < 00 holds by Lemma 2.5. Thus there exists finitely many
points PI, ... ;Pn such that SI \ (Fpl U U Fpn ) is the set of all regular (resp. weakly
regular) points. Since each Fpj (j = 1, , n) is closed, the set is an open subset. 0

We now prove the following theorem which is a generalization of the Bose formula.

Theorem 2.7. Let F := (Fp)PESl be an intrinsic circle system. Suppose that s(F) <
00 and there exists a point p E SI such that [P] f/. S(F). Then t(F) < 00 and

s(F) - t(F) = 2

holds.

Proo/. Assurne that s(F) < 00. If s(F) = 0, then this contradicts Lemma 1.1. If
s(F) = 1, we can conclude that [P] E S(F) for all P E SI by Lemma 1.1. Next we
suppose that s(F) = 2 and t(F) 2:: 1. Then by (2.5), we have

for any Xl E T(F), which yields a contradiction. Thus t(F) = O. So we may assume
s(F) 2:: 3. Then Lemma 2.1 implies T(F) is a non-empty set. Let [Xl], .... , [Xt(F)] be
all of the elements of T(F). To we complete the proof of the theorem, we need the
following lemma.

Lemma 2.8. Suppose that 3 ~ s(F) < 00 There exists an integer j (1 ~ j ~ s(F))
such that [x j] is totally primitive with respect to T( F).

Proof. If [Xl] is totally primitive, the prove is finished. If not, we fix a non-primitive
arc I~~. Then by (12), we may suppose that FX2 lies in I~~. (If not, we can exchange
[X2] for a suitable [Xk] (k > 2).) If [X2] is totally primitive, the proof is finished. If
not, we fix a non-primitive arc I~; contained in I~~. Then we may assume that FX3

lies in I;;. (If not, we can exchange [X3] for a suitable [x k] (k > 3).) Continuing this
argument, we find a totally primitive [Xj] since t(F) is finite. 0

(Proof of Theorem 2. 7 continued.) We will prove the formula by induction on the num
ber s(F). We have already seen that the formula is true whenever s(F) ~ 2. So we
assume that the formula holds if s (F) < n (n ~ 3) and prove the assertion in the case
s(F) = n. By Lemma 2.8, there is a totally primitive element [x] in T(F). Then as
shown in the proof of Lemma 2.5, the induced intrinsic circle system P on SI /(Sl \ I~;)

satisfies (2.2) and (2.3). Since s(F) < n, we have s(F) - t(F) = 2, which yields the
formula s(F) - t(F) = 2. 0

Remark. Let I : SI --+ R 2 be a C2-regular simple closed curve with positive orientation
and C; a maximal circle of I at pE,. Then Fp := f n C; is a typical example of
intrinsic circle system. (See §3.) We define a map q, : SI --+ R 2 by cI>(p) = Cp , where Cp

is the center ofthe circle C;. Suppose that s(F) < 00. As will seen in Appendix B, the
map cI> is continuous by the C2-regularity of the curve. Then cI> induces an injective
continuous map ep : SI / F --+ R 2 . Since SI / F is compact, SI / F is homeomorphic to
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<1> (SI). Let ]{o (c D· (1')) be the set of points which have more than one minimizing
normal geodesics from I. The cut locus K of I defined in introduction is the closure
of ]{o. Then obviously K o C <1> (SI ). Since <1>(SI) is closed, we have K C <I» (SI ). On
the other hand, we set

R:={pE / : Fp={p}}.

Since s(F) < 00, R is a finite subset in SI. Moreover <1>(81 \ R) C ]{o by the definition
of ]{o. By the continuity of <1>, we have <I» (51 ) C ]{, which implies <1>(51) = ]{. Thus
SI / F is homeomorphic to ]{. So we can identify SI / F with K of the cut locus of
I. We have thus seen that the concept of the intrinsic circle system characterizes the
cut locus of a simple closed curve abstractly. Since SI / F has the structure of tree by
Theorem 2.7, the observation in the introduction is justified for any C 2-regular simple
closed curves with s(F) < 00.

§3 Application to plane curves.
As an application of the results of §1-2, we give a general framework to discuss the

number of vertices on a curve, which is similar to (hut more elementary than) that of
ach mit Grundzahl k = 3 (cf. Haupt and Künneth [HK]).

Let X be a topological space homeomorphic to 8 2 with fixed orientation. We denote
by J(X) the set of all oriented simple closed curves. Each I E J(X) separates X by
two domains D l and D 2 . We assume that D l is the left-hand domain bounded by I
and we set

(3.1)

We call D-(/) the internal domain and DO(/) the externat domain.
For the sake of simplicity, we use the following notations: Let I E J(X) and p, q

different points on I' Then we denote by

II[p,q]:= {x EI; q t x t p}, Ilep,q):= {x E I; q>- x >- p}.

Definition 3.1. Let I E J(X). If a sequence (In)nEN satisfies the following two prop
erties, we write In --7 /.

(1) Let (Pn)nEN be a sequence in X converging to P E X. If pn E D-(In) for all
n E N, then P E D-(I)'

(2) Let (Pn)nEN be a sequence in X converges to P E X. If Pn E DO('fn) for all
n E N, then P E DO(I)'

Remark. This convergence properly coincides with the compact open topology on J(X)
or equivalently compatible with the uniform distance on J(X) induced from an arbi
trary distance function d(, ) on X. (See Greenberg and Harper [GH;§7]. Here d(, ) is
assumed to be compatible with the topology of X.) In fact, assume In -+ I. Let d(, )
be the uniform distance on J(X) induced by a distance function of X. Suppose that
d( In, I) -1+ O. Then there is a sequence (Pn)nEN such that Pn E In and d(Pn, I) > C > O.
Since X is compact, there is a subsequence (Pin )nEN converging to q. Then q E I since
In --7 I. But this contradicts the fact d(Pjn' I) > c > o.

On the other hand, assurne that (In)nEN converges to I with respect to the compact
open topology. Let d(, ) be the canonical distance function on X = S2 (1). Then we
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have d(",n) --t 0. Let (Pn)nEN be a sequence in X converging to p E X. Suppose
that Pn E D· (I) and P E DO (,) \,. Let PnP be the geodesie segment in X. Then there
exists a point qn on , n Pnp. Then we have

Since d(Pn, p) --t 0, we have d(p,,) = 0, which is a contradiction. Hence,n --t , in the
sense of the above definition.

Let q E X be a point. We interpret q as collapsing of simple closed curves. We
consider two orientations of q. The point q is said to be positively oriented if we regard
it as

(3.2)

and q is said to be negatively oriented if we regard it as

(3.3) D·(q) = X \ {q}.

In the first case, we denote q by q. and in the second case qO. Then the notations,n --+ q. or ,n --t qO make sense. We denote by 8J(X) the set of all oriented points on
X, that is

(3.4)

Now we define a notion "circle system" which will produce typical examples of
intrinsic circle system defined in §1.

(Definition 01 a "circle system".) A subset r of J(X) is called a circle system if the
following three conditions are satisfied: (We set r = rU 8J(X).)

(Cl) Any distinct curves C, C' E r have at most two common points. Moreover, if
D· (C) c D· (C') then they have at most one cornmon point.

(C2) Let (Pn)nEN be a sequence in X which converges to a point P EX. Let (Cn)nEN
he a sequence in r such that Cn :.1 Pn. Then (Cn)nEN has a subsequence
converging to an element in r.

(C3) Let P be a point on X and A a suhset of r such that any two elements of A
have only one common point p. Then there exist CÄ, CA Ersuch that

(1) D·(CÄ) c D·(C) and D·(C) c D·(CA) for all CEr.

(2) There exist sequences (Cn)nEA and (C~)nEA such that Cn --+ C~ and

C~ --+ CA respectively.

An element of r is called a circle. The followings are examples of circle systems.

Example 1 (The Möbius plane). Let Xl = R 2 U {oo} and r l be the set of oriented
circles and lines. (Since the circles are invariant under the Möbius transformations, it
is natural to compactify the Euclidean plane by attaching the infinity.) Then the pair
(Xl, rd satisfies the conditions of a circle system. Via the stereographie projection
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from the north pole of the unit sphere 8 2 (1) in R3, this model is equivalent to the
following one

Xl := 5 2 (1),

r1 := the oriented intersections between S2 (1) and planes.

Example 2 (Closed strictly convex surfaces). As a canonical generalization of Exam
pIe 1, the following model also satisfies the above conditions:

X 2 := A closed C2-emhedded surface in R 3 with positive Gaussian curvature,

r2 := the oriented intersections between X 2 and planes.

Example 3 (The Minkowski plane). Let I be a fixed C2-regular simple closed curve with
positive curvature in R 2 enclosing the origin. We call I an indicatrix. The Minkowski
distance dr( x, y) associated with the indicatrix I is defined by

dz(x, y) := inf{t > 0; ~(y - x) E D·(I)}.
t

It satisfies the usual properties of a distance function except for the symmetry property
dr(x, y) = dr(Y, x). The Minkowski geometry is the geometry with respect to this
distance function. The indicatrix I is characterized as the level set

I = {x E R 2
; dr(O,x) = I}.

