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Introduction

The purpose of this paper is to calculate volumes of five-dimensional hyperbolic ortho-
schemes. Orthoschemes in a space X of constant curvature are simplexes whose vertices
Py,..., P, are such that

span(Py,...,Pr) Lspan(Px,...,P,) for 1<k<n-1. (1)

These are the most basic objects in polyhedral geometry: They generate the scissors
congruence groups P(X) of polytopes in X (see 1.4). In addition, orthoschemes are char-
acterized by nice metrical properties, e.g., they have at most n non-right dihedral angles
ai,...,an, and all their faces and vertex figures are orthoschemes. It is therefore natural
to restrict the volume problem to orthoschemes. In doing so, Lobachevsky found a volume
formula for hyperbolic 3-orthoschemes (see 2.2), which, for a 2-asymptotic orthoscheme

R(a) with angles a; = § — a2 = a3 =: @, reduces to

1
vols(R(a)) = 3 J{a) . (2)
Here, JI(a) denotes the classical Lobachevsky function related to Euler’s Dilogarithm
o0 r

Lis(z) = 3, =,2z€C, lz|S1,by

() = 5 Tm(Lia(e**)

Since, for even-dimensional orthoschemes, volumes are expressible in terms of those of
certain lower (odd) dimensional orthoschemes (see [K, §14.2.2]), the next step is to look
for a volume formula for hyperbolic orthoschemes of dimension five. In this context, Dehn
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[B, p.308] raised the question whether this can still be done by means of a function in
one variable. This problem was solved affirmatively by Bohm [B] resp. Paul Miiller [M]

using different approaches; they showed that — apart from logarithms of lower orders —
r

o0

the Trilogarithm Liz(z) = Y 2—3 is sufficient to express the volume of a compact resp.
r=17T

l-asymptotic 5-orthoscheme. However, their volume formulae are very difficult to survey

involving dozens of Trilogarithms with rational arguments in trigonometrical expressions
of the dihedral angles.

By results of Dupont and Sah (see 1.4), the hyperbolic scissors congruence groups of di-
mensions > 2 are isomorphic to the scissors congruence groups of polytopes in extended hy-
perbolic space which, for odd dimensions, are generated by the 2-asymptotic orthoschemes
(i.e., Py, P, are points at infinity). Focussing on 2-asymptotic orthoschemes, we can derive
a comparatively simple volume formula for a certain subclass among them. Let R(«, 3,7)

denote a 5-orthoscheme with angles a; = a4 =: @, az; = as =: 3, ag =: v satisfying
cos’a+cos?f+costy=1 . (3)

Then, R(a, 3,7) is 2-asymptotic, and its volume is given by

vols(R(a, 8,7)) =i{ﬂ3(0) +Js(8) — -;—Jla(g -}~

A 2 ] ()
_1_6.{,]13(5 +a+p8)+ JI:;(E - a+ﬁ)} + a((3) )

where Jl3(w) denotes the Lobachevsky function of order three (see 2.) related to the
Trilogarithm b:;r
1 .
J3(w) = 1 Re(Liz(e*™)) , weR

The proof of formula (4) is based on Schléfli’s theorem about the volume differential (see
3.1) and the results of Lobachevsky in dimension three (see 2.2).

Together with some dissection properties for regular crosspolytopes (see 1.5), equation (4)
enables us to compute, among other things, the volumes of the three Coxeter orthoschemes
(i.e., all dihedral angles are submultiples of 7) of dimension five (cf. 3.2). It turns out
that the corresponding reflection groups have commensurable covolumes being rational
multiples of {(3). Hence, by passing over to torsionfree subgroups, we obtain examples of
hyperbolic cusped 5-manifolds whose volumes are rational multiples of ((3). This result
gives a first glimpse into the structure of the volume spectrum for hyperbolic 5-space forms

which, by a theorem of Wang [W], forms a discrete subset of R.
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1. Orthoschemes in hyperbolic space

1.1 Let X denote either the n-dimensional euclidean space E™, the n-sphere S" or the
n-dimensional hyperbolic space H". Embed S™ in E"*!, and use for H" the model in
Lorentz space E™!, i.e.: If E™! denotes the (n + 1)-dimensional real vector space R",
together with the bilinear form

(‘T!y) =_$0y0+mly1+°"+$nyn 3 Z, yeRn+1 3
of signature (n,1), then H" can be interpreted as
H*={z€ E™ | (z,z) = —1,20 > 0}.

