Stratified local moduli of Calabi-Yau 3-folds

Yoshinori Namikawa

Sophia University
Department of Mathematics
Tokyo 102

Japan

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn

Germany

Stratified local moduli of Calabi-Yau 3-folds

Yoshinori Namikawa

Introduction

By a Calabi-Yau 3-fold X we mean, in this paper, a projective 3-fold with only terminal singularities such that $K_X \sim 0$. A Calabi-Yau 3-fold appears as a minimal model (cf. [Mo, Ka]) of a smooth projective 3-fold with Kodaira dimension 0. Let Def(X) be the Kuranishi space of X (cf. [Do, Gr]). Then by [Na 1, Theorem A] it is a smooth analytic space of $dim = Ext^1(\Omega_X^1, \mathcal{O}_X)$. Moreover, we have proved in [Na 2, Theorem(5.2)] that if X is a Q-factorial Calabi-Yau 3-fold, then a general point of Def(X) parametrizes a smooth Calabi-Yau 3-fold, in other words, X is smoothable by a flat deformation. In this paper we shall give a necessary and sufficient condition for a (not necessarily Q-factorial)Calabi-Yau 3-fold X to be smoothed and prove a structure theorem of Def(X).

Let V be the germ of a Gorenstein terminal singularity of dim 3. Then V is an isolated cDV point (i.e. its general hyperplane section is a rational double point) by Reid [Re]. Let Def(V) be the Kuranishi space of V and let V be a semi-universal family over Def(V). Let V_t denote its fiber over $t \in Def(V)$. We here remark that V_t is not a germ of the singularity for $t \neq 0$; it has non-zero 3-rd Betti number in general. Define $\sigma(V_t)$ to be the rank of $Weil(V_t)/Pic(V_t)$. Set $Y_i = \{t \in Def(V); \sigma(V_t) = i\}$. A small partial resolution $\pi: \hat{V} \longrightarrow V$ is, by definition, a proper birational (bimeromorphic) morphism from a normal variety \hat{V} to V such that π is an isomorphism over smooth points of V and that $\pi^{-1}(0)$ is a connected curve. Since V is a rational singularity, the exceptional curve forms a tree of \mathbf{P}^1 's. Note that V has only finitely many small partial resolutions \hat{V} and each \hat{V} has only isolated cDV points. Then Def(V) has the following description:

Proposition(1.6)

- (1) Let \hat{V} be a small partial resolution of V and $Def(\hat{V})$ the Kuranishi space of \hat{V} . Then there is a natural closed immersion of $Def(\hat{V})$ into Def(V) (Wahl).
- $(2)Def(V) = \coprod Y_i, Y_i = \bar{Y}_i \bar{Y}_{i+1}$ and $\bar{Y}_i = \bigcup Def(\hat{V})$, where \hat{V} runs through all small partial resolution such that $\rho(\hat{V}) \geq i$.

This proposition has a natural globalization to a Calabi-Yau 3-fold X with only terminal singularities. By definition, a small partial resolution $\pi: \hat{X} \longrightarrow X$ is a proper birational morphism from a normal variety \hat{X} to X such that π is an isomorphism over smooth points of X and that it is a small partial resolution of every singular point of X. When π is a projective morphism, \hat{X} is also a Calabi-Yau 3-fold. Let Def(X) be the Kuranishi space of X and let X be a semi-universal family over Def(X). We shall define $\sigma(X_t)$ and Y_t in the same way as above. Then one has:

Proposition(2.3)

- (1) Let \hat{X} be a small projective partial resolution of X and $Def(\hat{X})$ the Kuranishi space of \hat{X} . Then there is a natural closed immersion of $Def(\hat{X})$ into Def(X).
- (2) $Def(X) = \coprod Y_i, Y_i = \bar{Y}_i \bar{Y}_{i+1}$ and $\bar{Y}_i = \bigcup Def(\hat{X})$, where \hat{X} runs through all small projective partial resolution such that $\rho(\hat{X}) \rho(X) \geq i$.
 - (3) Each stratum Y_i is a (Zariski) locally closed smooth subset of Def(X).

Let \hat{X} be a small projective partial resolution of X. Then \hat{X} is called *maximal* if for any small projective partial resolution \tilde{X} of $\hat{X}, Def(\tilde{X})$ is a proper closed subvariety of $Def(\hat{X})$ via the natural inclusion (i.e. $Def(\tilde{X}) \longrightarrow Def(\hat{X})$ is not a surjection). We have the following criterion of the maximality:

Proposition (cf. Theorem(2.5)) Let $\{p_1, ..., p_n\} \subset Sing(\hat{X})$ be the ordinary double points on \hat{X} and let $f: Z \longrightarrow \hat{X}$ be a small (not necessarily projective) partial resolution of \hat{X} such that $C_i := f^{-1}(p_i) \cong \mathbf{P}^1$ and that f is an isomorphism over $\hat{X} - \{p_1, ..., p_n\}$. Then the following conditions are equivalent:

- (1) There is a relation in $H_2(Z, \mathbb{C})$: $\sum \alpha_i[C_i] = 0$ with $\alpha_i \neq 0$ for all i.
- (2) \hat{X} is maximal.

Our main theorem now can be stated as follows.

Theorem (cf. Theorems (2.5) and (2.7)) Let \hat{X} be a small projective partial resolution (possibily X itself) of X. Then we have:

- (1) \hat{X} is smoothable by a flat deformation if and only if \hat{X} is maximal.
- (2) If \hat{X} is not maximal, then there is a (not necessarily unique) small projective partial resolution \tilde{X} of \hat{X} such that \tilde{X} is maximal and $Def(\tilde{X}) \cong Def(\hat{X})$.
- (3) In the situation of (2), let \tilde{X} (resp. \hat{X}) denote the universal family over $Def(\tilde{X})$ (resp. $Def(\hat{X})$). Then \hat{X}_t has only ordinary double points for a general point $t \in Def(\hat{X})$ and \tilde{X}_t is a small resolution of it.