When I is the unit circle, dz coincides with the usual Euclidean distance. A Minkowski
circle C is the image of the indicatrix I under a translation and a homothety with a
positive ratio. The point in C corresponding to the origin in D· (I) is called the center
of C and the magnification of C with respect to I is called the Minkowski radius. We
set X 3 := R 2 U {oo} as a stereographic image of the unit sphere. Let r 3 be the set of
Minkowski circles and straight lines. Then (X3 , r 3 ) satisfies condition (Cl) obviously.
Condition (C3) is also easily checked. (In this setting, two different lines meet only
at infinity if they are parallel. So condition (C3) with p = 00 is also easily checked.)
Condition (C2) is verified as follows:
(Case 1) First we consider the case p =I 00. Let (Pn)nER2 be a sequence converging
to P f. 00 and (Cn)nEN a sequence in r 3 such that Pn E Cn. If (Cn)nEN contains
either infinitely many straight lines or infinitely many oriented points, then such a
subsequence of lines has a subsequence converging a line through P obviously. So we
mayassume that (Cn)nEN does not contain neither straight lines nor oriented points.
If necessary by taking a subsequence, we may assume that (Cn)nEN have the same
orientation. Moreover, by reversing the orientation of (Cn)nEN simultaneously, we
may assume that (Cn)nEN are all positively oriented, that is, (D·(Cn))nEN are all
bounded in R 2

. Let rn be the Minkowski radius of Cn. If (rn)nEN is bounded, (C2) is
easily checked. So we may assume that r n --+ 00. Let Ln be the line which is tangent
to Cn at Pn. Then (Ln)nEN contains a subsequence converging to a line L passing
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through p. So we may assurne that (Ln)nEN converges to L. One can easi1y prove the
following two assertions.

(1) There exists e > 0 such that the Euclidean circle with radius e which is tangent
to I at p from the same direction, lies in D· (I) for each point p E I.

(2) Suppose that (sn )nER is a sequence of positive real numbers such that Sn -t 00.

Then En(sn) -t L, where En(sn) is the Euclidean circle with radius Sn which
is tangent to Cn at Pn from the same direction.

By (1), we have

(3.5)

By (2), we have En(eTn ) -t L. Let (Xn)nEN be a sequence in De(cn) (resp. DO(Cn ))

converging to x E X 3 . Then by (3.5), we have x~ E D·(Ln) (resp. Xn E DO(En(eTn))).
Since Ln -t L (resp. En(eTn) -t L), we have X E De(L) (resp. X E DO(L)). This
proves Cn -t L.
(Gase 2) Next we consider the case p == 00. Let (Pn)nER2 be a sequence converging
to 00 and (Cn)nEN a sequence in r such that Pn E Cn. Without 10ss of generality,
we may assurne that Cn is positively oriented. Suppose that qn -+ 00 holds for any
sequence (qn)nEN such that qn E Cn. Let X n E Cn be the point which attains the
minimum of the distance function of Cn from the origin. Then we have X n -+ 00,

which implies Cn -+ 00°. Thus we may assurne that there exists a sequence (qn)nEN
such that qn E Cn and qn -+ q =J. 00. Then it reduces to Case 1.

Hence (X3, r 3) satisfies the conditions of a circle system. The vertices on curves
in the Minkowski plane have been investigated by many geometers (See [Su], [He2-5],
[Gu1].) Here the vertex is regarded as a point where the osculating circle has the third
order tangency with the curve. Later in this section, we define clean maximal (resp.
minimal) vertices. Maximal (resp. minimal) vertices are defined in Appendix A. If
a closed curve in the Minkowski plane is C 3-regular, these vertices are all vertices in
this sense. For the relationship between Minkowski vertices and contact geometry, see
Tabachnikov [Ta2].

Example 4. Let so: Xi -+ Xi be a homeomorphismof Xi. Then (Xi,r.p(r i)) (i == 1,2,3)
also satisfies conditions (C1)-(C3).

Definition 3.2. Let, E J(X). For each pE" we set

(3.6) A; :== {C Er; C ::1 p, C C D e C,)},

A; :== {C E f; C "3 p, C c DO(,)}.

A point p on , is called e-admissible if A; == {q.} or if any two distinct elements in
A; \ {q.} meets only at p. (A o-admissible point is defined similarly.)

Definition 3.3. For a e-admissible (resp. o-admissible) point p, we set

(3.7) (resp. C; :== CA~)'

c; (resp. C;) is called the maximal (resp. minimal) circle at p. (Such circles exist
by condition (C3).) A curve , E J(X) is called e-admissible (resp. o-admissible) if all
points on it are e-admissible (resp. o-admissible).
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If (X, f) = (Xi, fd (i = 1,2,3), then every piecewise Cl-regular curve in J(X)
whose internal angles with respect to D e

(,) are less than or equal to 7r is .-admissible.
(See Proposition A.l in Appendix A.) For example, the triangle figure as in Figure 1.1
with positive orientation is .-admissible, but not o-admissible because the three vertices
of the triangle are not o-admissible points.

Definition 3.4. Let, be a .-admissible (resp. o-admissible) curve. We set

p; := C; n, (resp. P; := C; n ,).

Proposition 3.1. Let, E J(X) be a .-admissible (resp. o-admissible) curve. Then
(F;)PEi (resp. (P;)PEi) is an intrinsic circle system on Sl =,.
Proof. The condition (11) obviously follows from the definition of C;. The eondition
(12) follows from (Cl). Finally, we prove that pe satisfies (13). Let (Pn)nEN and
(qn )nEN be two sequences in SI such that limn~ooPn = P, limn --+ oo qn = q and qn E P;n'
By (C2), C;n eontains a eonvergent subsequenee. So we may assume that C;n -+ CEr.
If p = q, then q E Pp is obvious. So we may assume p =1= q. Since C;n -+ C and
C;n C De(,), we have C C D·(,). On the other hand, we have

p,q E De(C) n DO(C) = C.

(In fact, it follows from Pn,J.L+(Pn) E De(C;n) n DO(C;n) because of C;n -+ C.) Sinee
P =1= q, we have C; = C by the definition of C; . D

Let, E J(X) be a .-admissible (resp. o-admissible) eurve. Then we set

ranke(p) := rank(P;) (resp. rankO(p) := rank(P;)).

Namely, rank·(p) is the number of conneeted eomponents of C; n,.
Definition 3.5. Let, be a .-admissible (resp. o-admissible) curve. A point P on ,
is called a clean maximal vertex (resp. clean minimal vertex) if ranke (p) = 1 (resp.
rankO(p) = 1). A point p on , is ealled .-regular (resp. o-regular) if ranke(p) = 2
(resp. ranko (p) = 2). A point p on , is ealled weakly .-regular (resp. weakly o-regular)
if 2 :s; rank· (p) :s; 00 (resp. 2 ::; rank°(p) ::; 00). An open are I of , is called .
regular (resp. weakly .-regular) if all points on I are .-regular (resp. weakly .-regular).
Similarly o-regular (resp. weakly o-regular) are is also defined.

By definition, I is (weakly) .-regular (resp. o-regular) ifit is a (weakly) regular are
with respeet to the intrinsic circle system p. ( resp. po ). (See Definition 1.2.)

We set

S·(,) := S(pe
)

T e
(,) := T(P·)

(resp. SO(,) := S(PO)),

(resp. TO(,) := T(PO)).

Then S·(,) (resp. SO(,)) is the set of eonnected eomponents of clean maximal (resp.
minimal) vertiees on ,. Moreover, we set

se(,) := ~{se(,)},

t e (,):= L: (rank·(p) - 2).
[p]ET' (,)

Similarly, 8°(,) and tO(,) are also defined. Then Theorem 2.7 yields the following
generalization of Bose's formula (1.1).
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Theorem 3.2. Let / be a e-admissible (resp. o-admissible) simple closed curve, which
is not a circle. Suppose that 8-(/) < 00 (resp. SOC,) < (0). Then t-(/) < 00 (resp.
t O

( /) < 00 ) and

Remark. If (X, r) = (Xl, r 1 ) as in Example 1 and / is a C 3-regular curve, then S- (/)
(resp. SO(/)) is supported by the derivative of the curvature function. Similarly, if
(X, r) = (X2 , r 2 ) as in Example 2 and / a C 3-regular curve as aspace curve, then
S- (/) (resp. So (/ )) is supported by the torsion function of / as aspace curve in R 3 .

Thus in these two cases, t-C,) < 00 (resp. tOe,) < 00 ) is equivalent to the condition
s-(/) < 00 (resp. SO(,) < (0).

In our general settings, a clean minimal vertex might be a clean maximal vertex.
If X ·has C 2-differentiable structure and r satisfies the additional condition (C4) in
Appendix A. Then any C 2-regular simple closed curves , are e-admissible and also 0

admissible by Proposition A.l in Appendix A. Moreover, a clean maximal vertex never
be a clean minimal vertex by Proposition A.5. Thus the number s(,) of connected
component of clean (maximal or minimal) vertices is equal to s-(,) +SO(,). Thus we
get the foHowing coroHary.

Corollary 3.3. Let X be a C 2 -differentiable sphere and r a circle system on X satis
fying the additional condition (C4) in Appendix A. Let, be a C2 -regular curve on X.
Suppose that the number 8 (,) 01 connected components 01 clean vertices is finite. Then

holds, where t(,) := t-(,) + tO(,).