In the projective model, H™ is the interior of the real projective space P™ with respect to
the quadric
@ny:={[z) € P"|{(z,z) =0}.

The closure H" of H" in P™ represents the natural compactification of H". Points of the
boundary OH™ = H™ — H™ are called points at infinity of H™.

1.2 An n-orthoscheme in X is a simplex in X whose vertices P,..., P, are labelled in

such a way that
span(Po, ..., Px) Lspan(Px,..., Ps) (5)

for 1 €< k £ n—1. The initial and final vertices Py, P, of the orthogonal edge-path
PyP,...,Pa_1 P, are called principal vertices and play a distinguished role. E.g. in H",
only the two principal vertices may be points at infinity in which cases the orthoscheme
is called 1- or 2-asymptotic. Moreover, an orthoscheme has at most n non-right dihedral
angles (hyperbolic orthoschemes have exactly n non-right dihedral angles a4, ..., an all of
them being acute, i.e., a; < 7).

Since orthoschemes are characterized by many orthogonality conditions, they are most
conveniently described by means of weighted graphs or schemes. First, we observe that an

n-orthoscheme R is a simplex bounded by hyperplanes Hy, ..., Hn such that
H; L H; for 2<i~j7|<n , (6)

where H; denotes the bounding hyperplane of R opposite to P;. Every hyperplane H;, 0 <
t < n, can be described by a unit normal vector ¢; in the ambient space directed outwards

with respect to R, say, i.e.:

Hi=e¢f:={z€ H" | (z,ei) =0} with (ei,e;)=1
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Then, the scheme L(R) of R is the linear weighted graph (describing R up to congruence)
whose nodes i correspond to the hyperplanes H; = e of R. The weights between adjacent
nodes ¢ — 1, equal «;, where cosa; = —(e;_1, €;) x , while non-adjacent nodes, associated
to orthogonal hyperplanes, are not joined:

(23] Qn
o— [ —

ZR) : o

Frequently, we shall think of orthoschemes in terms of their associated graphs.

Rank, determinant and character of definiteness of L(R) are defined to be the correspond-
ing ones of the Gram matrix G(R) = ({ei,e;j)x )o<i,j<n. In particular, (R) is said to
be either elliptic, parabolic, or hyperbolic if the n-orthoscheme R is either spherical, eu-
clidean, or hyperbolic, which is equivalent to L(R) being either positive definite, positive
semidefinite of rank n, or of signature (n,1) (cf. [K, §14.1.2]). Every vertex P;,0<i<n,
of R C X is described by an (n — 1)-dimensional vertex orthoscheme r; formed by the
vectors ex, 0 < k < n, k #i. I(r;) is obtained from E(R) by discarding the node i and
the edges emanating from it. If P; € H" is an ordinary vertex of R, then ¥(r;) is elliptic.
If P; € OH™ is a vertex at infinity of R implying that i = 0 or n, then Z(r;) is connected

-and parabolic.

