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Introduction. In 1932, Bose [Bo] established the following formula for a given non-
circular simple closed convex plane curve v

(0.1) $* —t* =2,

where s°* is the number of enclosing osculating circles and t°® is the number of triple
tangent enclosed circles in . Haupt [Hu] (1969) extended it to simple closed curves in
the category of Ordnungscharacteristiken(=0Ch) mit der Grundzahl k£ = 3, which is
defined in Haupt and Kinneth [HK].

Roughly speaking, the formula for generic simple closed curves can be obtained by
the following simple observations: Let v be a generic C*°-regular simple closed curve
and D the domain bounded by v. The cut locus K (C D) of v is the closure of the set
of points which have more than one minimizing line segments from ~. Then K has a
structure of a tree and each boundary point corresponds to the center of an enclosed
osculating circle. (See Thom [Tml] and [Tm2].) Moreover, it can be observed that
the branch points of K are the centers of triple tangent enclosed circles. Hence s° is
the number of the boundary points of K and t* is the total branching number at the
branch points. Since K is contractible, the formula s* — t* = 2 follows immediately.
(This observation is justified for any C2-regular simple closed curves with s* < co. See
the last remark in §2.)

We give here a brief history of the four vertex theorems for simple closed curves.
In 1909, Mukhopadhayaya [Mul] proved it for convex closed curves. A. Kneser [A.K]
(1912) extended it to simple closed curves. But a vertex (that is, a critical point of
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the curvature function) may not be a point where the osculating circle is completely
inside and outside the curve. The inequality s* > 2 for simple closed curves was proved
by H. Kneser [H.K] (1922-1923) who is a son of A. Kneser. The Bose formula and its
generalization by Haupt [Hu] is a refinement of it. Jackson [J1] (1944) gave many other
fundamental tools for the study of vertices on plane curves.

On the other hand, the four vertex theorem was extended to simple closed curves on
closed convex surfaces by Mohrmann [Mo](1917) without details and its complete proof
was given by Barner and Flohr [BF] in 1958. To generalize the four vertex theorem for
simple closed convex space curves (that is, curves lying on the boundary of their convex
hulls) with non-vanishing curvature, Romero-Fuster [R] proved a Bose type formula

(0.2) s—t=4

for convexly generic convex curves 7 in R?, where s is the number of supporting oscu-
lating planes and ¢ is the number of tritangent supporting planes. (Various approaches
for the same problem are found in [Bi], [RCN2] and [BR1-2].) After that, Sedykh [Sd2]
showed that (0.2) is true for simple closed strictly convex space curves. (Moreover, he
gave a generalization of (0.2) for strictly convex manifolds M* in the Euclidean space
R"™ (k < n —1).) The four vertex theorem for simple closed convex space curves with
non-vanishing curvature itself was proved in Sedykh [Sd1] by a different approach.
Recently, Kazarian [Ka] established some formulas similar to (0.1) representing the
Chern-Euler class of a circle bundle over a Riemann surface in terms of global singu-
larities of restrictions of a generic function to the fibers.

There are interesting connections between vertices and integral geometry (e.g. [B12],
[Hy],[Ba],[Gul-2],{Heb].) or contact geometry. The author was inspired by them, espe-
cially recent papers [A1-4],{GMO],[0OT],[Tal-3] in which several variations of the four
vertex theorem are observed from the view of contact geometry or proved by using the
technique of disconjugate operators on S?!.

The purpose of the paper is to give a unified treatment of the formulas (0.1) and
(0.2). More precisely, we will introduce a notion “intrinsic circle system” as a certain
multivalued function on the unit circle without referring to ambient spaces, which
characterizes the cut loci of plane curves intrinsically and enables us to prove the
formula (0.1) abstractly. Consequently, (0.1) or (0.2) is proved under much weaker
assumptions for the following three cases:

(1) piecewise C'-regular simple closed curves on the Euclidean or Minkowski plane,
which bounds a domain whose internal angles are less than or equal to ,

(2) piecewise C'-regular simple closed curves on an embedded surface with positive
Gaussian curvature in R®, which bounds a domain whose internal angles are
less than or equal to =,

(3) convex simple closed space curves in R? with some additional conditions. (As
an application, the Sedykth’s 4-vertex theorem is obtained.)

The formula like as (0.1) will be shown for these three cases. (See Theorem 2.7 and
Theorem 3.2.) However, the formula like as (0.2) requires C2-regularity of curves. (See
Corollary 3.3 and Theorem 4.14.) Haupt’s proof partially covers the cases (1)-(2) but
not (3). (In his paper, the existence of osculating circles is assumed.) Here the vertices
on curves defined for the cases (1)-(2) include singular points of curves. This gives a
new interpretation for the existence of the unique inscribed circle in a triangle. (In this
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case, s* = 3 is the number of vertices and ¢* = 1 is the number of inscribed circles
and they satisfy the relation s* —¢* = 2 trivially.) Though it is not directly concerned
with the Bose-type formulas, several generalization of four vertex theorems without
differentiability have been investigated by [LSc},[J2],[LSp],[Spl-4] etc. It should also
be remarked that vertices for polygons are studied by several authors. (See [Sa],[W2]
and [Sd3].) But their definition of vertex is different from ours. (In our setting, the
vertices of polygons have the usual meaning.)

Finally, we remark here that this paper is prepared for the ensuing paper Thorbergs-
son and Umehara [TU], in which we shall prove in the same axiomatic setting that for
any C?-regular simple closed curve 7y : [a,b] — RZ, there exist four points t1,15,t3,14
(t1 < ta <tz < t4) such that the osculating circles at t; and t3 are enclosed in v and
the osculating circles at t3 and t4 enclose . (Here the the order of the osculating
circles is important. The corresponding version for convex simple closed space curves
also holds.) The statement looks obvious at the first glance, but it is one of the deepest
versions of the four vertex theorems, and provides many applications.

§1 Intrinsic circle systems.

We fix an oriented unit circle S. Let > denote the order induced by the orientation
on the complement of any interval in S*. Any two distinct points p,q € S* divide S*
into two closed arcs [p, ¢] and [g, p] such that on [p,q] we have ¢ > p and on [q,p] we
have p > q. We let (p,q) and (g, p) denotes the corresponding open arcs. We also use
the notation p = ¢, which means p = g or p = ¢q. Let A be a subset of S! and p € A.
We denote by Z,(A) the connected component of A containing p.

Definition 1.1. A family of non-empty closed subsets F := (F},),es of S? is called an
intrinsic circle system on S if it satisfies the following three conditions for any p € S*.
(I1) If ¢ € F,, then F, = F,.
(I2) If g € S*\ F,, then F, C Z,(S*\ F,). (Or equivalently, if p’ € F,, ¢’ € F, and
g>p' =q¢ = p(> q), then F, = F,; holds.)
(I3) Let (pn)nen and (gn)nen be two sequences in S? such that lim,—eopn = P
and limp,_,00 gn = q respectively. Suppose that ¢, € F,, (n =1,2,3,...). Then
q € F, holds.

Remark. Let v be a piecewise C'-regular simple closed curve in R?. Let C, be the
maximal circle which is contained in v and tangent to v at p. Then F), := yNC} satisfies
the above three conditions. (See Proposition 3.1.) The definition of the intrinsic circle
system characterizes the properties of maximal circles of a curve without referring to
an ambient space, which enable us to generalize the Bose type formula to convex simple
closed space curves. This is the reason for the terminology “intrinsic circle system”.
By (I1), F induces an equivalence relation. Later (See the last remark in §3), we will
show that the quotient topological space S*/F is homeomorphic to the cut locus K
of 4. In this sense, the intrinsic circle system can also be interpreted as an abstract
characterization of the cut loci of plane curves. We give here two elementary examples.

Let v : 2?/a® +y?/b* =1 (a > b) be an ellipse in R?. Then the maximal circle C;
at each point p = (z,y) on v has two contact points at p and p = (&, —y) unless y # 0.
So if we set Fp := CJ N, then

[} ifp#(+a,0),
By = { ) if p = (+a,0).



One can easily verify that (F,),e is an intrinsic circle system.

Another typical example is the triangle Aabe as in Figure 1.1, which is invariant
under the reflections «, 8 and v. We consider the maximal circle C} at each point on
the triangle. Then C} has two contact points to the triangle unless p = a,b,¢,2,y, 2,
where © := (a+b)/2,y := (b+c¢)/2 and z := (c+ a}/2. Soif we set F}, := C) N+, then

( {p,a(p)} if p€ayUaz and p # a,y,2
{p,B(p)} if pcbzUbr andp#b,2,z
Fp =1 {p,7(p)} if peczUcyand p # ¢, 7,y
{p} ifp=a,b,c
\ {z,y, 2} ifp=u=z,y,2.

One can also easily verify that (Fy)peaasc is an intrinsic circle system. We will give
further examples of intrinsic circle systems in §3 and §4.

Figure 1.1

Let A be a subset of S1. The number of connected components of A is called the rank
of A and is denoted by rank({A). For a family of non-empty closed subsets (Fjp),es1,
we set

rank(p) := rank(F,).

The next lemma, which plays a fundamental role in this paper, is a generalization of
the main argument in H. Kneser [K.H].

Lemma 1.1. Let (Fp)pest be a family of non-empty closed subsets satisfying (12). Let
p,q be points on S' such that ¢ € F,. Suppose that (p,q) ¢ F,. Then there ezists a
pont = € (p,q) such that rank(z) = 1.

Proof. If necessary, taking a subarc in (p, ¢), we may assume that F, N (p, q) is empty.
We fix a metric d(, ) on S'. Let = be the middle point of [p,q] with respect to the
distance function. If rank(z) = 1, the proof is finished. So we may assume that
rank(z) > 1. By (I12), F; C (p,q). Since S'\ F; is an open subset, we can choose a
connected component (p1,q1) of S*\ Fy such that (p1,q1) C [p,q]- Then p1,q1 € F.
Instead of p and ¢, we apply the above argument for p; and ¢;. Let z; be the middle
point of the arc [p1,¢:1]. Then we find a subarc [ps,¢2] such that ps,q2 € Fg, and
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(p2,q2) C S*\ Fy,. Continuing this argument, we get a sequence of arcs {[pn, ¢n]}nen
such that

1
d(pn,qn) < é’d(pn—l:Qn—l)-

Thus, there exists a point y € (p, ¢) such that
= lim p, = lim q,.
n—oco n—co

If rank(y) # 1, then there exists an element z € F, different from y. Then z ¢
(Pn,gn) = Zy(S*\ F,,) for a sufficiently large n. This contradicts (I12). Thus we have
rank(y) =1. O

Remark. Suppose that v is a simple closed curve in R%. Let C; be a maximal circle
and F, = Cp N~v. Then the argument above was applied to show the existence of
two distinct enclosed osculating circles in H. Kneser [H.K]. In fact, using Lemma 1.1,
one can easily get the existence of two distinct maximal circles C; and Cj (= # y),
which are tangent to 4 with only one connected component. If the curve v is C2-
differentiable, then C7 and Cj must coincide with the osculating circles at z,y €
respectively. (See Proposition A.5 in Appendix A.) We remark that Thorbergsson [Tr]
generalized this argument for a certain class of simple closed curves in any complete
Riemannian 2-manifold.

From now on, we fix an intrinsic circle system F = (Fp),es1 on St.

Definition 1.2. p € S? is called regular (resp. weakly regular) if rank(p) = 2 (resp.
2 < rank(p) < o0). A subarc I of S! whose elements are all regular (resp. weakly
regular) is called a reqular arc (resp. weakly regular arc).

The following lemma immediately follows from Lemma 1.1.

Corollary 1.2. Let I be an open weakly regular arc. Then for each p € I, the set
Y, = Fp \ Zp(Fp)

is contained in S\ I. In particular, the closure Y, lies in ST\ I.

Definition 1.3. Let I be a closed arc on S* and A be a subset in I. Then the points
sup;(A) and inf;(A) which are called the least upper bound and the greatest lower
bound of A, are defined as the smallest (resp. greatest) points satisfying

sup(A) = z (for all z € A),
I
T > ir}f(A) (for all z € A).

Definition 1.4. Let I = (z1,z2) be a weakly regular arc. For any p € I, we set

p+(p) = sup(V;),  p—(p) = inf (¥p),
SI\T SI\I



where Y, := F, \ Z,(F,). Moreover, we extend the definition of u to the boundary of
I as follows. If z; (7 = 1,2) is weakly regular, we set

(1.1) py(zj) ;= sup(Yy;),  p-(zj) = inf (¥z;).
SI\T SI\I

On the other hand, if z; is of rank 1, we set

(12) pales) o= sup(Fy,),  po(es) = inf (Fy,).
SI\T SI\I

We will call 4 antipodal maps. By definition, p4(7) C S\ I holds.
The following lemma is a simple consequence of the properties (I11) and (I12).

