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The purpose of this paper is to calculate volumes of five-dimensional hyperbolic ortho­

schemes. Orthoschemes in aspace X of constant curvature are simplexes whose vertices

Po, . .. , Pn are such that

span (Po, . .. ,Pk).l span (Pk, . .. , Pn ) for 1::; k ::; n - 1. (1)

These are the most basic objects in polyhedral geometry: They generate the SClssors

congruence groups P(X) of polytopes in X (see 1.4). In addition, orthoschemes axe ehar­

aeterized by niee metrical properties, e.g., they have at most n non-right dihedral angles

Q1, .. . , an , and all their faces and vertex figures are orthosehemes. It is therefore natural

to restriet the volume problem to orthosehemes. In doing so, Lobachevsky found a volume

formula for hyperbolie 3-orthosehemes (see 2.2), whieh, for a 2-asymptotic orthoscheme

R(Q') with angles 0'1 = ~ - 0'2 = 0'3 =: 0', reduees to

1
voh(R(a)) = 2 .lI(a) (2)

Here, .lI(a) denotes the classical Lobachevsky function related to Euler's Dilogarithm
00 zr

Li2(z) = L 2"' z E C, Izi ::; 1 , by
r=1 r

Since, for even-dimensional orthoschemes, volumes are expressible in tenns of those of

certain lower (odd) dimensional orlhosehemes (see [1(, §14.2.2]), the next step is to look

for a volume formula for hyperbolic orthoschemes of dimension five. In this eontext, Dehn

* This work was partially supported by the Swiss National Science Foundation
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[B, p.308] raised the question whether this can still be done by means of a funetion in

one variable. This problem was solved affinnatively by Böhm [B] resp. Paul Müller [M]
using different approaches; they showed that - apart from logarithms of lower orders -

00 r

the Trilogarithm Li3 (z) = E z 3 is sufficient to express the volume of a eompaet resp.
r=1 r

l-asymptotie 5-orthoseheme. However, their volume fonnulae are very diffieult to survey

involving dozens of Trilogarithms with rational arguments in trigonometrieal expressions

of the dihedral angles.

By results of Dupont and Sah (see 1.4), the hyperbolie seissors eongruenee groups of di­

mensions ~ 2 are isomorphie to the seisoors eongruence groups of polytopes in extended hy­

perbolie spaee which, for odd dimensions, are generated by the 2-asymptotie orthosehemes

(i.e., Po , Pn are points at infinity). Foeussing on 2-asymptotic orthosehemes, we can derive

a comparatively simple volume fonnula for a certain subclass among them. Let R{o:, ß, ,)
denote a 5-orthoscheme with angles 0:1 = 0:'4 =: 0:, 0:2 = 0:5 =: ß, (t3 =:, satisfying

(3)

Then, R(a, ß, ,) is 2-asymptotic, and its volume is given by

(4)

wER

where JI3 (w) denotes the Lobachevsky ftulction of order three (see 2.) related to the

Tri10garithm by

JI3 (w) = ~ Re(Li3 (e2 ;W»

The proof of formula (4) is based on Schläfli 's theorem about the volwne differential (see

3.1) and the results of Lobachevsky in dimension three (see 2.2).

Together with some dissection properties for regular crosspolytopes (see 1.5), equation (4)

enables us to compute, among other things, the volumes of the three Coxeter orthoschemes

(i.e., all dihedral angles are submultiples of 1r) of dimension five (cf. 3.2). It turns out

that the corresponding reflection groups have eommensurable covolumes being rational

multiples of ((3). Hence, by passing over to torsionfree subgroups, we obtain ex_amples of

hyperbolic cusped 5-manifolds whose volumes are rational multiples of ((3). This result

gives a first glimpse into the structure of the volume spectrum for hyperbolie 5-space forms

which, by a theorem of Wang [W], forms a discrete subset of R+.
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1. Orthoschemes in hyperbolic space

1.1 Let X denote either the n-dimensional euclidean space E n, the n-sphere sn or the

n-rnmensional hyperbolic space H n. Embed sn in E n+1
, and use for H n the model in

Lorentz space En,1, i.e.: H E n,1 denotes the (n + l)-climensional real vector space R n+1
,

together with the bilinear form

(X, y) = -xoYo + X1Y1 + ... + XnYn

of signature (n, 1), then H n can be interpreted as

H n = {x E E n
,1 I (x, x) = -1, Xo > O}.