1.3 For the graphs of orthoschemes whose dihedral angles are commensurable with 7, we
: ~use the standard notations: If two nodes are related by the weight % , P,q € N coprime
with 1 < p < ¢, then they are joined by a (¢ — 2)-fold line for p = 1 and ¢ = 3,4, and
by a single line marked f;, otherwise. From now on, let X = H". Hyperbolic Coxeter
orthoschemes (p = 1, i.e., all dihedral angles are submultiples of m) were classified by
Coxeter (cf. {C1]). His list ends for n = 5 with the three examples

g7 : 0—0——0—0 0—o0
g2 : © o o ) o o (7)
o3 : 0—o 0——0——0=—==0

Coxeter orthoschemes are characteristic simplexes for regular honeycombs. Orthoschemes
whose dihedral angles are commensurable with 7 are related to characteristic simplexes
for regular star-honeycombs (cells and vertex figures are regular star-polytopes); in case
of finite density (covering the space a finite number of times), they were completely enu-
merated by Coxeter (cf. [C1, p.161 ff]) and exist only up to n = 4. If one allows infinite

density, then one finds among the regular star-honeycombs whose characteristic simplexes
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are 2-asymptotic exactly five examples, and their characteristic simplexes are given by the

schemes

5 3 5
f#1 o ) o ) o o
5 3 5 3
f2 : o© o—% o ) 0o—2 o
5 5 5
ps : o—2—o ) o—2—o o (8)
5 5
b 5 > 5 > 5
1 o© o o o o o
5 5 5
vo s o2 o0 3 5 3
2 1 0O o ) ) ) )

That these schemes are the only 2-asymptotic ones, is easily seen using the list 14.14 in

Coxeter’s classification of regular star-honeycombs of finite densities (see [C2, §14]).

1.4 Let P(X) denote the n-th scissors congruence group of polytopes in X (see [Sa, §1]).
Then, for n > 2, P(H") is isomorphic to P(H") (see [DS, Theorem 2.1, p.162]), and,
for d > 3 odd, P(H?) is generated by the classes of 2-asymptotic orthoschemes (see [Sa,
Remark 3.10 and p.199]). This latter property was reproved by Debrunner [D, p.125] using
a certain dissection of a d-orthoscheme into d + 1 orthoschemes (d > 2 arbitrary). This
dissection process will be helpful later (cf. 1.5, 3.2).

1.5 Consider a five-dimensional 2-asymptotic orthoscheme R = -« Ps with vertices
Py, ..., Ps; and with graph

a1 a2 as Gy as
ZR) : o o o 0 o 0

It is characterized by three independent dihedral angles a2, a3, 4, say, while a1, as are
given by the relations

ag 4%/ a3 (471 a2 Qg 471 8 £3

det(o o 0 o o) = det(o 0 o o 0)=0 . (9)

An a.ngle a; (1 < ¢ £ 5) is formed by the facet orthoschemes R;_; = Hi-; N R =
Py-- P;_l .Ps and Rj = HiNR=Py---P;--- Ps5;; ; 1t is attached to the apex orthoscheme
F,=R,_1,NR; =F-- P_|P;-- - Ps , and, by the orthogonality conditions (5), can be
seen as planar or spatial angle (cf. Figure 1).
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Fig. 1

For the subsequent volume investigations, we are interested in the graphs X(F;) of F;
(1 €1 £ 5). First, we observe that Fy, Fs resp. F3, F3,Fy are 1- resp. 2-asymptotic.
Moreover, it is easy to see (cf. Figure 1) that

x z
7 T Oy [a 7Y 413 (s 51 7 — @y (2 4]

Z(F) :o o ) o L(Fy) : o0 o o o (10)
Qs % — Qs Qax ’ an (153 % — Q&2 )
L(F) : o 0 o o Z(Fs) :o 0 o o

To determine the scheme L(F3), we define first the following auxiliary éngle:

Definition. Let a¢ € (0,7) be such that the graph

a9 3 (2 7} a5 Qg
Y : o o o 0 0 o

is the graph ©(Q) of a 2-asymptotic orthoscheme Q C HS, i.e.,

(2 4 (2 7] 443 Qg

det(o 0 o o 0)=0 . (11)

Moreover, we need the following

LEMMA.