Lemma 1.3. Let [ = (z1,22) be an open weakly regular arc and p,q € I two points
such that p > q on I. Then the following relations hold.

pi(q) = pa(p),  p-(Q Zp—(p) (on S*\1I).

Moreover if F, # F,, then u_(q) > p+(p) holds on ST\ I.

Proof. We only prove the first relation. (The second relation is obtained if one reverses
the orientation of S! and replaces p by ¢.) Suppose that py(p) = pus(g) on ST\ I.
Then we have

g>=z1 > pi(p) > pe(@) =22 =p  on[p,ql

By (I2), we have F, = F,. Since I contains no points of rank 1, Lemma 1.1 yields
that Z,(Fy) = Z,(Fy). Hence p4(p) = p4+(g) but it is a contradiction. Thus we have

pt(9) = p(p)-
Next we suppose that 4 (p) > p—(q) holds. Then we have

p+(q) = pr (p) = p-(0)(= p).

Since F, and F, are closed subsets of S, we have py(q) € F, and p4.(p) € Fp. Thus
(I2) yields that F}, = Fy, which proves the second assertion. O

Theorem 1.4. Let I = (z1,z2) be an open weakly regular arc. Then the following two
formulas hold: :

xE;p_Ou+(w) = p4(p) + (for p € (z1,22]),

0
Jim p-(@) =p-(p) =0 (for p € [z1,22)).

Proof. We shall prove the first formula. The second formula follows by the same
arguments. We take a sequence (pn)nen such that p, — p — 0. Since p, = p — 0,
we may assume that p,41 = pn for any n € N. Since S! is compact, (t+(prn))neN
contains a convergent subsequence. Thus, without loss of generality, we may assume
that there exists a point ¢ € S* \ I such that py(pn) = ¢. Since pny1 > Pn, it holds
that g4 (pn) = p+(pn+1) by Lemma 1.3. So we have py(pn) — ¢ + 0. Then the proof
of the formula follows from the following lemma. [J



Lemma 1.5. Let (pp)nen be a sequence in an open weakly reqular arc I = (z1,22)
such that p, — p — 0, where p € (z1,z2]. Suppose there ezists ¢ € ST\ I such that
t4(pn) = ¢ +0. Then g = pi(p).

Proof. First, we consider the case that rank(p) > 2. By (I3), we have p,q € F,. Since
p+(I) € ST\ I, Lemma 1.3 yields

21 = py(pn) = py(p)  on ST\ I

By taking the limit py(p,) — ¢, we have
(1.3) 1 = q > pi(p) on ST\ I.

In particular p # ¢q. Suppose that ¢ € Z,(F,). Then [g,p] C Fp. Since py(pn) = g+0,
we have p, € Z,(F},) and thus p4(pn) = p4(p) for sufficintly large n. Hence we have

q = p4(p). So we may assume that ¢ € Y,. Since uy(p) = supg\r(Yp), we have
q = p4(p) by (1.3).

Next we consider the case that rank(p) = 1. This case happens only if p = z;. By
(I3), we have q € Fp,. If Fy, = {23}, then we have ¢ = z2 = py(z2). So we may
assume that Fy, consists of more than two points. Then Fj, is written as

Fpp =lo2,y]  (y€S'\1I).

Suppose that ¢ € [z2,y). Since py(pn) — ¢ + 0, we have u4(pn) € (z2,y). Then by
(1), Fp, = F,_(p,) = Fr,- But this contradicts the fact rank(p,) > 2. Hence we have
q=1y = p4(z2) because of ¢ € F,. O

Theorem 1.6. Let [ = (21,z2) be an open weakly regular arc. Then p_(z1) = py(z2)
holds on the arc S*\ I. Moreover, for any q € (p4(z2),u—(x1)), there ezists a point
p € I such that

(1.4) pr(P) =gz p-(p)  (on ST\ ).

Proof. We divide the proof into three steps.

(Step 1) First prove the relation p—(z1) > p4(z2) on S*\ 1. Suppose Fy, = F;,. Then
there is a point of rank 1 on I by Lemma 1.1. But this contradicts the weak regularity
of I. So we have F;, # Fy,. Then p_(z1) > py(z2) holds by Lemma 1.3.

(Step 2) Next we prove the second assertion. We set

p :=inf(By),
I
where B, is the set defined by
By={z€Tl;qx=pys(y) forall zp =y = a}.

For any z € I which is sufficiently close to s, it holds that ¢ > p4(z) by Theorem 1.4.
This implies z € By, and thus B, is non-empty. Moreover, definition of p yields that

Ty > 2> D
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In particular p # z3. Next we suppose that p = z;. By Theorem 1.4, we have
limy, ¢, 40 p—(w) = p—(z1). In particular, it holds that py_(w) > ¢ for w € I suffi-
ciently close to 1. On the other hand, the definition of p yields g > g4 (w). Thus (1.4)
holds for p = w.

(Step 8) So we may assume that p € I. By Theorem 1.4, we have

(1.5) pe(p) = Lim p(2),
(1.6) p-(p) = lim p(z).

Suppose that ¢ > p4(p) on S\ I. Then (1.5) implies that there exists u(< p) such
that ¢ > py(z) for ¢ € (u,p). This means that ¢ > p4(z) holds for z € (u,z2). Hence
u € By. But this contradicts that p = inf3(B,). So we have puy(p) = g on S*\ I.
Next we suppose that u_(p) = g on S*\ I. Then (1.6) implies that there exists v(> p)
such that p—(v) > ¢. Since py(v) = u—(v), we have uy(v) > g. On the other hand,
since v > p, we have v € B,. This contradicts the relation py(v) > g. So we have

q € [u-(p), u+(p)]. O

If the arc I is regular, the following stronger assertion follows immediately.

Corollary 1.7. Let I = (z1,z2) be a regular arc. Then p_(z1) > py(z2) holds on
the arc S1\ I. Moreover, for any q € (u4+(z2),u—(z1)), there ezists a point p € I such
that F, = Fy. In particular, (p4(z2), u—(z1)) is also a regular arc.

§2 A generalization of the Bose formula.

In this section, we fix an intrinsic circle system F = (F,),es1. We define a relation
~ on S as follows. For p,q € S?, we denote p ~ ¢ if F, = F,;. Then by (I1), this is an
equivalence relation on S'. We denote by S!/F the quotient space of S! by the relation.
The equivalence class containing p € S? is denoted by [p]. Then rank([p]) := rank(p)
is well defined on S*/F by (11).

Definition 2.1. We set

S(F) :={lp] € §'/F; rank([p]) = 1},
T(F) :={[p] € §"/F; rank([p]) > 3}.

The set S(F) is called the single tangent set and T(F') is called the tritangent set.
Moreover, we set

s(F) := the cardinality of the set S(F),
t(F):= Y (rank(p)—2).

[pl€T(F)

Definition 2.2. The single tangent set S(F) is said to be supported by a continuous
function 7 :S' — R if for each [p] € S(F), F, is a connected component of the zero
set of 7.

In §3, we will give several examples of intrinsic circle systems whose single tangent
sets are supported by continuous functions. (See Remark of Theorem 3.2.)
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Lemma 2.1. Suppose that 3 < s(F) < co. Let p,q € S* be points such that rank(p) =
rank(q) = 1 and F, # F,. Then there is a point © € (p,q) such that rank(z) > 3.
Moreover, if the single tangent set S(F) is supported by a continuous function 7, the
assumption s$(F) < oo 1s not needed.

Proof. Suppose that there are no points z € (p,q) such that rank(z) > 3. Since
s(F) < oo, we may assume that there are no points of rank = 1 on (p, ¢g). Then (p, q)
is a regular arc. By Corollary 1.7, the open arc (u4(q), u—(p)) is also a regular arc.
On the other hand, we have uy(p) = p and p—_(g) = ¢ by (1.2). So all the elements in
[=(p),p] U [g, u+(p)] are of rank one. Since v is expressed as

v =(p,q) Ulg, p+(p)] U (+(q), #-(p)) U - (p), 1],

there are no elements of rank(> 3) and s(F) = 2. But this contradicts s{(F) > 3.
This proves the first assertion. When S(F') is supported by 7, we do not need the
assumption s(F') < oo. In fact, we get the same contradiction if we can take an open
subarc (p', ¢') of (p, q) satisfying the following three properties;

(1) [p'],[d] € S(F),
(2) Fy # Fy,
(3) (p',q') is a regular arc.

If there are no such p’ and ¢/, then the subset

{z € (p,q); [z] € S(F)}

is dense in (p,q). This implies that the function 7 vanishes identically on (p,q) and
thus F, = F,, which is a contradiction. O

Theorem 2.2. If s(F) < oo then t(F) < oo. The converse is also true if the single
tangent set S(F) is supported by a continuous function 7 : S* — R.

Remark. In general, t(F) < co does not imply s(F) < co. For example, we set F}, :=
{p} (p € S'). Then F = (F,),est is an intrinsic circle, which satisfies s(F') = oo but
t(F) =0.

The theorem follows from the following three lemmas.
Lemma 2.3. If there exists a point p € S such that rank(p) = oo, then s(F) = oco.

Proof. Let O be the open subset of S given by O := S!\ F,. We take a sequence
(2n)nen in O such that z; and z; are in mutually different components of O unless
i = j. Let (pn,qn) be the maximal open interval in O containing ,. Then pn, gn € Fp.
By Lemma 1.1, there exists [y,] € S(F') on (pa,gn). By (12), we have F,,, C (pn,qn)-
Thus (Fy, )nen are all disjoint. Hence s(F) = co. O

Lemma 2.4. Suppose that S(F') is supported by a continuous function 7: S* — R. If
s(F) = o0, then t(F'} = oo.

Proof. Let n > 3 be a fixed integer. We assume that s(F') = co. Then there exists a
mutually distinct equivalence classes [z1],- -+ ,[zn] € S(F). We set

M .= LnJ Fy,.
j=1
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Then S*\ M is a union of disjoint open subsets {(p;, g;)}j=1,...,n. By Lemma 2.1, there
exists a point y; (7 = 1,...,n) on (p;,q;) such that rank(y;) > 3. This implies that
t(F) > n. Since n is an arbitrary integer, we have ¢(F) = oco. O

Definition 2.3. Let A be a subset of T'(F) such that rank([z]) < oo for all [z] € A. Then
for each z € A, S*\ F; is a union of disjoint open arcs I1, ..., Iz, where r, := rank(z).
Such an open arc If is called a primitive arc with respect to the subset A if I£ N F, is
empty for all [y] € A. If A is a finite subset and given by A := {[z1], ..., [zx]}, then we
set

(2.1)

N(A):={I3 ; 1<j<n, 1< <ry;and [FNFy, =@ forall k=1,..,n},

that is N(A) is the total number of primitive arcs with respect to A among {I ﬁj}
We give an example which will be helpful for the arguments below.

Ezample. Let v be the smooth curve as shown in Figure 2.1 and C; the maximal
circle Cj at each point p € v. We set F, := C; Nv. Then it can be easily checked
that (F)pey is an intrinsic circle system. The points ay,...,a12 are of rank one and
the points bl,bz,bg, C1,C2,C3, dl,dz,dg, €1,€2,€3, f},fz,f3, g1,92,493 are of rank three.
Finally, h1, ho, h3,£4 and i1,12,13,14 are of rank four. Other points of v are all regular.
In this case,

S(F) :={la], ..., [aa2]},
T(F) = {[bl]a [cl]’ [dl]’ [61], [fl]a [91]7 [hl]a [""1]}

For example, v\ Fy, has three components Ji := (s, )5 J2 7= Y(bs,b5) 30 J3 1= Y(b5,0,)-
In this case Jy and Jp are primitive with respect to T(F'), but J3 is not.

Figure 2.1

Definition 2.4. Let A be a subset of T(F). An element [z] € A (z € S') is called
totally primitive if there exists a non-primitive arc I¢ such that all the other arcs

I'(CS'\F) (i#61<i<r,)
are primitive with respect to A.

Let + be the curve as in Figure 2.1 and F' the intrinsic circle system defined in
Example. Then [b1],[c1],[d1], [e1], [f1], [91] are totally primitive with respect to T(F'),
but [hy], [z1] are not.
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Lemma 2.5. If s(F) < oo, then t(F) < co.

