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THE HYFEROSCULATING SPACES OF HYFERSURFACES

Xu Mingwei

Institute of Mathematic8, Academia Sinica

Max-Planck-Institut für Mathematik

§ 1. Introduction

At present, it seems that we still do not have an effective definition of Weierstrass points

for varieties with higher dimensions. There are attempts including [9], [3] by

Mount-Villamayor and Iitaka.

On the other hand, studying these special points is connected much with polar 10ci,

singularities of mappings ([4] - [8], [10], [11]). But generally there they have a

strang tool name1y some kind of Iltheorem of genericness" (e.g. [6], [10]) to facilitate

stu~ying.

Intuitively, let X (IPn be a smooth hypersurface. We consider all of Hs tangent

hyperplanes in IPn . Then there exists an integer b2 ~ 2 such that almost all of them

have exactly contact of order b2 with X and the others have that of higher order. We

called such a b2 coordinate gap number and the contact point with higher order a



-2-

Q2-inflection . The set of inflections whith certain natural structure is called

hyperosculating space.

In [14J - [16] we diSCUBSed the hyperosculating spare of surfaces in 1P3 , now we

intend to generalize that to arbitrary hypersurfaces.

Dur main results are the following.

(a) b
2

= 2 or pm for some m ~ 1 , where p f 2 is the characterlstic of ground field,

and b2 = pm if and only if the defining polynomial for X can be written as

.
"

where pm is the largest exponential for such an expression.

(b) If p = 0 or p ~ (deg X -1) ,then X has b2 = 2 and a finite number of

inflections. FurthermoreJ as a O-Cycle it is

n-2 i

1: 1: 3n- 1-i(2_n)i-kC (An- 2nv)C (L)i-k(C (r! ) + (n-l)C (L))n-l-i n [XJ ,
i =0 k=O k xlI x 1

where L is the sheaf of hyperplane sections of X in ~n.

(c) For X with b2(X) = pm I we have deg X = 1 + kpm, k ~ 1 . Then for generic

such a X it has only a finite number of pm-infleetions , and as a O-Cycle it is
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For one who wishes to generalize the concept of Weierstrass point !rom curves to

varieties of higher dimensions and if one wishes that one's definition would also include

the simplest case as shown in tbis paper, then either one would permit the appearance of

Itcontinuous parts" of Weierstrass points or one would give more restriction until the

ItWeierstrass points" were finite. Of course, at the same time that "Weierstrass points"

were asked to be expressed effective1y.

§ 2. Notations and generalities

First set up our notations.

x ( Ul~ , a smooth hypersurface in pn.

K J algebraically closed field of arbitrary characteristic p but p:f. 2 .

G , the polynomial for defining X and we always assume that the coordinates

hyperplanes Xi = 0, i = 0, ... ,n form a transversal sequence to X.

Point means closed point.

the sheaf of hyperplane sections of X in IPD
.
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the sheaf of m-principal" part of L on X, Le.,
* "

P~(L) = p*( 0äID 9 q L) , where p, q are the first and the second

projections from X)( X to X j where, if letting qä be the ideal of

definition for the diagonal & of X xK X, (J m = l1x x X/q~+l .
1:&

oV = H (X,L) .

the canonical morphism of taking m-truncated Taylor series

[9] , which is defined from the short exact sequence

by taking the lang exact sequence of their direct image ([7J, [8])j additionally, we

have same diagrams about a s' with exact lOWS and colomns:m
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0

1
°X(L)

al
1

o --+ R ---+ Vx ---+ Pi(L) ---+ 0

(Al) 1 11 a 1
o ---+ ~ ---+ Vx ~ L ---+ 0

1 1
°X(L) 0

1
0

0

!
SIDOX(L)

1
(Am) Vx

am
'P~(L)

11 a 1
Vx

m-l p~-l(L)

!
0

where sm denotes the mth symmetrie operator.

b2 ' the coordinate gap number, ia the least number m such that am ia

injective.
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I , the hyperosculation spa.ce, defined as a scheme with ideal of definition

vb -{n+1) b
F 2 (im ab ) ,where vb ia the rank of Px2(L) and Fk(M) ia

2 2

the kth Fitting ideal of a sheaf M ([10]).

