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LOGARITHMIC INTERPRETATION OF MULTIPLE ZETA
VALUES IN POSITIVE CHARACTERISTIC

CHIEH-YU CHANG AND YOSHINORI MISHIBA

A. In this paper, we study multiple zeta values (MZV’s) over rational function

fields in positive characteristic. For each ∞-adic MZV ζA(s) of weight n introduced by

Thakur, we show that it is related to the nth coordinate of the logarithm of an explicitly

constructed uniformizable t-module Gs at a special point vs. Inspired by Furusho’s

definition of p-adic MZV’s [F04], we define v-adic MZV’s for every finite place v of the

given rational function field. We further show that each v-adic MZV ζA(s)v is related

to the nth coordinate of the v-adic logarithm of the t-module Gs at a special point

constructed using vs. These two logarithmic interpretations completely generalize the

work of Anderson-Thakur [AT90] to arbitrary depth MZV’s. As an application, we show

that v-adic MZV’s satisfy the linear relations that their corresponding ∞-adic MZV’s

satisfy.

1. I

1.1. Logarithms and MZV’s. Hilbert’s seventh problem is to ask the transcendence of

αβ for algebraic numbers α and β with α /∈ {0, 1}, β /∈ Q. It was solved by Gelfond-

Schneider in the 1930’s in terms of the Q-linear independence of two logarithms at alge-

braic numbers which are linearly independent over Q. The work of Gelfond-Schneider

was fully generalized by Baker to arbitrary many logarithms at algebraic numbers in

the 1960’s. It is well known that Baker’s celebrated theorem on linear forms in loga-

rithms has many important applications in diophantine geometry, see [BW07, Wa08].

Baker’s theorem was later on extensively generalized by Wüstholz [W89], whose theory

is addressed as the analytic subgroup theorem stated as follows.

Theorem 1.1.1. Let G be a connected commutative algebraic group defined over Q. Let
expG be the exponential map of G when regarding G(C) as a Lie group. Let u ∈ LieG(C)
satisfy expG(u) ∈ G(Q), and put Tu to be the smallest linear subspace of LieG(C) that
is defined over Q and that contains the vector u. Then Tu = LieH for some algebraic
subgroup H of G that is defined over Q.

Let A := Fq[θ] be the polynomial ring in the variable θ over the finite field Fq of

q elements with characteristic p. Let k be the fraction field of A equipped with the

normalized absolute value | · |∞ associated with the infinite place ∞ for which |θ|∞ = q.
Let k∞ be the completion of k with respect to | · |∞, and let C∞ be the completion of

a fixed algebraic closure of k∞ with respect to the canonical absolute value extending
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2 CHIEH-YU CHANG AND YOSHINORI MISHIBA

| · |∞ on k∞. Let k be the algebraic closure of k in C∞. In the function field setting,

Yu’s sub-t-module theorem stated below is the analogue of Wüstholz’s analytic subgroup

theorem (see Sec. 6.3 for related deinitions).

Theorem 1.1.2. ([Yu97, Thm. 0.1]) Let G be a regular t-module defined over k. Let Z
be a vector in LieG(C∞) such that expG(Z) ∈ G(k). Then the smallest linear subspace
in LieG(C∞) defined over k, which is invariant under ∂[t] and contains Z, is the tangent
space at the origin of a sub-t-module of G over k.

Let N be the set of positive integers. Recall that the classical multiple zeta values are

defined for s = (s1, . . . , sr) ∈Nr
with s1 > 1,

ζ(s) :=
∑

n
1
>n

2
>···>nr≥1

1

n
s
1

1
· · ·nsrr

∈ R×.

The MZV ζ(s) is a specialization at (1, . . . , 1) of the r-variable multiple polylogarithm∑
n

1
>n

2
>···>nr≥1

z
n

1

1
. . . znrr

n
s
1

1
· · ·nsrr

,

which are generalizations of the classical logarithms. Classical MZV’s and multi-

ple polylogarithms have many interesting connections with various research topics,

see [An04, Zh16].

There is a conjecture in the classical transcendence theory asserting that each multiple

zeta value is transcendental over Q. To date one only knows the transcendence of ζ(s)
when

ζ(s)/(2π
√
−1)wt(s) ∈ Q,

where wt(s) :=
∑r
i=1
si. For example, ζ(2, · · · , 2) is transcendental over Q.

1.2. The first main result. In what follows, we will review the ∞-adic multiple zeta

values initiated by Thakur [T04]. For a finite place v of k, we will define v-adic multiple

zeta values in the next section and abbreviate them as ‘‘v-adic MZV’s ’’. To distinguish

the difference between ∞-adic and v-adic settings, throughout this paper we will use

‘‘MZV’s’’for Thakur’s ∞-adic multiple zeta values unless we particularly point out.

Fixing any r-tuple s = (s1, . . . , sr) ∈ Nr
, Thakur [T04] defined the following positive

characteristic MZV’s:

(1.2.1) ζA(s) :=
∑

1

a
s
1

1
· · ·asrr

∈ k∞.

Here a1, . . . ,ar run over all monic polynomials in A satisfying the strict inequalities:

|a1|∞ > |a2|∞ > · · · > |ar|∞. Note that since our absolute value | · |∞ is non-archimedean,

the series ζA(s) converges ∞-adically in k∞ for all s ∈ Nr
. Furthermore, it is shown

by Thakur [T09] that every ζA(s) is non-vanishing. We call dep(s) := r the depth and

wt(s) :=
∑r
i=1
si the weight of the presentation of ζA(s). Depth one MZV’s were initiated

by Carlitz [Ca35] and are called Carlitz zeta values.

In the seminal paper [AT90], Anderson and Thakur gave logarithmic interpretations

for Carlitz zeta values and v-adic Goss zeta values, where v is a finite place of k. For

each Carlitz zeta value ζA(s), we consider the sth tensor power of the Carlitz module

denoted by C⊗s in (2.2.7). Anderson and Thakur explicitly constructed a special point

vs ∈ C⊗s(k) and a vector Zs ∈ LieC⊗s(C∞) so that up to an explicit multiple Γs in

A, ζA(s) occurs as the sth coordinate of Zs and expC⊗s(Zs) = vs, where expC⊗s is
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the exponential map of C⊗s (see Sec. 2.2). Around that time, Yu [Yu91] developed

a transcendence theory for the last coordinate of the logarithm of C⊗s at algebraic

points. Combining the works of Anderson-Thakur and Yu, a significant consequence

is to enable one to derive the transcendence of all Carlitz zeta values, which surpasses

the classical situation. Later on, Yu extensively generalized the ∞-adic transcendence

theory in [Yu91] to the most general setting stated as Theorem 1.1.2. The transcendence

of arbitrary MZV was obtained by the first author of the present paper [C14] using

the current t-motivic transcendence theory, in particular the so-called ABP criterion,

developed by Anderson, Brownawell and Papanikolas [ABP04].

The first main theorem in this paper is to generalize the result of Anderson-Thakur [AT90]

to arbitrary MZV’s (see Sec. 2.2 for the related definitions).

Theorem 1.2.2. Given any r-tuple s = (s1, . . . , sr) ∈Nr, we put n := wt(s). We explicitly
construct a uniformizable t-module Gs that is defined over k, a special pint vs ∈ Gs(k)
and a vector Zs ∈ LieGs(C∞) so that

(a) Γs
1
· · · ΓsrζA(s) occurs as the nth coordinate of Zs.