Proof. We prove the lemma by induction. If ¢(F) > 1, then by Lemma 1.1, we have
s(F) > 3. Thus the lemma holds for s(F) < 2. So we assume that ¢(F) < oo holds
if s(F) < n (n > 3) and prove the assertion in the case s(F) = n. We suppose that
t(F) = co. Although the set T'(F') need not to be finite, but the rank of each element
is finite by Lemma 2.3.

(Step 1) Suppose that there is a totally primitive element [z] € T(F') with respect to
T(F). Without loss of generality, we may assume that I} is not a primitive arc and
the other arcs I2,...,I7= are all primitive. We consider the quotient topological space
S1/(S*\I}) and 7 : ST — S1/(S'\ I}) by the canonical projection. Then S*/(S*\ I})
is also homeomorphic to S*. For each p € S, we set

B { m(Fp) ifpell,
w(p) "= : 1
7(Fz) ifpdglI..

Then it can be easily checked that F is an intrinsic circle system on $/(S* \ I1). By
Lemma 1.1, each I: (¢ # 1) contains at least one components of rank one points. On
the other hand, If has at most one component of rank one points by Lemma 2.1. Thus
each I’ (¢ # 1) contains exactly one component of rank one points. Thus, we have

Y
il

(2.2) s(F) = s(F) — (rank(z) — 2),
(2.3) t(F) = t(F) — (rank(z) — 2).

~ A

Since s(F') < n, we have ¢(F') < co. So t(F') is also finite by (2.3).

(Step 2) Next we consider the case that there are no totally primitive elements in
T(F). Assume that t(F) = co. We take two mutually different elements [z;] and [z].
Without loss of generality, we may assume that Fy, C I . Since [z3] is not totally
primitive, there exists an element z3 (z3 # z1,z2) such that Fy, is contained in Ia'f?
for some k # 1. By (12), Fy, is contained in one of (I£3)€=1,m,n¢3 , here we may assume
F., C I.,. Then we also have F;;, C I by (I2). Since [z3] is not totally primitive,
there exists an element z4 (24 # 21,22, 23) such that Fy, is contained in Ifa for some

k # 1. Repeating this argument inductively, we can find a sequence ([z,])nen such
that

(2.4) Fo,cIl  (=1,..,n—-1),
Fyopo CIF forsomek (1 <k <rg).

By Lemma 1.1, we have
(2.5) s(F) 2 N({[z1], ..., [z£]})-
On the other hand, by (2.4), we have

(2.6)  N({lea], s [z4], [2o41]}) = N({[z1], ..., [24]}) + (rank([zr41]) - 2).

Thus N({[z4,], -, [zi,]}) = o0 if K — co. Hence s(F) = oo, a contradiction. So t(F)
is finite. O
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Corollary 2.6. Suppose that s(F) < co. Then the set of all regular (resp. weakly
regular) points is an open subset of S1.

Proof. Since s(F) < 00, t(F') < oo holds by Lemma 2.5. Thus there exists finitely many
points p1,...; pn such that S\ (F,, U---U F,,) is the set of all regular (resp. weakly
regular) points. Since each Fj, (7 =1,...,n) is closed, the set is an open subset. O

We now prove the following theorem which is a generalization of the Bose formula.

Theorem 2.7. Let F := (Fp),est be an intrinsic circle system. Suppose that s(F) <
oo and there ezists a point p € St such that [p| € S(F). Then t(F) < oo and

s(F) —t(F) = 2

holds.

Proof. Assume that s(F) < oco. If s(F) = 0, then this contradicts Lemma 1.1. If
s(F) = 1, we can conclude that [p] € S(F) for all p € S* by Lemma 1.1. Next we
suppose that s(F) = 2 and ¢(F) > 1. Then by (2.5), we have

2=3s(F) > N({{[z1]}) = rank(z,) > 3

for any z; € T(F), which yields a contradiction. Thus t(F) = 0. So we may assume
s(F) > 3. Then Lemma 2.1 implies T(F') is a non-empty set. Let [z1],....,[z4F)] be
all of the elements of T(F). To we complete the proof of the theorem, we need the
following lemma.

Lemma 2.8. Suppose that 3 < s(F) < oo There ezists an integer j (1 < 7 < s(F))
such that [z;] is totally primitive with respect to T(F).

Proof. If (z1] is totally primitive, the prove is finished. If not, we fix a non-primitive
arc Iﬁi Then by (I2), we may suppose that F, lies in Iﬁi. (If not, we can exchange
[z2] for a suitable [zi] (K > 2).) If [z7] is totally primitive, the proof is finished. If
not, we fix a non-primitive arc Iﬁg contained in If;ll. Then we may assume that Fy,
lies in I%2. (If not, we can exchange [z3] for a suitable [z4] (k > 3).) Continuing this
argument, we find a totally primitive [z;] since t(F') is finite. O

(Proof of Theorem 2.7 continued.) We will prove the formula by induction on the num-
ber s(F). We have already seen that the formula is true whenever s(F) < 2. So we
assume that the formula holds if s(¥) < n (n > 3) and prove the assertion in the case
s(F) = n. By Lemma 2.8, there is a totally primitive element [z] in T(F'). Then as
shown in the proof of Lemma 2.5, the induced intrinsic circle system £ on §'/(S*\ I1)
satisfies (2.2) and (2.3). Since s(F) < n, we have s(F) — t(F) = 2, which yields the
formula s(F) —t(F)=2. O

Remark. Let~ : S' — R? be a C?%-regular simple closed curve with positive orientation
and C, a maximal circle of 7y at p € . Then F, := vy N C} is a typical example of
intrinsic circle system. (See §3.) We define a map @ : S — R? by &(p) = ¢,, where ¢,
is the center of the circle C. Suppose that s(F) < co. As will seen in Appendix B, the
map ® is continuous by the C?-regularity of the curve. Then ® induces an injective
continuous map ¢ : S*/F — R2. Since S!/F is compact, S'/F is homeomorphic to
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®(S). Let Ko(C D*(y)) be the set of points which have more than one minimizing
normal geodesics from . The cut locus K of « defined in introduction is the closure
of Ko. Then obviously Ko C ®(S*). Since ®(S') is closed, we have K C ®(S!). On
the other hand, we set

R:={pev: F={p}}.

Since s(F) < oo, R is a finite subset in S'. Moreover ®(S* \ R) C Ky by the definition
of Ko. By the continuity of ®, we have ®(S!) C K, which implies #(5*) = K. Thus
S1/F is homeomorphic to K. So we can identify S*/F with K of the cut locus of
~. We have thus seen that the concept of the intrinsic circle system characterizes the
cut locus of a simple closed curve abstractly. Since S1/F has the structure of tree by
Theorem 2.7, the observation in the introduction is justified for any C?-regular simple
closed curves with s(F) < oo.

§3 Application to plane curves.

As an application of the results of §1-2, we give a general framework to discuss the
number of vertices on a curve, which is similar to (but more elementary than) that of
Och mit Grundzahl & = 3 (cf. Haupt and Kinneth [HK]).

Let X be a topological space homeomorphic to $? with fixed orientation. We denote
by J(X) the set of all oriented simple closed curves. Each v € J(X) separates X by
two domains Dy and D;. We assume that D, is the left-hand domain bounded by v
and we set

(3.1) D*(y)=Di, D°(y)=Dx.

We call D*(«) the internal domain and D°() the ezternal domain.
For the sake of simplicity, we use the following notations: Let v € J(X) and p,q
different points on . Then we denote by

Mg ={z€via=a=p}, pg={z€v;¢>2z>p}

Definition 8.1. Let v € J(X). If a sequence (v, )nen satisfies the following two prop-
erties, we write v, — 7.

(1) Let (pn)nen be a sequence in X converging to p € X. If p, € D*(~y,) for all
n € N, then p € D*(vy).

(2) Let (pn)nen be a sequence in X converges to p € X. If p, € D°(v,) for all
n € N, then p € D°(%).

Remark. This convergence properly coincides with the compact open topology on J(X)
or equivalently compatible with the uniform distance on J(X) induced from an arbi-
trary distance function d(, ) on X. (See Greenberg and Harper [GH;§7]. Here d(, ) is
assumed to be compatible with the topology of X.) In fact, assume ~, — . Let d(, )
be the uniform distance on J(X) induced by a distance function of X. Suppose that
d(Yn,7) 7+ 0. Then there is a sequence (p»)nen such that p, € v, and d(pn,v) > € > 0.
Since X is compact, there is a subsequence (p;, Jnen converging to g. Then ¢ € 7 since
Yn — 7. But this contradicts the fact d(p;,,v) > ¢ > 0.

On the other hand, assume that (v, )nen converges to « with respect to the compact
open topology. Let d(, ) be the canonical distance function on X = S?(1). Then we
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have d(v,vn) — 0. Let (pn)nen be a sequence in X converging to p € X. Suppose
that p, € D*(y) and p € D°(y)\ . Let p,p be the geodesic segment in X. Then there
exists a point g, on v N P,p. Then we have

d(pna'V) < d(pnaqn) < d(pn,p)-

Since d(py,p) — 0, we have d(p,v) = 0, which is a contradiction. Hence v, — « in the
sense of the above definition.

Let ¢ € X be a point. We interpret g as collapsing of simple closed curves. We
consider two orientations of g. The point ¢q is said to be positively oriented if we regard
it as

(3.2) D*(q)=9q, D°(q)=X\{q}
and q is said to be negatively oriented if we regard it as
(3.3) D°(q)=q, D*(g) =X\{q}.

In the first case, we denote ¢ by ¢* and in the second case ¢°. Then the notations
Yn = q° or v, — ¢° make sense. We denote by 0J(X) the set of all oriented points on
X, that is

(3-4) 8J(X) :=1{q",¢" sex.

Now we define a notion “circle system” which will produce typical examples of
intrinsic circle system defined in §1.

(Definition of a “circle system”.) A subset I' of J(X) is called a circle system if the
following three conditions are satisfied: (We set I' = I' U 8J(X).)

(C1) Any distinct curves C,C’ € T" have at most two common points. Moreover, if
D*(C) C D*(C’) then they have at most one common point.

(C2) Let (pn)nen be asequence in X which converges to a point p € X. Let (Cp)nen
be a sequence in I' such that C, 3 p,. Then (Cp)nen has a subsequence
converging to an element in I

(C3) Let p be a point on X and A a subset of I' such that any two elements of A
have only one common point p. Then there exist C§,C € I' such that

(1) D*(C%) C D*(C) and D*(C) Cc D*(Cy) for all C €T
(2) There exist sequences (Cp,)nea and (C),)nea such that C,, = C% and
C), — C3 respectively.

An element of T is called a circle. The followings are examples of circle systems.

Ezample 1 (The Mobius plane). Let X; = R? U {oo} and I'; be the set of oriented
circles and lines. (Since the circles are invariant under the Mobius transformations, it
is natural to compactify the Euclidean plane by attaching the infinity.) Then the pair
(X1,T'1) satisfies the conditions of a circle system. Via the stereographic projection
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from the north pole of the unit sphere S%(1) in R?®, this model is equivalent to the
following one

X1 = 52(1),

I') := the oriented intersections between S2(1) and planes.

Ezample 2 (Closed strictly convex surfaces). As a canonical generalization of Exam-
ple 1, the following model also satisfies the above conditions:

X, := A closed C*-embedded surface in R*® with positive Gaussian curvature,

fz := the oriented intersections between X, and planes.

Ezample 3 (The Minkowski plane). Let Z be a fixed C2-regular simple closed curve with
positive curvature in R? enclosing the origin. We call Z an indicatriz. The Minkowsk:
distance dz(z,y) associated with the indicatrix Z is defined by

dr(z,y) :=inf{t > 0; %(y — ) € D*(I)}.

It satisfies the usual properties of a distance function except for the symmetry property
dz(z,y) = dz(y,z). The Minkowski geometry is the geometry with respect to this’
distance function. The indicatrix 7 is characterized as the level set

Z={zeR?;dz(0,2) =1}

When Z is the unit circle, d7 coincides with the usual Euclidean distance. A Minkowski
circle C is the image of the indicatrix 7 under a translation and a homothety with a
positive ratio. The point in C' corresponding to the origin in D*(Z) is called the center
of C' and the magnification of C' with respect to T is called the Minkowsk: radius. We
set X3 := R? U {00} as a stereographic image of the unit sphere. Let I'; be the set of
Minkowski circles and straight lines. Then (X3,T's) satisfies condition (C1) obviously.
Condition (C3) is also easily checked. (In this setting, two different lines meet only
at infinity if they are parallel. So condition {(C3) with p = oo is also easily checked.)
Condition (C2) is verified as follows:

(Case 1) First we consider the case p # co. Let (pn)ner2 be a sequence converging
to p # oo and (Cp)nen a sequence in I's such that p, € Cp. If (Cp)nen contains
either infinitely many straight lines or infinitely many oriented points, then such a
subsequence of lines has a subsequence converging a line through p obviously. So we
may assume that (Cp)nen does not contain neither straight lines nor oriented points.
If necessary by taking a subsequence, we may assume that (C,),en have the same
orientation. Moreover, by reversing the orientation of (Cy)nen simultaneously, we
may assume that (C)nen are all positively oriented, that is, (D* (C"))n en are all
bounded in R2. Let r, be the Minkowski radius of Cy,. If (rn)nen is bounded, (C2) is
easily checked. So we may assume that r, — oco. Let L, be the line which is tangent
to Cn at p,. Then (L,)nen contains a subsequence converging to a line L passing
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through p. So we may assume that (Ly)nen converges to L. One can easily prove the
following two assertions.