Proposition 2.1. The necessary and sufficient condition for b2(X) > 2 are G.. = 0 for
lJ

all 0 ~ i,j ~ n I where G(XO'''' ,Xn) is the polynomial for defining X and

2G,,= 8 G/8X.8X..
lJ I J

Corollary. If b2(X) > 2 ,then p divides deg X -1 .

Proof. Theorem 3.1 and its Corollary in [14].

Theorem 2.2. b2(X) = 2 or pm i and b2 = pm if and only if

n m
G = 1: XiFi(XO' ... ,Xm)p , where pm is the largest number in such a form of G .

i=O

The proof of the theorem is much like that in the case of n = 3 ([16]), but some

expression appearing in the proof are needed in the sequel, so we shall give a sketch of

proof.

Proof.

(a) Suppose b2(X) > 2 , then by Corollary p divides deg X - 1 and we can write G

into the form as in Theorem.

Without 10s8 of generality, we may assume any two of the divisors [F0] , ... ,[Fn] on
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X have no common component and Fn f 0 .

We take a point Q in UOn = {Fn f O} n{Xof O} and let B be the completion of

the local ring at Q. In B we develope those coordinate functions into truncated Taylor

series, then, if letting xl = X1/XO' ... ,xn- 1 = Xn_1/XO' z = Xn/XO' we obtain

for arbitrary integer S ~ 2 J where all R. and R. . are elements of B .
1 11, ... ,ln- 1

(b) Substituting the expression of aS(z) into G =0 at Q ,and then comparing the

coefficients of various independent differentials, we have

(ii)

(üi)

R. ... i 1 = 0 for i ~ i1 + ... + in- 1 < pm ;
11 n-

R. ... i 1 = 0 for i1 + ... + in- 1 = pm but at least two of il"" ,in- 111 fi-

are not zeroj

(iv) R m ' ... IR m are in 0Q,X and satisfy the following relations:
p 0 ...0 0 ... Op
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pm[ m m m m]
R. f Po + xl f:P + ... + x 1 f P + z f P +

1 n 1 n n- 1 nnn- n

m
+ fP R = 0n mO... Op 0 ... 0

for i = 1, ... ,n - 1 ; where, in the subscript of R m ,pm ja at the i-th
o... Op 0 ... 0

position and f.. = M. / 1Jx. I f. = 1Jf.j {jz .IJ 1 J In 1

(c) From (i) - (iv) in (b) we see that b2(X) ~ pm . We conclude that b2 = pm .

Otherwise, from R = 0 we havemO... Op 0 ... 0

(***).1

for i = 0, ... n .

[
n ] [ n ]

2m m 2m m
F:P ~ X.Fl? - FP ~ X.Fl? = 0

1 L J Jn n L J JI
j=O j=O

And furthermore from (***)i we deduce that

n

(****)
m

~ X.F~. = 0
L J J I

j=O

are valid for i = 0, ... ,n since [Fj ] have no common components on X and

deg Fy2m > deg [.i Xl~7] (for details see [16]).

J=O
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Finally, differentiating (****) with reapect to Xk respectively we obtain F ji = 0 for

all i, j, which contradicts to the property of Fi : which cannot be written as
m m

H(Xg , ... ,x~ ), m ~ 1 anymore.

§ 3. Case b2_=__.pm ID_>_l_.

From diagram.s (Al) - (ApID) and (iv) in the proof of Theorem 2.2, we have

a (x.) = dx. + ... , i = 1'00' ,n -1 ,m 1 1
P

n-l m
a m(z) = l R m (dxi)P,
P i=1 O, .."p ,00.,0

and that am is injective. Then by composing from (Al) to (Apm) we have an injective

homoIDorphism

[
m ]p + n -2

Therefore. I is defined by Fitting ideal F n - 2 - 1 (coker i) .

