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Introduction

By a Calabi-Yau 3-fold X we mean, in this paper, a projective 3-fold with only terminal
singularities such that Ay ~ 0. A Calabi-Yau 3-fold appears as a minimal model (cf.
[Mo, Ka]) of a smooth projective 3-fold with Kodaira dimension 0. Let Def(X) be the
Kuranishi space of X (cf. [Do, Gr]). Then by [Na 1, Theorem A] it is a smooth analytic
space of dim = Ezt'(Q%,Ox). Moreover, we have proved in [Na 2, Theorem(5.2)] that
if X is a Q-factorial Calabi-Yau 3-fold, then a general point of Def(X) parametrizes a
smooth Calabi-Yau 3-fold, in other words, X is smoothable by a flat deformation. In
this paper we shall give a necessary and sufficient condition for a (not necessarily Q-
factorial)Calabi-Yau 3-fold X to be smoothed and prove a structure theorem of Def(X).

Let V be the germ of a Gorenstein terminal singularity of dim 3. Then V is an
isolated cDV point (i.e. its general hyperplane section is a rational double point) by
Reid [Re |. Let Def(V) be the Kuranishi space of V and let V be a semi-universal family
over Def(V). Let V; denote its fiber over t€ Def(V). We here remark that V; is not a
germ of the singularity for ¢t#£0; it has non-zero 3-rd Betti number in general. Define
o(V;) to be the rank of Weil(Vi)/Pic(Vi). Set Y = {t € Def(V);o(V;) = 1}. A small
partial resolution 7 : V— vV is, by definition, a proper birational (bimeromorphic)
morphism from a normal variety V to V such that  is an isomorphism over smooth
points of V and that 77*(0) is a connected curve. Since V is a rational singularity, the
exceptional curve forms a tree of P'’s. Note that V has only finitely many small partial
resolutions V and each V has only isolated cDV points. Then Def(V) has the following
description:

Proposition(1.6)

(1) Let V be a small partial resolution of V and Def(f/) the Kuranishi space of V.
Then there is a natural closed immersion of Def(V') into Def(V) (Wahl).

(2)Def(V) = 11Y;, Yi=Y: - Viy, and ¥; = UDef(V), where V runs through all

small partial resolution such that p(V) > 1.



This proposition has a natural globalization to a Calabi-Yau 3-fold X with only
terminal singularities. By definition, a small partial resolution = : X—Xisa proper
birational morphism from a normal variety X to X such that 7 is an isomorphism over
smooth points of X and that it is a small partial resolution of every singular point of
X. When 7 is a projective morphism, X is also a Calabi-Yau 3-fold. Let Def(X) be the
Kuranishi space of X and let &' be a semi-universal family over Def(X). We shall define

o(X:) and Y; in the same way as above. Then one has:

Proposition(2.3) .

(1) Let X be a small projective partial resolution of X and Def(X) the Kuranishi
space of X. Then there is a natural closed immersion of Def(X) into Def(X).

(2) Def(X) = 11Y;, Y = Yi — ¥iyy and Yi = {J Def(X), where X runs through all

small projective partial resolution such that p(X) — p(X) > 1.
(3) Each stratum Y; is a (Zariski) locally closed smooth subset of Def(X).

Let X be a small projective partial resolution of X. Then X is called mazimal if for
any small projective partial resolution X of X,Def(X) is a proper closed subvariety of
Def(X) via the natural inclusion (i.e. Def(X) — Def(X) is not a surjection). We

have the following criterion of the maximality:

Proposition (cf. Theorem(2.5))  Let {p1, ..., pa} C Sing(X) be the ordinary double
points on X and let f : Z — X be a small (not necessarily projective) partial resolution
of X such that C; := F~Y(p:;) = P! and that f is an isomorphism over X - {p1,..., Pn}-
Then the following conditions are equivalent:

(1) There is a relation in Hy(Z,C): ¥ o;[C;] = 0 with a; # 0 for all 1.
(2) X is maximal.

Our main theorem now can be stated as follows.