(1) There exists ¢ > 0 such that the Euclidean circle with radius € which is tangent
to Z at p from the same direction, lies in D*(Z) for each point p € 7.

(2) Suppose that (sp)ner is a sequence of positive real numbers such that s, — oo.
Then En(sn) — L, where E,(s,) is the Euclidean circle with radius s, which
is tangent to C,, at p, from the same direction.

By (1), we have
(3.5) D* (En(ern)) C D*(C,) C D*(L,).

By (2), we have E,(er,) = L. Let (z,)nen be a sequence in D*(C) (resp. D°(Chr))
converging to z € X3. Then by (3.5), we have z,, € D*(L,,) (resp. z, € D°(Enp(ery))).
Since L, — L (resp. En(ern) — L), we have z € D*(L) (resp. = € D°(L)). This
proves C,, — L.

(Case 2) Next we consider the case p = co. Let (pn)n,er2 be a sequence converging
to oo and (Chr)ren a sequence in I’ such that p, € C,. Without loss of generality,
we may assume that C, is positively oriented. Suppose that ¢, — oo holds for any
sequence (gn)nen such that ¢, € C,. Let z, € C, be the point which attains the
minimum of the distance function of C, from the origin. Then we have z, — oo,
which implies C;, — 00°. Thus we may assume that there exists a sequence (gn)neN
such that ¢, € C,, and g, — ¢ # 0o. Then it reduces to Case 1.

Hence (X3,I's) satisfies the conditions of a circle system. The vertices on curves
in the Minkowski plane have been investigated by many geometers (See [Su], [He2-5],
[Gul].) Here the vertex is regarded as a point where the osculating circle has the third
order tangency with the curve. Later in this section, we define clean maximal (resp.
minimal) vertices. Maximal (resp. minimal) vertices are defined in Appendix A. If
a closed curve in the Minkowski plane is C*-regular, these vertices are all vertices in
this sense. For the relationship between Minkowski vertices and contact geometry, see

Tabachnikov [Ta2].

Ezample 4. Let ¢ : X; — X; be a homeomorphism of X;. Then (X;,¢(T;)) (i = 1,2,3)
also satisfies conditions (C1)-(C3).

Definition 8.2. Let v € J(X). For each p € v, we set

(3.6) Ay:={Cel;C>p, CcD(y)}
Ay={Cel;C>p, CcD(7}

A point p on v is called e-admissible if A) = {¢°} or if any two distinct elements in
A2\ {¢*} meets only at p. (A o-admissible point is defined similarly.)

Definition 8.8. For a e-admissible (resp. o-admissible) point p, we set
(3.7) C, = C;‘; (resp. C} := Cj;).

C; (resp. Cy) is called the mazimal (resp. minimal ) circle at p. (Such circles exist
by condition (C3).) A curve v € J(X) is called e-admissible (resp. o-admissible) if all
points on it are e-admissible (resp. o-admissible).
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If (X,T) = (X;,T%) (¢ = 1,2,3), then every piecewise C'-regular curve in J(X)
whose internal angles with respect to D*(«) are less than or equal to 7 is e-admissible.
(See Proposition A.1 in Appendix A.) For example, the triangle figure as in Figure 1.1
with positive orientation is e-admissible, but not o-admissible because the three vertices
of the triangle are not o-admissible points.

Definition 3.4. Let v be a e-admissible (resp. o-admissible) curve. We set
Fy:=C,Ny (resp. F, :=C, N7).

Proposition 3.1. Let v € J(X) be a e-admissible (resp. o-admissible) curve. Then

(Fy)pey (resp. (Fp)pey ) 18 an intrinsic circle system on Sl =4,

Proof. The condition (I1) obviously follows from the definition of C,. The condition
(I2) follows from (Cl). Finally, we prove that F'* satisfies (I3). Let (pn)nen and
(gn)nen be two sequences in S? such that limy— 00 P = p, limp 00 gn = gand g, € Fy.

By (C2), C;_ contains a convergent subsequence. So we may assume that C; — C € I.
If p = g, then ¢ € F} is obvious. So we may assume p # ¢. Since C; — C and
C,. C D*(y), we have C C D*(v). On the other hand, we have

p,q € D*(C)ND°(C)=C.
(In fact, it follows from pn,u3 (pa) € D*(C, )N D°(C; ) because of C;  — C.) Since
p # g, we have C) = C by the definition of C;. O
Let v € J(X) be a e-admissible (resp. o-admissible) curve. Then we set
rank®(p) :=rank(F,) (resp. rank’(p) := rank(Fy;)).

Namely, rank®(p) is the number of connected components of C3 N .

Definition 8.5. Let v be a e-admissible (resp. o-admissible) curve. A point p on v
is called a clean mazimal vertez (resp. clean minimal vertez) if rank®(p) = 1 (resp.
rank’(p) = 1). A point p on 7 is called e-regular (resp. o-regular) if rank®(p) = 2
(resp. rank®(p) = 2). A point p on 7 is called weakly o-regular (resp. weakly o-regular)
if 2 < rank®(p) < oo (resp. 2 < rank®(p) < c0). An open arc I of « is called e-

regular (resp. weakly e-regular) if all points on I are e-regular (resp. weakly e-regular).
Similarly o-regular (resp. weakly o-regular) arc is also defined.

By definition, I is (weakly) e-regular ( resp. o-regular) if it is a (weakly) regular arc
with respect to the intrinsic circle system F'* ( resp. F*° ). (See Definition 1.2.)
We set

S*(7):= S(F*)  (resp. S°(v) = S(F°)),
T*(y):=T(F*)  (resp. T°(y) := T(F°)).

Then S°(7y) (resp. S°(7)) is the set of connected components of clean maximal (resp.
minimal) vertices on v. Moreover, we set

$*(7) = HS* ()},
()= Y (rank’(p) - 2).

[PIET* (7) ,

Similarly, s°(y) and t°(v) are also defined. Then Theorem 2.7 yields the following
generalization of Bose’s formula (I.1).
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Theorem 3.2. Let vy be a e-admissible (resp. o-admaissible) simple closed curve, which
is not a circle. Suppose that s*(y) < oo (resp. s°(v) < 00 ). Then t*(y) < oo (resp.
t°(y) < o0 ) and

s*(y)—t*(v) =2 (resp. s°(y) —t°(7) = 2).

Remark. If (X,T) = (X1,T1) as in Example 1 and 7 is a C3-regular curve, then S°*(«)
(resp. S°(7)) is supported by the derivative of the curvature function. Similarly, if
(X,T) = (X;,T) as in Example 2 and 4 a C3-regular curve as a space curve, then
S*(v) (resp. S°(v)) is supported by the torsion function of v as a space curve in R3.
Thus in these two cases, t*(7) < oo (resp. t°(y) < oo ) is equivalent to the condition
s*(y) < oo (resp. s°(v) < o0).

In our general settings, a clean minimal vertex might be a clean maximal vertex.
If X has C?-differentiable structure and I satisfies the additional condition (C4) in
Appendix A. Then any C2%-regular simple closed curves 7 are e-admissible and also o-
admissible by Proposition A.1 in Appendix A. Moreover, a clean maximal vertex never
be a clean minimal vertex by Proposition A.5. Thus the number s(v) of connected
component of clean (maximal or minimal) vertices is equal to s*(¥y) + s°(y). Thus we
get the following corollary.

Corollary 3.3. Let X be a C?-differentiable sphere and T’ a circle system on X satis-
fying the additional condition (C4) in Appendiz A. Let v be a C*-regular curve on X.
Suppose that the number s(v) of connected components of clean vertices is finite. Then

s(v) —t(y) = 4
holds, where t(v) 1= t*(v) + t°(v).

84 Application to space curves.

In this section, we apply Theorem 2.7 to convex simple closed space curves. An
immersed closed C!'-curve v : S — R3 is called convez if it lies on the boundary 0H
of its convex hull H. We fix a convex simple closed curve v and assume that it is
not planar. We fix an interior point o of the convex hull and consider the unit sphere
52 centered at 0. We denote by 7 : 8H — S? the canonical projection. Then = is a
bijective continuous map. Since OH is compact, 7 is 2 homeomorphism. In particular,
the boundary OH of the convex hull is homeomorphic to a sphere and v divides 0H
into two domains. Let 0H® (resp. 0H®) be the left-hand (right-hand) closed domain
of 4 in 0H. Moreover,

Fi=moxy:8" = §?

is an embedded curve. By the projection m, the left-hand (resp. right-hand) domain
of 4 corresponds to OH*® (resp. 0H°). Now we fix a point p on ~ arbitrarily. A plane
U is called tangent plane if it contains the tangent line L, at p. Let P, be the pencil
of oriented planes which is tangent to v at p. Then P, is identified with a circle.

We denote by V,, € P, the oriented plane passing through z € R3 \ L,, where the
orientation of V,, is chosen so that the line segment pZ lie in a upper half plane on V;.
A plane Vi (# V,) is said to be upper (resp. lower) than V, if pz lies in the closed upper
(resp. lower) half region bounded by V,. We give an orientation of P, such that any
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tangent plane at p upper than V, is greater than V,. The orientation is independent of
the choice of the interior point o, and thus it induces a canonical cyclic order of P,.

An oriented plane U is called a supporting plane of v at p if p € U and the curve
lies entirely in the positive closed half-spaces bounded by U. Let S, be the set of
supporting plane at p which does not contain any points in v\ L,. Then by definition,
Sp 1s a subset of Py and the set of supporting plane is just the closure :S’; of S,. Since v
is a convex simple closed curve, there is at least one supporting plane passing through
p. Hence S, is non-empty. One can easily see that S, is connected, that is, there exists
U,,U, € P such that one of the following four possibilities occur;

(1) S = Uy, Up) (2) S =1[U;,U;)
3) S =001 (4) S =I[U,U]

The plane U, (resp. U,) is called mazimal (resp. minimal) supporting plane at p.
(It may possible to be U, = Uy.) Later, we will need the following lemma. (Except
for the lemma, we do not need C%-regularity of curves until Proposition 4.9.)

Lemma 4.1. Let v be a C*-convez simple closed space curve and p € v has non-
vanishing curvature. Suppose that LN~y = {p}. Then case (4) never occurs. Moreover,
if case (2) (resp. case (3)) occurs, then Uy (resp. Uy) is the osculating plane at p.

The lemma is well known (cf. Lemma 1 of [Sdl]) and can be proved with the
standard method. So we omit the proof.

Definition 4.1. We set

Fy:={q€~;pgC OH"}, (resp. F;:={q€~;PgCOH"}).

Now we prepare lemmas to give some sufficient conditions that F* and F° are
intrinsic circle systems.

Lemma 4.2. Let v be a convez simple closed space curve. Then for each p € ~, the
following inclusions hold

F, CU,, FyCcuy.
Proof. We fix q € F, and will show that ¢ € U;. Since L, is contained in U7, we may
assume that g does not lie in L,. First, we show that either V; = U} or V; = U} holds.
In fact, we take the middle point m on the line segment pg. Since m € OH®, there
exists a plane U passing through m such that H lies in the upper or the lower half
region of U. Then pg € U holds, and consequently U is a supportinf plane at p. Hence
we have V;, = U, and thus V;, = U} or V;, = U} holds.

Let Uy (resp. U2) be the upper (resp. lower) half plane of Uy (resp. U7). Then v
lies in the region D bounded by U} and UZ. We have seen that V, = Uy or V, = U
holds. Since n(pg) lies in a left hand side of 4 at p, pg lies in the closed upper half
domain bounded by V,. Thus we have ¢ € U;. [
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Lemma 4.3. Let v be a convex simple closed space curve and L, the tangent line of
v at p. Suppose that there exists q(# p) such that ¢ € L, N~y and the tangent line L,
at g does not coincide with L,. Then there ezists a unique supporting plane U at p.
Moreover U contains the lines L, and L.