§4 Application to space curves.
In this seetion, we apply Theorem 2.7 to convex simple closed space curves. An

immersed closed Cl-curve , : SI -+ R 3 is called convex if it lies on the boundary 8H
of its eonvex huH H. We fix a convex simple closed curve , and assume that it is
not planar. We fix an interior point 0 of the convex huH and consider the unit sphere
S~ centered at o. We denote by 7r : 8H -+ S~ the canonical projection. Then 7r is a
bijective continuous map. Since 8H is compact, 7r is a homeomorphism. In partieular,
the boundary 8H of the convex huH is homeomorphie to a sphere and , divides 8H
into two domains. Let 8H- (resp. aHO) be the left-hand (right-hand) closed domain
of / in 8H. Moreover,

;y := 7r 0, :SI -+ S;
is an embedded eurve. By the projeetion 7r, the left-hand (resp. right-hand) domain
of;Y eorresponds to 8H- (resp. aHa). Now we fix a point p on , arbitrarily. A plane
U is called tangent plane if it eontains the tangent line L p at p. Let Pp be the peneil
of oriented planes which is tangent to , at p. Then Pp is identified with a eircle.

We denote by Vx E Pp the oriented plane passing through x E R 3
\ L p, where the

orientation of Vx is chosen so that the line segment px lie in a upper half plane on Vx '

A plane Vx(:~: Vo) is said to be upper (resp. lower) than Vo if px lies in the closed upper
(resp. lower) half region bounded by Vo • We give an orientation of Pp such that any
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tangent plane at pupper than Va is greater -than Va. The orientation is independent of
the choice of the interior point 0, and thus it induces a canonical cyclic order of Pp.

An oriented plane U is called a supporting plane of , at p if p E U and the curve
lies entirely in the positive closed half-spaces bounded by U. Let Sp be the set of
supporting plane at p which does not contain any points in ,\ L p • Then by definition,
Sp is a subset of Pp and the set of supporting plane is just the cIosure Sp of Sp' Since,
is a convex simple cIosed curve, there is at least one supporting plane passing through
p. Hence Sp is non-empty. One can easily see that Sp is connected, that is, there exists
U; ,U; E P such that one of the following four possibilities occur;

(1) Sp == (U;, U;)

(3) Sp == (U;, U;l
(2) Sp == [U;, U;)

(4) Sp == [U;, U;l

The plane U; (resp. U;) is called maximal (resp. minimal) supporting plane at p.
(It may possible to be U; == U;.) Later, we will need the following lemma. (Except
for the lemma, we da not need C 2-regularity af curves until Proposition 4.9.)

Lemma 4.1. Let, be a C 2 -convex simple closed space curve and pE, has non
vanishing curvaiure. Suppose thai Lpn, == {p}. Then case (4) never occurs. Moreover,
ij case (2) (resp. case (3)) occurs, then U; (resp. U;) is the osculating plane at p.

The lemma is well known (cf. Lemma 1 of [Sd1]) and can be proved with the
standard method. So we omit the proof.

Definition 4.1. We set

Now we prepare lemmas to glve some sufficient conditions that F· and F O are
intrinsic circle systems.

Lemma 4.2. Let, be a convex simple closed space curve. Then for each pE" the
Jollowing inclusions hold

F; CU;.

Proof. We fix q E F; and will show that q E U;. Since L p is contained in U;, we may
assume that q does not lie in L p . First, we show that either Vq == U; or Vq == U; holds.
In fact, we take the middle point m on the line segment pq. Since m E aH·, there
exists a plane U passing through m such that H lies in the upper or the lower half
region of U. Then pq E U holds, and consequently U is a supportinf plane at p. Hence
we have Vq == U, and thus Vq == U; or Vq == U; holds.

Let U.+ (resp. U~) be the upper (resp. lower) half plane of U; (resp. U;). Then I
lies in the region D bounded by U.+ and U~. We have seen that Vq == U; or Vq == U;
holds. Since Jr(pq) lies in a left hand side of 7 at p, pq lies in the closed upper half
domain bounded by Va. Thus we have q E U;. 0
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Lemma 4.3. Let J be a convex simple closed space curve and L p the tangent line 0/
J at p. Suppose that there exists q( =f:. p) such that q E L p n, and the tangent line L q

at q does not coincide with L p • Then there exists a unique supporting plane U at p.
Moreover U contains the lines L p and L q •

ProoJ. Since I is a eonvex eurve, there exists at least one supporting plane U at p.
Obviously U eontains Lp . If U does not eontain L q , it is transversal to , at q, whieh
is impossible. Thus U eontains also L q • Sinee L p =f:. L q , U is uniquely determined. 0

Lemma 4.4.. Let I be a convex simple closed curve which has no planar open subarcs.

Suppose that U is a supporting plane at pE, and p, x, y E , n U are not collinear.
Then the triangle ßpxy is contained in aHe or aHa.

Proo/. Obviously, the triangle ßpxy on U lies in aH. Suppose that the triangle ßpxy
eontains a point q of, in its interior. Then 7r(q) lies in the interior of 7r( ßpxy) in S;.
Thus a suffieiently small open are of ::, eontaining q also lies in its interior. Henee the
eorresponding are of , eontaining q lies in ~pxy. But this eontradiets that J has no
planar subares. Thus ßxqp C aHe or ~xqp c aHa holds. 0

Proposition 4.5. Let, be a convex simple closed curve which has no planar open
subarcs and p a point on ,. Suppose that U; satisfies the Jollowing two conditions

(1) the set U; n, does not lie in any line passing through p,

(2) p; =I- {p} (resp. p; =1= {p}).

Then it holds that F; = U; n, (resp. F; = U; n I)'

Proof. We prove the assertion for pe. By Lemma 4.2, we have Fe C U; n ,. It is
suffieient to show that U; n J C pe. By eondition (1), there are points q, x E U; n,
such that p, q, q' are not eollinear. To prove it, we divide the proof into the the following
two eases. Let x E U; n I be an arbitrary point.
(Gase 1) Suppose that p, q, x E,n u; are not eollinear. Then by Lemma 4.4, either
.6xpq c aH- or .6xpq c aHa holds. But in the latter case, we have

pq C aHe n aHa = "

whieh contradiets the fact that , has no planar subares. Thus we have ßxpq c aHe.
In partieular, we have px c aH e

, whieh implies x E P;.
(Gase 2) Next we eonsider the ease that p, q, x E,n u; lie on a line L. Sinee p, q, q' is
not collinear, we have q' rt L. Suppose that px rt aH e

• Then by Lemma 4.4, we have
ßpq'x c aHa. In partieular pq' E aHa. On the other hand, pq C 8H- yields that
ßpqq' c aH e by Lemma 4.2 In part~eular,

pq' E aHa naHe =="

which is a contradiction. Henee we have px c BH-. So x E F;. 0

Lemma 4.6. Let, be a convex simple closed space curve. Suppose that Jor each pE,
there exists a supporting plane U such that U n, == {p}. Moreover, if Uo is a supporting
plane oJ, such that Uo n, contains three distinct points x, y, z E " then these three
points are not collinear.

Proof. By the assumption, we ean easily see that

(4.1 )
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Suppose that x, y, z E Uo n, lie in a line L with this order. If L = L y, this contradicts
L y n, = {y}. So L =1= L y • Then Vo must he a unique supporting plane passing through
y by Lemma 4.3. This contradicts the fact that there exists a supporting plane U such
that U n , = {y}. 0

Proposition 4.7. Let, be a convex simple closed space curve. Suppose that for each
pE, there exists a supporting plane V such that V n , = {p}. Then Jor each pE,) it
holds that

(4.2)

In particular, V; =1= U; holds.

Proo/. We prove the first equality. (The second equality is obtained by the same
manner. ) If F; = {p}, then (4.2) is obvious. So we may assurne that there exists a
point q E F; such that q =1= p. By Lemma 4.2, we have q E V;. If U(V; n ,) = 2, (4.2)
is obvious. So we may assume that U(V; n ,) > 2. We fix a point x E U; n , such
that x =1= p, q. By Lemma 4.6, p, q, x are not collinear and thus the triangle 6pqx is
considered. Suppose that there exists a point y E , in the triangle. Then the tangent
line L y separates one of three points p, q, x with the other two in the plane V;. Hence
U; must be a unique supporting plane passing through y. This contradicts the fact
that there exists a supporting plane U such that U n , = {y}. So there is no points
on , inside the triangle. In particular, 6pqx c aH- or 6pqx c aHo holds. But if
6pqx c aHo, then

pq c 8H- n aHo = ,.
This contradicts (4.1). So 6pqx c aH-. In particular x E F;. Thus we have V; n, C
F;. The opposite inc1usion follows from Lemma 4.2. 0

Theorem 4.8. Let, be a convex simple closed space curve satisfying the one of the
Jollowing two conditionsj

(a) for each pE,) there exists a supporting plane V such that V n, = {p},
(b) , has no planar open subarcs.