Theorem (cf.Theorems(2.5) and (2.7)) Let X be a small projective partial reso-
lution (possibily X itself) of X. Then we have:

(1) X is smoothable by a flat deformation if and only if X is maximal.

(2) If X is not maximal, then there is a (not necessarily unique) small projective
partial resolution X of X such that X is maximal and Def(X) 2 Def(X).

(3) In the situation of (2), let X' (resp. &) denote the universal family over Def(X)
(resp. Def(X)). Then X, has only ordinary double points for a general point t €
Def(X) and X, is a small resolution of it.

Let X be a Q-factorial Calabi-Yau 3-fold. Put X = X. Then it is easily checked that



X is maximal by the criterion above. Now we can apply the Theorem to the situation

and obtain:

Corollary(Na 2, Theorem(5.2)) Any Q-factorial Calabi-Yau 3-fold is smoothable

by a flat deformation.
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§1. Isolated cDV singularity

Let V be the germ of an isolated cDV singularity. By definition, there is a holomorphic
map f of V to a 1-dimensional disc A with a sufficiently small radius such that f~*(0) =
S is a rational double point and other fibers are smooth. Let 7 : S —3 S be the
minimal resolution of S. We shall denote by Y — Def(V) (resp. £ — Def(S)) the
semi-universal family for the deformations of V (resp. S). One can regard Y as a flat
family of rational double points over Def(V) x A. Then, by the versality of Def(S),
there is a holomorphic map ¢ : Def(V) x & — Def(S) and the Y is obtained as the
pull-back of Z by ¢.

Let V be a flat deformation of V over a 1-dimensional disc A’. Then there is a
holomorphic map ¢ : A" — Def(V) and V is the pull-back of J by ¢. Since Y is a
flat family of rational double points over Def(V) x A, V constitutes a flat family of
rational double points over A’ x A. Let B be the discriminant divisor on Def(S) and D
its inverse image in &' x A. Let p; :A' X A — A’ be the first projection. Since V is
an isolated singularity, {D;} is a family of Cartier divisors with t € A/, |

Definition(1.1) A pair (V, ¢) is called admissible if #(D,) is constant for ¢ €
JANRENI

We have the following lemma.

Lemma(1.2) For t € Def(V), there is a flat deformation g : V — A’ of V
over a 1-dimensional disc and a holomorphic map ¢ of the disc to Def(V) such that (1)
g7 (0) =V, g7'(s) = Y for some point s € 4" and (2) (V, ¢) is admissible.

Proof.  Set E = ¢~ !(B). Take a suitable system of local coordintes (si, ..., s,) of
Def(V) (Def(V) is smooth because V is an isolated ¢DV point.). Let u be the coordinate
of A. By the Weierstrass Preparation Theorem, we may assume that F is defined as the
zero locus of the function A(u,s) = u™ + Ai(s)u™! + ... + ha(s), where £;(0) = 0 for all
i. It can be checked that the set W, := {u € Def(V);h(u,s) has p different roots as a
polynomial of s} forms a locally (Zariski) closed subset of Def(V) for every p and that
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W, 3 0. If we take the Def(V) sufficiently small, we can assume that W, is connected.

This implies that one can connect any point ¢ € W, with the origin 0 by an analytic
curve p: &' — Def(V) in such a way that p(A) —0C W,. Q.E.D.

Let (V, ¢) be an admissible pair. Then there is a holomorphic map h : ¥V — A’ x A,
and V can be regarded as a family of rational double points (resp. a family of isolated
cDVpoints) by h (resp. g := p; o k).

Write V; = g~!(t) for a point ¢t € A’. Then one has a holomorphic map h; : V; — A.
The map h, has exactly #(D,) singular fibers V, ; (i = 1,..., #(D:)). The number #(D;)
remains constant when ¢ varies in A’ — 0, and #(Dy) = 1. We then have the following

lemma.

Lemma(1.3) In the commutative diagram:

HY(V, = Sing(V.);Z) = H*(V; = UWViui; 2)
6t 52 1

HYV, = Sing(Vi); Oy,) — HY(V: — UViw,; OF)

all homomorphisms are 1somorphisms.