In the projective model, H n is the interior of the real projective space pn with respect to

the quadric

Qn,1 := { [xl E pn I (x, x) = O} .

The closure Hn of H n in pn represents the natural compactification of H n. Points of the

boundary aHn = Hn - H n are called pointJ at infinity of H n.

1.2 An n-orthoJcheme in X is a simplex in X whose vertices Po, ... , Pn are labelIed in

such a way that

(5)

for 1 ~ k ~ n - 1. The initial and final vertices Po, Pn of the orthogonal edge-path

POP1, . .. ,Pn-lPn are called principal vertices and playa distinguished role. E.g. in Hn,

only the two principal vertices may be points at infinity in which cases the orthoscheme

is called 1- or 2-asymptotic. Moreover, an orthoscheme has at most n non-right dihedral

angles (hypel'bolic orthoschemes have exactly n non-right dihedral angles 0'1, ... , O'n all of

them heing acute, i.e., O:'i < f).

Since orthoschemes are characterized by many orthogonality conditions, they are most

conveniently described by means of weighted graphs or schemes. First, we observe that an

n-orthoscheme R is a simplex bounded by hyperplanes Ho, ... , H n such that

for 2 ~ li - j I ~ n (6)

where Hi denotes the bounding hyperplane of R opposite to Pi. Every hyperplane Hi 1 0 ::;

i ~ n, can be described by a unit normal vector ei in the ambient space directed outwards

with respect to R, say, Le.:
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Then, the scheme E(R) of R is the linear weighted graph (describing R up to congruence)

whose nodes i correspond to the hyperplanes Hi = er- of R. The weights between adjacent

nodes i - 1, i equal O:'i, where cos O:'i = -(ei-I, ei)X , while non-adjacent nodes, associated

to orthogonal hyperplanes, are not joined:

E(R)
0:'1

0--0-
O:'n

-0--0

Frequently, we shall think of orthoschemes in terms of their associated graphs.

Rank, determinant and character of definiteness of E(R) are defined to be the correspond­

ing ones of the Gram matrix G(R) = ( (ei, ej)x )O<i,j<n. In particular, E(R) is said to

be either elliptic, parabolic, or hyperbolic if the n-orthoscheme R is either spherical, eu­

clidean, or hyperbolic, which is equivalent to E(R) being either positive definite, positive

semidefinite of rank n, or of signature (n, 1) (cf. [1(, §14.1.2]). Every vertex Pi, 0 :S i :S n,

of ReX is described by an (n - l)-dimensional vertex orthoscheme ri formed by the

vectors ek , 0 < k :S n, k =f:. i. E(ri) is obtained from E(R) by discarding the node i and

the edges emanating from it. H Pi E H n is an ordioary vertex of R, then E(ri) is elliptic.

H Pi E aHn is a vertex at infinity of R implying that i = 0 or n, then E(rd is connected

,and parabolic.

1.3 For the graphs of orthoschemes whose dihedral angles are commensurable with 7r, we

-use the standard notations: H two nodes are related by the weight 2.!!. , p, q E Neoprimeq

with 1 ~ p < q, then they are joined by a (q - 2)-fold line for p = 1 and q = 3,4, and

by a single line marked ~,otherwise. From now 00, let X = Hn. Hyperbolic Coxeter

orthoschemes (p = 1, i.e., all dihedral angles are submultiples of 71) were classified by

Coxeter (cf. [Cl]). His list ends for n = 5 with the three examples

U1 0--0--0--0=0--0

0--0--0=0--0--0

U3 0--0=0--0--0=0

(7)