(b) expGs
(Zs) = vs.

Here, Γsi stands for the Carlitz factorials in A defined in (5.1.2). Note that the weaker

version of the theorem above for Eulerian MZV’s was obtained by the first author of

the present paper in [C16] and it is the key point that enables one to compute the

dimensions of double zeta values. For other instances about logarithmic interpretations

of special zeta values (at small positive integers) coming from algebraic curves over Fq,

see [T92, A94, G17].

The following is a naive question as an analogue of Theorem 1.2.2.

Question 1.2.3. Given a multiple zeta value ζ(s), can one construct a connected commu-
tative algebraic group Gs over Q and a vector Zs ∈ LieGs(C) for which

(a) up to a rational multiple, ζ(s) occurs as certain coordinate of Zs, and
(b) expGs

(Zs) ∈ Gs(Q)?

If the question above can be tackled, there may have hope toward proving the tran-

scendence of multiple zeta values using Wüstholz’s analytic subgroup theorem. A prob-

ing study of this question both for real-valued MZV’s and p-adic MZV’s may lead to a

possible connection between real-valued MZV’s and their corresponding p-adic MZV’s,

as realized in the function field setting by our paper.

As mentioned above, the result of Theorem 1.2.2 for depth one case was established by

Anderson-Thakur [AT90]. However, we are not able to find a easier way to generalize

their methods to higher depth case. In [AT90], there are two crucial points in the

scheme of their proof:

(1) Interpolation of power sums (see [AT90, (3.7.4)]).

(2) Formulas for the right lower corner of coefficient matrices of the logarithm of

C⊗s (see [AT90, Prop. 2.1.5]).

Property (1) enables one to connect ζA(s) with a k-linear combination of the sth Carlitz

polylogarithm at certain integral points, and (2) allows one to express the last coordinate

of the logarithm of C⊗s at specific special point as an evaluation of the sth Carlitz

polylogarithm. Note that the interpolation property (1) was used by the first author

of the present paper to express each MZV ζA(s) as a k-linear combination of the sth
Carlitz multiple polylogartihm at integral points [C14].
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Inspired by the period interpretation of MZV’s in [AT09], for each MZV ζA(s) the

authors of [CPY14] constructed a t-module E ′s defined over A and a special point vs ∈
E ′s(A) to establish a criterion in terms of (E ′s,vs) for determining when ζA(s) is a

k-rational multiple of ζA(wt(s)). It is natural to ask or predict whether ζA(s) can be

connected to the logarithm of E ′s. The difficulty along this direction is that in general the

t-module E ′s is complicated, and so far we do not know how to spell out a rule of writing

it down explicitly except case by case (see [CPY14, Sec. 6.1.1]). Therefore, it is difficult

to compute the coefficient matrices of the logarithm of E ′s following Anderson-Thakur’s

methods, which involve recursive matrix calculations. For other instance involving

calculations of the logarithm of a higher dimensional t-module, see [CM17, G17].

To circumvent the difficulty mentioned above, we introduce new techniques based on

fiber coproducts of Anderson dual t-motives and we sketch the ideas how we prove

Theorem 1.2.2 below. Fix an r-tuple s = (s1, . . . , sr) ∈Nr
with n := wt(s).

(I). Based on the formula [C14, Thm. 5.5.2] we further express Γs
1
· · · ΓsrζA(s) as

an explicit A-linear combination of Carlitz multiple star polylogarithms at some

integral points. See Theorem 5.2.5.

(II). For each triple (b`, s`,u`) occurring in the right hand side of the identity in

Theorem 5.2.5, following [CM17] we explicitly construct a uniformizable t-module

G` defined over k and a special point v` ∈ G`(k) and show that the logarithm

logG`
of G` converges at the special point v`, and the nth coordinate of logG`

(v`)
gives (−1)dep(s`)−1

Li
?
s`
(u`). See Theorem 4.2.3.

(III). We mention that G` comes from a rigid analytically trivial Anderson dual t-
motive M ′

` with C⊗n as a sub-t-motive, where C⊗n is the nth tensor power

of the Carlitz t-motive (see Remark 4.1.10). We then define M to be the fiber

coproduct of those M ′
` over C⊗n and show that it is rigid analytically trivial

in Proposition 2.5.3. Such M corresponds to a uniformizable t-module Gs and

one has a natural morphism π : ⊕`G` → Gs defined over k (see Lemma 3.2.3).

We then define Z` := logG`
(v`), Zs := ∂π ((∂[b`(t)]Z`)`) ∈ LieGs(C∞), and vs :=

π (([b`(t)]v`)`) ∈ Gs(k), where b` ∈ A are given in Theorem 5.2.5 and ∂[·] is given

in (2.2.1).

(IV). In Lemma 3.3.2, we show that the nth coordinate of Zs is exactly the summation

of the nth coordinate of ∂[b`(t)]Z`. Then by the formula in Theorem 5.2.5 the

desired result follows.

1.3. The second main result and applications. We first briefly review Furusho’s p-
adic MZV’s. Let p be a prime number. Given an r-tuple s = (s1, . . . , sr) ∈ Nr

with

s1 ≥ 2, Furusho considered the one-variable p-adic multiple polylogarithm

Li(s
1
,...,sr)(z) :=

∑
n

1
>n

2
>···>nr≥1

zn1

n
s
1

1
· · ·nsrr

,

which is the same power series presentation as complex valued one-variable function,

but we consider the p-adic convergence. This function converges on the open unit disk

centered at 0 of Cp, where Cp is the p-adic completion of a fixed algebraic closure of

Qp. We note that the open unit disk centered at 0 of Cp and the one centered at 1 of Cp
are disjoint, and so it does not make sense when taking limit z → 1 on Cp. However,

Furusho applied Coleman’s p-adic iterated integration theory [Co82] to make an analytic
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continuation of p-adic multiple polylogarithms and then defined the p-adic MZV ζp(s)
to be the limit value at 1 of the analytically continued p-adic multiple polylogarithm.

Now we turn back to the function field case. As we mention above, we have the

formula in Theorem 5.2.5 for ζA(s):

ζA(s) =
1

Γs
1
· · · Γsr

∑
`

b` · (−1)dep(s`)−1
Li

?
s`
(u`).

Fix a finite place v of k and let kv be the completion of k at v. Let Cv be the v-
adic completion of a fixed algebraic closure of kv. We mention that the CMSPL Li

?
s`

converges v-adically on the open unit ball centered at the zero of C
dep(s`)
v . In [CM17,

Sec. 4], it is shown that Li
?
s`

can be analytically continued to the closed unit ball centered

at the zero of C
dep(s`)
v , and so it can be evaluated v-adically at u` and we denote by

Li
?
s`
(u`)v the v-adic value. We then define the v-adic MZV ζA(s)v in Definition 6.1.1 to

be

ζA(s)v :=
1

Γs
1
· · · Γsr

∑
`

b` · (−1)dep(s`)−1
Li

?
s`
(u`)v ∈ kv.