For expressing the Fitting ideal explicitly we try to factor i through a locally free

ID m
(n - 1)--ßubsheaf of sP 0x(L) ,and which is also a direct factor of sP 0X(L).
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m
Lemma 3.1. There is a (n -l)-subsheaf :Y of sP 0X' which is locally generated by

pm pm
{(dx1) , ... ,(dxn- 1) }.

Proof. We only need to check that in a fixed coordinate neighborhood, every coordinate

neighborhoods and their corresponding modules form a sheaf. Hut it is obvious, since, if

letting (~j) be the matrix of coordinate transformation, then we have

Lemma 3.2.

n-l

C(3') = 1: p
tm

Ct (S1X)'
t=O

where C(~) is the total Chern dass of ~, Cf.(Ox) is the f.-th Chern class of

nX '

Proof. We define a homomorphism

m
by ~ ~ A~ 1oca.lly, where {~}, ·{A.} are local basis of .:I , nx

v
which are

1 1 1 1

m m
dual to (dx1)P , ... ,(dxn-I)P and dxl' ... ,dxn- l respectively. 1t is well-defined

<PI induces a graded homomorphism
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Because that any homogeneous prime ideal in EB Sl{l~ (of course, we are arguing

locally) containing im !Pi mUBt contain m Sl{l~, ,pI' determines a morphisID
t~1

x

Loca.lly, «PI is essentially a FrobeniUB morphism and hence flat.

We have the tautological exact sequences on PI' SI respectively:

(1)

. (2)

From the flatness of ep1 and noting that

commutative diagram on PI:

* m«P1q, (- 1) = Op (- p ) , we have a
1 1

! ! ! !P2
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* vNow replacing X, 0X' [Y, ft'l with P l' ~1QS' Qp , ft'2 respectively and doing
1

v
what we did just above, we obtain on P2 = IP(Qp ) a diagram

1

*
o----+ 0P2 (- 1) ----+ ?r1Qp1 ----+ Qp 2

1 1 1 ft'2

----+ 0

The composition

homomorphism

m * *o----+ 0P2 (-p ) ----+ 1("2QS1 ----+ <IJ 2Qs2 ----+ 0 .

11"1 0 1r2 : P2 ----+ X is Hat and hence gives an injective

*where A is the symbol of Chow ring.

Continuing tms process until we obtain the splitting space for both nx and :Y ( [1] ).

This means, there exists a scheme P and a morphism 11": P ----+ X such that

(i) 11" is Hat,

(ü) 1(" induces an injective homomorphisID

* *AX----+AP

(iii) There are two filtrations associated to nX ' [Y respectively,
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o= ~ ( e5'i ( ... ( Sri-1 = ~

such that Ti+ 1/Ti and ~i+1/3"i are invertible sheaves on P and

~m
:Y·+1/ jf ~ (T·+1/T.) .1 1 - 1 1

According to splitting principle, if we assume

n-1

C(Ox) =TI (1 + Xi)

i=1

formally J then

n-1

C( 3") = TI (1 + pmxi) .

i=1

Developing c( 3") we get what we expect.

Theorem 3.3. Let X be hypersurface in IPn with b2(X) = pm and a finite number of

pm-inflection then the hyperoaculating space I as a O-eycle ia
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[I] =Cn- 1(~(L) - R) n [XJ =

[
pm + n - 2] -1

n - 2
Proof. We aaw that I ia defined by the ideal F (coker i) , where

m
i : R ----i sP nX(L). From Lemma 3.1 we have a diagram

m
where 5(L) is a Iocally free (n - l)--5ubsheaf and a IDeal direct factor of sP nX(L).

Therefore, we have

[
pm + n - 2] -1

n - 2
F (coker i) =~-2(coker j)

and heuce by Porteaus' formula,
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We can also express deg [IJ by deg X :

n-1 k k-i [+ 1 ] [ 1 k + . ]
deg [I] = L L L (-l)j n. n - ~ I p(k-i)m

k=O i=O j=O J 1

(2 - n + deg X)n-1-k(deg X)k-i-j+l .