Coxeter orthoschemes are characteristic simplexes for regular honeycombs. Orthoschemes

whose dihedral angles are commensurable with 7r are related to characteristic simplexes

for regular star-honeycombs (cells and vertex figures are regular star-polytopes); in case

of finite density (covering the space a finite number of times), they were completely enu­

merated by Coxeter (cf. [Cl, p.161 ff]) and exist only up to n = 4. Hone allows infinite

density, then one finds among the regular star-honeycombs whose eharacteristic simplexes
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axe 2-asymptotic exact1y five examples, and their chaxacteristic simplexes are given by the

schemes

5 2 5
0--0--0-2-0--0--0

5 ~ 5 l!
0--0-2 -0--0--0-2 -0

2 5 2
0-2 -0--0--0-2 -0--0

5 2 5 2 5
0--0-2 -0--0-2 -0--0

2 5 2 5 2
0_2 -0--0-2-0--0-2 - 0

(8)

That these schemes are the only 2-asymptotic ones, is easily seen using the list 14.14 in

Coxeter's classmcation of regular star-honeycombs of finite densities (see [C2, §14]).

1.4 Let P(X) denote the n-th scissors eongruenee group of polytopes in X (see [Sa, §1J).

Then, for n ;::: 2, p(Hn) is isomorphie "to p(Hn) (see [DS, Theorem 2.1, p.162]), and,

for d ;::: 3 odd, P(Hd) is generated by the classes of 2-asymptotie orthosehemes (see [Sa,

Remark 3.10 and p.199]). This latter property was reproved by Debrunner [D, p.125] using

a eertain disseetion of a d-orthoscheme into d + 1 orthoschemes (d ;::: 2 arbitrary). This

msseetion proeess will be helpfullater (cf. 1.5, 3.2).

1.5 Consider a five-mmensional 2-asymptotic orthoseheme R - po··· Ps with vertices

Po, ... , Ps and with graph

~(R)
0'1 0'2 0'3 0'4 as

0--0--0--0--0--0

It is eharaeterized by three independent dihedral angles 0'2,0'3,0'4, say, while 0'1, O's are

given by the relations

Q1 0'2 0'3 0'4 0'2 0'3 0'4 O's
det(o--o--o--o--o) = det(o-- 0--0--0--0) = 0 (9)

An angle O'i (1 ~ i ~ 5) is formed by the facet orthosehemes Ri-1 = Hi-1 n R =
Po ... P;:1 ... Ps and Ri = HinR = Po ... Pi ... Ps ; it is attached to the apex orthoseheme

Fi = Ri-1 n R i = pO··· P::;Pi··· Ps , and, by the orthogonality eonditions (5), ean be

seen as planar or spatial angle (cf. Figure 1).
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For the subsequent volume investigations, we are interested in the graphs E(Fi ) of Fi

(1 ::; i ::; 5). First, we observe that F1 , F~ resp. F2 , F3 , F. are 1- resp. 2-asymptotic.

Moreover, it is easy to see (d. Figure 1) that
1['

04 a~
1f2" -a.. Ctl 2" - Ctl Ct"l

E(F1 ) : 0 0--0--0 E(F4 ) :0--0 0--0

1['

Q"2
1r (10)

Cts 2" -Q"~ a~ 0"1 2" -0"2
E(F2 ) : 0--0 0--0 E(Fs ) : 0--0--0 0

To determine the scheme E( F3 ), we define first the following auxiliary angle:

Definition. Let a6 E (0, f) be such that the graph

0"2 Q"3 Q"4 Us a6
E 0--0--0--0--0--0

is the graph E(Q) oE a 2-asymptotic orthoscheme Q c H5, i.e.,

Ct3 Q"4 as Q"6
det(o--o--o--o--o) = 0

Moreover, we need the follo\ving

LEMMA.