Proof. Since v is a convex curve, there exists at least one supporting plane U at p.
Obviously U contains L,. If U does not contain L, it is transversal to v at ¢, which
is impossible. Thus U contains also L,. Since L, # L,, U is uniquely determined. O

Lemma 4.4. Let v be a convez ssmple closed curve which has no planar open subarcs.
Suppose that U s a supporting plane at p € v and p,z,y € yNU are not collinear.
Then the triangle Apzy 1s contained in OH® or OH®.

Proof. Obviously, the triangle Apzy on U lies in 0H. Suppose that the triangle Apzy
contains a point q of 4 in its interior. Then 7(q) lies in the interior of #(Apzy) in S2.
Thus a sufficiently small open arc of 4 containing g also lies in its interior. Hence the
corresponding arc of v containing ¢ lies in Apzy. But this contradicts that v has no
planar subarcs. Thus Azgp C H® or Azgp C 8H® holds. O

Proposition 4.5. Let v be a convez simple closed curve which has no planar open
subarcs and p a point on «y. Suppose that Uy satisfies the following two conditions

(1) the set Uy N~ does not lie in any line passing through p,

(2) By #{p} (resp. Fy # {p}).
Then it holds that Fy = Uy N~ (resp. Fy = U, N~).

Proof. We prove the assertion for F*. By Lemma 4.2, we have F* C Uy N~y. It is
sufficient to show that UJ Ny C F*. By condition (1), there are points g,z € Uy N
such that p, q, ¢’ are not collinear. To prove it, we divide the proof into the the following
two cases. Let z € U, Ny be an arbitrary point.

(Case 1) Suppose that p,q,z € y N U, are not collinear. Then by Lemma 4.4, either
Azpg C OH® or Azpg C 0H® holds. But in the latter case, we have

pg COH* NOH® = ~,

which contradicts the fact that v has no planar subarcs. Thus we have Azpg C 0H*.
In particular, we have pt C 0H*, which implies z € F}.

(Case 2) Next we consider the case that p,q,z € yN U lie on a line L. Since p,q,q’ is
not collinear, we have ¢’ ¢ L. Suppose that pz ¢ dH*. Then by Lemma 4.4, we have
Apg's ¢ OH°. In particular pg’ € 8H°. On the other hand, pg C H* yields that
Apgq' C OH® by Lemma 4.2 In particular,

pd € 0H° NOH® =+,
which is a contradiction. Hence we have pz C OH®. So z € F;. d

Lemma 4.6. Let v be a convezx simple closed space curve. Suppose that for each p € ~y
there exists a supporting plane U such that UN~y = {p}. Moreover, if Ug is a supporting
plane of v such that Uy Ny contains three distinet points z,y,z € ~, then these three
points are not collinear.

Proof. By the assumption, we can easily see that
(4.1) L,Ny={z} (z € 7).
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Suppose that z,y,z € Up N~ lie in a line L with this order. If L = L, this contradicts
LyN~v ={y}. So L # L,. Then Uy must be a unique supporting plane passing through
y by Lemma 4.3. This contradicts the fact that there exists a supporting plane U such
that Uny={y}. O

Proposition 4.7. Let v be a convex simple closed space curve. Suppose that for each
p € v there ezists a supporting plane U such that U N~ = {p}. Then for each p € ~, 1t
holds that

(4.2) Fy; =U, N~, F, =U, N~.
In particular, Uy # U, holds.

Proof. We prove the first equality. (The second equality is obtained by the same
manner.) If F} = {p}, then (4.2) is obvious. So we may assume that there exists a
point ¢ € Fy such that ¢ # p. By Lemma 4.2, we have ¢ € Uy. If §(U; N ~v) =2, (4.2)
is obvious. So we may assume that §(U; Ny) > 2. We fix a point z € Uy N v such
that z # p,q. By Lemma 4.6, p, ¢,z are not collinear and thus the triangle Apgz is
considered. Suppose that there exists a point y € + in the triangle. Then the tangent
line Ly separates one of three points p, g,z with the other two in the plane U;. Hence
U, must be a unique supporting plane passing through y. This contradicts the fact
that there exists a supporting plane U such that U N+ = {y}. So there is no points
on « inside the triangle. In particular, Apgz C 0H® or Apgz C OH® holds. But if
Apgz C OH®, then A
pq COH*NOH® =~.

This contradicts (4.1). So Apgz C @H®. In particular z € F;. Thus we have Uy Ny C
F7. The opposite inclusion follows from Lemma 4.2. O

Theorem 4.8. Let v be a convex simple closed space curve satisfying the one of the
following two conditions;

(a) for each p € v, there exists a supporting plane U such that U N~y = {p},
(b) ~ has no planar open subarcs.

Then (Fy)pey ( resp. (Fy)pey ) is an intrinsic circle system on S' = .

Proof. We divide the proof into three steps. (We prove the assertion for F*.)

(Step 1) We check the property (I1). By Proposition 4.7, this is obvious for case (a).
So we prove the assertion only for case (b). Let ¢ € Fy. It is sufficient to show that
Fy C F;. (Opposite inclusion is obtained by interchanging the role of p and ¢.) If
p = q, then the property (I1) is obvious. So we may assume that g # p.

(Case 1) First we consider the case that U N~ does not lie in any line passing
through p. If Fy = {p}, the statement is obvious. If F; # {p}, we have the assertion
by Proposition 4.5.

(Case 2) So we may assume that U; N« lies on a line L passing through p. Let
z € Fy. Then 7p and gp both lie in L N OH*. In particular so does gz, and hence
z € F;. Thus we have F,y C F;.

(Step 2) We show (I2). Suppose that there exist p' € Fy \ {p} and ¢’ € F; \ {q} such
that F,; # F; and

(4.3) g=p' =¢>p onlpg.
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Then pp’, q¢' C OH®. Since pp’ separates OH*® into two domains, pp' N gq is not empty
by (4.3). Let z € pp’ Nqq’. Then 2z # p,p’,q,¢'. (For example, if z = p or z = p’, then
q € F; = F, # F} by Step 1, which is a contradiction.) In particular, pp’ and q¢’
can not lie in a common line. This implies that they are transversal at a point z. By
Lemma 4.2, these four points p,p’, ¢,¢’ lie in U}. In particular, U, N7 does not lie in
any line passing through p. By Proposition 4.5 or Proposition 4.7, Fy = U; Ny 3 q.
This is a contradiction.

(Step 3) Finally, we show the property (I3). Let (pr)nen and (gn)neN be two sequences
in v such that ¢, € F, , limpoopn = p and limp 00 ¢ = ¢. Since ppgn € 9H®, we
have pg € OH*. Thus F; 5¢. O

Let v be a convex simple closed space curve as above. We denote by rank®(p) (resp.
rank’(p)) the rank of p € v with respect to F* (resp. F°). By Theorem 2.7, we
can get a Bose type formula for ~ satisfying the assumptions of Theorem 4.8. But
unfortunately, in such a general setting, the points of rank one with respect to F'* or
F° may not be neither clean vertices nor clear vertices defined below.

Definition 4.2. Let « be a C%-convex simple closed space curve. Then a clear mazimal
(resp. minimal) vertezis a the point with non-vanishing curvature, which is a maximum
(resp. minimum) of the height function with respect to the bi-normal vector. Moreover,
if the maximum (resp. minimum) level set of the height function is connected, it is
called a clean mazimal (resp. minimal) vertex.

We remark that p € v is a clear vertex (namely clear maximal or clear minimal
vertex) if and only if the osculating plane U at p is a supporting plane. Moreover it is
clean vertex if and only if U N v is connected.

If v lies in X, as in §3-Example 2, this definition of clean vertices has the same
meaning as the one in §3. In other words, a point p of rank®(p) = 1 or rank®(p) = 1
is a clean vertex in the above sense. Our next goal is to give much weaker sufficient
conditions for convex simple closed space curves that rank®(p) = 1 (resp. rank’(p) = 1)
implies a clean or clear maximal (resp. minimal) vertex.

Proposition 4.9. Let v be a C?-convez simple closed space curve and p € ¥ a point
with non-vanishing curvature. Suppose that there exists a supporting plane U at p
passing through a point q(# p) on v. Then there exzists x € U Ny (z # p) satisfying
the following two properties

(1) = €pg,

(2) z € Fy orz € F,.

Proof. pgN ~ is a closed subset of pg. Suppose that there is no such z € pg. Then we
can take a sequence (¢, )nen consisting of mutually different points in pg N+ such that
lim; 00 gn = p. Since the unit vectors (g, — p)/|gn — p| converge to the unit tangent
vector at p of 7, pq lies in the tangent line L, at p. Thus g, € L, for all n. But this
contradicts the fact that the curvature function of 4 does not vanish at p. O

Definition 4.3. A convex simple closed space curve 7 is called tame if L, Ny = {p} for
any p € 7.

Remark. In Ballestero and Romero-Fuster [BR2], such a curve is called strictly convex.
But there is another definition of strictly convexity. (The strictly convexity defined in
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Sedykh [Sd2] is stronger than that in [BR2].) So we use here the term “tame” to avoid
confusions.

By Propositions 4.9, the following is obvious.

Lemma 4.10. Let v be a C%-convez simple closed space curve satisfying (a) or (b) as
in Theorem 4.7. Suppose that p € v has non-vanishing curvature and L, N~y = {p}.
Then rank®(p) = 1 (resp. rank®(p) = 1) if and only if p is a clean mazimal (resp.
minimal) vertez.

It should be remarked that If v satisfies (a), then L, Ny = {p} is automatically
satisfied by (4.1). Since the clean maximal vertex is not a clean minimal vertex by
definition, we get the following

Corollary 4.11. Let v be a C?-convez simple closed space curve with non-vanishing
curvature satisfying the one of the following two conditions.

(1) For each p € v, there exists a supporting plane U such that U N~y = {p}.
(2) v is tame and has no-planar open subarcs.

Then the number s(vy) of connected components of clean vertices is given by s(vy) =
s(F*) + s(F°).

Let « be a convex simple closed space curve. A plane U is called a tangent plane of
~ if it contains the tangent vector of ¢ at some point. We denote by rank(U N «y) the
number of the connected components in U N~. A tangent plane U is called tritangent
plane if rank(U Nv) > 3.

Definition 4.4. Let T(v) be the set of tritangent supporting planes of v. We set

t(y):= Y  (rank(Unv)—2).

UeT(v)

We call t(y) the total order of tritangent supporting planes.

Lemma 4.12. Let v be a C?-convex simple closed space curve and U a tritangent
plane. Suppose that ~ s tame. Then U N+ does not lie in a line.

Proof. Suppose that U lies in a line L. Then there are three distinct points z,y,z €
U N L. Without loss of generality, we may assume that y is an intermediate point
between TZ. Since « is convex, we have L = L,, which contradicts that v is tame.

Proposition 4.13. Let v be a C%-convez simple closed space curve with non-vanishing
curvature satisfying the one of the following conditions;

(1) for each p € «, there ezists a supporting plane U such that U Ny = {p},

(2) v 1s tame and has no-planar open subarcs.
Then the following identity holds t() = t(F*) + t(F°).
Proof. If ~ satisfies (1), then the assertion follows immediately from Proposition 4.7.
So we consider the second case. Let U be a tritangent supporting plane of v which is
tangent at p. By Lemma 4.12, we may assume that U N~ does not lie in any line. Since

7 has non-vanishing curvature function, by Proposition 4.9, Fy # {p} or F; # {p}.
Hence by Proposition 4.5, either U Ny = F; or U Ny = F; holds. Thus we have

H(y) < HF®) +t(F°).
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On the other hand, suppose that the number of connected components of F, (resp.
Fy) is greater than 2. By Lemma 4.2, U; (resp. Uy) is a tritangent plane. Since v is
tame, we have L, Ny = {p}. So there is an element in ¢ € U} (resp. ¢ € U}) such that
pg C OH*® (resp. pq C OH®). By Lemma 4.12, U (resp. U,) does not lie in any line.

By Proposition 4.5, we have Fy = U N7 (resp. F; = U N+~). Hence we have
t(y) 2 H(F*) +¢(F°).
O

Theorem 4.14. Let v be a C?-convez simple closed space curve with non-vanishing
curvature satisfying the one of the following conditions. '

(1) For each p € ~y, there exists a supporting plane U such that U N~y = {p}.
(2) « is tame and has no-planar open subarcs.