Proof. Take a suitable Galois cover A’ — A in such a way that it is ramified
over pis and that the base change V' of V; by the cover admits a simultaneous resolution
m: W — V,. Let E be the exceptional curve of 7. Since H*(E;Z) =0, H*g(W;Z) =0
by duality. Hence the restriction map: H*(W;Z) — H*(W — E;Z) is a surjection. On
the other hand, the composition H*(W;Z) = HY(W;0*) = HY(V/ — Sing(V); 0O*) —
H* (V! = Sing(V/); 2) = H*(W — E;Z) is an injection since H?gingvy(V/; O) = 0 by
the depth argument. These implies that H2(W;Z) = H*(W — E;Z). As H}(W;Z) =
H¥V/-UV/,.;Z),and H* (W - E; Z) = H*(V/ - Sing(V}); Z), we have an isomorphism
H* (V) — UV, Z) = H*(V/ — Sing(V/); Z). Take its invariant part by the Galois
group. One then sees that j is an isomorphism. One also sees that the map H!(V] —
Sing(V}); 0*) — H*(V! — Sing(V/); Z) is an isomorphism by the above observation.
Hence we have that §; is an isomorphism by taking the invariant part by the Galois
group. The map 4, is an isomorphism because V; — |JV, ., is a Stein space and hence

H(V; =UVii;0)=0for i >0. Q.E.D.

Lemma(1.4) Suppose that d(V;)umug(_Weil(l/,)/Pic(VQ)>> 0 for some t € A - 0.
Then there is a projective small partial resolution v : ¥ — V such that
(1) v, is a projective small partial resolution for every s € A\/;
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(2) o(V;) = 0.

Proof.  Since the number r := #(0),) is constant for s € A’ — 0, we have m (A’ x
A — D) = @i<icZ, and we can take the loops v in {t} x & (1 <7 < r) which go
around u; in the positive direction as its basis. Hence one sees that the restriction map
HOA' x A — D ; R*h.Z) — HO({t} x & = {uy,...,u,} ; R*hy.Z) is an isomorphism.
Since o(V;) > 0, there is a Q-factorialization v, : V; — V;. Take a y-ample line
bundle L on V,. Since H‘(f/}; 0) = H'(V, — Sing(V,); O*), we have a non-zero element
r € Ho({t} x & = {uy,...,u,} ; R*h;.Z) corresponding to L by Lemma(1.3). The 7 gives
an element of HO(A' x A — D ; R*h.Z).

We now take a finite Galois cover a : T — A’ x A with the Galois group G in such
a way that the base change V’ of V by « admits a simultaneous resolution y: W — V’.
Since we have HY(T — a~'(D) ; R*h'Z) = H%T; R*(p o h").Z) = H'(W;O"), we also
have an isomorphism H%(T — o' (D) ; R*h.Z)¢ = HY(W; 0*)C.

As there is a homomorphism from H°(A' x A - D; R*h.Z) — HY(T — a™Y(D) ;
R?R'Z)%, one has a line bundle £ € H'(W; ") corresponding to 7. We here recall that
there are many choices of the simultaneous resolution v : W — V', Two simultaneous
resolutions are connected by a sequence of flops. Now we can specify one of them in
such a way that £ is v-nef by [Re, §§7,8]. Then it is easily checked that the graded Oy:-
algebra @,5ov.L®" is a finitely generated Oyr-algebra. The line bundle £ is G-invariant
in the following sense:

The G has a meromorphic action on W. Each element g € G induces a bimeromorphic
automorphism 3, of W. Note that 3, is an isomorphism in codimension 1 and hence
there is an isomorphism ¢*, : Pic(W) — Pic{W). Then L is invariant under ¢*, for
every g € G. :

Hence v.L®" is a G-sheaf for every n. We here set V = Projo, @O L.
Q.E.D.