(11)

Q"1 Q"2 0"3 04 Q"s
Let E(R) 0--0--0--0--0--0 denote the graph oE a 2-asymptotic hy-

perbolic 5-orthoscbeme R. Then,

(12)

Proof: Denote by Po, .. . , Ps the vertices of R satisfying (5). Consider the 1-asymptotic

face orthoscheme Po PI P2 P3 of dimension t hree and its spherical vertex orthoscheme at P3

with angles 0"1, Q"2 (d. Figure 1) whose hypotenuse of length 0 satisfies

cos 0' = cot Ql cot Q"2
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But 0' is also the parallel angle in the orthoscheme PoP2 Pa, Le.,

cos 0' = tanhl ,

where I denotes the length of the edge P2 P3 • On the other hand, this edge belongs to

the 1-asymptotic 3-orthoscheme P2P3P"P~ whose spherica1 vertex orthoscheme at P3 has

angles 04,0'5. H ß denotes the parallel angle in P2PaPs, we deduce that

cos ß = rot 0" cot 0'5 = tanhl

Hence, tanhl = cot 01 rot 02 = cot 0" rot 0'5 •

Q.E.D.

Now, the apex orlhoscheme Fa associated to 03 is given by

~(F3) (13)

This follows from (11) written in the form

. 2 . 2 2

t 2 sIn 0a sm Q's - COS 0'4 cot2 Q'aco 06 =
cos2 0'3 cos2 0"5

which satisfies Böhm's general fonnula (4.4) relating apex angles to angles of R (see [B,

p.303-304]). It can also be seen by the following dissection comparing R with Q (see

Definition above): Denote by Qo, ... , Q5 the vertices of Q and assume that Qs coincides

with Po and that Qo is the point at infinityon the ray from Po = Q5 through PI. If H

denotes the four-dimensional plane through Qo orthogonal to the segment POP5 , we have

(cf. Figure 2)

i = 1, ... ,5 .

P
3

P
2

Q = CD
o

Fig. 2
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Note that R, Q have identical (euclidean) vertex orthoschemes ro = qf> at Po = Q5. If we

form the simplexes

k = 1, ... ,5 (14)

in H5, then, by a result of Debrunner (see [D, Theorem (2.6) (i)]), we see that

(a) Rk is a 2-asymptotic orthoscheme;
5

(b) On the scissors congruence level, there is the relation [R] + [R1 ] = [Q] + L: [Ri].
i=2

Moreover, by the above Lemma (see also Figure 2), one can deduce that

~(Q) = ~(R5) (15)

i.e., R, R1 and Q, Rs are congruent, and that

20:'1 Xl Yl 0'4 0:'5
o 0--0--0--0--0

0:'2 X2 Y2 ZI 0'5
0--0--0--0--0--0

0:'2 0:'3 Y3 Z2 1f - 20:'6
0--0--0--0--0 0 .

(16)

Here Xi, Yi, Zi E (0, ~) satisfy

tanxl ="cot(20'1) tan0'4 tan0:'5

tau zl = cot G'f> tau 0:'2 tau x2

tan Z2 = cot(1r - 206) tan 0'2 tan 0'3

and Yi are such that the parabolicity conditions (cf. (9») are satisfied. Hence,

(17)

(18)

Finally, one reads off Figure 2 that the scheme ~(Fa) is given by (13), since the angle at Q4

between Qo, Q3 equals 06, and because the plane through these three points is orthogonal

to POP5 in Fa.

1.6 Among the set of 2-asymptotic orthoschemes in H5, there is a particular family of

orthoschemes R given by graphs

~(R)
aß, 0' ß

0-0-0-0-0-0 with (19)
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cos2
0:' + cos2 ß+ cos2

, = 1 (20)

Condition (20) guarantees that R is 2-asymptotic, and it implies that the auxiliary angle

O:'a (see Definition 1.5) satisfies 06 = ,.
By a result of Gordan (cf. [C2, p.109]), the only solutions (0, ß,,) of (20) with ingredients

commensurable with 7T are - up to permutations - ("i, i,"i) and ("i, ~, 257r) yielding five

different orthoscheme realizations in H5, namely, /72,173 and J.1.1 ,/.1.2, J.1.3 (see (7) and (8».