Suppose the number s(y) of connected components of clean vertices is finite. Then the

total order t(v) of tritangent supporting plane is also finite and the following formula
holds

s(y) —t(y) =4

The theorem follows immediately from Theorem 2.7, Corollary 4.11 and Proposi-
tion 4.13. If 4 is C3-differentiable, then s(F*) and s(F°) are supported by the torsion
function. Thus #(y) < oo is equivalent to s(7y) < co.

Remark 1. The formula is a generalization of the one obtained by Romero-Fuster [R]
in the convexly generic case and by Sedykh [Sd2] in the strictly convex case. In fact,
condition (1) is weaker than strictly convexity of curves in the sense of Sedykh {Sd2],
and (2) is weaker than the convexily generic assumption as in [R}. When + is convexily
generic in the sense of [R], the disjoint union of quotients (S*/F*)U(S*/F°) is identified
with the Maxwell graph of 4. (See [R] for definition.)

Remark 2. If v is a C?*-regular curve on X, as in §3-Example 2, then ~ satisfies (1)
obviously. In this case, the assertion follows from Corollary 3.3 directly.

Next we consider convex simple closed space curves which may not satisfy the as-
sumption of Theorem 4.14.

Proposition 4.15. Let v be a C?-convex simple closed space curve, which has no
planar open subarcs and has at most finitely many zeros of the curvature function.
Suppose that every element in the set

My ={z € v; Lo Ny # {z}, w(LzN7) F0}

18 1solated, where k 1s the curvature function. Then any point p on v satisfying
rank®(p) = 1 (resp. rank’(p) = 1) is a zero of curvature function or a clear mazi-
mal (resp. minimal) vertez.

Remark. If v has non-vanishing curvature, we have a simple expression M., = {z €
v; Ly Ny # {2} }. In this case, every element in M, is isolated if and only if M, is
finite. In fact, if an accumulation point p € v of M, exists, one can easily verify that
p € M, using the property «(p) # 0.

To prove it, we prepare the following two lemmas.
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Lemma 4.16. Let v be a C2%-convez simple closed space curve, which has no planar
open subarcs and has at most finitely many zeros of the curvature function. Let p be
a point on vy with non-vanishing curvature and rank®(p) = 1 (resp. rank’(p) = 1).
Suppose that p is an isolated point in the set

{z € v; rank®(z) = 1} (resp. {z € v; rank®(z) = 1}).

Then p 1s a clear mazimal (resp. minimal) vertex.

Proof. By assumption, there is an open arc I containing p such that all points on I\ {p}
is weakly regular with respect to F'* (resp. F°). We take a sequence (pn)nen on I\ {p}
such that p, = p — 0. Then by Theorem 1.4, we have u4(p,) = p+ 0. On the other
hand, there exists a supporting plane U, of v containing p, and gy (pn). Then U,
converges to the osculating plane U at p. In particular U is also a supporting plane,
that is p is a clear vertex. O

Lemma 4.17 (Romero-Fuster and Sedykh [RS; Proposition 1]). Let o : (a,b) — R?
be a C%-regular curve with non-vanishing curvature, which may not be closed. Let p be
a point of o and q(# p) a point in R®. Then there is an open arc I containing p such

that q & L, N~ for all z € I\ {p}.

As mentioned in {RS], the lemma is a simple exercise.

(Proof of Proposition 4.15.) Let p € v be a point satisfying rank®(p) = 1. Assume that
p has non-vanishing curvature. If L,N~y = {p}, then p is a clean vertex by Lemma 4.10.
So we may assume that L, N+ # {p}. Consider the subset

K = {z € v; rank®(z) = 1}.

If p is isolated in K, then it is a clear vertex by Lemma 4.16. So we may assume that
there is a sequence (pn)nen in K which converges to p. Since x(p) # 0, there exists
a neighborhood I of p such that (Lg)ser are mutually distinct. Thus there exists a
positive integer ng such that

(4.4) 0 w(Ly, Ny)  (for n > ng).

(In fact, if (4.4) fails, there is a point ¢ € v such that ¢ € L, N~ for infinitely many
n. But this contradicts Lemma 4.17.)

We fix p,, (n > ng) arbitrarily. It is sufficient to show that each p,, is a clear maximal

vertex. (Then the limit point p is also a clear maximal vertex.) If L, N~y = {pn},
then p, is a clean maximal vertex by Lemma 4.10. So we may assume that p, € M,
(Case 1) Suppose that each py, is isolated in K. By Lemma 4.17, p, is a clear maximal
vertex.
(Case 2) Next we suppose that p, is an accumulation point of the set K = {z €
v; rank®(z) = 1}. Then there is a sequence (¢m)men in K converging to p,. By
assumption, every sufficiently large ¢, is not contained in M,. Thus ¢ is a clean
vertex by Lemma 4.10. Thus the limit point p, is a clear vertex. 0

For the following applications, we recall important two facts from [Sd1].
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Lemma 4.18([Sd1: Proposition 4]). Let v be a C*-convez simple closed space curve
and p,q € v be points with non-vanishing curvature and torsion. Then the straight line
pq 1s tangent to v at p if and only if it is tangent to the curve at q.

Lemma 4.19 ([Sd1: Proposition 7]). Let v be a C?*-convez simple closed space curve
and let p be a point such that 0 & K(Lp,N~y). Then there exists an open arc I containing
p such that the tangent line L, at each g € I\ {p} is not tangent to the curve at any
other points.

Remark. The statement of the lemma is slightly modified as in [RS: Proposition 4]. As
explained in [RS], the proof is essentially the same as that of [Sd1: Proposition 7).

Above two lemmas yield the following

Lemma 4.20. Let v be a C3-convez simple closed space curve whose curvature func-
tion and torsion function have only finitely many zeros. Then every element in the set
M, 1is isolated.

Proof. Suppose that there exists a point p € M, such that a sequence (p,)nen in
M, \ {p} exists and converges to p. For each p,, we can choose g, € L, N~y such that
gn # Pn- By Lemma 4.19, L, is not tangent to v at g,. Then by Lemma 4.18, the
torsion function vanishes at p, or ¢,. Since the number of zeros of the torsion function
is finite, there exists a positive number ng > 0 such that ¢, = ¢o for all n > ng. But
this contradicts Lemma 4.17. 0O

By Proposition 4.15 and Lemma 4.20, we get the following two corollaries.

Corollary 4.21. ([RS]) Let v be a C3-convez simple closed space curve. Then
o(7) +2¢(7) 2 4,

where v(7y) is the number of zeros of the torsion function and c(v) is the number of
zeros of the curvature function.

Corollary 4.22. ([Sd1]) Let v be a C®-convez simple closed space curve with non-
vanishing curvature function. Then

v(y) > 4.

Further generalizations of four vertex theorem for space curves will be found in
Thorbergsson-Umehara [TU]. The inequality v(v) > 4 does not hold if the curvature
function of v has zeros. (According to Barner [Ba;p210], Flohr pointed out it in the
1950s.) The explicit examples of (v,c) = (1,1) or (0,2) are found in [Sd1] and [RS].

Appendix A. Vertices on C2-regular plane curves

As written in introduction, the four vertex theorem for simple closed Euclidean plane
curves has been extended for various umbient spaces. On the other hand, there are
many other known results for vertices on Euclidean plane curves with self-intersections,
but it is still unclear that such a generalization works for these results or not. In this
appendix, we give an abstract approach for the study of vertices on C?-plane curves
which may have self-intersections, and show that several known results are generlized
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for Minkowski plane curves and for curves on a convex surfaces with positive Gaussian
curvature.

Let X be a differentiable sphere and T' a subset of C*-reqular simple closed curves
satisfying the azioms of circle system. Assume that I' satisfies the following additional
condition, which asserts the existence and the uniqueness of the osculating circles.

(C4) For any p € X and a C%-regular curve «y passing through p, there exists a unique
circle Cp € T’ which has second order tangency with v at p.

Such a circle C,, is called the osculating circle of «v at p. Example 1-3 in §3 satisfy
this condition.

Proposition A.1. Let v be a piecewise C-reqular simple closed curve. Suppose that
all internal angles of OD*(y) (resp. OD°(y)) are less than or equal to . Then v 1s
e-admissible (resp. o-admussible).

Proof. We prove for 8D*(v). (The corresponding assertion for 0D°(7) is obtained if
one reverses the direction of the curve.) A7 is not empty, since p € A;. If AS = {p},
p is an admissible point by definition. (See Definition 3.2.) So we may assume that
As # {p}. If p is a singular point of v, A3 = {p} holds, because the internal angle
at p is less than m. Thus we may also assume that v is C''-regular at p. Then each
element of 47 \ {p} is tangent to v at p. Then the e-admissibility of v follows from the
following lemma. 0O

Lemma A.2. Let C; and C; be two distinct circles which are tangent at p € X. Then
they meet only at p.

Proof. By (C4), the 2-jets of Cy and C; at p are mutually different. Thus there
exists a sufficiently small neighborhood W of p in X such that C; N W is contained
in D*(Cy) or D°(C}). If necessary, by interchanging C; and C, we may assume that
CoNW C D*(Cy) holds. If D*(C3) ¢ D*(C4), C2 must meet Cy at least three points.
By (C1), it is impossible. Thus we have D*(C2) C D*(Cy). Then again by (C1), we
have C1yNCy; = {p}. O

Lemma A.3. Let v be a C?-regular simple closed curve. Then for each point p € 7,
the osculating circle C)p at p satisfies the following relation

D*(C}) € D*(C,) C D*(CY).

Proof. Let I'y be the subset of circles which are tangent to v at p. The set A7 defined
in Definition 3.3 can be written as

Ay ={CeT,u{p'}; CCD*(7)}.
Let C’ be a circle satisfying the relation D*(C,) C D*(C’). Then the 2-jet of C’ at
p is different from C, by (C4). Since v has the second order tangency with C), at

p, any points on v close to p are contained in D*(C’). This implies C’ ¢ A;. Thus
D*(C;) C D*(Cy) holds. Similarly, D*(Cp) C D*(Cy) can be also proved. O
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Lemma A.4. Let~y be an embedded C*-regular curve on X. Then for each p, C, and
C, are not collapsed into points, namely C7,C, €T.

Proof. We prove for C]. Let ', be the subset of circles which are tangent to v at p.
Suppose that Cj = p®. Then there exists a sequence (Cp)nen in T’y \ {p*} such that
Cn — p* and D*(C,) ¢ D*(v). By Lemma A.2 and (C1) in §3, either D*(Cpry1) C
D*(C,) or D*(C,) C D*(Cr+1) holds. Since C, — p°®, without loss of generality, we
may assume that

(A.1) D*(Cu41) C D*(Co) S D*(C,)  (n=1,2,3,..).

Since D*(Cr) ¢ D*(v), there exists a point g, € C,, N~y such that ¢, # p for each
n € N. Since C,, = p*, we have g, — p. On the other hand, since D*(Cy) C D*(Cp),
the 2-jets of C; and C} at p are distinct. So there exists an open subarc I of v containing
p such that D*(C;) NI = {p} and I C D°(C;). By (A.1), we have

(A.2) D*(C)N I = {p}.

Since ¢, € v and ¢, — p, we have ¢, € I for any sufficiently large n. But this
contradicts (A.2). Thus C; # p®, that is C; € . O

For simple closed curves, we defined clean vertices in §3, but for curves with self-
intersections, they cannot be defined. Instead of clean vertices, we define maximal and
minimal vertices on C?-regular curves as follows:

Definition A.1. A point p on v is called a mazimal vertez (resp. minimal vertez) if there
exists an open subarc I of v containing p such that I C D°(C,) (resp. I C D*(Cyp)).
(In particular, all points on a circle are maximal and minimal vertices at the same
time.)

In this appendix, the term “honest vertez” refers to a maximal or a minimal vertex
unless otherwise stated.

Remark. This abstract definition of an honest vertex is slightly different from the orig-
inal concept in Euclidean plane curves. When « is a Euclidean plane curve, an honest
vertex should be defined as an extremal point of the curvature function. But in our
general setting, we can not define a curvature function. The honest vertices in the
sense of the above definition and the extremal points of the curvature function coincide
whenever the number of honest vertices is finite. On the other hand, if the number of
honest vertices is infinite, honest vertices are divided into the following two cases

(1) extremal points of the curvature function,
(2) an accumulate point of extremal points of the curvature function.

(This observation is due to H. Kneser [H.K].) The example of the graph of ¢ —
t*sin(1/t) at t+ = 0 demonstrates this phenomenon, which was suggested by Dom-
browski. Since we never use the curvature function in the following discussion, our
definition of an honest vertex will makes no confusions even when the curve has infin-
itely many honest vertices. '
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Proposition A.5. Let v be a C?-reqular simple closed curve. If p is a clean mazimal
(resp. minimal) vertez, then p is a mazimal (resp. minimal) vertez. Furthermore,

C; =Cy (resp. C; = C)) holds.