Remark(1.5) (1) In the proof of (1.4), one has a birational morphism ¢ : W —
W over V' by using a v-free line bundle £8™ (m >> 0). Then the V is obtained as
the quotient of W by G. Let p = a~!((0,0)) € T. Then the fiber Wp of the morphism
W — T is a partial resolution S’ of the rational double point $ (i.e. the minimal
resolution S of S factors through S’. By the assumption, the exceptional locus of the
partial resolution has exactly r irreducible components. Since G acts on W, trivially,

we see that the exceptional locus of vy : Vo — Vj has r irreducible components.

(2) Since R'v,,L8" = 0for all s € A, one has the base change property: v%.£%"®o,
Ov,s = v,°%,L,%". In particular, we have ‘:/, = Proj G)nzou,G‘Eﬁ" for all s € A\

(3) One can state the result of (1.4) in more generality as follows. With the same
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assumption of (1.4), suppose that a projective small partial resolution v : Vi — V, is
given. Then we can extends the v; to a projective small partial resolution v : V—V
with the property (1) in (1.4). In fact, we only have to replace the Q-factorialization
with this 14 in the proof of (1.4).

Let V be the germ of an isolated cDV point and Def(V') the Kuranishi space of V.
Denote by Y the semi-universal family over Def(V). Define d(ﬁ)sm,kQ’Veil(Y})/Pic(Y,))
and set ¥; = {t € Def(V);o(Y:) = ¢}. Then we have the following description of

Def(V).

Proposition(1.6)

(1) Let V be a small partial resolution of V and Def(V) the Kuranishi space of V.
Then there is a natural closed immersion of Def(V) into Def(V).

(2) Def(V) has a stratification into the disjoint sums of (Zariski) lacally closed
subsets: Def(V) = 1IY,,Y; = V; - Yiy1 and Vi = UDef(f/'), where V runs through all
small partial resolutions such that p(V) > i.

Proof (1): Since V has only rational singularity, there is a natural map Def(f/)'——er
Def(V) by Wahl[Wa]. So we only have to check that the homomorphism Ezt!(Q!, Oy)
— Ezt'(Q'y,Ov) is an injection. Set U := V — Sing(V) and U := V — Sing(V).
By Schlessinger{Sch |, we have Ezt!(Q';,0p) = HY(U;0p) and Ezt(Q'y,0y) =
HY(U;®y). Denote by C the exceptional curve of the small partial resolution. Then we

have an exact sequence of local cohomology:
H' 6op (U3 ©) — H'(U;05) — H'(U;00)
By the depth argument, we have H',;(U;©;) = 0. Hence we have done.

(2): Let t € Y;. Then by Lemma(1.2) there is an admissible pair (V,¢) such that
g'(0) = V and ¢g~'(s) = Y,. We have a projective partial resolution v : ¥ — V
by Lemma(1.4) and Remark(1.5) such that p(Vs) = i. This implies that ¢ € Def (V).
Moreover, we have ¢ € Def(%)—Up(,;.)ZiﬂDef(V). In fact, suppose that t € Def(V )for
some V with p(V) > i. We can find an analytic curve [' C Def(V) passing through
t and the origin 0 in such a way that there is a flat deformation ¥ — T of V and
a birational morphism v from V to YXpesvy['. Since p(V) > i, the exceptional locus
of 1 has more than i irreducible components Cy,...,Cn (n = p(V)). Each curve C;
moves sideways in the family ¥ — [ to a curve Cj(t) in Vi. Since C,’s are numerically
independent in Vp, C;(t)'s are also numerically independent in V,. This, in particular,
implies that o(Y;) > 7, which is a contradiction. Hence we have proved that Y; C
U,,(V)Z;Def(f/) - Up(f,)zl-_l_lDef(f/). We can also prove the converse implication by the
same argument. Q.E.D.



Example(1.7) Let V be a good representative of the germ of {(z,y,z,w) €
C%; 2% + y? + 22 + w® = 0} at the origin. Consider the 1-parameter deformation V of V
given by the equation z? + y% + 2% + w® + w? = 0. For t # 0, V; has a singularity at
p=(0,0,0,0,¢) and (V;, p) is not Q-factorial. However, V; itself is Q-factorial.