Let X be a Q-factorial Calabi-Yau 3-fold. Put $\hat{X} = X$. Then it is easily checked that

 \hat{X} is maximal by the criterion above. Now we can apply the Theorem to the situation and obtain:

Corollary(Na 2, Theorem(5.2)) Any Q-factorial Calabi-Yau 3-fold is smoothable by a flat deformation.

Acknowledgement: This work has been done during the author's staying at Max-Planck-Institut fur Mathematik. The author expresses his thanks to Professor Hirzebruch for inviting him to the institute.

§1. Isolated cDV singularity

Let V be the germ of an isolated cDV singularity. By definition, there is a holomorphic map f of V to a 1-dimensional disc Δ with a sufficiently small radius such that $f^{-1}(0) = S$ is a rational double point and other fibers are smooth. Let $\pi: \tilde{S} \longrightarrow S$ be the minimal resolution of S. We shall denote by $\mathcal{Y} \longrightarrow \mathrm{Def}(V)$ (resp. $\mathcal{Z} \longrightarrow \mathrm{Def}(S)$) the semi-universal family for the deformations of V (resp. S). One can regard \mathcal{Y} as a flat family of rational double points over $\mathrm{Def}(V) \times \Delta$. Then, by the versality of $\mathrm{Def}(S)$, there is a holomorphic map $\varphi: \mathrm{Def}(V) \times \Delta \longrightarrow \mathrm{Def}(S)$ and the \mathcal{Y} is obtained as the pull-back of \mathcal{Z} by φ .

Let \mathcal{V} be a flat deformation of V over a 1-dimensional disc Δ' . Then there is a holomorphic map $\phi: \Delta' \longrightarrow Def(V)$ and \mathcal{V} is the pull-back of \mathcal{Y} by ϕ . Since \mathcal{Y} is a flat family of rational double points over $Def(V) \times \Delta$, \mathcal{V} constitutes a flat family of rational double points over $\Delta' \times \Delta$. Let B be the discriminant divisor on Def(S) and D its inverse image in $\Delta' \times \Delta$. Let $p_1 : \Delta' \times \Delta \longrightarrow \Delta'$ be the first projection. Since V is an isolated singularity, $\{D_t\}$ is a family of Cartier divisors with $t \in \Delta'$.

Definition(1.1) A pair (\mathcal{V}, ϕ) is called *admissible* if $\#(D_t)$ is constant for $t \in \Delta' - 0$.

We have the following lemma.

Lemma(1.2) For $t \in Def(V)$, there is a flat deformation $g: \mathcal{V} \longrightarrow \Delta'$ of V over a 1-dimensional disc and a holomorphic map ϕ of the disc to Def(V) such that (1) $g^{-1}(0) = V$, $g^{-1}(s) = Y_t$ for some point $s \in \Delta'$ and (2) (\mathcal{V}, ϕ) is admissible.

Proof. Set $E = \varphi^{-1}(B)$. Take a suitable system of local coordintes $(s_1, ..., s_n)$ of Def(V) (Def(V) is smooth because V is an isolated cDV point.). Let u be the coordinate of Δ . By the Weierstrass Preparation Theorem, we may assume that E is defined as the zero locus of the function $h(u, s) = u^n + h_1(s)u^{n-1} + ... + h_n(s)$, where $h_i(0) = 0$ for all i. It can be checked that the set $W_p := \{u \in Def(V); h(u, s) \text{ has p different roots as a polynomial of } s\}$ forms a locally (Zariski) closed subset of Def(V) for every p and that

 $\bar{W}_p \ni 0$. If we take the Def(V) sufficiently small, we can assume that \bar{W}_p is connected. This implies that one can connect any point $t \in W_p$ with the origin 0 by an analytic curve $\rho: \Delta' \longrightarrow Def(V)$ in such a way that $\rho(\Delta') - 0 \subset W_p$. Q.E.D.

Let (\mathcal{V}, ϕ) be an admissible pair. Then there is a holomorphic map $h : \mathcal{V} \longrightarrow \triangle' \times \triangle$, and \mathcal{V} can be regarded as a family of rational double points (resp. a family of isolated cDVpoints) by h (resp. $g := p_1 \circ h$).

Write $V_t = g^{-1}(t)$ for a point $t \in \Delta'$. Then one has a holomorphic map $h_t : V_t \longrightarrow \Delta$. The map h_t has exactly $\#(D_t)$ singular fibers V_{t,u_t} $(i = 1, ..., \#(D_t))$. The number $\#(D_t)$ remains constant when t varies in $\Delta' - 0$, and $\#(D_0) = 1$. We then have the following lemma.

Lemma(1.3) In the commutative diagram:

$$H^{2}(V_{t} - Sing(V_{t}); \mathbf{Z}) \xrightarrow{j} H^{2}(V_{t} - \bigcup V_{t,u_{i}}; \mathbf{Z})$$

$$\delta_{1} \uparrow \qquad \qquad \delta_{2} \uparrow$$

$$H^{1}(V_{t} - Sing(V_{t}); \mathcal{O}_{V_{t}}^{*}) \longrightarrow H^{1}(V_{t} - \bigcup V_{t,u_{i}}; \mathcal{O}_{V_{t}}^{*})$$

all homomorphisms are isomorphisms.