Then (F;)PE'Y ( resp. (F;)PE'Y) is an intrinsic circle system on SI = ,.
Proof. We divide the proof into three steps. (We prove the assertion for F-.)
(Step 1) We check the property (11). By Proposition 4.7, this is obvious for case (a).
So we prove the assertion only for case (b). Let q E F;. It is sufficient to show that
F; C F;. (Opposite inc1usion is obtained by interchanging the role of p and q.) If
p = q, then the property (11) is obvious. So we may assume that q =1= p.
(Case 1) First we consider the case that U; n , does not lie in any line passing
through p. If F; = {p}, the statement is ohvious. If F; =1= {p}, we have the assertion
by Proposition 4.5.
(Case 2) So we may assurne that U; n , lies on a line L passing through p. Let
x E F;. Then xp and qp both lie in L naH-. In particular so does qx, and hence
x E F;. Thus we have F; CF;.
(Step 2) We show (12). Suppose that there exist p' E F; \ {p} and q' E F; \ {q} such
that F; =1= F; and

(4.3) q t p' t q' t p
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Then pp', qq' C 8H·. Since pp' separates 8H· into two domains, pp' nqq' is not empty
by (4.3). Let z E pp' n qq'. Then z f:. p, p', q, q'. (For example, if z == p or z == p', then
q E F; == F; =1= F; by Step 1, which is a contradiction.) In particular, pp' and qq'
can not lie in a common line. This implies that they are transversal at a point z. By
Lemma 4.2, these four points p, p', q, q' lie in U;. In particular, u; n I does not lie in
any line passing through p. By Proposition 4.5 or Proposition 4.7, F; == U; n , :.1 q.
This is a contradiction.
(Step 3) Finally, we show the property (13). Let (Pn)nEN and (qn)nEN be two sequences
in 1 such that qn E F;n' limn-too Pn == P and limn-too qn == q. Since Pnqn E 8H·, we
have pq E 8H·. Thus P; :.1 q. D

Let 1 be a convex simple closed space curve as above. We denote by rank·(p) (resp.
rankO(p)) the rank of pE., with respect to p. (resp. FO). By Theorem 2.7, we
can get a Bose type formula for I satisfying the assumptions of Theorem 4.8. But
unfortunately, in such a general setting, the points of rank one with respect to p. or
po may not be neither clean vertices nor clear vertices defined below.

Definition 4.2. Let 1 be a C 2-convex simple closed space curve. Then a clear maximal
(resp. minimal) vertex is a the point with non-vanishing curvature, which is a maximum
(resp. minimum) ofthe height function with respect to the bi-normal vector. Moreover,
if the maximum (resp. minimum) level set of the height function is connected, it is
called a clean maximal (resp. minimal) vertex.

We remark that pE, is a c1ear vertex (namely c1ear maximal or clear minimal
vertex) if and only if the osculating plane U at p is a supporting plane. Moreover it is
clean vertex if and only if un, is connected.

If I lies in X 2 as in §3-Example 2, this definition of clean vertices has the same
meaning as the one in §3. In other words, a point p of rank· (p) == 1 or ranko (p) == 1
is a clean vertex in the above sense. Dur next goal is to give much weaker sufficient
conditions for convex simple closed space curves that rank·(p) == 1 (resp. rankO(p) == 1)
implies a clean or clear maximal (resp. minimal) vertex.

Proposition 4.9. Let 1 be a C 2 -convex simple closed space curve and p E J a point
with non-vanishing curvature. Suppose that there exists a supporting plane U at p
passing through a point q( =1= p) on J. Then there exists x E un, (x =1= p) satisfying
the following two properties

(1) x E pq)
(2) x E F; or x E P;.

Proof. pq n I is a closed subset of pq. Suppose that there is no such x E pq. Then we
can take a sequence (qn)nEN consisting of mutually different points in pq n J such that
limn-too qn == p. Since the unit vectors (qn - p)/Iqn - pI converge to the unit tangent
vector at p of ." pq lies in the tangent line Lp at p. Thus qn E Lp for all n. But this
contradicts the fact that the curvature function of I does not vanish at p. D

Definition 4.3. A convex simple closed space curve I is called tame if L p n, == {p} for

any p E"
Remark. In Ballestero and Romero-Fuster [BR2], such a curve is called strictly convex.
But there is another definition of strictly convexity. (The strictly convexity defined in
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Sedykh [Sd2] is stronger than that in [BR2].) So we use here the term "tarne" to avoid
confusions.

By Propositions 4.9, the following is obvious.

Lemma 4.10. Let., be a C 2 -convex simple closed space curve satis/ying (a) or (b) as
in Theorem 4.7. Suppose that p E I has non-vanishing curvature and L p n I == {p}.
Then rank· (p) == 1 (resp. ranke (p) == 1) if and only if p is a clean maximal (resp.
minimal) vertex.

It should be remarked that If I satisfies (a), then L p n , == {p} is automatically
satisfied by (4.1). Since the clean maximal vertex is not a clean minimal vertex by
definition, we get the following

Corollary 4.11. Let I be a C 2 -convex simple closed space curve with non-vanishing
curvature satis/ying the one 01 the /ollowing two conditions.

(1) For each pE" there exists a supporting plane U such that U n, == {p}.
(2) , is tame and has no-planar open subarcs.

Then the number s(,) 0/ connected components of clean vertices is given by s(,)
s(F·) + s(FO).

Let I be a convex simple closed space curve. Aplane U is called a tangent plane of
I if it contains the tangent vector of c at some point. We denote by rank(U n,) the
number of the connected components in U n ,. A tangent plane U is called tritangent
plane if rank(U n,) ~ 3.

Definition 4.4. Let T(,) be the set of tritangent supporting planes of ,. We set

t(,):== L (rank(Un,)-2).
UET(i)

We call tC'Y) the total order of tritangent supporting planes.

Lemma 4.12. Let I be a C 2 -convex simple closed space curve and U a tritangent
plane. Suppose that I is tame. Then U n, does not lie in a line.

Proo/. Suppose that U lies in a line L. Then there are three distinct points x, y, z E
U n L. Without loss of generality, we mayassume that y is an intermediate point
between xz. Since, is convex, we have L == L y, which contradicts that , is tarne.

Proposition 4.13. Let I be a C 2-convex simple closed space curve with non-vanishing
curvature satisJying the one 0/ the Jollowing conditions;

(1) for each pE" there exists a supporting plane U such that U n, == {p},
(2) I is tame and has no-planar open subarcs.

Then the Jollowing identity holds t(/) == t(p·) +t(PO).

Proo/. If, satisfies (1), then the assertion follows immediately from Proposition 4.7.
So we consider the second case. Let U be a tritangent supporting plane of, which is
tangent at p. By Lemma 4.12, we may assume that un, does not lie in any line. Since
I has non-vanishing curvature function, by Proposition 4.9, F; :/= {p} or F; =I- {p}.
Hence by Proposition 4.5, either un, == F; or U n , == P; holds. Thus we have
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On the other hand, suppose that the number of connected components of F; (resp.
F;) is greater than 2. By Lemma 4.2, U; (resp. U;) is a tritangent plane. Since 1 is
tarne, we have Lp n l = {p}. So there is an element in q E U; (resp. q E U;) such that
pq C 8H- (resp. pq C 8HO). By Lemma 4.12, U; (resp. U;) does not lie in any line.
By Proposition 4.5, we have F; = unI (resp. F; = unI)' Hence we have

o
Theorem 4.14. Let 1 be a C 2 -convex simple closed space curve with non-vanishing
curvature satisfying the one of the following conditions.

(1) For each p EI, there exists a supporting plane U such that unI = {p}.
(2) '/ is tame and has no-planar open subarcs.

Suppose the number s(I) of connected components of clean vertices is finite. Then the
total order t(I) of tritangent supporting plane is also finite and the following formula
holds

S(/) - t(/) = 4.

The theorem follows immediately from Theorem 2.7, Corollary 4.11 and Proposi
tion 4.13. If 1 is C3-differentiable, then s(F-) and s(FO

) are supported by the torsion
function. Thus t(/) < 00 is equivalent to S(/) < 00.

Remark 1. The formula is a generalization of the one obtained by Romero-Fuster [R]
in the convexly generic case and by Sedykh [Sd2] in the strictly convex case. In fact,
condition (1) is weaker than stricHy convexity of curves in the sense of Sedykh [Sd2],
and (2) is weaker than the convexily generic assumption as in [R]. When 1 is convexily
generic in the sense of [RL the disjoint union of quotients (51/ F-)U(Sl / PO) is identified
with the Maxwell graph of I' (See [R] for definition.)

Remark 2. If 1 is a C2-regular curve on X z as in §3-Example 2, then 1 satisfies (1)
obviously. In this case, the assertion follows from Corollary 3.3 directly.

Next we consider convex simple c10sed space curves which may not satisfy the as
sumption of Theorem 4.14.

Proposition 4.15. Let '/ be a CZ-convex simple closed space curve, which has no
planar open subarcs and has at most finitely many zeros of the curvature function.
Suppose that every element in the set

M I := {x E I; Lx n, =1= {x}, K.(Lx n / ) 7J O}

is isolated, where K. is the curvature funetion. Then any point p on 1 satisfying
rank- (p) = 1 (resp. ranko (p) = 1) is a zero of curvature function or a clear maxi
mal (resp. minimal) vertex.