(a2 (12] Q3 oy Qs
Let L(R) : o o o o 0 o denote the graph of a 2-asymptotic hy-
perbolic 5-orthoscheme R. Then,

tanaj tanas = tanay tanas . (12)

Proof: Denote by P,,...,Ps the vertices of R satisfying (5). Consider the l-asymptotic
face orthoscheme Py P, P; P; of dimension three and its spherical vertex orthoscheme at P
with angles a1, ap (cf. Figure 1) whose hypotenuse of length a satisfies

cos & = cot a; cot as



On the volumes of hyperbolic 5-orthoschemes and special values of the Trilogarithm 7

But a is also the parallel angle in the orthoscheme Py P, P, i.e.,
cosa = tanhl

where ! denotes the length of the edge P;P;. On the other hand, this edge belongs to
the 1-asymptotic 3-orthoscheme P, P; Py Ps whose spherical vertex orthoscheme at P; has
angles a4, as. If 8 denotes the parallel angle in P, P; P;, we deduce that

cos f = cot ay cot as = tanhl

Hence, tanh! = cot a; cot a2 = cot a4 cot ax .
Q.E.D.
Now, the apex orthoscheme Fj associated to aj is given by

%—ae Qg %—as
L(F3) : o o o o . (13)

This follows from (11) written in the form

sin? a3 sin® ag — cos? ay

cot? g = cot? az

cos? a3 cos? ag
which satisfies B6hm’s general formula (4.4) relating apex angles to angles of R (see [B,
p.303-304]). It can also be seen by the following dissection comparing R with @Q (see
Definition above): Denote by Qo,..., Qs the vertices of @ and assume that Qs coincides
with Py and that Qg is the point at infinity on the ray from Py = @s through P,. f H
denotes the four-dimensional plane through Q¢ orthogonal to the segment Py Ps, we have

(cf. Figure 2)

Qii=HNPP , 1=1,...,5
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Note that R, @ have identical (euclidean) vertex orthoschemes ro = g5 at Py = Q5. If we

form the simplexes
Ri=Qo - QesPe-Ps , k=1,..,5 | (14)

in H®, then, by a result of Debrunner (see [D, Theorem (2.6) (1)]), we see that
(a) Ry is a 2-asymptotic orthoscheme;

5
(b) On the scissors congruence level, there is the relation [R] + [R1] = [@Q]+ Y [Ri].
=2

Moreover, by the above Lemma (see also Figure 2), one can deduce that
L(R)=2Z(R1) , Z(Q)=Z(Rs) , (15)

ie., R, R, and Q, Rs are congruent, and that

200 T1 Y1 ay asy
Y(R2) : o 0 0 0 o o
(2 5] T2 Y2 zZ1 (843
L(R3) : o o o ) ) ) (16)
@z a3 y3s 22 7— 20
(Ry) : o o o o o o
Here z;,yi,2: € (0,7) satisfy
tanz; = cot(2a)tanagtanas , z1+ T2 =02
tan z; = cot as tanas tanzy (17)

tan 2z = cot(m — 2ag)tana; tanas
and y; are such that the parabolicity conditions (cf. (9)) are satisfied. Hence,
2[R] = 2[Q] + [R2] + [Ra] + [R4] . (18)

Finally, one reads off Figure 2 that the scheme Z(F3) is given by (13), since the angle at Q4
between Qo, @3 equals o, and because the plane through these three points is orthogonal
to Po P5 in F 3.

1.6 Among the set of 2-asymptotic orthoschemes in H?, there is a particular family of
orthoschemes R given by graphs

B
Ry : o ) ) ) ) o with (19)
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cos’a+cos’ B+ cos’y=1 . (20)

Condition (20) guarantees that R is 2-asymptotic, and it implies that the auxiliary angle
ag (see Definition 1.5) satisfies ag = +.