Proof. Take a suitable Galois cover $\triangle' \longrightarrow \triangle$ in such a way that it is ramified over p_i' s and that the base change V_i' of V_t by the cover admits a simultaneous resolution $\pi:W\longrightarrow V_t'$. Let E be the exceptional curve of π . Since $H^3(E;\mathbf{Z})=0$, $H^3_E(W;\mathbf{Z})=0$ by duality. Hence the restriction map: $H^2(W;\mathbf{Z})\longrightarrow H^2(W-E;\mathbf{Z})$ is a surjection. On the other hand, the composition $H^2(W;\mathbf{Z})\cong H^1(W;\mathcal{O}^*)\cong H^1(V_t'-Sing(V_t');\mathcal{O}^*)\longrightarrow H^2(V_t'-Sing(V_t');\mathbf{Z})\cong H^2(W-E;\mathbf{Z})$ is an injection since $H^2_{Sing(V_t')}(V_t';\mathcal{O})=0$ by the depth argument. These implies that $H^2(W;\mathbf{Z})\cong H^2(W-E;\mathbf{Z})$. As $H^2(W;\mathbf{Z})\cong H^2(V_t'-U_{t,u_i};\mathbf{Z})$, and $H^2(W-E;\mathbf{Z})\cong H^2(V_t'-Sing(V_t');\mathbf{Z})$, we have an isomorphism $H^2(V_t'-U_{t,u_i};\mathbf{Z})\cong H^2(V_t'-Sing(V_t');\mathbf{Z})$. Take its invariant part by the Galois group. One then sees that j is an isomorphism. One also sees that the map $H^1(V_t'-Sing(V_t');\mathcal{O}^*)\longrightarrow H^2(V_t'-Sing(V_t');\mathbf{Z})$ is an isomorphism by the above observation. Hence we have that δ_1 is an isomorphism by taking the invariant part by the Galois group. The map δ_2 is an isomorphism because V_t-U_{t,u_i} is a Stein space and hence $H^i(V_t-U_{t,u_i};\mathcal{O})=0$ for i>0. Q.E.D.

Lemma(1.4) Suppose that $\sigma(V_t) = Weil(V_t)/Pic(V_t) > 0$ for some $t \in \Delta' - 0$. Then there is a projective small partial resolution $\nu : \hat{\mathcal{V}} \longrightarrow \mathcal{V}$ such that

(1) ν_s is a projective small partial resolution for every $s \in \Delta'$;

(2)
$$\sigma(\hat{V}_t) = 0$$
.

Proof. Since the number $r := \#(D_s)$ is constant for $s \in \Delta' - 0$, we have $\pi_1(\Delta' \times \Delta - D) = \bigoplus_{1 \leq i \leq r} \mathbf{Z}$, and we can take the loops γ_i in $\{t\} \times \Delta$ $(1 \leq i \leq r)$ which go around u_i in the positive direction as its basis. Hence one sees that the restriction map $H^0(\Delta' \times \Delta - D; R^2h_*\mathbf{Z}) \longrightarrow H^0(\{t\} \times \Delta - \{u_1, ..., u_r\}; R^2h_{t_*}\mathbf{Z})$ is an isomorphism. Since $\sigma(V_t) > 0$, there is a Q-factorialization $\nu_t : \hat{V}_t \longrightarrow V_t$. Take a ν_t -ample line bundle L on \hat{V}_t . Since $H^1(\hat{V}_t; \mathcal{O}^*) \cong H^1(V_t - Sing(V_t); \mathcal{O}^*)$, we have a non-zero element $\tau \in H^0(\{t\} \times \Delta - \{u_1, ..., u_r\}; R^2h_{t_*}\mathbf{Z})$ corresponding to L by Lemma(1.3). The τ gives an element of $H^0(\Delta' \times \Delta - D; R^2h_*\mathbf{Z})$.

We now take a finite Galois cover $\alpha: T \longrightarrow \triangle' \times \triangle$ with the Galois group G in such a way that the base change \mathcal{V} of \mathcal{V} by α admits a simultaneous resolution $\mu: \mathcal{W} \longrightarrow \mathcal{V}$. Since we have $H^0(T - \alpha^{-1}(D); R^2h'_*\mathbf{Z}) \cong H^0(T; R^2(\mu \circ h')_*\mathbf{Z}) \cong H^1(\mathcal{W}; \mathcal{O}^*)$, we also have an isomorphism $H^0(T - \alpha^{-1}(D); R^2h'_*\mathbf{Z})^G \cong H^1(\mathcal{W}; \mathcal{O}^*)^G$.

As there is a homomorphism from $H^0(\Delta' \times \Delta - D; R^2h_*\mathbf{Z}) \longrightarrow H^0(T - \alpha^{-1}(D); R^2h_*'\mathbf{Z})^G$, one has a line bundle $\mathcal{L} \in H^1(\mathcal{W}; \mathcal{O}^\bullet)^G$ corresponding to τ . We here recall that there are many choices of the simultaneous resolution $\nu: \mathcal{W} \longrightarrow \mathcal{V}'$. Two simultaneous resolutions are connected by a sequence of flops. Now we can specify one of them in such a way that \mathcal{L} is ν -nef by [Re, §§7, 8]. Then it is easily checked that the graded $\mathcal{O}_{\mathcal{V}'}$ -algebra $\bigoplus_{n\geq 0} \nu_* \mathcal{L}^{\otimes n}$ is a finitely generated $\mathcal{O}_{\mathcal{V}'}$ -algebra. The line bundle \mathcal{L} is G-invariant in the following sense:

The G has a meromorphic action on \mathcal{W} . Each element $g \in G$ induces a bimeromorphic automorphism ψ_g of \mathcal{W} . Note that ψ_g is an isomorphism in codimension 1 and hence there is an isomorphism $\psi^*_g: Pic(\mathcal{W}) \longrightarrow Pic(\mathcal{W})$. Then \mathcal{L} is invariant under ψ^*_g for every $g \in G$.

Hence $\nu_*\mathcal{L}^{\otimes n}$ is a G-sheaf for every n. We here set $\hat{\mathcal{V}} = Proj_{\mathcal{O}_{\mathcal{V}}} \bigoplus_{n \geq 0} \nu_*^G \mathcal{L}^{\otimes n}$. Q.E.D.

Remark(1.5) (1) In the proof of (1.4), one has a birational morphism $\varphi: \mathcal{W} \longrightarrow \hat{\mathcal{W}}$ over \mathcal{V}' by using a ν -free line bundle $\mathcal{L}^{\otimes m}$ (m >> 0). Then the $\hat{\mathcal{V}}$ is obtained as the quotient of $\hat{\mathcal{W}}$ by G. Let $p = \alpha^{-1}((0,0)) \in T$. Then the fiber $\hat{\mathcal{W}}_p$ of the morphism $\hat{\mathcal{W}} \longrightarrow T$ is a partial resolution S' of the rational double point S (i.e. the minimal resolution \hat{S} of S factors through S'. By the assumption, the exceptional locus of the partial resolution has exactly r irreducible components. Since G acts on $\hat{\mathcal{W}}_p$ trivially, we see that the exceptional locus of $\nu_0: \hat{\mathcal{V}}_0 \longrightarrow V_0$ has r irreducible components.