Remark. If, has non-vanishing curvature, we have a simple expression MI = {x E

,; Lx n , =1= {x}}. In this case, every element in M-y is isolated if and only if M-y is
finite. In fact, if an accumulation point p E 1 of M-y exists, one can easily verify that
p E MI using the property K.(p) =1= O.

To prove it, we prepare the following two lemmas.
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Lemma 4.16. Let / be a C 2 -convex simple closed space curve, which has no planar
open subares and has at most finitely many zeros of the curvature function. Let p be
a point on / with non-vanishing curvature and rank- (p) == 1 (resp. ranko (p) == 1).
Suppose that p is an isolated point in the set

{x E f i rank- (x) == I} (resp. {x E f i rankO(x) == I}).

Then p is a clear maximal (resp. minimal) vertex.

Proof. By assumption, there is an open arc I containing p such that all points on 1\ {p}
is weakly regular with respect to F- (resp. PO). We take a sequence (Pn)nEN on 1\ {p}
such that Pn ~ P - O. Then by Theorem 1.4, we have J.l+(Pn) ~ P + O. On the other
hand, there exists a supporting plane Un of / containing Pn and J.l+ (Pn). Then Un
converges to the osculating plane U at p. In particular U is also a supporting plane,
that is p is a clear vertex. 0

Lemma 4.17 (Romero-Fuster and Sedykh [RS; Proposition 1]). Let a : (a, b) ~ R 3

be a C 2 -regular curve with non-vanishing curvature, which may not be closed. Let p be
a point of a and q( =1= p) a point in R 3 . Then there is an open are I containing p such
that q ~ Lx n f for all x E I \ {p}.

As mentioned in [RS], the lemma is a simple exercise.

(Proof 0/ Proposition 4.15.) Let P E f be a point satisfying rank- (p) == 1. Assume that
P has non-vanishing curvature. If L p n, == {p}, then pis a clean vertex by Lemma 4.10.
So we may assume that L p n , =1= {p}. Consider the subset

I< == {x E ,; rank-(x) == I}.

If p is isolated in I<, then it is a clear vertex by Lemma 4.16. So we may assume that
there is a sequence (Pn)nEN in I< which converges to p. Since ",(p) =1= 0, there exists
a neighborhood I of P such that (Lq)qEI are mutually distinct. Thus there exists a
positive integer no such that

(4.4) (for n > no).

(In fact, if (4.4) fails, there is a point q E I such that q E Lpn n , for infinitely many
n. But this contradicts Lemma 4.17.)

We fix Pn (n > no) arbitrarily. It is sufficient to show that each Pn is a clear maximal
vertex. (Then the limit point p is also a clear maximal vertex.) If Lpn n , == {Pn},
then pn is a clean maximal vertex by Lemma 4.10. So we may assume that pn E Mi'
(Gase 1) Suppose that each Pn is isolated in I<. By Lemma 4.17, Pn is a clear maximal
vertex.
(Gase 2) Next we suppose that pn is an accumulation point of the set I< == {x E
I; rank-(x) == I}. Then there is a sequence (qm)mEN in !{ converging to Pn. By
assumption, every sufficiently large qm is not contained in Mi' Thus qm is a clean
vertex by Lemma 4.10. Thus the limit point Pn is a clear vertex. 0

For the following applications, we recall important two facts from [Sdl].
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Lemma 4.18([Sd1: Proposition 4]). Let, be a C 3 -convex simple closed space curve
and p, q E , be points with non-vanishing curvature and torsion. Then the straight line
pq is tangent to , at p i/ and only ij it is tangent to the curve at q.

Lemma 4.19 ([Sd1: Proposition 7]). Let, be a C 2 -convex simple closed space curve
and let p be a point such that 0 (j. K(Lp n,). Then there exists an open are I containing
p such that the tangent line L q at each q E I \ {p} is not tangent to the curve at any
other points.

Remark. The statement of the lemma is slightly modified as in [RS: Proposition 4]. As
explained in [RS], the proof is essentially the same as that of [Sd1: Proposition 7].

Above two lemmas yield the following

Lemma 4.20. Let, be a C3 -convex simple closed space curve whose curvature /unc
tion and torsion lunction have only finitely many zeros. Then every element in the set
M'"1 is isolated.

Proo/. Suppose that there exists a point p E M'"1 such that a sequence (Pn)nEN in
M'"1 \ {p} exists and converges to p. For each Pn, we can choose qn E L q n, such that
qn f:. Pn· By Lemma 4.19, L pn is not tangent to , at qn' Then by Lemma 4.18, the
torsion function vanishes at Pn or qn' Since the number of zeros of the torsion function
is finite, there exists a positive number no > 0 such that qn == qo for all n ~ no. But
this contradicts Lemma 4.17. 0

By Proposition 4.15 and Lemma 4.20, we get the following two corollaries.

Corollary 4.21. ([RS]) Let, be a C 3 -convex simple closed space curve. Then

where v(,) is the number 01 zeros 0/ the torsion function and c(,) is the number 0/
zeros 0/ the curvature function.

Corollary 4.22. ([Sd1]) Let I be a C 3 -convex simple closed space curve with non
vanishing curvature /unction. Then

Further generalizations of four vertex theorem for space curves will be found in
Thorbergsson-Umehara [TU]. The inequality v(,) ~ 4 does not hold if the curvature
function of '[ has zeros. (According to Barner [Ba;p210], Flohr pointed out it in the
1950s.) The explicit examples of (v, c) = (1,1) or (0,2) are found in [Sd1] and [RS].

Appendix A. Vertices on C 2-regular plane curves
As written in introduction, the four vertex theorem for simple closed Euclidean plane

curves has been extended for various umbient spaces. On the other hand, there are
many other known results for vertices on Euclidean plane curves with self-intersections,
but it is still unclear that such a generalization works for these results or not. In this
appendix, we give an abstract approach for the study of vertices on C 2-plane curves
which may have self-intersections, and show that several known results are generlized
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for Minkowski plane curves and for curves on a convex surfaces with positive Gaussian
curvature.

Let X be a differentiable sphere and r a subset of C2 -regular simple closed curves
satisfying the axioms of circle system. Assume that r satisfies the following additional
condition, which asserts the existence and the uniqueness of the osculating circles.

(C4) For any p E X and a C 2-regular curve, passing through p, there exists a unique
circle Cp E r which has second order tangency with , at p.

Such a circle Cp is called the osculating circle of , at p. Example 1-3 in §3 satisfy
this condition.

Proposition A.l. Let, be a piecewise Cl-regular simple closed curve. Suppose thai
all internal angles of aDe (,) (resp. aDo (,)) are less than or equal to 7r. Then, is
e-admissible (resp. o-admissible).

Proof. We prove for aDe (,). (The corresponding assertion for aDo (,) is obtained if
one reverses the direction of the curve.) A; is not empty, since p E A;. If A; = {p},
p is an admissible point by definition. (See Definition 3.2.) So we may assume that
A; =1= {p}. If p is a singular point of " A; = {p} holds, because the internal angle
at p is less than 7r. Thus we may also assume that , is Cl-regular at p. Then each
element of A; \ {p} is tangent to , at p. Then the e-admissibility of , follows from the
following lemma. 0

Lemma A.2. Let Cl and C2 be two distinct circles which are tangent at p EX. Then
they meet only at p.

Proof. By (C4), the 2-jets of Cl and C2 at p are mutually different. Thus there
exists a sufficiently small neighborhood W of p in X such that C2 n W is contained
in De(Cl ) or DO(Cl ). If necessary, by interchanging Cl and C2 , we may assume that
C2 n W C De(Cl ) holds. If D e (C2 ) rt De(Cd, C2 must meet Cl at least three points.
By (Cl), it is impossible. Thus we have n e (C2 ) c De(cl ). Then again by (Cl), we
have Cl n C2 = {p}. 0

Lemma A.3. Let I be a C 2 -regular simple closed curve. Then for each point pE"
the osculating circle Cp at p satisfies the following relation

Proof. Let r p be the subset of circles which are tangent to I at p. The set A; defined
in Definition 3.3 can be written as

Let C' be a circle satisfying the relation De(Cp ) ~ ne(C'). Then the 2-jet of C' at
p is different from Cp by (C4). Since, has the second order tangency with Cp at
p, any points on , elose to p are contained in ne(C'). This implies C' tt A;. Thus
De(C;) C De(cp ) holds. Similarly, De(cp ) c ne(C;) can be also proved. 0
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Lemma A.4. Let, be an embedded C2 -regular curve on X. Then for each p, C; and
C; are not collapsed into points, namely C;, C; Er.

Proof. We prove for C;. Let rp be the subset of circles which are tangent to , at p.
Suppose that C; = p•. Then there exists a sequence (Cn)nEN in r p \ {p.} such that
Cn -+ p. and D·(Cn) ct. D·(,). By Lemma A.2 and (Cl) in §3, either D·(Cn+d c
D· (Cn ) or n· (Cn ) C n· (Cn+l ) holds. Since Cn -+ p., without loss of generality, we
may assume that

(A.l) (n=1,2,3, ... ).