Let (V,¢) be an admissible pair such that V; has only ordinary double points for
t # 0. Assume that there is a small partial resolution v : ¥ — V which satisfies

(1) vo is a small partial resolution of V with n irreducible curves as the exceptional
locus (or equivalently p(V4) = n);

(2) v is a small resolution of ordinary double points of V; for t # 0.

Note that the exceptional locus of the map v, is a disjoint union of (—1, —1)-curves for
t # 0. As (V, ¢) is an admissible pair, the number of such (=1, —1)-curves is independent
of t # 0. We denote this number by m. In this situation, we have the following lemma.

Lemma(1.8) One has the inequality m > n, and the equality holds if and only if

V is the germ of an ordinary double point and V is a trivial deformation of V.

Proof. As we have seen above, there is a holomorphic map A : YV — A’ x A
and V can be regarded as a family of rational double points. Set S = A~!((0,0)) and
5" = (hov)~1((0,0)). Then the minimal resolution 7 : § — § factors through S’ (cf.
[Re]). By the versality of Def(S), one has a holomorphic map of A’ x A to Def(S). In
our case, this map factors through Def(S’). By the assumption, the partial resolution
S’ — S has n irreducible curves as the exceptional divisor. Since Ext*(1},,O%) = 0,
Def(S5’) is smooth.

Here we recall a result of Brieskorn (cf.[Br, Pi]). Let E; (1 < j <) be the irreducible
components of the exceptional locus of § — S. Put £ = {D = £q;E;; D* = —2,a; €
Z}. The % forms a root system. Then Def(S) — Def(S) is a finite Galois cover
with Galois group G = W(X), the Wey!l group of £. Moreover, there is a one to one
correspondence between the effective roots of £ and the ramification divisors of Def(S).
Since W(X) acts transitively on I, one sees that (@ acts on the set of ramification divisors
of Def(S) transitively. Thus, the discriminant locus B of Def(S) is an irreducible
divisor.

We shall prove that there are at least n irreducible component in the ramification
locus R C Def(S5’) of the finite cover Def(S’) — Def(S). First we factorize the
partial resolution into n number of birational morphisms: $’ — S,_; —, ..., 5 — S
in such a way that p(5;/5;-1) = 1 for all i. Then we have a sequence of finite covers
: Def(S') — Def(Sn-1),..., Def(S)) — Def(S). Renumbering the indices of E;’s,
we may assume that E; corresponds to the exceptional divisor of S; — Si_;. As we



have remarked above, there is a ramification divisor D; C Def(§) corresponding to E;.
Denote by B; C Def(S;) its image by the map Def(S) — Def(S;), and denote by
R; C Def(S') its image by the map Def(S) — Def(5’). Then it can be checked
that B; is an irreducible component of the ramification locus of Def(S;) — Def(Si-1).
Since the ramification indices of ramification divisors of Def(S) all equal 1, this implies
that R; (1 < ¢ < n) are mutually different irreducible components of R.

Next assume that S is not of type A;. Consider the map f; : Def(51) — Def(S).
Decompose f;~'(B) into the two parts: the ramification locus G of f; and the non-
ramification locus H. Both of them are Cartier divisors on Def(5,). Suppose that
H is empty. Then all D;’s are mapped onto some irreducible components of G' by the
map Def(g) — Def(S;). But this is absurd because if so, then the ramification
indices of D;(i > 2) are grater than one. Hence H should be non-empty and R;’s
(z > 2) are mapped onto some irreducible components of H by the map Def(S5') —
Def(S;). Here if G has more than one irreducible component, then there are at least
n + 1 irreducible components in the ramification locus R C Def(S’) of the finite cover
Def(S’) — Def(S). Even if G is irreducible, we can show that there are at least
n + 1 irreducible components in R in the following way. Let D* C Def(S) be the
ramification divisor corresponding to the fundamental cycle of the minimal resolution S
of S. It can be checked that D* is mapped onto G by the map Def(g) — Def(5:).
Let R* C Def(S’) be the image of D* by the map Def(S) — Def(S'). We shall
prove that R; and R* are different divisors on Def(S5’). Let S — S be the birational
morphism contracting the curve E| to a point. R; is clearly a ramification divisor of the
map Def(8’) — Def(S5”), but R* is not a ramification divisor by definition. Thus, R,
and R* are different divosor on Def(S’). Now the n 4+ 1 divisors R;(1 <1 < n) and R*
are mutually different irreducible components of A.