- (2) Since $R^1 \nu_{s*} \mathcal{L}^{\otimes n} = 0$ for all $s \in \Delta'$, one has the base change property: $\nu^G_* \mathcal{L}^{\otimes n} \otimes_{\mathcal{O}_{\mathcal{V}}} \mathcal{O}_{V_s} \cong \nu_s^G_* \mathcal{L}_s^{\otimes n}$. In particular, we have $\hat{V}_s = \operatorname{Proj} \bigoplus_{n \geq 0} \nu_s^G_* \mathcal{L}_s^{\otimes n}$ for all $s \in \Delta'$.
 - (3) One can state the result of (1.4) in more generality as follows. With the same

assumption of (1.4), suppose that a projective small partial resolution $\nu_t : \hat{V}_t \longrightarrow V_t$ is given. Then we can extend the ν_t to a projective small partial resolution $\nu : \hat{\mathcal{V}} \longrightarrow \mathcal{V}$ with the property (1) in (1.4). In fact, we only have to replace the **Q**-factorialization with this ν_t in the proof of (1.4).

Let V be the germ of an isolated cDV point and Def(V) the Kuranishi space of V. Denote by \mathcal{Y} the semi-universal family over Def(V). Define $\sigma(Y_t)$ -want $Weil(Y_t)/Pic(Y_t)$ and set $Y_i = \{t \in Def(V); \sigma(Y_t) = i\}$. Then we have the following description of Def(V).

Proposition(1.6)

- (1) Let \hat{V} be a small partial resolution of V and $Def(\hat{V})$ the Kuranishi space of \hat{V} . Then there is a natural closed immersion of $Def(\hat{V})$ into Def(V).
- (2) Def(V) has a stratification into the disjoint sums of (Zariski) lacally closed subsets: $Def(V) = \coprod Y_i, Y_i = \bar{Y}_i \bar{Y}_{i+1}$ and $\bar{Y}_i = \bigcup Def(\hat{V})$, where \hat{V} runs through all small partial resolutions such that $\rho(\hat{V}) \geq i$.

Proof (1): Since V has only rational singularity, there is a natural map $Def(\hat{V}) \longrightarrow Def(V)$ by Wahl[Wa]. So we only have to check that the homomorphism $Ext^1(\Omega^1_{\hat{V}}, \mathcal{O}_{\hat{V}}) \longrightarrow Ext^1(\Omega^1_{V}, \mathcal{O}_{V})$ is an injection. Set $\hat{U} := \hat{V} - Sing(\hat{V})$ and U := V - Sing(V). By Schlessinger[Sch], we have $Ext^1(\Omega^1_{\hat{V}}, \mathcal{O}_{\hat{V}}) \cong H^1(\hat{U}; \Theta_{\hat{U}})$ and $Ext^1(\Omega^1_{V}, \mathcal{O}_{V}) \cong H^1(U; \Theta_U)$. Denote by C the exceptional curve of the small partial resolution. Then we have an exact sequence of local cohomology:

$$H^1_{CO\hat{U}}(\hat{U};\Theta_{\hat{U}}) \longrightarrow H^1(\hat{U};\Theta_{\hat{U}}) \longrightarrow H^1(U;\Theta_U)$$

By the depth argument, we have $H^1_{C \cap \hat{U}}(\hat{U}; \Theta_{\hat{U}}) = 0$. Hence we have done.

(2): Let $t \in Y_i$. Then by Lemma(1.2) there is an admissible pair (\mathcal{V}, ϕ) such that $g^{-1}(0) = V$ and $g^{-1}(s) = Y_t$. We have a projective partial resolution $\nu : \hat{\mathcal{V}} \longrightarrow \mathcal{V}$ by Lemma(1.4) and Remark(1.5) such that $\rho(\hat{V}_0) = i$. This implies that $t \in Def(\hat{V}_0)$. Moreover, we have $t \in Def(\hat{V}_0) - \bigcup_{\rho(\hat{V}) \geq i+1} Def(\hat{V})$. In fact, suppose that $t \in Def(\hat{V})$ for some \hat{V} with $\rho(\hat{V}) > i$. We can find an analytic curve $\Gamma \subset Def(\hat{V})$ passing through t and the origin 0 in such a way that there is a flat deformation $\hat{V} \longrightarrow \Gamma$ of \hat{V} and a birational morphism ν from \hat{V} to $\mathcal{Y} \times_{Def(V)} \Gamma$. Since $\rho(\hat{V}) > i$, the exceptional locus of ν_0 has more than i irreducible components $C_1, ..., C_n$ $(n = \rho(\hat{V}))$. Each curve C_j moves sideways in the family $\hat{V} \longrightarrow \Gamma$ to a curve $C_j(t)$ in \hat{V}_i . Since C_j 's are numerically independent in \hat{V}_0 , $C_j(t)$'s are also numerically independent in \hat{V}_i . This, in particular, implies that $\sigma(Y_i) > i$, which is a contradiction. Hence we have proved that $\hat{Y}_i \subset \bigcup_{\rho(\hat{V}) \geq i} Def(\hat{V}) - \bigcup_{\rho(\hat{V}) \geq i+1} Def(\hat{V})$. We can also prove the converse implication by the same argument. Q.E.D.

Example(1.7) Let V be a good representative of the germ of $\{(x, y, z, w) \in \mathbb{C}^4; x^2 + y^2 + z^2 + w^3 = 0\}$ at the origin. Consider the 1-parameter deformation V of V given by the equation $x^2 + y^2 + z^2 + w^3 + w^2t = 0$. For $t \neq 0$, V_t has a singularity at p = (0, 0, 0, 0, t) and (V_t, p) is not **Q**-factorial. However, V_t itself is **Q**-factorial.