The weight and depth of this presentation ζA(s)v are defined to be wt(s) and dep(s)
respectively. Note that here we do not exclude the v-part and so for each s ∈ N,

(1− v−s)ζA(s)v is identical to Goss’ v-adic zeta value [Go79] at s (see [AT90, Theorem

3.8.3. (II)]). We further mention that Thakur [T04, Sec. 5.10] also defined v-adic MZV’s

by using Kummer congruences to interpolate the power sums at non-positive integers,

and he remarked that his interpolated v-adic MZV’s are not the same as ours defined

above but they are expected to be related by certain linear relations.

The second main result in this paper stated as Theorem 6.2.4 is that for each v
and s ∈ Nr

with n := wt(s), the logarithm of the t-module Gs converges v-adically
at the point [a]vs in Gs(k) for some nonzero a ∈ Fq[t] and its nth coordinate gives

a(θ)ΓsζA(s)v. When r = 1, our result is the same as [AT90, Thm. 3.8.3 (II)]. As an

application of these logarithmic interpretations, we apply Yu’s sub-t-module theorem to

create a route from the space of ∞-adic MZV’s to that of v-adic MZV’s.

Theorem 1.3.1. Let v be a finite place of k and fix an embedding k ↪→ Cv. Let n be a
positive integer and let Z n be the k-vector space spanned by all∞-adic MZV’s of weight
n, and Z n,v be the k-vector space spanned by all v-adic MZV’s of weight n. Then we
have a well-defined surjective k-linear map

Z n � Z n,v

given by
ζA(s) 7→ ζA(s)v

and its kernel contains the one-dimensional vector space k · ζA(n) when n is divisible by
q− 1.

Since by [Go79] we have ζA(n)v = 0 when n is divisible by q − 1, an interesting

consequence of the theorem above is that if ζA(s) is ‘‘Eulerian’’, ie., ζA(s) is a k-
multiple of the wt(s)th power of Carltiz period, then ζA(s)v = 0. We mention that for

fixed weight, the spirit of the result above is that v-adic MZV’s satisfy the same k-linear

relations that their corresponding ∞-adic MZV’s satisfy. A stronger consequence is

obtained in Corollary 6.4.3. Note that by [C14] the k-linear relations among MZV’s are

generated by those k-linear relations among MZV’s of the same weight.
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The analogy of the theorem above in the classical setting between real-valued MZV’s

and p-adic MZV’s is still unknown. However, we mention that both real-valued MZV’s

and p-adic MZV’s satisfy the regularized double shuffle relations [IKZ06, FJ07], and con-

jecturally regularized double shuffle relations generate all the Q-linear relations among

the real-valued MZV’s. Therefore, conjecturally p-adic MZV’s satisfy the Q-linear rela-

tions that their corresponding real-valued MZV’s satisfy. Compared with this (classical)

conjecture, our Theorem 1.3.1 provides stronger results as it is over algebraic coefficients.

1.4. Organization of this paper. We mention that one of our goals in writing this

paper has been to introduce our techniques as general and robust as possible. Therefore

we do not organize this paper in order matching the steps from (I) to (IV) above. We

first review the related theory of Anderson t-modules and Anderson dual t-motives

in Section 2, and then consider the fiber coproducts of Anderson dual t-motives in a

setting as general as possible. The purpose of Section 3 is to establish the key result

in Lemma 3.3.2 for handling tractable coordinates of logarithmic vectors with respect

to the fiber coproduct in question. Then step (IV) above becomes a consequence of

Lemma 3.3.2. Section 4 is devoted to verify Step (II) above. In Section 5 we set

the stage for our MZV’s: to any given MZV we associate a fiber coproduct family

of Anderson dual t-motives satisfying the hypothesis of Lemma 3.3.2; furthermore an

explicit integral point is picked up on the t-module associated to each of the t-motives

in this coproduct family. This set up then enables us to prove Theorem 1.2.2.

Finally, we define v-adic MZV’s in Section 6 and give a logarithmic interpretation for

them (see Theorem 6.2.4). We then use these logarithmic interpretations for ∞-adic and

v-adic MZV’s (Theorems 1.2.2 and 6.2.4) as well as Yu’s sub-t-module theorem [Yu97]

to prove Theorem 1.3.1. At the end we list three natural and interesting questions in

Remark 6.4.4, which we will investigate in a future project.

Acknowledgements. The first author thanks D. Zagier for helpful discussions that

highly motived the formulation of Theorem 1.3.1. We are grateful to D. Brownawell,

H. Furusho, M. Papanikolas, D. Thakur, S. Yasuda and J. Yu for many helpful comments.

The first author thanks Max Planck Institute for Mathematics for financial support and

its hospitality. The project was initiated when the second author visited NCTS and he

would like to thank NCTS for their kind support.

2. F   A  t-

Throughout this paper, we will call Anderson dual t-motives for those called dual
t-motives in [ABP04] and called Anderson t-motives in [P08].

2.1. Anderson dual t-motives. Let C∞((t)) be the field of Laurent series in the variable

t over C∞. For an integer i, we define the ith fold twisting automorphism on C∞((t))

given by f 7→ f(i), where f(i) :=
∑
a
qi

j t
j
for f =

∑
ajt

j ∈ C∞((t)). We extend the ith fold

twisting to an operator on matrices with entries in C∞((t)) by entry-wise action.

We define the twisted polynomial ring k[t,σ] generated by the two variables t and σ
subject to the relations

σf = f(−1)σ for f ∈ k[t].
Definition 2.1.1. An Anderson dual t-motive is a left k[t,σ]-module M satisfying that

(1) M is a free left k[t]-module of finite rank.
(2) M is a free left k[σ]-module of finite rank.
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(3) (t− θ)sM ⊂ σM for all sufficiently large integers s.

For an Anderson dual t-motive M of rank r over k[t] and of rank d over k[σ], we

call the vector x = (x1, . . . , xr) ∈ Mat1×r(M ) (resp. ν = (ν1, . . . ,νd) ∈ Mat1×d(M )) a

k[t]-basis for M (resp. a k[σ]-basis) if x1, . . . , xr (resp. ν1, . . . ,νd) form a k[t]-basis
(resp. k[σ]-basis) of M . Fixing a k[t]-basis x for M , then there exists a unique matrix

Φ ∈ Matr(k[t])∩GLr(k(t)) satisfying that

σxtr = Φxtr
,

where σxtr
is defined via entry-wise action. We say that the matrix Φ represents

multiplication by σ on M with respect to x (cf. [P08, Sec. 3.2.3]).

A typical example is the nth tensor power of the Carlitz t-motive denoted by C⊗n for

a positive integer n. The underlying module of C⊗n is k[t], on which σ acts by

σf := (t− θ)nf(−1)
for f ∈ k[t].

It is not hard to check that C⊗n is an Anderson dual t-motive with a k[σ]-basis given

by (
(t− θ)n−1

, . . . , (t− θ), 1
)

.

As a left Fq[t]-module the quotient C⊗n/(σ− 1)C⊗n gives the k-valued points of the

nth tensor power C⊗n of the Carlitz module defined in (2.2.7). This fact was known by

Anderson, and the reader can consult [T04] and [CPY14, Sec. 5.2].

2.2. Anderson t-modules. We quickly review the theory of t-modules developed by

Anderson in [A86]. For any field extension L/k, we let τ : L→ L be the Frobenius qth
power operator, and one naturally extends it to an operator on Ls by entry-wise action.