Finally we give a proposition about when a hyperaurface as above has a finite number of

pm-inflections. The proof of the following proposition ia like that oI Theorem 3.3 in

[16] , so we only give a sketch here.

Proposition 3.4. Let X be a hypersurface with b2 = pm and deg X = 1 + kpID . Then

every X with k = 1 has only a finite number of pm-infleetions . Furthermore, the

conclusion is true for generic X too.

Proof.

(a) From (iv) in the proof of Theorem 2.2, if C is an irreducible curve on X with

C CI, we shall have the following assertion, Le.

(***)i' i = 0, ... ,n - 1
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are valid on C.

Therefore by an argument similar to [16J, on C we have

(****)
n

l Xl~7 = 0, i = 0, ... ,n .

j=O

n

(b) If deg X = 1 + pm ,then F. = , a..X. and det(a..) ia invertible, and hence
1 L IJ J IJ

j=O
the solution of (****) contains no curves. By (a) we get the conclusion.

(c) The space of all hypersurfaces X with b2 = pm and deg X = 1 + kpm, k ~ 1 ,

has dimension (n + 1) [ k ~ n ] -1 , and we can show, by counting dimensions,

that for a generic one, (****) will have a solution of dimension zero only. Then

the conclusion follows from (a).

§ 4. Case b2 = 2

The case ia a bit subtIer than § 3.

In the section we always assume that p = 0 or p does not divide deg X -1 . From

Corollary to Proposition 2.1 we see that the assUInption implies b2 = 2 and hence

includes the most cases about b2 = 2 .

Let 0 --t R 2.. S20X be the morphism determined by (Al), (A2). We saw many

times that I ia determined by Fn- 1(coker i) .
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Loca.lly I e.g., on UOn = {XOf O} n{Gn f O}

n-l

i(z) = 1: pijclxiclxj , Pij = Pji' 1 5 i,j 5 n - 1 ,

i+j=2

Xowhere p.. =~ (G (G G.. - G.G. - G.G. ) + G.G.G ). Now from (Al) we defineIJ G.l n n IJ I Jn J In I J nn
n

vG = Gr(n - 2,V ),
v

E = Gr(n - 2, 6 ),
v

Y = Gr(n - 2,OX(L) ),

where G(n - 2, jJ') denotes the Grassmannian scheme of loca.lly free (n - 2)-quotient
y

sheaves of [F. Thus Gr(n - 2,Vx) = G x K X .

From (Al) we have a commutative diagram

GxX t-l--E

1Yl~/
G

where f is a rational mapping defined by

x
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In fact) we have

Lemma 4.1. The set of definition for f is an open set U such that Hs complement in

E is rationally equivalent to the special Schubert eyde u = äAn [E] , A = (2,0 ... 0)

and henee has eodimension 2 in E.

Proof. We have an exact sequence

r2
t-- ~ Y +-- 11 (L) v +---0

X
I ~

I /

I 'I ,
! ~

ß

Then for any loeally free (n - 2)--quotient of Kv it is a quotient of l1X(L)v via the

composition shown in the diagram if and only if ker'l + ker 12 = ~ v . For the ranks

to agree we see that tbis is a direct summation. Geometrically tbis means in each fiber of

11" ,the (n - 2)-spa.ce represented by tH doea not contain the l-space represented by

Rv . From [1] we obtain the lemma.

Now we turn to ß, which ia defined by the composition of ~ ---+ Vx and the

natural projection.

Lemma 4.2. CodimE (the set of singularities of ß) ~ 2 .

Proof. Since every fiber of ß is the intersection of a 2-plane in IPn with X, they

have the same Hilbert polynomial. Then ß is flat and hence that ß is smooth at x E. E

if and only if x is a regular point of rr1ß(x) [2].
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Taking an arbitrary point x €. X , the intersection of the tangent hyperplane H at x

with X is a subva.riety with singularity x. Then every 2-plane passing x and being

contained in H meets X always in a singular curve.