Assume finally that S is of type A,. Then V is isomorphic to the germ of {(z,y, z,w) €
C* 2% + y? + 2% + w* = 0} at the origin for some £ > 1. In this case, we can directly
check that m = n if and only if k = 2 (cf.[Fr)). Q.E.D.

§2. Calabi-Yau 3-folds

Let X be a Calabi-Yau 3-fold with terminal singularities. As Kx ~ 0, X has only
Gorenstein terminal singularities. Thus, X has only isolated ¢cDV singularities by [Re].
For each singular point p; € X, we take a sufficiently small open neighborhood V; of
p;. There is a holomorphic map f; of V; to a 1-dimensional disc A with a small radius
such that f'(0) = S; is a rational double point and other fibers are smooth. Let
YV — Def(V;) be the semi-universal family for the deformations of V;. One can regard



Y; as a flat family of rational double points over Def(V;) x A. By the versality of
Def(S;) there is a holomorphic map ¢; : Def(V) x & — Def(S;).

Let XA+ be a flat deformation of X over a l-dimensional disc A'. Then there is
a holomorphic map ¢ of A’ to the Kuranishi space Def(X) corresponding to this flat
deformation. By composing this map with the natural map Def(X) — Def(V;), we
obtain a holomorphic map ¢; : A" — Def(V;) for each singularity p; € X. We also
have a holomorphic map from A’ x A to Def(S;) by composing ¢; x id with ¢; . By
pulling back the semi-universal family Z; over Def(S;) by the map, obtained is a flat
family V; of rational double points over A’ x A. The V; can be also viwed as a flat

deformation of V; over AA’. Note that V; is an open neighborhood of p; € Xa:.

Definition(2.1) A pair (Xa', @) is called admissible if (V;, ¢;) are all admissible
in the sense of (1.1).

Let X' be the universal family over the Kuranishi space Def(X) of X. By the same

argument as (1.2) we have

Lemma(2.2) Fort € Def(X) there is a flat deformation g : ¥or — A’ of X
over a 1-dimensional disc and a holomorphic map ¢ of the disc to Def(X) such that(1)
g7 1(0) = X, g7'(s) = X, for some point s € A’ and (2) (Xar, ¢) is admissible.

Define o(X;) to be the rank of Weil(X,)/ Pic(X;) and set Y; = {t € Def(X);0(X;) =
i}. Then one has the following globalization of (1.6).

Proposition(2.3) (1) Let X be a small projective partial resolution of X and
Def(X) the Kuranishi space of X. Then there is a natural closed immersion of Def(X)
into Def(X).

(2) Def(X) =11Y;, Y = ¥; = ¥i_, and ¥; = U Def(X), where X runs through all
small projective resolutions such that p(X) — p(X) > i.

(3) Each stratum Y; is a (Zariski) locally closed smooth subset of Def(X).

Proof (1): The proof is quite similar to that of (1.6)(1).

(2): Let t € Y;. We take a flat deformation g : Xao» — A’ and a holomorhic
map ¢ : A" — Def(X) with the properties (1) and (2) of Lemma(2.2). Let v :
X, — X be a Q-factorialization. The v; induces a projective small partial resolution
V' : Viy — Viy. By Lemma(1.4) and Remark(1.5),(3) each v} extends to a projective
small partial resolution u; : i),- — V:. As a consequence, one has a small partial
resolution v : Xar — Xa. Note that XA:J = X,. Since X; is projective, there is
an ample line bundle L on X,. The 2-nd Betti number (with respect to the usual

cohomology) is preserved under a flat deformation of Calabi-Yau 3-folds with isolated