Let L[τ] is the twisted polynomial ring generated by τ over L subject to the relation:

τα = αqτ for α ∈ L.
Given a d-dimensional additive algebraic group Gd

a/L over L, we denote by EndFq

(
Gd
a/L
)

the ring of endomorphisms of Gd
a/L that are Fq-linear and defined over L, and we nat-

urally identify EndFq

(
Gd
a/L
)

with the matrix ring Matd(L[τ]).

A d-dimensional t-module defined over L is a pair G = (Gd
a/L, ρ), where Gd

a/L is

the d-dimensional additive group Gd
a that is defined over L and ρ is an Fq-linear ring

homomorphism

ρ : Fq[t]→ EndFq

(
Gd
a/L

)
so that ∂ρt− θId is a nilpotent matrix, where ∂ρt is defined to be the induced morphism

of ρt at the identity on the Lie algebra Lie Gd
a/L of Gd

a/L. For a nonzero polynomial

a ∈ Fq[t], we write ρa =
∑m
i=0
aiτ

i
with ai ∈ Matd(L), where we understand that the

symbols ai and m depend on a. Then the differential of ρa at the identity is explicitly

expressed as

(2.2.1) ∂ρa = a0.

Note that G(F) = Gd
a(F) has a left Fq[t]-module structure via the map ρ for any field

extension F/L.
Given such a d-dimensional t-module G over L, Anderson [A86] showed the existence

of a d-variable power series expG with coefficients in L for which

(a) expG(z) ≡ z (mod deg q);
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(b) for any a ∈ Fq[t], the following identity holds:

(2.2.2) ρa ◦ expG = expG ◦∂ρa.

We mention that when we work over the field C∞, expG : LieG(C∞)→ G(C∞) is entire.

Such as the classical terminology for Lie groups, we call expG the exponential map of

the t-module G. The formal inverse of the power series expG is called the logarithm of

G denoted by logG and it satisfies:

(2.2.3) expG ◦ logG(z) = z = logG ◦ expG(z) (as power series identities).

(2.2.4) logG ◦ρa = ∂ρa ◦ logG for every a ∈ Fq[t].

Note that logG is the power series expansion around the origian of the multi-valued

inverse map to expG.

In fact, the exponential map expG is functorial in G in the following sense. Let G
and G ′ be two t-modules defined over L. By a morphism from G to G ′ over L, we mean

a morphism as algebraic groups φ : G → G ′ that is defined over L and that commutes

with Fq[t]-actions. The functoriality property [A86, p. 473] means that we have the

following functional equation:

(2.2.5) φ ◦ expG = expG ′ ◦∂φ,

where ∂φ is the differential of the morphism φ at the identity. The functional equation

for exponential maps and (2.2.3) imply the following functional equation for logarithms:

(2.2.6) logG ′ ◦φ = ∂φ ◦ logG .

An example of a t-module is the sth tensor power of the Calitz module denoted by

C⊗s = (Gs
a/k, [−]s) for any positive integer s. The underlying space of C⊗s is Gs

a/k
equipped with the Fq[t]-module structure given (and so uniquely determined) by

(2.2.7) [t]s =


θ 1 0 · · · 0

θ 1
.
.
.

.

.

.

.
.
.

.
.
. 0

.
.
. 1

τ θ

 ∈ Mats(k[τ]).

We call a t-module G over k uniformizable if its exponential map expG : LieG(C∞)→
G(C∞) is surjective. We mention that there are examples of t-modules which are not

uniformizable, see [A86, Sec. 2.2]. Note that C⊗s is uniformizable for each s ∈ N,

see [Go96, Cor. 5.9.38].

2.3. From Anderson dual t-motives to t-modules. Here we review how one con-

structs a t-module from an Anderson dual t-motive following Anderson’s approach (see

[CPY14, Sec. 5.2], [BP16, Sec. 4.4] and [HJ16, Sec. 5.2]). Let M be an Anderson dual

t-motive with a k[t]-basis (x1, . . . , xr), and a k[σ]-basis (ν1, . . . ,νd). For any y ∈M , we

express y =
∑d
i=1
giνi with gi ∈ k[σ] and then define the map ∆ : M → Matd×1(k) by

(2.3.1) ∆(g) := (δ(g1), . . . , δ(gd))
tr ∈ Matd×1(k),
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where for g =
∑
j ajσ

j(=
∑
j σ
ja
qj

j ) ∈ k[σ], δ : k[σ]→ k is defined by

δ(g) :=
∑
j

a
qj

j .

It is clear that ∆ is Fq-linear and surjective. One further checks that Ker∆ = (σ− 1)M ,

and therefore we have the induced isomorphism

∆ : M /(σ− 1)M ∼= Matd×1(k).

As Fq[t] is contained in the center of k[t,σ], M /(σ − 1)M has a left Fq[t]-module

structure, which allows us to equip with an Fq[t]-module structure on Matd×1(k) from

the isomorphism above. One thereby has a unique Fq-linear ring homomorphism

ρ : Fq[t]→ Matd(k[τ]),

whence defining a t-module G = (Gd
a/k, ρ) associated to the Anderson dual t-motive M

since the group of k-valued points is Zariski dense in Gd
a/k.

2.4. The fiber coproduct. In this section, we will construct a fiber coproduct of certain

Anderson dual t-motives, which will play the key role when proving Theorem 1.2.2.

Here, we deal with the situation as general as possible, and expect it to have wide

applications for the related issues.

2.4.1. The set up. Let N be an Anderson dual t-motive of rank r over k[t], and we

fix a k[t]-basis x = (x1, . . . , xr) ∈ Mat1×r(N ) as well as a k[σ]-basis α = (α1, . . . ,αn) ∈
Mat1×n(N ) for N . Let B := BN ∈ Matr(k[t]) ∩ GLr(k(t)) be the matrix presenting

multiplication by σ on N with respect to x, ie.,

σxtr = Bxtr
.

Suppose that

{
M ′
`

}T
`=1

is a family of Anderson dual t-motives equipped with inclu-

sions N ↪→M ′
` so that either

(2.4.1) M ′
` is isomorphic to N as left k[t,σ]-modules

or

(2.4.2) M ′
` fits into the short exact sequence of left k[t,σ]-modules

0→ N →M ′
` →M ′′

` → 0,

where M ′′
` is an Anderson dual t-motive of rank m` ≥ 1 over k[t]. We let T = {1, . . . , T }

and decompose it as the disjoint union

T = T1 ∪T2,

where T1 consists of those indexes ` for which M ′
` satisfies (2.4.1) and T2 consists of

those indexes ` for which M ′
` satisfies (2.4.2). We let s := |T1|, and for convenience we

rearrange the indexes so that

T1 = {1, . . . , s} and T2 = {s+ 1, . . . , T } .

It is allowed to be the case that s = 0, ie., T1 = ∅ and T2 = T , or the case that s = T ,
ie., T1 = T and T2 = ∅. In the later case when s = T , it means that M ′

` is isomorphic
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to N for all `. In the former case when s = 0, every M ′
` is an extension of M ′′

` by N
in (2.4.2).

By convenience we put m` = 0 for 1 ≤ ` ≤ s. For each 1 ≤ ` ≤ T , we denote

by x` = (x`1, . . . , x`r) ∈ Mat1×r(M
′
` ) the image of the k[t]-basis x = (x1, . . . , xr) for N

under the map N ↪→ M ′
` . Since M ′′

` is free of rank m` over k[t], there exist vectors

y` = (y`1, . . . ,y`m`
) ∈ Mat1×m`

(M ′
` ), where y` = ∅ for 1 ≤ ` ≤ s, so that (x`,y`) is a

k[t]-basis for M ′
` . For the k[t]-basis (x`,y`), the action of σ is given by the form

σ

(
xtr

`
ytr

`

)
=

(
B 0

D` Φ ′′`

)(
xtr

`
ytr

`

)
.