Let (\mathcal{V}, ϕ) be an admissible pair such that V_t has only ordinary double points for $t \neq 0$. Assume that there is a small partial resolution $\nu : \hat{\mathcal{V}} \longrightarrow \mathcal{V}$ which satisfies

- (1) ν_0 is a small partial resolution of V with n irreducible curves as the exceptional locus (or equivalently $\rho(\hat{V}_0) = n$);
 - (2) ν_t is a small resolution of ordinary double points of V_t for $t \neq 0$.

Note that the exceptional locus of the map ν_t is a disjoint union of (-1, -1)-curves for $t \neq 0$. As (\mathcal{V}, ϕ) is an admissible pair, the number of such (-1, -1)-curves is independent of $t \neq 0$. We denote this number by m. In this situation, we have the following lemma.

Lemma(1.8) One has the inequality $m \ge n$, and the equality holds if and only if V is the germ of an ordinary double point and V is a trivial deformation of V.

Proof. As we have seen above, there is a holomorphic map $h: \mathcal{V} \longrightarrow \Delta' \times \Delta$ and \mathcal{V} can be regarded as a family of rational double points. Set $S = h^{-1}((0,0))$ and $S' = (h \circ \nu)^{-1}((0,0))$. Then the minimal resolution $\pi: \tilde{S} \longrightarrow S$ factors through S' (cf. [Re]). By the versality of Def(S), one has a holomorphic map of $\Delta' \times \Delta$ to Def(S). In our case, this map factors through Def(S'). By the assumption, the partial resolution $S' \longrightarrow S$ has n irreducible curves as the exceptional divisor. Since $Ext^2(\Omega_{S'}^1, \mathcal{O}'_S) = 0$, Def(S') is smooth.

Here we recall a result of Brieskorn (cf.[Br, Pi]). Let E_j ($1 \le j \le l$) be the irreducible components of the exceptional locus of $\tilde{S} \longrightarrow S$. Put $\Sigma = \{D = \Sigma a_j E_j; D^2 = -2, a_j \in \mathbb{Z}\}$. The Σ forms a root system. Then $Def(\tilde{S}) \longrightarrow Def(S)$ is a finite Galois cover with Galois group $G = W(\Sigma)$, the Weyl group of Σ . Moreover, there is a one to one correspondence between the effective roots of Σ and the ramification divisors of $Def(\tilde{S})$. Since $W(\Sigma)$ acts transitively on Σ , one sees that G acts on the set of ramification divisors of $Def(\tilde{S})$ transitively. Thus, the discriminant locus B of Def(S) is an irreducible divisor.

We shall prove that there are at least n irreducible component in the ramification locus $R \subset Def(S')$ of the finite cover $Def(S') \longrightarrow Def(S)$. First we factorize the partial resolution into n number of birational morphisms: $S' \longrightarrow S_{n-1} \longrightarrow \ldots, S_1 \longrightarrow S$ in such a way that $\rho(S_i/S_{i-1}) = 1$ for all i. Then we have a sequence of finite covers : $Def(S') \longrightarrow Def(S_{n-1}), \ldots, Def(S_1) \longrightarrow Def(S)$. Renumbering the indices of E_i 's, we may assume that E_i corresponds to the exceptional divisor of $S_i \longrightarrow S_{i-1}$. As we

have remarked above, there is a ramification divisor $D_i \subset Def(\tilde{S})$ corresponding to E_i . Denote by $B_i \subset Def(S_i)$ its image by the map $Def(\tilde{S}) \longrightarrow Def(S_i)$, and denote by $R_i \subset Def(S')$ its image by the map $Def(\tilde{S}) \longrightarrow Def(S')$. Then it can be checked that B_i is an irreducible component of the ramification locus of $Def(S_i) \longrightarrow Def(S_{i-1})$. Since the ramification indices of ramification divisors of $Def(\tilde{S})$ all equal 1, this implies that R_i $(1 \le i \le n)$ are mutually different irreducible components of R.

Next assume that S is not of type A_1 . Consider the map $f_1: Def(S_1) \longrightarrow Def(S)$. Decompose $f_1^{-1}(B)$ into the two parts: the ramification locus G of f_1 and the nonramification locus H. Both of them are Cartier divisors on $Def(S_1)$. Suppose that H is empty. Then all D_i 's are mapped onto some irreducible components of G by the map $Def(\tilde{S}) \longrightarrow Def(S_1)$. But this is absurd because if so, then the ramification indices of $D_i(i \ge 2)$ are grater than one. Hence H should be non-empty and R_i 's $(i \geq 2)$ are mapped onto some irreducible components of H by the map $Def(S') \longrightarrow$ $Def(S_1)$. Here if G has more than one irreducible component, then there are at least n+1 irreducible components in the ramification locus $R \subset Def(S')$ of the finite cover $Def(S') \longrightarrow Def(S)$. Even if G is irreducible, we can show that there are at least n+1 irreducible components in R in the following way. Let $D^* \subset Def(\tilde{S})$ be the ramification divisor corresponding to the fundamental cycle of the minimal resolution Sof S. It can be checked that D^* is mapped onto G by the map $Def(\tilde{S}) \longrightarrow Def(S_1)$. Let $R^* \subset Def(S')$ be the image of D^* by the map $Def(\tilde{S}) \longrightarrow Def(S')$. We shall prove that R_1 and R^* are different divisors on Def(S'). Let $S' \longrightarrow S''$ be the birational morphism contracting the curve E_1 to a point. R_1 is clearly a ramification divisor of the map $Def(S') \longrightarrow Def(S'')$, but R^* is not a ramification divisor by definition. Thus, R_1 and R^* are different divosor on Def(S'). Now the n+1 divisors $R_i (1 \le i \le n)$ and R^* are mutually different irreducible components of R.

Assume finally that S is of type A_1 . Then V is isomorphic to the germ of $\{(x, y, z, w) \in \mathbb{C}^4; x^2 + y^2 + z^2 + w^k = 0\}$ at the origin for some k > 1. In this case, we can directly check that m = n if and only if k = 2 (cf.[Fr]). Q.E.D.