hypersurface singularities by the vanishing cycle argument. This implies that the Picard
number is also preserved because A! = h? = ( in this case. Thus, the line bundle L
extends to a line bundle £ on Xar. Let Ci,...,Cm be the irreducible components ‘of the
exceptional locus of vy, C}s move sideways in A'as to the curves C;(t)’s on X:. Since (L.
C;(t)) > 0, (£,C;) > 0, which means that X . is projective over X. Now the relative
Picard number p(X;/X,) = i by our assumption. Hence we have p(XAr,D/X) = 1.
It follows from the observation above that ¢ € Up(X/X)Z;'Def(X)- Moreover, we have
t € Uy xypiDef(X) - L;Jp().(/x\')ZH-IADef(X)' In fact, if t € Def(X) for a projective
small partial resolution X with p(X/X) > 7, then we can choose an analytic curve
[ C Def(X) passing throgh t and 0 in such a way that there is a flat deformation
X — T of X and a birational morphism v from X to X X pesx)l. Since p(X/X) > 1,
we have p(X,/X,) > i, which is a contradiction.

Finally we show that if ¢ € L:Jp(){'/,\’)ziDef(X) - Up(X/X)2i+IDef(X)" then t € Y.
By the assumption, t € Def(X) with a projective small resolution X — X for
which p(X/X) = i. Thus, o(X;) > i. On the other hand, o(X,) < i because
t & Uyx X)2£+1Def(X)- Hence we have done. .

(3): Assume that Y; has a singular point ¢. Since Def(X) is a smooth subvariety
of Def(X) for every projective small partial resolution X of X, there are at least two
different irreducible components of ¥; which contain ¢, say, Def(X;) and Def(X,), for
which p(X,/X) = p(X2/X) = i. This means that there are two different projective small
partial resolutions X," and X;" of X, for which Def(X]) # Def(X}') as a subvariety of
Def(X;). Let W' (resp. W") be a Q-factorization of X, (resp. X,”). Then W’ and W”
are both Q-factorizations of X, and hence they are connected by a flop. It is proved by
Kollar and Mori [K-M,(11.10)] that Def(W') = Def(W"). This, in particular, implies
that p(W'/X:) > p(X,/X:) = i. However, it is absurd because o(X;) =:. Q.E.D.

Definition(2.4) Let X be a projective small partial resolution of X. Then X is
called mazimal if for any projective small partial resolution X of X, Def(X) is a proper

closed subvariety of Def(X) via the natural inclusion.

In view of Proposition(2.3), the stratification of Def(X) is determined only by max-
imal projective small partial resolutions. We have the following criterion of the maxi-

mality.

Theorem(2.5) Let {pi,...,;;} C Sing(X) be the ordinary double points on X
and let f:Z — X be a small (not necessarily projective) partial resolution of X such
that C; := f~'(p;) = P! and that f is an isomorphism over X — {py,...,pi}. Then the

following three conditions are equivalent:
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(1) X is maximal;
(2) X is smoothable by a flat deformation;
(3) There is a relation in Hy(Z,C) : Ze;[Ci] = 0 with a; # 0 for all i.

Proof (1) = (2): X has a flat deformation to a Calabi-Yau 3-fold Y with only
ordinary double points by [Na 2, Theorem(5.2)]. Let Y; be the germ of a sinular point
g; € Y. We may assume that Zo(Y;) = o(Y) by [Na 2, Corollary(6.12)]. If Y has a
singularity, then o(Y’) > 0, which implies that a general point of Def(X) corresponds to
a non-Q-factorial Calabi-Yau 3-fold. Hence there is a projective small partial resolution
X of X such that Def(X) = Def(X) by applying Proposition(2.3) to Def()i’). This
contradicts the maximality of X. So Y must be a smooth Calabi-Yau 3-fold. '

(2) = (1): It is obvious because smooth Calab-Yau 3-fold ¥ has no small partial
resolutions except for Y itself.