Firstly we count the dimension of the set of that 2-planes as x varying on X. In fact,

every such a 2-plane at x may be a same kind of 2-planes at a different point y. In

spite of that, the dimension alwaysless than (n - 1) + 3(n - 3) - (n - 3) and hence the

codimension of the set in E is greater than 2.

On the other hand, when a hyperplane H ia transverse to X at x, then the

intersection va.riety Xo ia regular at x. But on H we have a (n - 2)-plane Hi

which ia tangent to Xo at x. Hence every 2-plane contained in H and passing x

must cut out a singular curve. When H varies with passing x, such a 2-plane H2

may be the same kind of 2-plane of other H I
.

So, dim{H21 H varies with x in it} ~ (n -1) + n + 3(n - 4) - (n - 2) , hence its

codimension in E is also greater than or equal to 2.

We could continue our "stratification" and then exhaust all singularities of ß. But

evidently there are only a finite number of steps and each step always gives the

codimension of the set of singularities being greater than 2.

Now we come to the point.

Let
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be the eomposition oI homomorphism as above.

It ia known that S2nE/G(./L) ia locally free at any sIDooth point of ß. Then at such

a point we have a neighborhood ~ A1
X U' ( {11(U') and a loeal eoordinate

(t,wl' ... ,W2(n-2)) . In fact, the curve {JIß{x) is cut out by a 2-plane in IP
n

J thus

on X Hs coordinates ean be writien aB

Xi = Ait + ... , i = 1, ... ,n - 1 )

where {Ai},i = 1, ... ,n - 1 is taken aB apart of the Plücker coordinates of

v

(n - 1)-subspace in IPn consisting oI the tangent hyperplane at X and some other

elements in the fiber 01 11" at x.

We have

A(z) = (~ p..A.A.)dt ,
IJ 1 J

thus

FO(im A) = (E p. .A.A.)
IJ 1 J

and it determines a divisor J on W , which denotes the open set where ß is smooth.

By Lemma 4.2, codimE(E - W) ~ 2 ,thus J extends uniquely to E. Let UB write out

the expression 01 the ideal 01 J .
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Since codimEJ = 1 I A: R --+ S2nE/ G Iw has a correct dimension for its degeneracy

locus. Then we have

On the other hand, we have an exact sequence:

and the tautological sequence on G :

n+l Qo----i PG ----i {7G ----i G ----i 0 ,

where QG is the universal (n - 2)-bundle , furthermore,

Now, for any locally free sheaf M with rank r, we denote ArM by KM (but KX '

where X is a variety, still represent the canonical sheaf of X ) and we will adopt the

convention in the sequel.

Then

but
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where QE is the universal (n - 2)-bundle of E , thus

Moreover, from

and

we have

We shall pass to Y as we did in [16]. But at present, these {Ai} in the expression of

J are Plücker coordinates, so we have to identify Y with its image under Plücker

morphism, namely

y N n-2 v
Y = Gr(n - 2,OX(L) ) --dP(A {}X(L)) .

From now on, we always take Y aB IP(An- 20 x(L) v) .
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Reealling that U is the open set of definition for f, on U nW we have

On the other hand, by using the Plüeker coordinates Al' ... ,An- 1 ' we see that the

scheme-theoretie image of J under f is determined by E pijAiAj , the same form

whieh J ia defined by an E. 1t means the seheme-theoretic inverse image of f(J) is

J .

Furthermore, beeause codimE(E - U) ~ 2 , we have

*Pie U ~ Pie E ~ Y. • &1,0 ... 0 n [E] fD Y. • 1(" Pie X ,

where &Ji., ... '1\ is a typical symbol of same Chern dass [lJ, here is just Cl (QE) .

Moreover, on Y we have

but

so
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*cp : Pie Y ---+ Pie V

ia injective.