Here Φ ′′` ∈ Matm`
(k[t]) ∩GLm`

(k(t)) is the matrix representing multiplication by σ on

M ′′
` with respect to the k[t]-basis as the image of y` in M ′′

` .

For each 1 ≤ ` ≤ T , we denote by α̃` := (α`1, . . . ,α`n) ∈ Mat1×n(M
′
` ) the image of the

k[σ]-basis α = (α1, . . . ,αn) for N under the map N ↪→ M ′
` . We understand that for

1 ≤ ` ≤ s, α̃` is a k[σ]-basis for M ′
` since N ∼= M ′

` , and since M ′′
` is free of finite

rank over k[σ] for s+ 1 ≤ ` ≤ T , α̃` can be extended to a k[σ]-basis (α̃`,β`) for M ′
` for

some β` ∈ Mat1×h`(M
′
` ) with h` := rankk[σ] M

′′
` . Note that the image of β` under the

quotient map M ′
` � M ′′

` forms a k[σ]-basis for M ′′
` . By convenience, for 1 ≤ ` ≤ s we

put h` = 0 and β` = ∅.

We note that for the case applied to prove Theorem 1.2.2, the N above would be the

nth tensor power of the Carlitz t-motive and the M ′
` would be the Anderson dual t-

motive occurring from certain Carlitz multiple polylogarithms at certain integral points

constructed from [C14, CPY14]. See Sec. 5.3.

2.4.2. The definition. We continue with the notation and set up as above. We define

M to be the fiber coproduct of all M ′
` over N denoted by

M := M ′
1
tN M ′

2
tN · · · tN M ′

T .

More precisely, as a left k[t]-module, M is defined by the quotient:

(2.4.3) M :=
(
⊕T`=1

M ′
`

) / (
Spank[t]

{
x`i − x` ′i|1 ≤ `, ` ′ ≤ T , 1 ≤ i ≤ r

})
.

Without confusion, we denote by xi the image of x`i in the quotient module M for any

`, and 1 ≤ i ≤ r. This is well defined from the description of M above, and it makes

sense to use the notation as one has the natural embedding N ↪→M . We still denote

by y`j the image of y`j in the quotient module M for s+ 1 ≤ ` ≤ T , and 1 ≤ j ≤ m`, as

it is well-defined due to (2.4.3). Under such notation, it is clear to see that M is a free

k[t]-module and

(2.4.4) m := (x,ys+1, . . . ,yT )

is a k[t]-basis for M .

Proposition 2.4.5. The left k[t]-module M defined above is an Anderson dual t-motive.

Proof. We first claim that the k[t]-submodule Spank[t] {x`i − x` ′i|1 ≤ `, ` ′ ≤ T , 1 ≤ i ≤ r}
is stable under the σ-action, whence a left k[t,σ]-submodule of ⊕T`=1

M ′
` . To show this,

we note that x`i − x` ′i is the ith component of (x` − x` ′)tr. By definition, σ(x` − x` ′)tr is

the vector

B · (x` − x` ′)tr.
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By expanding the above vector we see that

σ(x`i − x` ′i) ∈ Spank[t]

{
x`i − x` ′i|1 ≤ `, ` ′ ≤ T , 1 ≤ i ≤ r

}
.

To show that M is free of finite rank over k[σ], we first note that the following matrix

(2.4.6) Φ :=


B
Ds+1 Φ ′′s+1

.

.

.
.
.
.

DT Φ ′′T


is the matrix representing the action of σ on M with respect to the k[t]-basis m given

in (2.4.4). It follows that we have the following short exact sequence of Anderson dual

t-motives:

0→ N →M → ⊕T`=s+1
M ′′
` → 0.

By hypothesis, each M ′′
` is an Anderson dual t-motive, so is ⊕T`=s+1

M ′′
` . Since N

and ⊕T`=s+1
M ′′
` are Anderson dual t-motives, M is a finitely generated k[σ]-module.

By [ABP04, Prop. 4.3.4], we know that k[t]-torsion submodule of M is as same as the

k[σ]-torsion submodule of M , and hence M is free over k[σ] since M is a free left

k[t]-module.

Finally, one directly checks that (t − θ)iM ⊂ σM for sufficiently large integers i,
whence M is an Anderson dual t-motive. �

2.5. Rigid analytic trivialization. Let T ⊂ C∞((t)) be the subring consisting of power

series that are convergent on the closed unit disk centered at the zero of C∞. More

precisely, every element f in T is of the form f =
∑∞
i=0
ait

i
with the property that

|ai|∞ → 0 as i → ∞. We follow [ABP04, P08] to introduce the following terminology

(cf. [A86]).

Definition 2.5.1. Let M be an Anderson dual t-motive of rank r over k[t]. Let Φ ∈
Matr(k[t])∩GLr(k(t)) be the matrix representing multiplication by σ on certain k[t]-basis
for M. We say that M is rigid analytically trivial if there exists a matrix Ψ ∈ GLr(T) so
that

Ψ(−1) = ΦΨ.

Such a Ψ is called a rigid analytic trivialization of Φ.

Remark 2.5.2. If an Anderson dual t-motive is rigid analytically trivial, then its associ-

ated t-module is uniformizable. See [BP16, Sec. 4.5] and [HJ16, Thm. 5.2.8].

Proposition 2.5.3. Let N ,
{
M ′
`

}T
`=1

be the Anderson dual t-motives given in Sec. 2.4.1
and suppose that all of them are rigid analytically trivial. Then so is the fiber coproduct
M of

{
M ′
`

}T
`=1

over N .

Proof. We continue with the above notation that B is the matrix representing multipli-

cation by σ on x for N , and for each s+ 1 ≤ ` ≤ T ,(
B
D` Φ ′′`

)
is the matrix representing multiplication by σ on (x`,y`) for M ′

` .
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Since N and M ′
` are rigid analytically trivial, there exist rigid analytic trivializations

Q and (
Q
R` Ψ ′′`

)
for which Q(−1) = BQ and(

Q
R` Ψ ′′`

)(−1)

=

(
B
D` Φ ′′`

)(
Q
R` Ψ ′′`

)
.

Since Φ given in (2.4.6) is the matrix representing multiplication by σ on m for M , we

put

Ψ :=


Q
Rs+1 Ψ ′′s+1

.

.

.
.
.
.

RT Ψ ′′T


and find that Ψ is a rigid analytic trivialization of Φ. So the desired result follows. �

3. T  

We continue with the setting and notation given in Sec. 2.4.1 and Sec. 2.4.2. As M
is a quotient of ⊕T`=1

M ′
` , we have the natural projection map µ : ⊕T`=1

M ′
` � M . In fact,

according to the definition of M we can write down the map µ explicitly as

(3.0.1) µ

(

r∑
i=1

f`i(t)x`i +

m∑̀
j=1

f`j(t)y`j)`

 =

r∑
i=1

(
T∑
`=1

f`i(t)

)
xi +

T∑
`=s+1

m∑̀
j=1

f`j(t)y`j.