(3) = (2): First we shall show that all singularities of X which are not ordinary
double points are smoothed under a suitable flat deformation of X. Let g: X — A be
a flat deformation of X over a 1-dimensional disc such that g~!(0) = X and a general
fiber g~1(t) := Y(t # 0) is the same as above. Suppose that when X is deformed to
Y, a non-ordinary double point p € X splits into a finite number of ordinary double
points q,...,qm on Y. By Proposition(2.3), there is a projective birational morphism
v: X — X which satisfies (a) 1o : X — X is a small partial resolution of X and (b)
v¢ 1s a small resolution of the ordinary double points on Y for ¢ # 0. Define n to be the
number of the irreducible components of 15~ (p). Then we have m > n by Lemma(1.8).
Hence the curves D; := v;}(g;)(1 < i < m) are not numerically independent on' X,
which contradicts the assumption Eo(Y;) = o(Y).

We shall next prove that all ordinary double points are smoothed under a suitable
flat deformation of X. Let X; be the germ of a ordinary double point p; € X. Let
7 : W — Z be a resolution of singularities such that 771(Z — Sing(Z)) = Z — Sing(Z).
Let E be the exeptional divisor of m. Then the exceptional locus of f o 7 is a disjoint

union of C;’s and E. We have the following exact commutative diagram:

(2.6)

HY(X — Sing(X);03) —@; H2c,(W; 02w )@ H?5(W; Dw) — v — H(W, Q%)
I g1

H'(X - Sing(X);0%) — o« — ©HL, o (X;03)

By the assumption of (3), there is an element ¢ € Ker(«) whose i-th component c;- are
all non-zero for 1 <1 <. Then there is an element n € HI(X—Sing(X); O ) such that
a(n); € Hg..(f(; O4) = Ext'(QL ; Oy,) are all non-zero by (2.6). Since any infinitesimal
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deformation of X is unobstructed, 1-st order deformation of X corresponding to the 7
can be realized. Hence we have done.

It follows from two observations above that X is smoothable by a flat deformation
because Def():’) is smooth (in particular, irreducible).

(2) = (3): Assume that there is a positive integer & < [ and all relations in H3(Z; C)
are of the form Zi>4410i[Ci] = 0 for some o;’s. Let f': 2" — X be a small partial
resolution of X obtained by contracting the curves C; (i > k+ 1) on Z to points. We
shall show that Def(Z’') = Def(X). If this is proved, then we see that the ordinary
double points p; € X (i € k) are not smoothed by any flat deformation of X because
(=1, —1)-curves C; (¢ > k + 1) are stable under any flat deformation of Z’.

In the diagram(2.6) choose an element ¢ € Ker(y). We denote by ¢; € H?c, (W, Q%w)
its i-th component and denote by eg € H?g(W, Q%) its other component. The as-
sumption implies that ¢; are all zero for 1 < i < k. Hence, for an arbitrary element
n € HY(X - Sing(X); ©x), we see that the i-th component a(n); of a(n) are all zero for
1 < i< k. Next weset X' = X — (Sing(X) — {p1,...,pe}) and consider the following

exact commutative diagram

0 — HY(X';0;) — HY(Z' - Sing(2');07) — H(X; R'f.03)
Al o ) ¢ )
0 — HY(X0z) — HY(X - Sing(X); 03) — o — Di1cici Hpi(X;0y)

Since & = 0, one has an isomorphism H'(Z - Sing(Z); ©7) = H'(X —Sing(X); 04).
By Schlessinger [Sch | these are isomorphic to the tangent spaces to Def(Z) and Def(X)
at the origin respectively. As Def(Z) and Def{X) are both smooth, we conclude that
Def(Z) = Def(X). Q.E.D.

When a projective small partial resolution X of X is not maximal, one has. the
following.

Theorem(2.7) Let X be not maximal. Then there is a (not necessarily unique)
small projective partial resolution X of X such that X is maximal and Def(X)
Def(X). In this situation, let X' (resp. &) be the universal family over Def(X) (resp.
Def(X')). Then there is a projective birational morphism v from X to X. For general
te Def(X), X, has only ordinary double points and v, : X; — X; is a small resolution

of )Al,g.

Proof. This is already shown in the proof of Theorem(2.5) (especially in the
(1) = (2) part). Q.E.D.
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