Since D·(Cn) <t.. D·(,), there exists a point qn E Cn n, such that qn =1= p for each
n E N. Since Cn -+ p., we have qn -+ p. On the other hand, since n·(C1 ) ~ D·(Cp ),

the 2-jets of Cl and Cp at p are distinct. So there exists an open subarc I of, containing
p such that D·(Cl ) n I = {p} and I C DO(Cl ). By (A.l), we have

(A.2)

Since qn E , and qn -+ p, we have qn E I for any sufficiently large n. But this
contradicts (A.2). Thus C; =f:. p., that is C; E r. 0

For simple closed curves, we defined clean vertices in §3, but for curves with self
intersections, they cannot be defined. Instead of clean vertices, we define maximal and
minimal vertices on C 2-regular curves as follows:

Definition A .1. A point p on , is called a maximal vertex (resp. minimal vertex) if there
exists an open subare I of I containing p such that I C DO(Cp ) (resp. I C D·(Cp )).

(In particular, all points on a circle are maximal and minimal vertices at the same
time.)

In this appendix, the term "honest vertex" refers to a maximal or a minimal vertex
unless otherwise stated.

Remark. This abstract definition of an honest vertex is slightly different from the orig
inal concept in Euclidean plane curves. When, is a Euclidean plane curve, an honest
vertex should be defined as an extremal point of the curvature function. But in our
general setting, we can not define a curvature function. The honest vertices in the
sense of the above definition and the extremal points of the curvature function coincide
whenever the number of honest vertices is finite. On the other hand, if the number of
honest vertices is infinite, honest vertices are divided into the following two cases

(1) extremal points of the curvature function,
(2) an accumulate point of extremal points of the curvature function.

(This observation is due to H. Kneser [H.K].) The example of the graph of t -+
t 4 sin(l/t) at t = 0 demonstrates this phenomenon, which was suggested by Dom
browski. Since we never use the curvature function in the following discussion, our
definition of an honest vertex will makes no confusions even when the curve has infin
itely many honest vertices.
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Proposition A.5. Let, be a C2 -regular simple closed curve. If p is a clean maximal
(resp. minimal) vertex, then p is a maximal (resp. minimal) vertex. Furthermore,
c; = Cp (resp. C; = Cp ) holds.

Proo/. Let p be a clean maximal vertex and r p the set of circles which are tangent to J
at p. It is sufficient to show that C; = Cp . (If one reverse the orientation of the curve,
the corresponding assertion for minimal vertex is obtained.) Suppose that C; =I Cp.
Then by Lemma A.3, we have

Since C; =I Cp, the second derivative of Cp and C; at p are mutually different by
(C4). Moreover, by the existence of circles with given 2-jets as in (C4), there exists a
sequence (Cn)nEN in f p such that Cn -+ C; and

(n=1,2,3, ... ).

Here we also used the fact that any two elements in r p meet only at p by Lemma A.2.
Without loss of generality, we may assume that

(A.3) (n=1,2,3, ... ).

Since Cl and Cp have the distinct 2-jets and , is approximated by Cp at p in C 2
_

topology, there exists an open subarc I containing p such that I \ {p} lies in the
interior of DO(Cl ). We fix an arbitrary distance function d(, ) on X compatible with
the topology. Since C; and , \ I are disjoint closed subsets, the uniform distance
d(C;" \ I) is positive. As remarked in §3, the convergence Cn 4- C; is the same
as that of the induced uniform distance of J(X). Thus for a sufficiently large n,
d(Cn , J \ I) > O. On the other hand, since De(cn ) ~ De(CI), we have Cn n I = {p}.
Thus Cn is a circle contained in n e

(,). But this contradicts the maximality of C;. D

Definition A.2. A C 2-regular curve a : [a, b] 4- Xis called a shell at p if p = a(a) = a(b)
and alCa,b) has no self-intersection. A shell is said to be positive (resp. negative) if the
velocity vector a'(a) coincides with a'(b) or it points to the left (resp. right) of a'(b).
The point p is called the node of the shell.

positive
r-----.A.----""

negative
r_----..A..-----_""

Figure A.1.
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Lemma A.6. Let,: [a, b] --+ X be a positive (resp. negative) shell. Then there exists
c E (a, b), such that C-y(c) = C;(c) and C-y(c) =1= C-y(a) , C-Y(b)'

Proo/. By changing the orientation of the curve,. we may assurne that the shell is
positive. (The maximal vertiees and minimal vertiees are exchanged if the direetion of
eurves is reversed.) A positive shell is a .-admissible simple closed curve by Proposition
A.l. Thus by Theorem 3.2, there are at least two distinct maximal circles C; and C;.
We mayassume that one of them, say q is not the node of the shell. If C; = C-y(a),

then C,(a) = C;(a) = C;, but it contradicts to C p =1= C q• Thus C; =1= C-y(a)' Similarly
we also have C; =1= C-y(b)' By Proposition A.5, we have C q = C;. Hence the the point
c E (a, b) such that ,(c) = q is the desired one. 0

The following corollary is an abstract version of Jackson [JjLemma4.3].

Corollary A.7. A positive (resp. negative) shell , : [a, b] --+ X has at least one
maximal (resp. minimal) vertex in (a, b).

Proposition A.8. Let, : [a, b] --+ X be a eurve whieh eontains neither a maximal
vertex nor a minimal vertex on (a, b). Then the one 0/ the Jollowing two assertions are
true;

(1) ,I(a,b] lies in Va,

(2) ,I(a ,b] lies in Va,

where Va is the interior 0/ De(C-y(a)) (resp. DO(C-y(a)))'

Proo/. Suppose that ,I(a,b] interseets C,(a) firstly at p. Then composing I with Ci(a)

at ,(a), we get a no-vertex shell at p. Eut the shell does not satisfy the eonclusion of
Lemma A.6. 0

Definition A.3. Let, : [a, b] --+ X be a eurve whieh eontains maximal vertiees nor
minimal vertices on (a, b). Then, is called a positive scroll (resp. negative scroll) if
(1) (resp. (2)) of Proposition A.8 oecurs.

By definition, positivity or negativity of scrolls does not depend on the choiee of
orientation of the scrolls. Lemma A.6 yields the following abstract version of Kneser's
theorem [K. A] .

Theorem A.9. Let I : [a, b] --+ X be a positive seroll (resp. negative serol0. Then the
oseulating circle Ci(b) lies in Va (resp. Vb)'

ProoJ. Suppose that two osculating circles intersect. Then we can use ares of C-y(a) , ,

and Ci(b) to find a shell at the one of intersection points of two circles C,(a) and C-Y(b)'

This contradicts to Lemma A.6, since , has no honest vertex. Thus C-y(a) n C-Y(b) is
empty. Since ,(b) lies in Va (resp. Db) by Proposition A.8, we have C,(b) C 'Da. 0

Corollary A.I0. Let, be a C 2 -regular closed curve with finitely many maximal ver
tiees. Then the number 01 maximal vertices is equal to the number 0/ minimal vertiees.
More precisely, /or any two different maximal vertices p, q on " there is a minimal
vertex on ,l(p,q).

Proo/. Suppose that there is no minimal vertex between p and q. Without loss of
generality, we mayassume that ,I(p,q) is vertex-free. Since p is a maximal vertex,
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I'I[p,q] is a negative seroll. On the other hand, Sinee q is also a maximal vertex, ,I[p,q]

is a positive seroll. This is a eontradietion. D

As an applieation, we give the following 2n-vertex theorem whieh is a generalization
of Jaekson [J]. (For eonvex eurves, it was proved by Blasehke [Bll]. Similar axiomatic
treatment of 2n-vertex theorem are found in Haupt and Künneth [HK2-3].)

Theorem A.ll. Let I' be a C 2 -regular simple closed curve on (X, r) such that a circle
CEr meets I' transversally at PI, ql, ... , pn, qn E I' n C. Suppose that the rotational
order 0/ the crossings Pb ql, ... , Pn, qn 0/ 'f is the same as that 0/ C. Then I' has at
least 2n different honest vertices.

The outline of the proof is the essentially same as in [J; Theorem 7.1]. But in our
general setting, we can not apply Jaekson [J; Lemma 3.1]. The following lemma will
replaee J ackson 's lemma.

Lemma A.12. Let C be a circle and 'fj (j = 1,2) two C 2-regular curves with finitely
many honest vertices transversally intersecting C at two points Pj, qj (j = 1,2). Sup

pose that 1'11[Pl,qd and 1'21(P2 ,Q2] lie in D e (C) and have no intersections with each other.
(See Figure A. 2.) Then there is a circle C' which lies in n e (C) such that it is tangent

to the three ares 'f11[Pl,ql]' CI[Q1 1P2] and /21[P2,q2]'

Figure A.2.