By aresult of Gordan (cf. [C2, p.109]), the only solutions (e, 8,7v) of (20} with ingredients
commensurable with 7 are - up to permutations — (¥,%,%) and (5, ¥, %) yielding five
different orthoscheme realizations in H°, namely, 02,03 and u1, p2, i3 (see (7) and (8)).
The connected subschemes of (19) of order four were studied by Schlafli and Coxeter (cf.
[S, p-281 ff] and [C2, §6.7]); they occur as characteristic simplexes of the three-dimensional

spherical regular honeycombs and regular star-honeycombs of finite density.

2. Polylogarithms and higher Lobachevsky functions

2.1 Let z € C, |2| < 1. Then,

. — z"
Lin(z) = - o n= 1,2,..., (21)
r=1

denotes the Polylogarithm function with the properties (cf. [L, §7.1 and 7.3]), for n > 2,

z

Li,_
Lin(z) = / I"Tl(t)dt , (22)
0
Lin(1) = ¢(n), Riemann’s zeta function, and
1 . : : . - ;
FL:,;(ZL) = Lin(2) + Lin(wz) + - - + Lin(w® '2) for w=¢""/* k>1 . (23)
2.2 The Dilogarithm Liz(z) at arguments z = ??, 4 real, leads to the Lobachevsky

function
@

1 :
TI(6) = 5 Tm(Lia(e*?)) = - / log [2sint|dt | (24)
0
which is known to represent volumes of polyhedra in hyperbolic 3-space: If R denotes a
hyperbolic 3-orthoscheme with graph

o1 a2 a3
Z(R) : o o o o ,

then, Lobachevsky showed that (cf. [K, Introduction and Theorem 14.5])
1
V013(R) = Z{Jl(al + 9) — JI(C!]_ - 6) + JI(% + ap — 9) + JI(% — g — 0)+
+ J(as +6) — J(as — 8) + 2J1(3’2~ —8)} , where (25)
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-2

. . 2
cos® ag — sin® a sin? a3 3 <
cos? ay cos? a3

059:=a.rcta.n(

The Lobachevsky function is closely related to the Clausen function (see [L, §4])

o0 . 4
Cl,(8) :=Z %:6) = —-/log|sin%|dt
0

r=1

according to

1
JI(8) = 3 Cl(26) , V8eR
Analogous to the case of higher Clausen functions Cl,(8) (see [L, §7.1.4]), we define higher

Lobachevsky functions as follows:

Definition. Form > 1, § € R, the higher Lobachevsky functions are defined by

Man(8) = ey In(Lizm(€39)) = sy S S270)
o (26)
Jam+1(6) = 2%,, Re(Lizm+1(e*)) = 221m 21 cfiglf)
It follows that
8 &
Tzm(6) = / Toma()dt , Jlamsa(6) = 53 (2m +1) - / Tom(®)dt . (27)
0 0

Moreover, JI,»(8) is w-periodic, even for m odd, and odd for m even, respectively. By
means of (23) (see also [L, (7.46)]), one deduces the following distribution law

k-1
1 T
Ty (k) = ; (8 +75) (28)

and, as a particular case, the duplication formula

s n(26) = I (6) + (04 3) (29)

2.3 In connection with volumes of five-dimensional hyperbolic polytopes, we are mainly in-
terested in the Lobachevsky function of order three. By the above, we obtain the following
results for JI3(8):

T5(0)=363) , Ma(3)=-p(@®) , M(F)=-3x¢®) 5  (0)
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T 1 T 1
Ta(5) = 5¢60) ﬂ3(§)=—§C(3) ; (31)

Ta(E) 4 I5(Z) =~ 20(3) (32)

3. The volume formula and applications

3.1 In order to derive volume formulae for orthoschemes in terms of their angles, we
make use of the hyperbolic analog of Schlifli’s volume differential representation: For a
family of orthoschemes R in H™ (n > 2) with dihedral angles a; attached to the apices F;
(1 €1 < n), the volume differential dvol,(R) can be represented by

dvol,(R) = -1———}—-; Z volpo(Fr)da, , volp(Fy):=1 . (33)
=1

Schlafli proved the spherical version of this formula for arbitrary simplexes. For a proof
of both, the spherical and hyperbolic case, we refer to Kneser [Kn]. Plainly, formula (33)
is still valid for a family of orthoschemes in H", n # 3, with one or two of the principal

vertices at infinity. With these preliminaries, we are ready to prove the following

THEOREM.