§2. Calabi-Yau 3-folds

Let X be a Calabi-Yau 3-fold with terminal singularities. As $K_X \sim 0$, X has only Gorenstein terminal singularities. Thus, X has only isolated cDV singularities by [Re]. For each singular point $p_i \in X$, we take a sufficiently small open neighborhood V_i of p_i . There is a holomorphic map f_i of V_i to a 1-dimensional disc Δ with a small radius such that $f_i^{-1}(0) = S_i$ is a rational double point and other fibers are smooth. Let $\mathcal{Y}_i \longrightarrow Def(V_i)$ be the semi-universal family for the deformations of V_i . One can regard

 \mathcal{Y}_i as a flat family of rational double points over $Def(V_i) \times \triangle$. By the versality of $Def(S_i)$ there is a holomorphic map $\varphi_i : Def(V) \times \triangle \longrightarrow Def(S_i)$.

Let $\mathcal{X}_{\Delta'}$ be a flat deformation of X over a 1-dimensional disc Δ' . Then there is a holomorphic map ϕ of Δ' to the Kuranishi space Def(X) corresponding to this flat deformation. By composing this map with the natural map $Def(X) \longrightarrow Def(V_i)$, we obtain a holomorphic map $\phi_i : \Delta' \longrightarrow Def(V_i)$ for each singularity $p_i \in X$. We also have a holomorphic map from $\Delta' \times \Delta$ to $Def(S_i)$ by composing $\phi_i \times id$ with φ_i . By pulling back the semi-universal family \mathcal{Z}_i over $Def(S_i)$ by the map, obtained is a flat family \mathcal{V}_i of rational double points over $\Delta' \times \Delta$. The \mathcal{V}_i can be also viwed as a flat deformation of V_i over Δ' . Note that \mathcal{V}_i is an open neighborhood of $p_i \in \mathcal{X}_{\Delta'}$.

Definition(2.1) A pair $(\mathcal{X}_{\Delta'}, \phi)$ is called *admissible* if (\mathcal{V}_i, ϕ_i) are all admissible in the sense of (1.1).

Let \mathcal{X} be the universal family over the Kuranishi space Def(X) of X. By the same argument as (1.2) we have

Lemma(2.2) For $t \in Def(X)$ there is a flat deformation $g: \mathcal{X}_{\Delta'} \longrightarrow \Delta'$ of X over a 1-dimensional disc and a holomorphic map ϕ of the disc to Def(X) such that(1) $g^{-1}(0) = X$, $g^{-1}(s) = X_t$ for some point $s \in \Delta'$ and (2) $(\mathcal{X}_{\Delta'}, \phi)$ is admissible.

Define $\sigma(X_t)$ to be the rank of $Weil(X_t)/Pic(X_t)$ and set $Y_i = \{t \in Def(X); \sigma(X_t) = i\}$. Then one has the following globalization of (1.6).

Proposition(2.3) (1) Let \hat{X} be a small projective partial resolution of X and $Def(\hat{X})$ the Kuranishi space of \hat{X} . Then there is a natural closed immersion of $Def(\hat{X})$ into Def(X).

- (2) $Def(X) = \coprod Y_i$, $Y_i = \bar{Y}_i \bar{Y}_{i-1}$ and $\bar{Y}_i = \bigcup Def(\hat{X})$, where \hat{X} runs through all small projective resolutions such that $\rho(\hat{X}) \rho(X) \geq i$.
 - (3) Each stratum Y_i is a (Zariski) locally closed smooth subset of Def(X).

Proof (1): The proof is quite similar to that of (1.6)(1).

(2): Let $t \in Y_i$. We take a flat deformation $g: \mathcal{X}_{\Delta'} \longrightarrow \Delta'$ and a holomorhic map $\phi: \Delta' \longrightarrow Def(X)$ with the properties (1) and (2) of Lemma(2.2). Let $\nu_t: \hat{X}_t \longrightarrow X_t$ be a Q-factorialization. The ν_t induces a projective small partial resolution $\nu^i_t: \hat{V}_{i,t} \longrightarrow V_{i,t}$. By Lemma(1.4) and Remark(1.5),(3) each ν^i_t extends to a projective small partial resolution $\nu_i: \hat{\mathcal{V}}_i \longrightarrow \mathcal{V}_i$. As a consequence, one has a small partial resolution $\nu: \hat{\mathcal{X}}_{\Delta'} \longrightarrow \mathcal{X}_{\Delta'}$. Note that $\hat{X}_{\Delta',t} = \hat{X}_t$. Since \hat{X}_t is projective, there is an ample line bundle L on \hat{X}_t . The 2-nd Betti number (with respect to the usual cohomology) is preserved under a flat deformation of Calabi-Yau 3-folds with isolated

hypersurface singularities by the vanishing cycle argument. This implies that the Picard number is also preserved because $h^1 = h^2 = 0$ in this case. Thus, the line bundle L extends to a line bundle \mathcal{L} on $\hat{\mathcal{X}}_{\Delta'}$. Let $C_1, ..., C_m$ be the irreducible components of the exceptional locus of ν_0 . $C'_j s$ move sideways in $\mathcal{X}_{\Delta'}$ to the curves $C_j(t)' s$ on \hat{X}_t . Since $(L, C_j(t)) > 0$, $(\mathcal{L}, C_j) > 0$, which means that $\hat{X}_{\Delta',0}$ is projective over X. Now the relative Picard number $\rho(\hat{X}_t/X_t) = i$ by our assumption. Hence we have $\rho(\hat{X}_{\Delta',0}/X) = i$. It follows from the observation above that $t \in \bigcup_{\rho(\hat{X}/X) \geq i} Def(\hat{X})$. Moreover, we have $t \in \bigcup_{\rho(\hat{X}/X) \geq i} Def(\hat{X}) - \bigcup_{\rho(\hat{X}/X) \geq i+1} Def(\hat{X})$. In fact, if $t \in Def(\hat{X})$ for a projective small partial resolution \hat{X} with $\rho(\hat{X}/X) > i$, then we can choose an analytic curve $\Gamma \subset Def(\hat{X})$ passing through T and T in such a way that there is a flat deformation $\hat{X} \to \Gamma$ of \hat{X} and a birational morphism ν from \hat{X} to $\mathcal{X} \times_{Def(X)} \Gamma$. Since $\rho(\hat{X}/X) > i$, we have $\rho(\hat{X}_t/X_t) > i$, which is a contradiction.