According to the set up in Sec. 2.4.1 that α is identified with α̃` in M ′
` , it follows that

(3.0.2)

Spank[t]

{
x`i − x` ′i|1 ≤ `, ` ′ ≤ T , 1 ≤ i ≤ r

}
= Spank[σ]

{
α`i −α` ′i|1 ≤ `, ` ′ ≤ T , 1 ≤ i ≤ n

}
,

hence it is well-defined so that we can denote by αi the image of α`i for any 1 ≤ ` ≤ T
and 1 ≤ i ≤ n. Note that such a fact can be also seen from the definition of fiber

coproduct.

We denote by αi the image of α`i in M , by α the image of α̃` ∈ Mat1×n(M
′
` ) in

Mat1×n(M ), and by β`j the image of β`j ∈M ′
` in M , which are well-defined by (3.0.2)

and the condition of k[σ]-basis (α̃`,β`) for M ′
` . From the setting in Sec. 2.4.1, we see

that (α,βs+1, . . . ,βT ) is a k[σ]-basis for M .

3.1. The setting. For each 1 ≤ ` ≤ T , we let G` be the t-module associated to the

Anderson dual t-motive M ′
` , i.e., we have the Fq[t]-module isomorphism

G`(k) ∼= M ′
` /(σ− 1)M ′

` .

To simplify the notation, we denote by [−] the Fq[t]-action on any t-module without

confusions. We denote by H the t-module associated to the Anderson dual t-motive

N . By our hypothesis that N ∼= M ′
` for 1 ≤ ` ≤ s and the identification of k[σ]-bases

α and α̃`, H is the t-module associated to M ′
` for 1 ≤ ` ≤ s.

By Proposition 2.4.5 we know that M is an Anderson dual t-motive. We let G
be the t-module associated to M , ie., G(k) ∼= M /(σ− 1)M as Fq[t]-modules. Recall
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that (α,βs+1, . . . ,βT ) is a k[σ]-basis of M and the rank of M ′
` over k[σ] is n+ h` for

s+ 1 ≤ ` ≤ T . So the dimension of G is

(3.1.1) dimG = n+ hs+1 + · · ·+ hT .
3.2. The main diagram.

Definition 3.2.1. Let n be the rank of N over k[σ]. For any integer m ≥ n and any
vector z = (z1, . . . , zm)

tr ∈ Cm∞, we put

ẑ :=

z1...
zn

 and z− :=

zn+1

...
zm


and so z is expressed as

z =
(

ẑ
z−

)
.

Definition 3.2.2. We define a morphism π :
⊕T
`=1
G` → G of algebraic groups by

π((ztr
1
, . . . , ztrT )

tr) = (

T∑
`=1

ẑtr` , z
tr

1−, . . . , ztrT−)
tr
.

Recall that µ : ⊕T`=1
M ′
` → M is the natural quotient map, which is a left k[t,σ]-

module homorphism by (3.0.2). Via µ we find from the following Lemma that π is

indeed a morphism of t-modules.

Lemma 3.2.3. Let notation be given as above. Then the following diagram⊕T
`=1

M ′
`

∆ //

µ

��

⊕T
`=1
G`(k)

π
��

M
∆ // G(k)

commutes. In particular, π is a morphism of t-modules.

Proof. Recall that for each 1 ≤ ` ≤ T , (α̃`,β`) is a k[σ]-basis for M ′
` . Since the maps

∆,π and µ are additive, it suffices to show the commutativity of the diagram on elements

of the form

(3.2.4) ω = f`i(σ)α`i ∈M ′
` ↪→ ⊕T`=1

M ′
` for 1 ≤ ` ≤ T , 1 ≤ i ≤ n

and

(3.2.5) ω = g`i(σ)β`i ∈M ′
` ↪→ ⊕T`=1

M ′
` for s+ 1 ≤ ` ≤ T , 1 ≤ i ≤ h`.

Let ω = f`i(σ)α`i be given in (3.2.4). We write

∆(ω) =



0



i

n

.

.

.

δ (f`i(σ))
.
.
.

0

.

.

.

}
h`

0

∈ G` ↪→ ⊕T`=1
G`.
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Then by the definition of π we have

π (∆(ω)) =



0



i

n

.

.

.

δ (f`i(σ))
.
.
.

0

.

.

.

}
hs+1 + · · ·+ hT

0

∈ G.

On the other hand, we recall that the image of α`i under the projection map µ :
⊕T`=1

M ′
` � M is denoted by αi. As µ is a left k[t,σ]-module homomorphism, we

have

µ (f`i(σ)α`i) = f`i(σ)αi.

Recall further that (α1, . . . ,αn,βs+1, . . . ,βT ) is a k[σ]-basis for M . Hence by the defini-

tion of ∆, we see that

∆ (µ (ω)) = ∆ (f`i(σ)αi)

is equal to

π (∆(ω)) =



0



i

n

.

.

.

δ (f`i(σ))
.
.
.

0

.

.

.

}
hs+1 + · · ·+ hT

0

∈ G.

Now we consider the case of ω = g`i(σ)β`i in (3.2.5). We denote by

z` := ∆(ω) =



0



}
n

.

.

.

0

i
h`

.

.

.

δ (g`i(σ))
.
.
.

0

∈ G` ↪→ ⊕T`=1
G`.

Since s+ 1 ≤ ` ≤ T and 1 ≤ i ≤ h`, by the definition of π we have

π (∆(ω)) =



0



}
n

.

.

.

0

}
hs+1 + · · ·+ h`−1.

.

.

z`−
.
.
.

}
h`+1 + · · ·+ hT

0

∈ G.
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Recall that we identify µ(β`) with β`. Since µ is a left k[t,σ]-module homomorphism,

we have

µ(ω) = g`i(σ)µ(β`i) = g`i(σ)β`i.

Since (α1, . . . ,αn,βs+1, . . . ,βT ) is a k[σ]-basis for M , via this basis we see that ∆(µ(ω))
is the same as π (∆(ω)).

Since the map µ induces an Fq[t]-module homomorphism

T⊕
`=1

(
M ′
` /(σ− 1)M ′

`

)→M /(σ− 1)M ,

the diagram above shows that π : ⊕T`=1
G`(k) → G(k) is a left Fq[t]-module homomor-

phism, and hence π is a morphism of t-modules since the group of k-valued points is

Zariski dense inside the algebraic group in question.

�

Corollary 3.2.6. Let notation be given as above. Let ρ` be the map defining the Fq[t]-
module structure of G` for 1 ≤ ` ≤ T , and ρ be the map defining the Fq[t]-module of G.
If ρ`t ∈ MatdimG`

(A[τ]) for every 1 ≤ ` ≤ T , then ρt ∈ MatdimG(A[τ]).

Proof. It is clear to see that the map π is surjective. Since π is Fq[t]-linear, the result

is derived from Definition 3.2.2. �

3.3. The key lemma. In this section, we give a formula which is a crucial step in the

proof of Theorem 1.2.2. However, we state and prove the formulation in the setting as

general as possible. We follow Brownawell and Papanikolas to introduce the notion of

tractable coordinates, to which Yu’s sub-t-module theorem is most easily applied.