Now !rom r1(im J) = J and

we obtain

Let im J = Z . We eonsider the sheaf nZIX . On Z I there is an exaet sequence

We see from this that f),Z/X locally is the quotient of o~n-2 by the submodule

generated by dy IX(E Pij).ilAk) for some ).k:f. 0 , or homogeneously it is isomorphie to

n-l 3
E9 (/,1 \.j{E p..)..d)..} . This means that locally ~- (S1

Z/X
) ia generated by

i = 1 XUl'\I IJ J I

[ ~1:
1

Pi/j } , i = 1, ... ,n - 1 .

J=l

It is worth noting that we only expressed Pij on VOn = {Xof o} n{Gn f O} at the

beginning of this aeetion. But generally on arbitrary Vkt = {Xk f O} n {G t f O} we
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have

Xkp.. = ~ (Gtl(GtlG.. - G.G tl · - G.G tl ·) - G.G.G tl tl)IJ G.J 0{, 0{, IJ 1 o{,J J o{,l 1 J.~.{..

t

for 0 ~ i,j 5 n but i,j 4= k,f.. .

Let T be the scheme defined by Fn-3(nz/x). We shall show that T is an

equidimensional scheme of dimension n - 2 . For that we need some simple relations

among p...
IJ

We always work with UOn ' Firstly we define formally Pm and Pni für i = 0, ... ,n

by using the same formula (*).

We have

(a)

and

P . = 0 für all im

(b)
n-l

l
i=l

X.p.. = - XOPO" j = 0, ... ,n .1 IJ J

Lemma 4.3. Assume p = 0 or p ~ deg X -1 , then on every Ukt ,

det(p. ')1("( 1 4= 0 .IJ _l,J_n-
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Proof. We shall prove inductively with n ~ 2 .

For n = 2, det(Pij) = PlI and from b2(X) = 2 , we have PlI f 0 .

Now we assume Lemma is true for n -1 and false for n.

Then we could &BseIt that the rank of (Pij) equals to n - 2 . The reason is that, if we

use Xn- 1 = 0 to cut X (recalling that we always assume that each coordinate

hyperplane is transverse to X), then on Xn- 1 = 0 we obtain a smooth hypersurface

with P = 0 or P ~ (deg X - 1) . So by the inductive hypothesis that det (p ~ .) f °,IJ
which is just the restriction of the principal (n - 2)-minors corresponding to Pn-1 n-1,
of (poO) to X 1 = 0 , hence our assertion.IJ n-

Now take a point q e. UOn such that rk(Pilq)) = n - 2 and assume that q has

coordinates (*,0,... ,0,*) .

Let q.. =G (G G.. -G.G .-G.G .)+G.G.G for i,j=O, ... ,n.
IJ n n IJ 1 nJ J ru 1 J nn

We consider the equations

n-1

1: Aiqij = 0, j = 1, ... ,n - 1

i=1

and find out about the solutions of them in UOn)(!pn. So we extend (**) to X)(!pu

firstly and then we see from the aBsumption of det(qij) = 0 that (**) determines a

subscheme (X)(!pu with dimension at least n + 1 . In a neighborhood u of q, since

rk(qoO(q)) =n - 2 , every point has a fiber which is a 2-dimensional linear variety inIJ
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the solution af (**). Then by a theorem in [12J we see that aver u, there is an

irreducible component r of the solution of (**) in X x IPn with dimension n + 1 . r

meets the diagonal fJ. of X in X)( lPu at q = (*,0, ... ,0,*) ,Le., 4 nr 'f t/J and

hence intersect in a scheme with dimension at least 1. So we obtain a curve C passing

q and which is a solution of (**) and lies on A. This means

n-1

1: Xiqij(XO' ... ,Xn) = 0, j = 1, ... ,n-1

i=1

are valid on C.

Hy (6), this implies qOj = 0 on C for j = 1, ... ,n - 1 and hence for j = O,n .