The connected subschemes of (19) of order four were studied by 8chläßi and Coxeter (cf.

[8, p.281 ff] and [C2, §6.7]); they occur as characteristic simplexes of the three-dimensional

spherical regular honeycombs and regular star-honeycombs of finite density.

2. Polylogarithms and higher Lobachevsky functions

2.1 Let z E C, Izi :::; 1. Then,

n = 1,2, ... , (21)

denotes the Polylogarithm function with the properties (cf. [L, §7.1 and 7.3]), for n ~ 2,

z

L · ( ) -1 Lin-l(t)dIn Z - t ,
t

o

Lin (l) = (n), Riemann's zeta function, and

kn
1
_l Lin(zk) = Lin(z) +Lin(wz) + ... + Lin(w k- 1 z) far w = e21ri

/
k

, k :::: 1

(22)

(23)

2.2 The Dilogarithm Li2 (z) at arguments z = e2i8 , B real, leads to the Lobachevsky

function
8

JI(B) = ~ Im(Lh(e2i9
)) = - 1log 12sint ldt (24)

o
which is known to represent volumes of polyhedra in hyperbolic 3-space: If R denotes a

hyperbolic 3-orthoscheme wi th graph

01 02 0:'3
E(R) 0--0--0--0

then, Lobachevsky showed that (cf. [K, Introduction aod Theorem 14.5])

1 7T 7T
vob(R) = 4{ .lI(01 + B) - JI(al - B) + JI("2 + 0:'2 - B) + JI( 2 - (}'2 - B)+

7T+ JI(a3 +B) - JI(a3 - B) +2JI( 2" - B)} where (25)
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(

2 . Z • Z )1
O (J

cos (tz - Sln aI Sln 0'3 1r< := arctan < -
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The Lobachevsky flUlction is closely related to the Clausen function (see [L, §4])

9

Cl2 (B) '.--~ sinr(zrB) J1 I· t IdL.., = - og Sln '2 t
r=1 0

according to
1

JI(B) = '2 Clz(28) , VB ER.

Analogons to the case of higher Clausen flUlctions Cln(B) (see [L, §7.1.4]), we define higher

Lobachevsky ftulctions as follows:

Definition. For m ~ 1, B E R, tbe bigber Lobacbevsky functions are defined by

JI (B) = 1 Im(Li (e2i9» = 1 ~ sin(2r8)
2m 22m - I 2m 22m - I L-, r 2m

r=1

1 . 2i9 1 ~ cos(2rO)
.lIzm+I (B) = 22m Re(LI2m+I(e » = 22m L-, r 2m+I

r=1

It follows that

(26)

9

Jhm(B) = JJhm-l(t)dt ,
o

8

JI2m+l(B) = 2;m ((2m + 1) - JJI2m (t) dt
o

(27)

Moreover, JIm (8) is 7r-periodic, even for m odd, and ocid for m even, respectively. By

means of (23) (see also [L, (7.46)]), one deduces the following distribution law

k-I

1 " r1rkm-I JIm(kB) = L, JIm(O + k)
r=O

and, as a particular case, the duplication formula

(28)

(29)

2.3 In connection with volumes of five-dimensional hyperbolic polytopes, we are mainly in­

terested in the Lobachevsky function of order three. By the above, we obtain the following

results for Jh (0):

JI3(O) = ~((3)
7r 3

Jh(-) = --(3)
4 128

7r 3
Jh(-) = --(3)

2 16
(30)
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~ 1 ~ 1
.JIa( "6 ) = 12 ((3) Jh('3 )= - 9((3) (31 )

~ 2~ 3
Jh( 5) + JIa(5) = - 25 ((3) (32)

3. The volulne formula alld applications

3.1 In order to derive volume formulae for orthoschemes in terms of their angles, we

make use of the hyperbolic analog of Schläfli's volume differential representation: For a

family of orthoschemes R in H n (n ~ 2) with dihedral angles O'i attached to the apices Pi

(1 ::; i ::; n), the volume differential dvoln(R) can be represented by

1 n

dvoln(R) = -- '" voln-z(Fr)dO'rI-n L
r=1

(33)

~(R)

Schläfli proved the spherical version of this formula for arbitrary simplexes. For a proof

of both, the spherical and hyperbolic case, we refer to !{neser [KnJ. Plainly, fonnula (33)

is still valid for a family of orthoschemes in Hn , n =1= 3, with one or two of the principal

vertices at infinity. With these preliminaries, we are ready to prove the following

THEOREM.