Proof. Let p be a clean maximal vertex and I, the set of circles which are tangent to
at p. It is sufficient to show that C; = C}. (If one reverse the orientation of the curve,

the corresponding assertion for minimal vertex is obtained.) Suppose that C; # Cj.
Then by Lemma A.3, we have

Since C? # C,, the second derivative of C,, and C; at p are mutually different by
P p r P

(C4). Moreover, by the existence of circles with given 2-jets as in (C4), there exists a

sequence (Cp)nen in I'p such that C, — C; and

D*(C}) S D*(Cx) S D*(Cy)  (n=1,23,..).

Here we also used the fact that any two elements in I', meet only at p by Lemma A.2.
Without loss of generality, we may assume that

(A3) D.(Cn.H) C D.(Cn) (n = 1,2,3, )

Since C; and C, have the distinct 2-jets and + is approximated by C, at p in C*-
topology, there exists an open subarc I containing p such that I\ {p} lies in the
interior of D°(C}). We fix an arbitrary distance function d(, ) on X compatible with
the topology. Since C; and v \ I are disjoint closed subsets, the uniform distance
d(Cp,v \ I) is positive. As remarked in §3, the convergence C, — C} is the same
as that of the induced uniform distance of J(X). Thus for a sufficiently large n,
d(Cn,v\ I) > 0. On the other hand, since D*(C,) C D*(C}), we have C, NI = {p}.
Thus Cy, is a circle contained in D*(7y). But this contradicts the maximality of C7. O

Definition A.2. A C?-regular curve o : [a,b] = X is called a shellat pif p = o(a) = o(b)
and o, p) has no self-intersection. A shell is said to be positive (resp. negative) if the
velocity vector o/(a) coincides with o/(b) or it points to the left (resp. right) of o'(b).
The point p is called the node of the shell.

positive negative
~ —A— ™ ~ A ™

Figure A.1.
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Lemma A.6. Let v :[a,b] & X be a positive (resp. negative) shell. Then there exists
c € (a,b), such that Cye) = C_;(c) and C() # Cia)> Cy(t)-

Proof. By changing the orientation of the curve, we may assume that the shell is
positive. (The maximal vertices and minimal vertices are exchanged if the direction of
curves is reversed.) A positive shell is a e-admissible simple closed curve by Proposition
A.1l. Thus by Theorem 3.2, there are at least two distinct maximal circles C and C7.
We may assume that one of them, say ¢ is not the node of the shell. If C7 = Cy,),
then Cya) = €3,y = €, but it contradicts to C; # Cy. Thus O # Cy(,). Similarly
we also have C7 # Cy). By Proposition A.5, we have C; = C;. Hence the the point
¢ € (a,b) such that y(c) = g is the desired one. O

The following corollary is an abstract version of Jackson [J;Lemma4.3].

Corollary A.7. A positive (resp. negative) shell v : [a,b] — X has at least one
mazimal (resp. minimal) vertez in (a,b).

Proposition A.8. Let v : [a,b] = X be a curve which contains neither a mazimal
vertez nor a minimal vertez on (a,b). Then the one of the following two assertions are
true;

(1) Yl(a,p) lies in Da,
(2) 7|(a,b] lies in Dy,

where D, s the interior of D*(Cy,)) (resp. D°(Clyay))-

Proof. Suppose that 7|, s intersects Cy(,) firstly at p. Then composing vy with C\y(,)
at v(a), we get a no-vertex shell at p. But the shell does not satisfy the conclusion of
Lemma A.6. O

Definition A.8. Let v : [a,b] = X be a curve which contains maximal vertices nor
minimal vertices on (a,b). Then « is called a positive scroll (resp. negative scroll) if
(1) (resp. (2)) of Proposition A.8 occurs.

By definition, positivity or negativity of scrolls does not depend on the choice of
orientation of the scrolls. Lemma A.6 yields the following abstract version of Kneser’s
theorem [K.A].

Theorem A.9. Let v :[a,b] = X be a positive scroll (resp. negative scroll). Then the
osculating circle Cyp) lies in Dy (resp. Dy).

Proof. Suppose that two osculating circles intersect. Then we can use arcs of Cyq), ¥
and C,4) to find a shell at the one of intersection points of two circles C'y(,) and C.yp)-
This contradicts to Lemma A.6, since v has no honest vertex. Thus Cya) N Cyp) 1s
empty. Since v(b) lies in D, (resp. Ds) by Proposition A.8, we have Cyy C D,. O

Corollary A.10. Let v be a C%-regular closed curve with finitely many mazimal ver-
tices. Then the number of mazimal vertices is equal to the number of minimal vertices.
More precisely, for any two different mazimal vertices p,q on v, there is a minimal
verter on Yi(p,q)-

Proof. Suppose that there is no minimal vertex between p and g. Without loss of
generality, we may assume that 7|, ;) is vertex-free. Since p is a maximal vertex,
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Ylp,q is @ negative scroll. On the other hand, Since g is also a maximal vertex, ¥|[,,q
is a positive scroll. This is a contradiction. O

As an application, we give the following 2n-vertex theorem which is a generalization
of Jackson [J]. (For convex curves, it was proved by Blaschke [Bl1]. Similar axiomatic
treatment of 2n-vertex theorem are found in Haupt and Kinneth [HK2-3].)

Theorem A.11. Let vy be a C%-regular simple closed curve on (X,T) such that a circle
C € T meets v transversally at p1,q1,...,Pn,qn € YN C. Suppose that the rotational
order of the crossings p1,qi,...,Pn,qn 0f v is the same as that of C. Then v has at
least 2n different honest vertices.

The outline of the proof is the essentially same as in [J; Theorem 7.1]. But in our
general setting, we can not apply Jackson [J; Lemma 3.1]. The following lemma will
replace Jackson’s lemma.

Lemma A.12. Let C be a circle and v; (j = 1,2) two C?-regular curves with finitely
many honest vertices transversally intersecting C at two points pj,q; (7 = 1,2). Sup-
pose that 11 |(p, ,q,) and Y2l(p,,q0) fie tn D*(C) and have no intersections with each other.
(See Figure A.2.) Then there is a circle C' which lies in D*(C) such that it is tangent
to the three arcs Y1lip, 011y Cligi,pa] 74 72l[p2,ga]-

Y, c
4 Py

D, %

Figure A.2.

Proof. Let o be a piecewise C'-regular curve consisting of the four arcs 7i|p, g
Cligs,p2]> V2lipz,gs] a0d Cligy p,)- Since each interior angle of 8D*(o) is less than
o is a e-admissible curve by Proposition A.1. The four points p;, g1, p2,q2 are clean
maximal vertices on ¢. Thus the set

T :={z € C|jq,,ps) : rank’(z) > 3}

is not empty by Lemma 2.1. Let z € T. By (C1), C3 N C|j4;,p,] = @. Suppose there
is no such circle C' as stated in the theorem. Then it holds either F} N1, q,) = @
or F? N ¥alipy,q5) = @- But Fy N ;11,0 = 2 (5 = 1,2) never hold at the same time.
(In fact, if so, the circle C7 coincides with C by the same arguments as in the proof
of Proposition A.5, which is a contradiction.) Thus the set T is a disjoint union of the
following two subsets

T = {:1; eT: F_.,: n "/2|[p2,(12] = Q}’
Tt .= {a: cT : F; ﬂ’Yl|[p1.tI1] = @}.

31



We show T~ # @. (Similarly 7% # & is also verified.) Since v; and 72 have only
finitely many honest vertices, so does ¢. In particular, s*(¢) < oo and so ¢*(¢) < oo
by Theorem 3.2. By Lemma A.4, we have F} = {@1} because of Co, = 4. So
any point & on C|j, »,} sufficiently close to ¢ is e-regular and u®(z) € vl(p,,q)s
because limg_q,+op2(z) = g1 — 0 by Theorem 1.4. Since z is of rank® 2, we have
F2 N %2(p,,40) = @. Hence z € T~, and T~ is non-empty. We set

y :=sup(T~), y*:=inf(TY),

where the lowest upper bound and the greatest lower bound are taken with respect to
the canonical order of the arc C|p,, ,,- Since (Fy )peo is an intrinsic circle system, by
(I12), we have y* = y~. On the other hand, y = y* = ¥y~ does not occur since Tt and
T~ are disjoint. Thus we have y* > y~. Consequently, C|(,- ,+) is a e-regular arcon o.
By Corollary 1.7, o (e (y+),u° (y-)) 1S also e-regular. On the other hand, o|(e(y+), s (y-))
contains two clean maximal vertices ¢; and gz. This is a contradiction.

(Proof of Theorem A.11) We set I := 7|}, 4 Without loss of generality, we may
assume that yND*(C) =L U---UI,. We set

Ji = C|[QmP1]a Jo 1= C|[¢11,P2]v T Jn = Cl[qn_l,pn]'

By Lemma A.11, there exists a circle C}, (k = 1,...,n) which is tangent to I;, Jix and
It 41 respectively. Let z (resp. yi) be a tangent point between C}, and Iy (resp. Ix41).
Then there is a maximal vertex on v|(z, y,) by Lemma 1.1. (It is a clean vertex of the
simple closed curve obtained by joining «|(z, 4.) and C}, but not a clean vertex of v in
general.) Moreover, by (C1) in §3, we have

(Y1 = )Yn > Tn = -+ = 1 > Y1,

where > is the rotational order of 4. (See Figure A.3.) Thus v has n clean maximal
vertices. By Corollary A.10, v has n clean minimal vertices between them. O

Figure A.3

The the following lemma is a refinement of Corollary A.7: (The proof below is the
a slight modification of the original one in Kobayashi-Umehara [KU].)
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Lemma A.13. (The abstract version of [KU; Lemma 3.1])

Let v : [a,b] = R? be a positive shell at p = v(a) = v(b).

(1) If v has only one (necessary mazimal) vertez, then v\ {p} C Do NDs, where D,
(resp. Dy ) is the interior of the closed domain D*(C.q)) (resp. D*(Cypy))-

(2) If v has ezactly two honest vertices, mazimal at t; € (a,b) and minimal at
ty € (a,b), then Y\ {p} C D, if t; <tz and v\ {p} C Dy if t2 < t;.

(3) If v has ezactly three honest vertices, two of which are mazimal and the other
is minamal, then either v\ {p} C D, or ¥\ {p} C Ds.

Proof. By Proposition A.l, 7 is a e-admissible curve. First we prove (1). Let ¢ be the
maximal vertex and z € 7|, 4. Then by Theorem A.9, we have

(A.4) z € D,.

On the other hand, let y € v|(4,,). Since y is not a maximal vertex, Cy meets another
point z € ¥|(p,q) by Corollary 1.2. Thus we have

(A.5) y € D*(Cy()) CD,.

By (A.4) and (A.5), we have ¥ C D,. Similarly, we can also show vy C Ds.

Next we prove (2). Assume that v has exactly two honest vertices, maximal at
t1 € (a,b) and minimal at ¢; € (a,b) and t; < t2. Then by the same argument as in
the proof of (1), (A.4) holds for = € |(, 4(z,)) and (A.5) holds for ¥ € ¥|(y(z,),p). Thus
we have v C D,.

Finally, we prove (3). Let ¢1 = ¥(t1) and g3 = v(¢3) be maximal vertices and ¢, =
v(t2) a minimal vertex. We may assume that ¢; < ¢t2 < t3. By Proposition A.8, we have
Yip,a1] C Pa and vg,,5) C Dp. On the other hand, for an arbitrary = € 7|y, ¢,); there
exists ¥ € v|(a,q1) YY|(gs,5) Such that C3 5 y. Thus we have z € C; C Dy C Dq( or Dy).
Hence we have shown that v\ {p} C D, U D,. We set

Sq : = inf{s € (a,b); v(t) € D, if t € (5,b)},
sp : = sup{s € (a,b); v(t) € Dy if t € (a,s)}.

Then it holds that a < s, < sy < b. Now we suppose that neither v\ {p} ¢ D, nor
¥\ {r} ¢ Ds holds. We can extend v to ¥ : [a,b + ¢|] = X such that F|j, 5 = 7,

o+ = Coliv(ey,v(se)): Then ¥|[s, s4¢ is a negative shell at ¥(b). By Lemma A.6,
there is a minimal vertex on (sp,b). Similarly, we can find another minimal vertex on
(a,s.). This is a contradiction. O

Using Lemma A.13, the following theorem can be proved by the same arguments as
in [KU; Theorem 3.5].