It ia easy to check that under a non singular linear transformation

(E)

we have

n-1

X. = \ a..T. i =0, ... ,n - 1
1 L IJ J

i =0

X =Tn n

, *(q ..) = A (q..)A ,
1J IJ

where q ~. denotes the q.. defined by (*) but under the new coordinates TO'···'Tn '
1 J IJ

*A = (a..) and A ia the transposition of A .
IJ

Then we have
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(1) rk(q ~ .) = rk(q..)
IJ IJ

1 5 i,j ~ n -1 .

o~ i,j ~ n-1 then by (6) we know det (q ~ .) = 0 J
IJ

(2) the curve C is still a. solution of

n-1

(**)' l Tiqij = 0, j = 1, ... ,n -1 . Dur rea80n is aB folIows.

i=1

So,

[
~' .~. ,0 ]

. B (q.. )B
o IJ e

where B = (aoO)1<"< 1 .IJ _l,J_n-

[
0, 00. ,0]

= (XO'''' ,Xn- 1): Ale
. q..o IJ

[
0, ... ,0]

= (0,X1, ... ,Xn- 1) : Ic
. (q..). Bo IJ

= 0 .

Now we can use transformation (E) such that on e none of GO"" )Gn- 1 has a zero

in common with G (noting that C must meet with each G. = 0 ,since G. f 0 is annIl
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affine open set in X). This can be done because GO' ... ,Gn have no common zero, so
v

we may take them aB the coordinates in IPn .

So we may aBsume now (1) <loi = Gn(GnGOi - GOGni - GiGnO) + GOGiGnn vanishes

on a curve C, which pass through UOn j (2) none of GO' ... ,Gn- 1 has a zero in

common with Gn on C.

Now Cloo = Gn(GnGOO - 2GOGnO) + G~Gnn = 0 on C, then Gn = 0 implies

G~Gnn = 0 , but on C divisors [Gn] and [GO] have no common component, so

[Gn] 5 [GnnJ . On the other hand, deg [Gn] > deg [GnnJ ,thus Gnn IC = 0 . Now

we abtain on C

and by the same argument we have GnO = 0, GOO = 0 .

Taking arbitrary 'Ioj' on C we have

By the same argument again we obtain

Gnj = 0 far j = 0, ... ,n .
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n

Finally, (d -1}Gn = 1: XjGnj = 0 , but since p ~ d - 1, Gn(C) = 0 . This is

j=O

impossible since C passes through VOn by our construction.

AB a digression we have

Corollary. For smooth hypersurfaces in pn we have the following classification:

(i) H p = 0 or p ~ deg X - 1 , then biduality is valid for X.

(ii) H p divides deg X - 1 but G can be written as

then the biduality is false for X.

(iii) For X not belonging to (i) (ii), the biduality is undefinite.

Proo{. [13J showed that biduality is valid for X if and only if the dual mapping
A v
f{J = (GO' ... ,Gn) : X ----t X is separably generated, that is equivalent to that

{lk(X)/k(Xv ) has rank tr degk(X Y )k(X) ,where k(X) , k(X
Y

) denote the rational

fields of X and XV respectively. Hut naturally

dim X - rk(Pij) ~ rk({}k(X)/k(X v )} ~ tr • degk(Xv}k(X) [14]. Hy Lemma

dirn X - rk(Pij) = 0 , 80 the conclusion follows.
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(ü) Theorem 3.3 in [14].

(üi) We have the following examples.

(a) In 1P3 , the surface

is reflexive, Le., biduality is valid for it.

(b) In 1P3 , the surface

xp+ 1 _ Xp+ 1 _ X2Xp+1 _ Xp+1 _ Xp+1 - 0
3 0 01 1 2-

is non-reflexive.

These two examples both have b2 = 2 , but in (a) det(Pij) f 0 and in (b)

det(Pij) = 0 .

Lemma 4.4. {det(Pij) = O} and the scheme defined by all (n - 2)-minors of (Pij)

have no common component.

Proof. We shall show inductively with n 2: 3 .