Finally we show that if $t \in \bigcup_{\rho(\hat{X}/X) \geq i} Def(\hat{X}) - \bigcup_{\rho(\hat{X}/X) \geq i+1} Def(\hat{X})$, then $t \in Y_i$. By the assumption, $t \in Def(\hat{X})$ with a projective small resolution $\hat{X} \longrightarrow X$ for which $\rho(\hat{X}/X) = i$. Thus, $\sigma(X_t) \geq i$. On the other hand, $\sigma(X_t) \leq i$ because $t \notin \bigcup_{\rho(\hat{X}/X) \geq i+1} Def(\hat{X})$. Hence we have done.

(3): Assume that Y_i has a singular point t. Since $Def(\hat{X})$ is a smooth subvariety of Def(X) for every projective small partial resolution \hat{X} of X, there are at least two different irreducible components of \bar{Y}_i which contain t, say, $Def(\hat{X}_1)$ and $Def(\hat{X}_2)$, for which $\rho(\hat{X}_1/X) = \rho(\hat{X}_2/X) = i$. This means that there are two different projective small partial resolutions X_t' and X_t'' of X_t , for which $Def(X_t') \neq Def(X_t'')$ as a subvariety of $Def(X_t)$. Let W' (resp. W'') be a Q-factorization of X_t' (resp. X_t''). Then W' and W'' are both Q-factorizations of X_t , and hence they are connected by a flop. It is proved by Kollár and Mori [K-M,(11.10)] that $Def(W') \cong Def(W'')$. This, in particular, implies that $\rho(W'/X_t) > \rho(X_t'/X_t) = i$. However, it is absurd because $\sigma(X_t) = i$. Q.E.D.

Definition(2.4) Let \hat{X} be a projective small partial resolution of X. Then \hat{X} is called *maximal* if for any projective small partial resolution \hat{X} of \hat{X} , $Def(\hat{X})$ is a proper closed subvariety of $Def(\hat{X})$ via the natural inclusion.

In view of Proposition (2.3), the stratification of Def(X) is determined only by maximal projective small partial resolutions. We have the following criterion of the maximality.

Theorem(2.5) Let $\{p_1,...,p_l\}\subset Sing(\hat{X})$ be the ordinary double points on \hat{X} and let $f:Z\longrightarrow \hat{X}$ be a small (not necessarily projective) partial resolution of \hat{X} such that $C_i:=f^{-1}(p_i)\cong \mathbf{P}^1$ and that f is an isomorphism over $\hat{X}-\{p_1,...,p_l\}$. Then the following three conditions are equivalent:

- (1) \hat{X} is maximal;
- (2) \hat{X} is smoothable by a flat deformation;
- (3) There is a relation in $H_2(Z, \mathbf{C})$: $\Sigma \alpha_i[C_i] = 0$ with $\alpha_i \neq 0$ for all i.
- Proof (1) \Rightarrow (2): \hat{X} has a flat deformation to a Calabi-Yau 3-fold Y with only ordinary double points by [Na 2, Theorem(5.2)]. Let Y_j be the germ of a simular point $q_j \in Y$. We may assume that $\Sigma \sigma(Y_j) = \sigma(Y)$ by [Na 2, Corollary(6.12)]. If Y has a singularity, then $\sigma(Y) > 0$, which implies that a general point of Def(X) corresponds to a non-Q-factorial Calabi-Yau 3-fold. Hence there is a projective small partial resolution \tilde{X} of \hat{X} such that $Def(\tilde{X}) \cong Def(\hat{X})$ by applying Proposition(2.3) to $Def(\hat{X})$. This contradicts the maximality of \hat{X} . So Y must be a smooth Calabi-Yau 3-fold.
- (2) \Rightarrow (1): It is obvious because smooth Calab-Yau 3-fold Y has no small partial resolutions except for Y itself.
- (3) \Rightarrow (2): First we shall show that all singularities of \hat{X} which are not ordinary double points are smoothed under a suitable flat deformation of \hat{X} . Let $g:\hat{X}\longrightarrow \Delta$ be a flat deformation of \hat{X} over a 1-dimensional disc such that $g^{-1}(0)=\hat{X}$ and a general fiber $g^{-1}(t):=Y(t\neq 0)$ is the same as above. Suppose that when \hat{X} is deformed to Y, a non-ordinary double point $p\in \hat{X}$ splits into a finite number of ordinary double points $q_1,...,q_m$ on Y. By Proposition(2.3), there is a projective birational morphism $\nu: \tilde{X} \longrightarrow \hat{X}$ which satisfies (a) $\nu_0: \tilde{X} \longrightarrow \hat{X}$ is a small partial resolution of \hat{X} and (b) ν_t is a small resolution of the ordinary double points on Y for $t\neq 0$. Define n to be the number of the irreducible components of $\nu_0^{-1}(p)$. Then we have m>n by Lemma(1.8). Hence the curves $D_i:=\nu_t^{-1}(q_i)(1\leq i\leq m)$ are not numerically independent on \tilde{X}_t , which contradicts the assumption $\Sigma\sigma(Y_j)=\sigma(Y)$.