Let R denote the 2-asymptotic 5-orthoscheme given by

a B v a B _ . 2 .
ZR) : o—o——0—o0—o0—o0 with cos’a+cos’B +cos’y=1

Then,

vols(R(a, 8, 7)) =i{ﬂ3(a) + JI3(B) — %JIs(g -7)}-

] g ; 5 (34)
_E{JI3(§ +a+ )+ (5 —a+8)} +2763)

where JI3(w), w € R, denotes the Lobachevsky function of order three.

Proof: We use Schlafli’s volume differential (33) for a family of 2-asymptotic orthoschemes
R given by graphs

o g a3 471 Qs
Z(R) : o o o 0 o o with cos®a;+cos? ag+cos®az =1. (35)

Then, by the asymptoticity conditions, a; = a4 =: @, a; = as =: f. Moreover, we see

that a3 = as =: v. Now, assume that § is constant and that « is the independent variable,
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i.e., v = ¥(a). In order to determine the coefficients of da; = day = da, dag = dvy in
(33), we observe that the corresponding apex orthoschemes Fy, F3, Fy are characterized by
the graphs (see (10),(13))

F—a o f
L(F) : o o 0 )

ITT Y 77
T(Fs) : o o—o o

a T-a «
L(Fy) : o—o 0 o

Therefore, by Lobachevsky’s formula (see 2.2, (25)), their volumes are given by

voly(Fy) = %JI(a) + UG ot 8) - TG +a+B)}
volz(F3) = %JI(% -7 ,
vola(Fy) = %Jl(a)

Hence, Schlafli’s formula (33) yields

(—4) dvols(R) = JI(a) da + i{n(g —at )~ TG +atB)}dat

1 T
+§JI(§—"Y)CI’Y ,

where ¥ = y(a). Since Jl3(w) = ${(3) — f JI(t) dt is an even function, and since a volume
0

formula for (R) has to be symmetric in «, 3, we obtain the following expression

4vols(R) = Jz(a) + JI3(8) — %Jh(g —- (36)

—i{ﬂa(g+a+ﬂ)+ﬂ3(g——a-l-ﬂ)}-f—c

Here, ¢ denotes the constant of integration which can be computed by evaluating (36) in
the degenerate case of an orthoscheme Ryey in H® satisfying (35) such that vols(Rgeq) = 0.
For this, we consider the following class of orthoschemes R, . C HS given by

! T T
£ 7 — € 7 — €& £ 7 — €&

Leer O ) o o o )

with 0 <e < §,e<e < F and sin?e’ = 2sin’e. Then, property (35) is satisfied, and
R. . is 2-asymptotic. Since, for ¢ — 0, €'(¢) — 0 and det(S.) = —sin’e —
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0, R.. converges to an orthoscheme Rg.y, with vols(R4eq) = 0. This implies that
¢ = —15 {(3) which finishes the proof.
QED.

3.2 The above Theorem, combined with certain dissection properties of orthoschemes (cf.
1.4, 1.5), enables us to compute explicitly the volumes of the three Coxeter orthoschemes
(7) as well as the volumes of the characteristic simplexes (8) of all regular star-honeycombs

(being necessarily of infinite density) in H®.
The two Coxeter orthoschemes of (7),

(2] . 0 o o]

a3 . 0 o}

satisfy the conditions of the Theorem. Using 2.3, we get for their volumes vols(a;), ¢ =
2,3:

_
9216

T

((3) = 0.000013 , vols(os) = ==

¢(3) ~ 0.001826 . (37)

vols(o2) =

Before we compute the volume vols(c;) of the remaining Coxeter orthoscheme

g, . ©0——0——0—0

o——o0

which is 1-asymptotic, we make the following remark.