Let R denote the 2-asymptotic 5-ortboscheme given by

o ß "Y 0 ß
o-o~o-o-o-o with coszo+coszß+cosz,=l

Then,

1 1 ~
voI5(R(a, ß, ,» =4 {Jh(a) + JIa(ß) - 2"JI3 ("2 -,)}-

1 ~ ~ 3
-16 {.JIa( 2 + 0' + ß) + .JIa(2" - a +ß)} + 64 ((3)

where JIa(w) , wER, denotes the Lobachevsky Iunction oIorder three.

(34)

Proof: We use Schläfli's volume differential (33) for a family of 2-asymptotic orthoschemes

R given by graphs

al az Oa a4 0'5

~(R) : 0--0--0--0--0--0 with COSZ01+COSZO'2+COSZO'3=1. (35)

Then, by the asymptoticity conclitions, 0'1 = 04 =: 0,02 = 0'5 =: ß. Moreover, we see

that Q'a = 0'6 =: ,. Now, assurne that ß is constant and that ais the independent variable,



12 Ruth Kellerhals

i.e., , = ,(a). In order to determine the coefficients of dal = da4 = da, da3 = d, in

(33), we observe that the corresponding apex orthoschemes F I , F3 , F4 are characterized by

the graphs (see (10),(13»

,..
ß2- 0 a

E(FI ) 0 0-0-0

1r 1r2-' , 2-'
~(F3) 0 0-0 0

a lr- a a
E(F4 )

2
0-0 0-0

Therefore, by Lobachevsky's formula (see 2.2, (25», their volumes are given by

1 1 rr rr
voh(FI ) = '2 JI(a) + 4{JI(2 - a + ß) - JI(2 + 0 + ß)}

1 7[

voh(F3 ) = '2 JI("2 - ,) ,
1

voh(F4) = 2.JI(0) .

Hence, Schläfii's fonnula (33) yields

1 7[ 7f'
(-4) dvols (R) =.JI(a ) da + 4{JI("2 - 0 + ß) - JI("2 + a + ß) } da +

1 7f'

+ '2 R( 2 -,) d--y ,

w

where, = ')'(0). Since .JI3 (w) = -1((3) - J .n(t) dt is an even function, and since a voltune
o

formula for E(R) has to be symmetrie in 0:, ß, we obtain the following expression

(36)

2!. _ €
2

Here, c denotes the constant of integration which can be computed by evaluating (36) in

the degenerate case of an orthoscheme Ra.eg in H5 satisfying (35) such that. vo15(Rdeg) = O.

For this, we consider the following class of orthoschemes R~,~1 C H5 given by

Cl ~ - c ~ - c C'
0---0---Of-----0---01--- 0

with 0 < € < ~ l C < cl < ~ and sin2
EI = 2 sin2

E. Then, property (35) is satisfied, and

Re,e' is 2-asymptotic. Since, for € ----+ 0, €'(c) --+ 0 and det(Eo!:,~I) = - sin2
c; ---t
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0, R~,~I converges to an orthoscheme Rd~g with vols (Rdeg) - O. This implies that

c = - 1
3
6 ((3) which finishes the proof.

Q.E.D.

3.2 The above Theorem, combined with certain mssection properties of orthoschemes (cf.

1.4, 1.5), enables us to compute explicitly the vohunes of the three Coxeter orthoschemes

(7) as weIl as the volumes of the characteristic simplexes (8) of all regular star-honeycombs

(being necessarily of infinite density) in H5.