We shall next prove that all ordinary double points are smoothed under a suitable flat deformation of \hat{X} . Let \hat{X}_i be the germ of a ordinary double point $p_i \in \hat{X}$. Let $\pi: W \longrightarrow Z$ be a resolution of singularities such that $\pi^{-1}(Z - Sing(Z)) \cong Z - Sing(Z)$. Let E be the exceptional divisor of π . Then the exceptional locus of $f \circ \pi$ is a disjoint union of C_i 's and E. We have the following exact commutative diagram:

$$(2.6) \\ H^{1}(\hat{X} - Sing(\hat{X}); \Theta_{\hat{X}}) \longrightarrow \bigoplus_{i} H^{2}_{C_{i}}(W; \Omega^{2}_{W}) \bigoplus H^{2}_{E}(W; \Omega^{2}_{W}) - \gamma \longrightarrow H^{2}(W, \Omega^{2}_{W}) \\ \parallel \qquad \qquad \beta \uparrow \\ H^{1}(\hat{X} - Sing(\hat{X}); \Theta_{\hat{X}}) - \alpha \longrightarrow \bigoplus H^{2}_{Sing(\hat{X})}(\hat{X}; \Theta_{\hat{X}})$$

By the assumption of (3), there is an element $\epsilon \in Ker(\gamma)$ whose i-th component ϵ_i are all non-zero for $1 \leq i \leq l$. Then there is an element $\eta \in H^1(\hat{X} - Sing(\hat{X}); \Theta_{\hat{X}})$ such that $\alpha(\eta)_i \in H^2_{p_i}(\hat{X}; \Theta_{\hat{X}}) \cong Ext^1(\Omega^1_{\hat{X}_i}; \mathcal{O}_{\hat{X}_i})$ are all non-zero by (2.6). Since any infinitesimal

deformation of \hat{X} is unobstructed, 1-st order deformation of \hat{X} corresponding to the η can be realized. Hence we have done.

It follows from two observations above that \hat{X} is smoothable by a flat deformation because $Def(\hat{X})$ is smooth (in particular, irreducible).

(2) \Longrightarrow (3): Assume that there is a positive integer $k \leq l$ and all relations in $H_2(Z; \mathbf{C})$ are of the form $\sum_{i \geq k+1} \alpha_i [C_i] = 0$ for some α_i 's. Let $f': Z' \longrightarrow \hat{X}$ be a small partial resolution of \hat{X} obtained by contracting the curves C_i $(i \geq k+1)$ on Z to points. We shall show that $Def(Z') \cong Def(\hat{X})$. If this is proved, then we see that the ordinary double points $p_i \in \hat{X}$ $(i \leq k)$ are not smoothed by any flat deformation of \hat{X} because (-1,-1)-curves C_i $(i \geq k+1)$ are stable under any flat deformation of Z'.

In the diagram (2.6) choose an element $\epsilon \in Ker(\gamma)$. We denote by $\epsilon_i \in H^2_{C_i}(W, \Omega^2_W)$ its i-th component and denote by $\epsilon_E \in H^2_E(W, \Omega^2_W)$ its other component. The assumption implies that ϵ_i are all zero for $1 \leq i \leq k$. Hence, for an arbitrary element $\eta \in H^1(X - Sing(X); \Theta_X)$, we see that the i-th component $\alpha(\eta)_i$ of $\alpha(\eta)$ are all zero for $1 \leq i \leq k$. Next we set $\hat{X}' = \hat{X} - (Sing(\hat{X}) - \{p_1, ..., p_k\})$ and consider the following exact commutative diagram

Since $\alpha' = 0$, one has an isomorphism $H^1(Z - Sing(Z); \Theta_Z) \cong H^1(\hat{X} - Sing(\hat{X}); \Theta_{\hat{X}})$. By Schlessinger [Sch] these are isomorphic to the tangent spaces to Def(Z) and $Def(\hat{X})$ at the origin respectively. As Def(Z) and $Def(\hat{X})$ are both smooth, we conclude that $Def(Z) \cong Def(\hat{X})$. Q.E.D.

When a projective small partial resolution \hat{X} of X is not maximal, one has the following.

Theorem(2.7) Let \hat{X} be not maximal. Then there is a (not necessarily unique) small projective partial resolution \tilde{X} of \hat{X} such that \tilde{X} is maximal and $Def(\tilde{X}) \cong Def(\hat{X})$. In this situation, let \tilde{X} (resp. \hat{X}) be the universal family over $Def(\tilde{X})$ (resp. $Def(\hat{X})$). Then there is a projective birational morphism ν from \tilde{X} to \hat{X} . For general $t \in Def(\hat{X})$, \hat{X}_t has only ordinary double points and $\nu_t : \tilde{X}_t \longrightarrow \hat{X}_t$ is a small resolution of \hat{X}_t .

Proof. This is already shown in the proof of Theorem (2.5) (especially in the $(1) \Longrightarrow (2)$ part). Q.E.D.

References

- [Br] Brieskorn, E.: Singular elements of semi-simple algebraic groups, Proc. Int. Cong. Math. Nice, 2. (1970)
- [Do] Douady, A.: Le problème des modules locaux pour les espaces C-analytiques compacts, Ann. Sci. Ec. Norm. Sup. 7. (1974)
- [Fr] Friedman, R.: Simultaneous resolution of threefold double points, Math Ann. **274.** (1986)
- [Gr] Grauert, H.: Der Satz von Kuranishi für kompakte Komplexe Räume, Invent. Math. 25. (1974)
- [Ka] Kawamata, Y.: Abundance theorem for minimal threefolds, Invent. Math 108 (1992)
- [K-M] Kollár, J., Mori, S.: Classification of the three-dimensional flips, Journal of A.M.S. 5.
- [Mo] Mori, S.: Flip theorem and the existence of minimal 3-folds, Journal of A.M.S. 1. (1988)
- [Na 1] Namikawa, Y.: On deformations of Calabi-Yau 3-folds with terminal singularities, Topology 33.(3) (1994)
- [Na 2] Namikawa, Y.: Global smoothing of Calabi-Yau 3-folds, Preprint (1994)
- [Pi] Pinkham, H.: Résolution simultanée de points doubles rationnels, Seminare sur les Singularities des Surfaces, Lecture Note in Math. 777. (1980)
- [Re] Reid, M.: Minimal models of canonical 3-folds, Adv. in Math 1 Kinokuniya, North-Holland (1983)
- [Sch] Schlessinger, M.: Rigidity of quotient singularities, Invent. Math. 14. (1971)
- [Wa] Wahl, J.: Equisingular deformations of normal surface singularities I, Ann Math. 104. (1976)

 ${\it Max-Planck-Institute\ for\ Mathematics,\ Gottfried-Claren-Strasse\ 26,\ 53225,\ Bonn,\ Germany}$