Theorem A.14 (The abstract version of [KU; Theorem 3.5]). If a closed curve con-
tains three positive shells or three negative shells, then it has at least siz honest vertices.

The above 6-vertex theorem is stronger than the following 6-vertex theorem:
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Corollary A.15 (The abstract version of [CMO] and [Ul]). A closed curve has at

least siz honest vertices if it bounds an immersed surface other than the disc.

Proof. It is sufficient to show that any closed curve v which bounds immersed surface
with positive genus has three negative shells. (The immersed surface is assumed to lie
on the left hand side of v.) If y has a positive shell then by the proof in [KU: Corollary
3.7], we found three negative shells. Hence, we may assume that ~ is not embedded
and « has no positive shell. Suppose that 4 has at most two negative shells. Let z is a
self-intersection of 4. Then « can be expressed as a union of two distinct loops v; and
~v2 at z. Each loop «; contains at least one shell S;, which must be negative because vy
has no positive shells. We take points ¢; € S;\ {p;} (7 = 1,2) respectively, where p;
is the node of the shell ;. Then « can be divided into two arcs ¥|[4, ¢,] and vl(gy,0.]-
Moreover these two closed arcs ¥|jg, 4,] and ¥|(,,q,] are both embedded. (In fact, for
example, if v|(,, 4] is not embedded, then we find third shell S on 7|(g, 4,), which must
be negative. This is a contradiction.) Then by [Ul;Theorem 3.1], v only bounds a disc,
which is a contradiction. O

The Corollary A.15 for Euclidean plane curves was first proved for normal curves
in [CMO] and extended to the general case in [Ul]. It should be remarked that Corol-
lary A.15 itself is obtained by Corollary A.7 using purely topological arguments. The
following related result can be proved by the method in [Pe] using Corollary A.7.

Theorem A.16 (The abstract version of [Pe; Theorem 4]). A closed curve has at
least (4g + 2)-vertices if it bounds an immersed surface of genus g, provided that the
number of self-intersections does not ezceed 2g + 2.

In the rest of this appendix, we consider an intersection sequence of a positive scroll
and a negative scroll, which is an abstract version of [KU;84]. As an application, a
structure theorem for 2-vertex curve is obtained. In [KU;84], we use corner rounding
technique on curves. But this method is not valid in our general setting. So the
following is the modified version of [KU;§4].

Let v~ and 41 be positive and negative scrolls respectively satisfying the following
two properties:

(a) All intersections of v~ to 4* are transversal.
(b) The first crossing of ¥ is the last crossing of y~.

A crossing of 7 is called positive (resp. negative) if ¥1 crosses 4~ from the left (resp.
right). We use small letters for positive crossings. For the sake of simplicity, we use
the following notations: Let 4 be an open arc and p a point on 7. Then we denote by
Y|>p (resp. v|<p) the future part (resp. the past part) from p.

Definition A.5 (The *-pairing). Let a be a positive crossing. If a crossing is the first
one at which vy~ |>, meets ¥1|<,, then it is expressed by a*.

Lemma A.17. Let vt and v~ be positive and negative scrolls satisfying (a) and (b).
If there exists a crossing a* for a positive crossing a, then a* is a negative crossing.

Proof. Suppose that a* is a positive crossing.
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Let o be a simple closed curve defined as a union of two arcs o := 77|44+ Uyt [a*,a]-
Let D*(o) be the left-hand closed domain with respect to ¢ as in Figure A.4a or A.4b.
The angle at a* of the domain is greater than 7. We consider a sufliciently small circle
C , which is tangent to v~ at a* and lies in D*(¢). Expand C continuously. Let z # a*
be the first attachment of C to the heart figured domain. Then = # a, and C is tangent
to ¥~ or vt at z. If z € v, we have C C D,, where D, is the left open domain of the
osculating circle Cy. Since v~ is a negative arc, we have D, C D,» by Theorem A.9.
Hence C can not meet C,+, which is a contradiction because of a* € CNCye. O

Lemma A.18. Let v* and v~ be positive and negative scrolls satisfying (a) and (b).
Suppose that there ezists a crossing a* for a positive crossing a. If v |sq (resp. 77 |<a)
meets v~ (resp. v* ) at q firstly, then q lies on v~ |5, (resp. vH|<a ).

Proof. Let o = 7[;"1.] U 7['2.’(1] be a simple closed curve. Let C; (resp. C7) be the
osculating circle at a with respect to v~ (resp. ¥). By Proposition A.8 and Defini-
tion A.3, we have (D*(C7))° D 77 |>q and (D*(C}))¢ D v¥|<a, where (D*(CE))° are
the complements of D*(CE). Thus '

(D*(CT)ND*(C))* = (D(C)) V(D (C))* Do
This implies that
(A.6) D*(C;)n D*(CTF) c D*(o).

On the other hand, y*|5, C D*(C}) and v~ |<o C D*(CJ). Suppose that vT|s,
meets 7~ |<, at some point z. Then z € D*(C;) N D*(C}), so = € D*(o) by (A.6).
This means that v+|s, (resp. 77 |<a) meets ¥ ][, (resp. v g+ q)) before z (resp.
after z). O

Lemma A.19. Let a be a positive crossing.

(1) a* coincides with the first crossing at which the past part of ¥+ from a meets
the future part of v~ from a.
(2) If a* = b*, thena =b.

Proof. We prove the first assertion. Suppose p # a* is the first crossing at which vt |<,
meets 77 |>q. Then p lies on y%|(4+ 4).(See Figure A.5a.) Consequently, p is a positive
crossing. Then p = a®, where a° is the *-paring between the negative scroll v~ and the
positive scroll 4 F|s,. On the other hand p = a° is a negative crossing by Lemma A.17.
This is a contradiction.

Next we prove (2). Suppose that a # b. Without loss of generality, we may assume
that v~ meets 47 firstly at a, next at b and finally at ¢ = a* = b*. Since b is a positive
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crossing, there is a negative crossing z on 7|, at which ~4F|sq meets 4~ l[a,b) firstly.
(See Figure A.5b.) Now we reverse the orientation of y~, which is denoted by (—~v7).
We denote by f the *-pairing between the negative scroll (—v~) and the positive scroll
~*. Then the signs of crossings are all reversed. We have a = z!. But y*|>, meets
(—v~) at b, which contradicts Lemma A.18. O

'l 2 v
a* a c=a¥*=b* T
» T
a Tt
Figure A.5a. Figure A.5b.

Definition A.8. If a negative crossing does not have a *-pairing, then it is called a
solitary negative crossing and is denoted by a capital letter.

The remaining discussions in [KU;§4] can be easily translated to our abstract setting.
In particular, the intersection sequence of v~ consists of the following three type of
words:

Type T : A1A;s .. Ay,
Type D : [@1az...a,] = a;...ana}...a],

Type S: [@1az...a, : B] := ay...apBay,...a}.
We define the length of the each type of words by
|A1A2...An| =7, I[alag...an]l =, |[a1a2...an : B]| =n+ 1.

The following theorem holds by exactly the same argument in [KU;84].

Theorem A.20. Let vt and v~ be positive and negative scrolls satisfying (a) and (b).
Then the intersection sequences W= of v~ is of the form W~ = W1 W, ... W,,, where
W; (i = 1,...,n) is of type T, D or S and the intersection sequence of ¥+ is obtained
by the head picking rule as in [KU]. Moreover W~ satisfies the following grammar:

(1) If W; is of type D, then W; (j < i) is of type T or D.

(2) If Wi is of type T and Wiyy s of type D, then |Wi| < |Wig1|. Moreover if

Wi_1 1s of type D, then |W;| + |Wi—1} < |Witq] holds.
(3) If W; is of type T and W;_1, Wit is of type S, then |Wi| + |Wi_1| 2 |Wital].

An immersed curve is called normal if all crossings are transversal and there are

only double points. The following theorem is obtained by exactly the same argument
as in the proof of [KU; Theorem 4.8 and 4.9).

Theorem A.21 (A structure theorem of 2-vertex curves). Let v be a closed normal 2-
vertez curve divided by negative and positive scrolls y = v~ U~T. Then the intersection
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sequences of v~ and vt are translated mutually by the head picking rule as in [KU].
Moreover, the grammar of the intersection sequence of vy~ s given as follows.

(1) The intersection sequence consists of words of type T and type S and written
in the form ToS1ThS2Ts - SkTy. Fach T; (¢ = 1,..., k) may possibly be empty.
(2) |To| > 0, |To| 2 |S1| and |Si| + |T3| 2 |Si+1] (¢ =1,...,k).

When X = R?U{co} and T is the set of circles in the M&bius plane (cf. §3-Example
1), the converse assertions of Theorem A.20 and Theorem A.21 are true. (See [KU].)
Moreover, in [KU], the intersection sequences of two scrolls of the same kind are also
characterized in a similar manner.

For a plane curve v, there exists an interesting invariant J*(v) € Z, which is related
to the linking number of the corresponding Legendrian knot in the unit sphere bundle
on R2. (See [A1],[A2] arid [A3]. Selwat [S]] is also a nice reference.). Since J*H(v) is
not invariant under the diffeomorphism of $? = R? U {c0}, it is convenient to define a

modified invariant )

STH) = T () + 2,

where 1, is the rotation number of v as a plane curve. As an application of Theo-

rem A.21, we can get the following by the same method as in [U2]. (See also Remark
in [U2:81].)

Theorem A.22 (The abstract version of [U2].). Let v be a normal closed curve in X.
Suppose that SJT(y) > 0, then v has at least four honest vertices.

Two closed normal curves 71,72 : $* = S2 are called geotopic if there is a diffeomor-
phism ¢ on S? such that ¢(Im(y1)) = Im(~ ). It is an interesting problem to determine
the minimum number of honest vertices that a closed normal curve with given geotopy
type can have. Minimizing numbers for normal curves are determined by Heil [Hel]
for crossings(< 3) and in [KU] and Kobayashi [Ko] for crossings(< 5).

Appendix B. The continuity of the maximal circles

In this Appendix, we shall prove the continuity of the center of maximal circles of
a simple closed curve in the Euclidean plane. This was used in the last remark in §2.
First, we prove the following general statement.

Theorem B.1. Let X be a differentiable sphere and T a subset of C?-reqular simple
closed curves satisfying the azioms of a circle system. Let v be a C2-regular simple
closed curve satisfying s*(y) < oo and c* : X = I' a map defined by c*(p) := C,;. Then
c® 15 a continuous mapping with respect to the compact open topology on T.

Proof. If v is a circle, the statement is obvious. So we assume ~ is not a circle. It is
sufficient to show that C; — C} if p, — p holds for any p € v and a sequence (pn)neN
converging to p. By (C2), the sequence (C} )nen has a convergent subsequence which
converges to a circle C. To prove C' = Cj, we may assume that (Cp )nen itself is a
convergent sequence. Obviously C C D*(y). Since p, € C, , we have p € C. Hence
C is a circle contained in D*(y) which is tangent at p. Suppose that C # Cp;. Then
C N~ = {p} holds. Thus there exists an integer ng > 0 and a sufficiently small open

arc J containing p such that

(B.1) C,.NycCJ ( for all n > ng).

37



First, we consider the case rank®(p) > 2. In this case, J can be taken to be weakly
e—regular. (See Corollary 2.6.) Then by Corollary 1.2, (B.1) implies that C, N~
consists of only one component. But it is impossible because rank®(p,) > 2 in this
case. Thus we have C' = C;. Next, we consider the case rank®(p) = 1. If p # u? (p),
then p,u? (p) € C, which contradicts C Ny = {p}. Thus p = p* (p), which implies
F, = {p}. Since pn, = p— 0 and limp—o p* (pn) = p + 0, the C2-differentiability of ~
yields that €' is the osculating circle at p. By Lemma A.1, we have C =C;. O

Let v : S — R? be a C?-regular simple closed curve in the Euclidean plane. Assume
that ~ is oriented so that D*(«) is a bounded domain in R2. For each point p € 7, let
cp be the center of the maximal circle C,. Then we have the following

Corollary B.2. Suppose that s*(y) < oco. Then the map @ : v — R? defined by
®(p) = ¢, 18 continuous.

Proof. Let T'y be the set of circles in the Euclidean plane X. It is not so hard to see
that the map ¢ : T'y ~ R? x (0, 00) defined by ¢(C) = (2(C), (C)) is homeomorphism,
where 2(C) and r(C) are the center and the radius of C' respectively. Since ) 0 ¢* is
continuous by Theorem B.1, we have the conclusion. O
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