Proo/. Let a be a pieeewise Cl-regular curve consisting of the four ares /11[Pl,ql]'

CI[Ql,P2b 1'21[P2,q2] and Cl[Q2,Pl]' Since each interior angle of 8n e
(a) is less than 1r,

a is a .-admissible eurve by Proposition A.1. The four points PI, ql, P2, q2 are clean
maximal vertices on a. Thus the set

is not empty by Lemma 2.1. Let x E T. By (Cl), C; n CI[q2,pd = 0. Suppose there
is no such circle C' as stated in the theorem. Then it holds either F; n 'f11[Pl,ql] = 0

or F; n 'fZI[P2,Q2] = 0. But F; n 'fj![Pl,ql] = 0 (j = 1,2) never hold at the same time.
(In fact, if so, the circle C; coincides with C by the same arguments as in the proof
of Proposition A.5, whieh is a contradiction.) Thus the set T is a disjoint union of the
following two subsets

T- := {x E T

T+ := {x E T

F; n I'zl[P2,q2] = 0},

F; n /ll[Pl,ql] = 0}.
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We show T- =f:. 0. (Similarly T+ =f:. 0 is also verified.) Since 11 and ,2 have only
finitely many honest vertiees, so does a. In partieular, s-(a) < 00 and so t-(a) < 00

by Theorem 3.2. By Lemma A.4, we have F;l = {q1} because of C;l = q;. So
any point x on CI[q1,P2] sufficiently elose to q1 is .-regular and p~(x) E I1ICP1,Ql)'

beeause limx-tql+o p~(x) = ql - 0 by Theorem 1.4. Sinee x is of rank- 2, we have
F; n 12I[P2,Q2] = 0. Henee x E T-, and T- is non-empty. We set

where the lowest upper bound and the greatest lower bound are taken with respect to
the eanonical order of the are CI[Pl,P2]' Since (F;)PEU is an intrinsie eircle system, by
(12), we have y+ t: y-. On the other hand, y = y+ = y- does not occur since T+ and
T- are disjoint. Thus we have y+ >- y-. Consequently, CI(y- tY+) is a .-regular are on a.

By Corollary 1.7, aICtt.(Y+),/l.(Y-)) is also .-regular. On the other hand, al(/l.(y+),tt.(y-))

contains two clean maximal vertices ql and q2. This is a contradiction. 0

(Proof 0/ Theorem A.l1) We set Ik := ,I[Pk,qk]' Without loss of generality, we may
assume that ,n D-(C) = 11 U ... U In. We set

By Lemma A.11, there exists a circle Ck (k = 1, ... , n) whieh is tangent to Ik, Jk and
I k+1 respeetively. Let Xk (resp. Yk) be a tangent point between Ck and 1k (resp. 1k+1 ).

Then there is a maximal vertex on ,ICXklYk) by Lemma 1.1. (It is a clean vertex of the
simple closed curve obtained by joining ,I(XJctYk) and C~, but not a clean vertex of 1 in
general.) Moreover, by (Cl) in §3, we have

where >- is the rotational order of I' (See Figure A.3.) Thus, has n elean maximal
vertiees. By Corollary A.I0, 1 has n clean minimal vertices between them. 0

".,
~~ Y3,,

C',
I
IX

%'

..... _---'

Figure A.3

The the following lemma is a refinement of Corollary A.7: (The proof below is the
a slight modification of the original one in Kobayashi-Umehara [KU].)
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Lemma A.13. (The abstract version of [KU; Lemma 3.1])
Let, : [a, b] -+ R 2 be a positive shell at p = ,(a) = ,(b).

(1) /1, has only one (necessary maximal) vertex, then, \ {p} C Va nVb, where Va
(resp. Vb ) is the interior 01 the closed domain ne(C,(a)) (resp. ne(C,(b»))'

(2) /1, has exactly two honest vertices, maximal at t 1 E (a, b) and minimal at

t 2 E (a,b), then J \ {p} eVa ift1 < t2 and J \ {p} C Vb ijt2 < t 1 ·

(3) //, has exactly three honest vertices, two 01 which are maximal and the other
is minimal, then either , \ {p} C 'Va or J \ {p} C Vb.

Proof. By Proposition A.1, J is a .-admissible curve. First we prove (1). Let q be the
maximal vertex and x E ,I(p,q]. Then by Theorem A.9, we have

(A.4)

On the other hand, let y E ,I(q,p). Since y is not a maximal vertex, C; meets another
point z E ,1(Plq) by Corollary 1.2. Thus we have

(A.5)

By (A.4) and (A.5), we have J eVa. Similarly, we can also show J C Vb.
Next we prove (2). Assume that , has exactly two honest vertices, maximal at

t} E (a, b) and minimal at t 2 E (a, b) and t} < t2. Then by the same argument as in
the proof of (1), (A.4) holds for x E ,1(p,'Y(td] and (A.5) holds for y E ,1(r(tl)'P)' Thus
we have , eVa.

Finally, we prove (3). Let ql = ,(tI) and q3 = ,(t3) be maximal vertices and q2 =
,(t 2 ) a minimal vertex. We may assurne that tl < t2 < t 3 . By Proposition A.8, we have
J[p,ql] C Va and '[Q3,p] C 'Vb. On the other hand, for an arbitrary x E ,1(qllq3); there
exists y E ,I(a,qd U,I(Q3,b) such that C; 3 y. Thus we have x E C; C 'Vy C V a( or Vb)'
Hence we have shown that ,\ {p} C Va U Vb. We set

Sa : = inf{s E (a,b); ,(t) EVa ift E (s,b)},

Sb : = sup{s E (a, b) ; ,(t) E Vb if t E (a, S)}.

Then it holds that a < Sa < Sb < b. Now we suppose that neither , \ {p} r:t Va nor
, \ {p} r:t Vb holds. We can extend , to '1 : [a, b + cl --+ X such that '11[a,b) = "

::Yhb,b+c) = Cb 1[r(b),7(Sb)]' Then '11[so ,b+c) is a negative shell at ::y(b). By Lemma A.6,
there is a minimal vertex on (Sb, b). Similarly, we can find another minimal vertex on
(a, sa)' This is a contradiction. 0

Using Lemma A.13, the following theorem can be proved by the same arguments as
in [KU; Theorem 3.5].

Theorem A.14 (The abstract version of [KU; Theorem 3.5)). /1 a closed curve con
tains three positive shells or three negative shells, then it has at least six honest vertices.

The above 6-vertex theorem is stronger than the following 6-vertex theorem:
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Corollary A.15 (The abstract version of [CMO] and [Ul]). A closed curve has at
least six honest vertices i/ it bounds an immersed sur/ace other than the disco

Proof. It is sufficient to show that any closed curve , which bounds immersed sur/ace
with positive genus has three negative shells. (The immersed surface is assumed to lie
on the left hand side of ,.) If, has a positive shell then by the proof in [KV: Corollary
3.7], we found three negative shells. Hence, we may assurne that , is not embedded
and , has no positive shell. Suppose that , has at most two negative shells. Let x is a
self-intersection of ,. Then, can be expressed as a union of two distinct loops ,I and,2 at X. Each loop ,i contains at least one shell Si, which must be negative because ,
has no positive shells. We take points qj E Sj \ {Pj} (j = 1,2) respectively, where Pj
is the node of the shell Sj. Then, can be divided into two ares ,1[qllq~;d and ,1[q2 ,ql]'

Moreover these two closed ares ,1[QI,q2] and ,1[Q2,QI] are both embedded. (In fact, for
example, if ,1[Ql,Q2] is not embedded, then we find third shell S on ,1[QI,Q2]' which must
be negative. This is a contradiction.) Then by [Vl;Theorem 3.1], , only bounds a disc,
which is a contradiction. 0

The Corollary A.l5 for Euclidean plane curves was first proved for normal curves
in [CMD] and extended to the general case in [Vl]. It should be remarked that Corol
lary A.l5 itself is obtained by Corollary A.7 using purely topological arguments. The
following related result can be proved by the method in [Pe] using Corollary A.7.

Theorem A.16 (The abstract version of [Pe; Theorem 4]). A closed curve has at
least (4g + 2)-vertiees i/ it bounds an immersed sur/aee 0/ genus g, provided that the
number 0/ sel/-interseetions does not exeeed 2g +2.

In the rest of this appendix, we consider an intersection sequence of a positive scroll
and a negative scroll, which is an abstract version of [KV;§4]. As an application, a
structure theorem for 2-vertex curve is obtained. In [KV;§4], we use corner rounding
technique on curves. But this method is not valid in our general setting. So the
following is the modified version of [KV;§4].

Let ,- and ,+ be positive and negative scrolls respectively satisfying the following
two properties:

(a) All interseetions of ,- to ,+ are transversal.
(b) The first crossing of,+ is the last erossing of ,- .

A crossing of, is called positive (resp. negative) if,+ crosses ,- from the left (resp.
right). We use small letters for positive crossings. For the sake of simplicity, we use
the following notations: Let , be an open are and p a point on ,. Then we denote by
,I>p (resp. ,I<p) the future part (resp. the past part) from p.

Definition A.5 (The *-pairing). Let a be a positive crossing. If a crossing is the first
one at which ,-I>a meets ,+ I<a, then it is expressed by a*.

Lemma A.17. Let ,+'and,- be positive and negative serails satisfying (a) and (b).
1/ there exists a erossing a* for a positive erossing a, then a* is a negative crossing.

Proof. Suppose that a* is a positive crossing.
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Figure A.4a.
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Figure A.4b.