Remark. Let a, := arccos % € [0,%], n >3, and consider the schemes

a a
o o o=—x0 o—..-—0——o0,
?

pi(a) : o—o0—---—0——o0

of order n+ 1, 7 € [0,n], which describe either spherical, euclidean or compact hyperbolic
n-orthoschemes if either ap, < a <7 - an, @« =a,, or ap_1 < a < a, (see [D, (7.9)]).
In the spherical case, Schlafli (cf. [S, p.270]) derived the following volume relations

voln(p?(a)>=(’j) vola(pB(a)) , i€[0n] (38)

which were generalized by Debrunner (cf. [D, Theorem (7.8)]) to all three cases using a
dissection argument: The orthoschemes p? () tile the regular cross-polytope with dihedral

angle 2a.
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But by continuity, we see that (38) holds even in the hyperbolic (asymptotic) limiting case
& = @n_1; in particular, for n = 5 (i.e., @ = I), where pj(§) = o1, p5(§) = 02 and

p3(%) = o3, we obtain the relations (see (37))

T

1
vols(o1) = gvols(ag) = —vols(o3) = 16080

= ¢(3) ~ 0.000183 . (39)

Hence, the volumes of the three Coxeter orthoschemes in H® are rational multiples of ¢(3)
and therefore commensurable. Considering the associated reflection groups and passing
over to torsionfree subgroups, which, by a result of Borel (see {Bo, Theorem B (ii), p.345]),
always exist, we obtain 1- and 2-cusped hyperbolic manifolds of dimension five whose

volumes are rational multiples of ((3).

Finally, consider the orthoschemes presented in (8),

5 3 5
1 i o o o 0 o o
5 3 5 3
g2 : © o—2—o o o-2—o
3 5 5
g3 : o—%*—o0o—o0 o—2—o0—0
5 5
b 5 3 5 5 5
1 : o o o 0 o o
5 5 5
vo - 2 5 2 o 2
2 i O o o o o o

Since cos? % + cos? -+ cos? % =1, we can use our Theorem to calculate the volumes of

the first three schemes making use of 2.3:

vols (y1) =—C—(i) ~ 0.001002 ;

1200
vols (p2) =ﬁ {JIa(%ﬂ) + @} = ﬁ {- JIs(%) + zc———)} ~ 0.000339 ; (40)

(3
25
_1 T, By

vols(p3) =Ti {J13(5)+ 5 } ~ 0.001998
For the computation of the values vols(v1), vols(v2), we use the orthoscheme dissection
presented in 1.5 and the above results. Let R denote the orthoscheme with graph Z(R) =
v1, which we take as starting simplex with respect to the dissection 2[R} = 2[Q] + [R2] +
[R3]+[R4] (see Definition, (15) and (18) of 1.5). Then, @ is the 2-asymptotic orthoscheme
given by the graph £(Q) = v2. Using the Lemma, (16) and (17) of 1.5, we obtain the
following identities between the schemes of R3, R3, R4

L(Ry) =%(Rs) = EB(Ra) = p2
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which, by (18), imply that
3
V015(V]) = V015(V2) + Evols(m) . (41)

Repeating this process by starting with the orthoscheme R given by £(R) = ua , we deduce
that (@) = pu3, and that

L(R) =5(R3) =12 , X(R4)=ps

Therefore, we have
3
vols(p2) = vols(v2) + §V015(.U3) , (42)

which together with (40) and (41) yields

¢(3)
vols(1) = J13 ~ 0.001996 ;

vols(ug)— > J13( )~0000493
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