For n = 3 , 8uppose there is a curve C such that every Pij vanishes on it. We knew

already that under a transformation of coordinates the new Pils still have C in their
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zero loens. So we may assume that any two of GO' ... ,G3 have no common nullpoint on

C . By the argument we used in the proof of Lemma 4.3, we deduce that G.. = 0 on C
IJ

for 0 ~ i,j ~ 3 and hence GO = ... = G3 = 0 on C. It is absurd.

Now we assume Lemma is tIUe for n -1 hut false for n. Therefore, there is a prime

divisor D on X such that every (n - 2)-minor vanishes on it. We choose a point q

in D such that rk(Pij(q)) = n - 2 ; tbis is possible. The reason for tbis is as follows.

We take a section, e.g., {Xn- 1 = O} , the corresponding (Pij) for it is just the

principal minor of p 1 1 restricted to {Xn- 1 = O} . Then by the inductiven- ,n-

hypothesis, its (0 - 3)-minors have no common component with tbis principal minor.

This means we can find such a point q in D.

Now we shall proceed along the same line as in the proof of Lemma 4.3 to get a solution

of Qoi = 0 with dimension at least 1 and then Gn = 0 hence a contradiction.

Proposition 4.5. T is an equidimensional scheme of dimension n - 2 .

Proof. Let Vi be the subscheme of X which is defined by a1l (i + l)-minors of

(Pij) , 1 ~ i,j ~ n -1 . Ey Lemma 4.3 dim Vn-2 = n - 2 and by Lemma 4.4

dim V0-3 ~ n - 3 . In fact, we conelude that dim Vi ~ i for i = 0,1, ... ,n - 2 .

Otherwise we assume dirn Xi ~ i + 1 far some i , then all the i-th minors of (Pij)

would have a common component D with each (i + 1)-th minors, where

dim D ~ i + 1 .

Now we cut X With X 1 = X 2 = ... = X . 2 = 0 and make them have a nonn- n- n-l-

empty intersection with D. Then we obtain a smooth hypersurface in lPi+2 with

degree deg X J so by Lemma 4.4, its det(Pij) and the i-th minors have no common
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component. Noting that the new (pij) is nothing other than the restrietion of 80me

principal (i + 1)-minor of (Pij) • then we have a contradiction.

On the other hand, T is defined by the resolution

80 codimZT :s n - 2 ,i.e. dim T ~ n - 2 .

From the local expression for T:

E Pilj = O. i = 1, ... ,n - 1 ,

we see that over each (V. - v. 1) we have as solution for A. a linear space with
1 1- 1

dimension n - 2 - i ,thus dim T I -1 :s n - 2 and hence
Cl (VC Vi_1)

dim TI 1 = n - 2 . The proof is complete.
Cl- (Vi)

Theorem 4.6.

n-2

[I] ~ 1:
i=O

1: 3n- 1-i(2 - n)i-kCk(An-2n~)Cl (L)i-k

k=O

\

Proof. Since T is (n - 2)-equidimensional, from the resolution aB shown above we

have
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where Di denotes a certain i--eycle on X.

Now it is enough to show that DO= V0 . (In fact, we can prove Di = Vi for all i).

We know that locally T is expressed by the solution of (**). Over UOn '

y ~ VOn x IPn- 2 and Cl(0(1))n-2 act on a cycle on Y ia equivalent to use a generic

o-plane to meet T. At present case the intersection point is actually the solution of

(**) for generic (Al' ... ,An- 1) , so it has to satisfy Pij = 0 J so DO( V0 . It is obvious

that DO) V0 ' therefore the assertion folIows.

From the expression for [T] we see



n-2 i
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n-2 i

[V0] = [IJ ~ l l 3n- 1-4(2 - n)i-kCk(An-2n~)Cl(L)i-k

i=O k=O

and furthermore, if we wish,

l·[n-l-k][n+l] . k# [I] = l l l 3n- -1 . (2 - ni-
. 0 k 0 k l-k 81= = s+t+u=

(deg X - n -1)t(2 deg X - n -l)U(n - deg X)S · (deg X - 2)n-i-ldeg X .
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