Definition 3.3.1. Let L be a field extension over k and suppose that Ld := Matd×1(L)
has a left Fq[t]-module structure. The ith coordinate of Ld is called tractable if the ith
coordinate of a · z is equal to a(θ)zi for any a ∈ Fq[t] and any z = (z1, . . . , zd)

tr ∈ Ld.
Suppose that the affine variety Ad

/L has a left Fq[t]-module structure in the sense that
for every field extension L ′/L, Ad(L ′) has a left Fq[t]-module structure that is functorial
in L ′. We say that the ith coordinate of Ad

/L is tractable if for every field extension L ′/L,
the ith coordinate of Ad(L ′) is tractable.

Typical examples of tractable coordinates arise from the Lie algebras of tensor powers

of the Carlitz module. For any positive integer s, we note that LieC⊗s(L) ∼= Ls has a

left Fq[t]-module structure via ∂[−]s for a field extension L/k. From (2.2.7) we see that

the sth coordinate of LieC⊗s(L) is tractable.

The main result in this section is the following lemma.

Lemma 3.3.2. Let N ,
{
M ′
`

}T
`=1

and M be the Anderson dual t-motives with hypothesis
given in Sec. 2.4. Let H be the n-dimensional t-module associated to N , G` be the
t-module associated to M ′

` for ` = 1, . . . , T , and G be the t-module associated to M .
Suppose that the nth coordinate of LieG`(C∞) is tractable for all 1 ≤ ` ≤ T . Let
Z` ∈ LieG`(C∞) be a vector with nth coordinate denoted by L`n. Let π : ⊕T`=1

G` → G be
the morphism of t-modules given in Definition 3.2.2. For each 1 ≤ ` ≤ T , let b` ∈ Fq[θ]
be any polynomial and put v` := expG`

(Z`) ∈ G`(C∞), Z := ∂π ((∂[b`(t)]Z`)`) ∈ LieG(C∞)
and v := π (([b`(t)]v`)`) ∈ G(C∞). Then we have

(a) The nth coordinate of Z is equal to
∑T
`=1
b`L`n.
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(b) expG(Z) is equal to v.

Proof. By the canonical identification Lie (⊕`G`(C∞)) = ⊕` LieG`(C∞), we have the

following commutative diagram according to (2.2.5):

(3.3.3) ⊕T`=1
G`(C∞)

π // G(C∞)

⊕T`=1
LieG`(C∞)

⊕` expG`

OO

∂π //
LieG(C∞).

expG

OO

The property (b) follows from the diagram above.

To prove (a), we note that the nth coordinate of ∂[b`(t)]Z` is given by b`L`n since

by hypothesis the nth coordinate of LieG`(C∞) is tractable. By Definition 3.2.2 the

morphism π has no τ-terms when expressing it as a matrix with entries in k[τ]. So the

induced morphism ∂π has the same form as π (see (2.2.1)), implying the desired property

from the definition of Z. �

Remark 3.3.4. If we take N and all

{
M ′
`

}T
`=1

to be C⊗n, then the fiber coproduct of{
M ′
`

}T
`=1

over N is C⊗n and hence its associated t-module G is C⊗n. In this case,

the morphism π : ⊕T`=1
C⊗n → C⊗n is the sum of vectors. This special case would help

the reader understand how one uses Lemma 3.3.2 to generalize [AT90, Thm. 3.8.3(I)] to

higher depth MZV’s in Sec. 5.3

4. T   logG`
(v`)

In this section, we consider the t-module and special point constructed in [CM17], and

the primary goal is to show Theorem 4.2.3 asserting that the logarithm of the t-module

in question converges ∞-adically at the special point, and certain coordinates of the

logarithm give Carlitz multiple star polylogarithms. To prove Theorem 1.2.2, the results

presented in this section are applied in Section 5 to illustrate that all the conditions of

Lemma 3.3.2 are satisfied for our setting.

4.1. The constructions of the t-module and special point. In what follows, we fix

s = (s1, . . . , sr) ∈ Nr
and u = (u1, . . . ,ur) ∈ (k

×
)r. We will define a pair (G,v)

associated to s and u, where G is a t-module defined over k and v ∈ G(k).
Put L0 := 1, and Li := (θ − θq) · · · (θ − θqi) for i ∈ N. We define the sth Carlitz

multiple polylogarithm, abbreviated as CMPL, as follows (see [C14]):

(4.1.1) Lis(z1, . . . , zr) :=
∑

i
1
>···>ir≥0

z
qi1

1
· · · zq

ir

r

L
s
1

i
1

· · · Lsrir
.

To avoid heavy notation on the subscript, we use the same notation Lis in the function

field setting. Since we no longer use the classical multiple polylogarithms in the later

context, there will not be misunderstanding.

We also define the sth Carlitz multiple star polylogarithm, abbreviated as CMSPL, as

follows (see [CM17]):

(4.1.2) Li
?
s(z1, . . . , zr) :=

∑
i
1
≥···≥ir≥0

z
qi1

1
· · · zq

ir

r

L
s
1

i
1

· · · Lsrir
.
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Remark 4.1.3. For an r-tuple s = (s1, . . . , sr) ∈Nr
, we put

D ′s :=
{
(x1, . . . , xr) ∈ Cr∞ : |xi|∞ < q

siq
q−1 for i = 1, . . . , r

}
⊂ D ′′s ,

where

(4.1.4) D ′′s :=
{
(x1, . . . , xr) ∈ Cr∞ : |x1|∞ < q

s
1
q

q−1 and |xi|∞ ≤ q siq
q−1 for i = 2, . . . , r

}
.

By [C14, Rem. 5.1.5] and the same estimate on general terms, Lis(x) and Li
?
s(x)

converge ∞-adically for any x ∈ D ′′s , and Lis(x) is non-vanishing for any x ∈ D ′s ∩
(C×∞)r. We mention that D ′′s is used in Theorem 4.2.3.

For 1 ≤ ` ≤ r, we put d` := s`+ · · ·+ sr and d := d1 + · · ·+dr. Let B be a d×d-matrix

of the form  B[11] · · · B[1r]
.
.
.

.

.

.

B[r1] · · · B[rr]

 ,

where B[`m] is a d`× dm-matrix for each ` and m and we call B[`m] the (`,m)-th block

sub-matrix of B.

For 1 ≤ ` ≤ m ≤ r, we define the following matrices:

N` :=


0 1 0 · · · 0

0 1
.
.
.

.

.

.

.
.
.

.
.
. 0

.
.
. 1

0

 ∈ Matd`(k),

N :=


N1

N2

.
.
.

Nr

 ∈ Matd(k),

E[`m] :=


0 · · · · · · 0

.

.

.
.
.
.

.

.

.

0
.
.
.

.

.

.

1 0 · · · 0

 ∈ Matd`×dm(k) (if ` = m),

E[`m] :=


0 · · · · · · 0

.

.

.
.
.
.

.

.

.

0
.
.
.

.

.

.

(−1)m−`
∏m−1

e=` ue 0 · · · 0

 ∈ Matd`×dm(k) (if ` < m),

E :=


E[11] E[12] · · · E[1r]

E[22]
.
.
.

.

.

.

.
.
. E[r− 1, r]

E[rr]

 ∈ Matd(k).
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We further define

Em :=

 0 0 0

0 E[mm] 0

0 0 0

 ∈ Matd(k)

to be the d×d-matrix such that the (m,m)-th block sub-matrix is E[mm] and the others

are zero matrices.