Let (j be a simple closed eurve defined as a union oftwo ares (j :== ,-I[a,a·] U'+ha.,a]'
Let De (0") be the left-hand closed domain with respect to 0" as in Figure A.4a or A.4b.
The angle at a* of the domain is greater than 1T. We eonsider a suffieiently small circle
C , which is tangent to ,- at a* and lies in De(O"). Expand C eontinuously. Let x =1= a*
be the first attaehment of C to the heart figured domain. Then x =1= a, and C is tangent
to ,- or ,+ at x. If x E ,-, we have C C Dx , where 7)x is the left open domain of the
oseulating eircle Cx . Since ,- is a negative arc, we have 'Dx C Da. by Theorem A.9.
Henee C ean not meet Ca., which is a contradiction beeause of a* E C n Ca.. 0

Lemma A.18. Let ,+ and ,- be positive and negative serolls satisfying (a) and (b).
Suppose that there exists a erossing a* for a positive erossing a. If ,+I>a (resp. ,-I<a)
meets ,- (resp. ,+ )at q firstly, then q lies on ,-I>a (resp. ,+I<a ).

Proof. Let (j == '[:,a.] U ,~. ,al be a simple closed curve. Let C;; (resp. Cd) be the
oseulating circle at a with respect to ,- (resp. ,+). By Proposition A.8 and Defini
tion A.3, we have (De(C;;))C :> ,-I>a and (De(C;t))C :> ,+I<a, where (De(c;=))c are
the complements of De(C!). Thus

This implies that

(A.6)

On the other hand, ,+I>a C De(c;t) and ,-I<a C De(C;). Suppose that ,+l>a
meets ,-I<a at some point x. Then x E De(C;;) n De(C;t), so x E De((j) by (A.6).
This means that ,+ I>a (resp. ,-I<a) meets ,-I[a,a.] (resp. ,+I[a. ,al) before x (resp.
after x). 0

Lemma A.19. Let a be a positive erossing.

(1) a* coineides with the first crossing at which the past part 01 ,+ from a meets
the future part of ,- from a.

(2) If a* == b*, then a == b.

Proo/. We prove the first assertion. Suppose p i= a* is the first crossing at which ,+ I<a
meets ,-I>a' Then p lies on ,+I[a.,a].(See Figure A.5a.) Consequently, p is a positive
crossing. Then p == a<>, where aO is the *-paring between the negative scroll,- and the
positive seroll,+ I>p' On the other hand p == aO is a negative crossing by Lemma A.17.
This is a contradiction.

Next we prove (2). Suppose that a =I- b. Without loss of generality, we mayassurne
that ,- meets ,+ firstly at a, next at band finally at c == a* == b*. Since b is a positive
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cro~sing, there is a negative crossing x on ,-I[a,b] at which ,+I>a meets ,-l[a,b] firstly.
(See Figure A.5b.) Now we reverse the orientation of ,-, whieh is denoted by (-,-).
We denote by ~ the *-pairing between the negative seroll (-,-.) and the positive seroll,+. Then the signs of erossings are all reversed. We have a == x". But ,+I>x meets
(-,-) at b, which eontradiets Lemma A.18. 0

Figure A.5a.

a c=a*=b*

a

Figure A.5b.

Definition A.8. If a negative erossing does not have a *-pairing, then it is ealled a
solitary negative erossing and is denoted by a eapitalletter.

The remaining discussions in [KU;§4] can be easily translated to our abstract setting.
In particular, the intersection sequence of ,- consists of the following three type of
words:

Type T:

Type D:

Type S :

[al a2 an] :== al ...ana~ ...a~,

[al a2 an : B] :== al ...anBa~ ...a~.

We define the length of the each type of words by

The following theorem holds by exacHy the same argument in [KU;§4].

Theorem A.20. Let,+ and ,- be positive and negative serolls satisfying (a) and (b).
Then the interseetion sequenees W- 01,- is 01 the form w- == W I W 2 ... W n , where
Wi (i == 1, ... , n) is 01 type T, D or Sand the interseetion sequenee of ,+ is obtained
by the head picking rule as in [KU]. Moreover W- satisfies the following grammar:

(1) 1fWi is 01 type D, then Wj (j < i) is of type T or D.
(2) 11 W i is of type T and Wi+l is 01 type D, then IWil ::; IWi+ll. Moreover il

Wi-l is of type D, then IWil + IWi-ll :::; IWi+11 holds.
(3) 11 W i is of type T and Wi-l, W i+l is of type 5, then IWil + IWi- 1 1 ~ IWi+ll·

An immersed curve is ealled normal if all erossings are transversal and there are
only double points. The following theorem is obtained by exaetly the same argument
as in the proof of [KU; Theorem 4.8 and 4.9].

Theorem A.21 (A strueture theorem of 2-vertex eurves). Let I be a closed normal 2
vertex curve divided by negative and positive serolls , == ,-U,+. Then the interseetion
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sequences 0/ ,- and ,+ are translated mutually by the head picking rule as in [KU].
Moreover, the grammar 0/ the intersection sequence 0/ ,- is given as /ollows.

(1) The intersection sequence consists 01 words 0/ type T and type Sand written
in the form TaSlTlS2T2 ... SkTk. Each Ti (i = 1, , k) may possibly be. empty.

(2) ITal > 0, ITal ~ ISll and ISil + ITil ~ ISi+ll (i = 1, ,k).

When X = R 2 U {CXJ} and r is the set of circles in the Möbius plane (cf. §3-Example
1), the converse assertions of Theorem A.20 and Theorem A.21 are true. (See [KU].)
Moreover, in [KU], the intersection sequences of two scrolls of the same kind are also
characterized in a similar manner.

For a plane curve" there exists an interesting invariant J+(,) E Z, which is related
to the linking number of the corresponding Legendrian knot in the unit sphere bundle
on R 2 . (See [A1],[A2] arid [A3]. Selwat [SI] is also a nice reference.). Since J+(,) is
not invariant under the diffeomorphism of S2 = R 2 U {oo}, it is convenient to define a
modified invariant

i 2

SJ+(,) := J+(,) + ;,
where i-y is the rotation number of , as aplane curve. As an application of Theo
rem A.21, we can get the following by the same method as in [U2]. (See also Remark
in [U2:§1].)

Theorem A.22 (The abstract version of [U2].). Let, be anormal closed curve in X.
Suppose that SJ+(,) > 0, then , has at least Jour honest vertices.

Two closed normal curves ,I ,,2 :SI -+ S2 are called geotopic if there is a diffeomor
phism ep on S2 such that ep(Im(,I)) = Im(,I). It is an interesting problem to determine
the minimum number of honest vertices that a closed normal curve with given geotopy
type can have. Minimizing numbers for normal curves are determined by Heil [Hel]
for crossings(~ 3) and in [KU] and Kobayashi [Ko] for crossings(~ 5).

Appendix B. The continuity of the maximal circles
In this Appendix, we sh31l prove the continuity of the center of maximal circles of

a simple closed curve in the Euclidean plane. This was used in the last remark in §2.
First, we prove the following general statement.

Theorem B.l. Let X be a diJJerentiable sphere and r a subset 0/ C 2 -regular simple
closed curves satisfying the axioms 0/ a circle system. Let / be a C 2-regular simple
closed curve satislying s· (,) < CXJ and c· : X -+ r a map defined by c· (p) := C;. Then
c· is a continuous mapping with respect to the compact open topology on r.
Proof. If, is a circle, the statement is obvious. So we assurne I is not a circle. It is
sufficient to show that C;n -+ C; if Pn -+ P holds for any p E / and a sequence (Pn)nEN
converging to p. By (C2), the sequence (C;n )nEN has a convergent subsequence which
converges to a circle C. To prove C = C;, we may assume that (C;n )nEN itself is a
convergent sequence. Obviously C C D·(,). Since Pn E C;n' we have p E C. Hence
C is a circle contained in n· (,) which is tangent at p. Suppose that C =1= C;. Then
C n I = {p} holds. Thus there exists an integer na > 0 and a sufficiently small open
arc J containing p such that

(B.I) ( for all n ~ na).
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First, we consider the case rank· (p) 2:: 2. In this case, J can be taken to be weakly
.-regular. (See Corollary 2.6.) Then by Corollary 1.2, (B.I) implies that Cn n I
consists of only one component. But it is impossible because rank- (Pn) 2:: 2 in this
case. Thus we have C = C;. Next, we consider the case rank-(p) = 1. If p =J I-t~(p),

then p,p, __ (p) E C, which contradicts C n r = {p}. Thus p = p, __ (p), which implies
Fp = {p}. Since Pn -t p - 0 and limn~ooP, __ (Pn) -t P + 0, the C2-differentiability of I
yields that C is the osculating circle at p. By Lemma A.I, we have C = C;. 0

Let I : SI -t R 2 be a C2-regular simple closed curve in the Euclidean plane. Assurne
that I is oriented so that D- (,) is a bounded domain in R 2 . For each point pEr, let
cp be the center of the maximal circle C;. Then we have the following

Corollary B.2. Suppose that s·(,) < 00. Then the map <P : , --+ R 2 defined by
<p(p) = cp is continuous.

Proof. Let r l be the set of circles in the Euclidean plane Xl. It is not so hard to see
that the map ~ : r I -+ R 2 X(0,00) defined by ~(C) = (z(C), r(C)) is homeomorphism,
where z(C) and r(C) are the center and the radius of C respectively. Since ~ 0 c· is
continuous by Theorem B.I, we have the conclusion. 0
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