The two Coxeter orthoschemes of (7),

0"2 0--0--0=0--0--0

0'3 0--0=0--0--0=0

satisfy the conditions of the Theorem. Using 2.3, we get for their volumes vols(O'i), i =
2,3:

7
vols(0'3) = 4608 ((3) ~ 0.001826 (37)

Before we compute the volume vol5(0"1) of the remaining Coxeter orthoscheme

0'1 0--0--0--0=0--0

which i8 1-asymptotic, we make the following remark.

Remark. Let an := arccos Jn E [O,~], n ~ 3, and consider the schemes

0' a
piCO') : 0--0-'· ·-o--o=o-~-o=o--o--.. --0--0,

t

of order n + 1, i E [0, n] , which describe either spherical, euclidean or compact hyperbolic

n-orthoschemes if either O:'n < 0: < 7r - O:'n, 0:' = O:'n , or O:'n-l < 0:' < O:n (see [D, (7.9)]).

In the spherical case, Schläfii (cf. [8, p.270]) derived the foIlowing volume relations

iE[O,n] (38)

which were generalized by DebruIlller (cf. [D, Theorem (7.8)]) to all three cases using a

dissection argument: The orthoschemes piCO') tile the regular cross-polytope with dihedral

angle 20:'.
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But by continuity, we see that (38) holds even in the hyperbolic (asymptotic) limiting case

a = a n -1; in paxticulax, for n = 5 (i.e., a = ~ ), where p8(~) = 0"1 , p~( ~) = 0"2 and

p~(f) = 0"3 , we obtain the relations (see (37))

(39)

Hence, the volumes of the three Coxeter orthoschemes in H5 are rational multiples of (3)

and therefore commensurable. Considering the associated reflection groups and passing

over to torsionfree subgroups, which, by a result of Borel (see [Bo, Theorem B (ii), p.345]),

always exist, we obtain 1- and 2-cusped hyperbolic manifolds of dimension five whose

volumes are rational multiples of (3).

Finally, consider the orthoschemes presented in (8),

5 2 5
0--0--0-2 -0-0-0

5 2 5 B.
0--0-2 -0--0--0-2 -0

B. 5 2.
0-2 -0-0--0-2 -0--0

5 2. 5 ~ 5
0--0-2-0--0-2 -0--0

.§. 5 2. 5 .§.
0-2 -0--0-2 -0--0-2 -0

Since cos2 .g: + cos2 ~ + cos2 2511: = 1, we can use our Theorem to calculate the volumes of

the first three schemes making use of 2.3:

vols(Jl1) = (3) ~ 0.001002 .
1200 '

VO!s(/-l2) =_1 {Jh( 21r) + (3)} = _1 {_ Jh(~) + 2(3)} ~ 0.000339 (40)
144 5 5 144 5 25

1 1r (3)
vols(/l3) = 144 {.lh(5") + -5-} ~ 0.001998 .

For the computation of the values VOIS(Vl), VO!s(V2), we use the orlhoscheme dissection

presented in 1.5 and the above results. Let R denote the orlhoscheme with graph ~(R) =

111 , which we take as starting simplex with respect to the dissection 2[R] = 2[Q] + [R2 ] +
[R3 ]+[14] (see Definition, (15) and (18) of 1.5). Then, Q is the 2-asymptotic orlhoscheme

given by the graph E(Q) = V2. Using the Lemma, (16) and (17) of 1.5, we obtain the

following identities between the schemes of R2 , R3 , Rt
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which, by (18), imply that

(41)

Repeating this process by staxting with the orthoscheme R given by ~(R) = J.l2 , we deduce

that E(Q) = ""'3 ) and that

Therefore, we have
3

vols(J.l2) = vols(v2) + '2 VOh ({L3) ,

which together with (40) and (41) yields

1 1r «(3)
VOlS(Vl) = - Jh(-) + - ~ 0.001996

96 5 800
1 1r

vols(v2) = 96 Jh("5) '" 0.000493 .
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