We then define the t-module G = Gs,u := (Gd
a, ρ) by

(4.1.5) ρt = θId +N+ Eτ ∈ Matd(k[τ]),

and note that G depends only on u1, . . . ,ur−1. Finally, we define the special point

(4.1.6) v := vs,u :=



0



d1

.

.

.

0

(−1)r−1u1 · · ·ur
0

d2

.

.

.

0

(−1)r−2u2 · · ·ur
.
.
.

.

.

.

0

dr
.
.
.

0

ur

∈ G(k).

Remark 4.1.7. If u ∈ Ar, then ρt ∈ Matd(A[τ]) and v ∈ G(A).

Remark 4.1.8. The t-module G above is the t-module associated to the Anderson dual

t-motive M ′
, where M ′

is free of rank r over k[t] and the representing matrix by σ on

certain k[t]-basis for M ′
is given by

(4.1.9)

Φ ′ :=


(t− θ)s1+···+sr

u
(−1)
1

(t− θ)s1+···+sr (t− θ)s2+···+sr
.
.
.

.
.
.

u
(−1)
r−1

(t− θ)sr−1
+sr (t− θ)sr

 ∈ Matr(k[t]),

where {
(t− θ)s1+···+sr , (t− θ)s2+···+sr , · · · , (t− θ)sr

}
are the diagonals and{

u
(−1)
1

(t− θ)s1+···+sr , · · · ,u(−1)
r−1

(t− θ)sr−1
+sr
}

are displayed below the diagonals. We note that M ′
is an iterated extension of some

tensor powers of the Carlitz t-motive.
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Remark 4.1.10. The Anderson dual t-motive M ′
contains C⊗n as a sub-Anderson dual

t-motive. Moreover, M ′
is rigid analytically trivial since a rigid analytic trivialization

Ψ ′ ∈ GLr(T) is given as the upper left square of Ψ given in [CPY14, (2.3.7)] by changing

(Q1, . . . ,Qr) to (u1, . . . ,ur).

4.2. The convergence. To study the ∞-adic convergence issue about logG at v, we

adopt some techniques of [AT90, 2.4.3]. We denote by

logG =
∑
i≥0

Piτ
i

the logarithm of the t-module G, where P0 = Id and Pi ∈ Matd(k) for all i.
For a matrix γ := (γij) with entries in C∞, we put

|γ|∞ := max

i,j

{
|γij|∞} .

Lemma 4.2.1. Let s = (s1, . . . , sr) ∈ Nr and u = (u1, . . . ,ur) ∈ (k
×
)r. If |u`|∞ ≤ q s`q

q−1

for each 1 ≤ ` < r, then we have

|PiN
d`−jE`|∞ ≤ q(d`−j)qi−(d`q

i−d
1
) q
q−1

for each i, j,k with i ≥ 0, 1 ≤ ` ≤ r, and 1 ≤ j ≤ d`.

Proof. Note that the (d1 + · · ·+ d`−1 + 1)th column of PiN
d`−jE` is the (d1 + · · ·+ d`−1 +

j)th column of Pi, and the other columns are zero vectors. When i = 0, the inequality

holds clearly. Let i ≥ 1 and assume that the inequality holds for i. By [CM17, 3.2.4],

we have

Pi+1N
d`−jE` = −

2d
1
−2∑

m=0

1

(θq
i+1

− θ)m+1

m∑
n=0

(−1)n
(
m

n

)
Nm−nPiE

(i)Nn+d`−jE`.

Note that E(i)Nn+d`−jE` = 0 for n 6= j− 1, and Nm−n = 0 for m−n ≥ d1. Thus we have

Pi+1N
d`−jE` =

d
1
+j−2∑

m=j−1

(−1)j

(θq
i+1

− θ)m+1

(
m

j− 1

)
Nm−j+1PiE

(i)Nd`−1E`

=

d
1
+j−2∑

m=j−1

(−1)j

(θq
i+1

− θ)m+1

(
m

j− 1

)
Nm−j+1

∑̀
n=1

(−1)`−nP ′i,`,n
∏

n≤e≤`−1

uq
i

e ,

where P ′i,`,n is the matrix such that the (d1 + · · ·+ d`−1 + 1)th column is the (d1 + · · ·+
dn−1 + dn)th column of Pi, and the other columns are zero vectors.

By the induction hypothesis, we obtain∣∣∣P ′i,`,n ∏
n≤e≤`−1

uq
i

e

∣∣∣∞ ≤ q(dn−dn)q
i−(dnq

i−d
1
) q
q−1 ·

∏
n≤e≤`−1

q
seq
q−1
·qi

= q−(dnq
i−d

1
) q
q−1 · q(dn−d`)

qi+1

q−1

= q−(d`q
i−d

1
) q
q−1 .
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Therefore we have

|Pi+1N
d`−jE`|∞ ≤ max

j−1≤m≤d
1
+j−2

{
q−(m+1)qi+1

}
· q−(d`q

i−d
1
) q
q−1

= q−jq
i+1 · q−(d`q

i−d
1
) q
q−1

= q(d`−j)q
i+1−(d`q

i+1−d
1
) q
q−1 .

�

Proposition 4.2.2. Assume |u`|∞ ≤ q s`q
q−1 for each 1 ≤ ` < r. Take a point x = (xm) ∈

G(C∞) such that
|xd

1
+···+d`−1

+j|∞ < q−(d`−j)+
d`q
q−1

for each j, ` with 1 ≤ ` ≤ r and 1 ≤ j ≤ d`. Then logG(x) converges in LieG(C∞).

Proof. By Lemma 4.2.1, we have

|Pix(i)|∞ ≤ max

j,`

{
q(d`−j)q

i−(d`q
i−d

1
) q
q−1 · |xd

1
+···+d`−1

+j|
qi∞}

= max

j,`

{
q

d
1
q

q−1 ·
(
|xd

1
+···+d`−1

+j|∞/q−(d`−j)+
d`q
q−1

)qi}
→ 0 (i→∞).

�

Theorem 4.2.3. Given any s = (s1, . . . , sr) ∈ Nr, we put s̃ := (sr, . . . , s1) and let D ′′s̃
be defined in (4.1.4). Suppose that we have u = (u1, . . . ,ur) ∈ (k

×
)r for which ũ :=

(ur, . . . ,u1) ∈ D ′′s̃ . Let G and v be defined as above associated to s and u. Then logG
converges ∞-adically at v and we have the formula

logG(v) =



∗


d1

...
∗

(−1)r−1
Li

?
(sr,...,s1)

(ur, . . . ,u1)

∗
d2

...
∗

(−1)r−2
Li

?
(sr,...,s2)

(ur, . . . ,u2)
... ...
∗

dr
...
∗

Li
?
sr(ur)

∈ LieG(C∞).

In particular, the (s1 + · · ·+ sr)th coordinate of logG(v) is (−1)dep(s)−1
Li

?
s̃(ũ).

Proof. For each 1 ≤ ` ≤ r, the (d1+ · · ·+d`−1+d`)th component of v is (−1)r−`u`u`+1 · · ·ur,
and we have

|(−1)r−`u`u`+1 · · ·ur|∞ < q
s`q
q−1 · q

s`+1
q

q−1 · · · · · q
srq
q−1 = q

d`q
q−1 = q−(d`−d`)+

d`q
q−1 .
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Thus logG(v) converges ∞-adically by Proposition 4.2.2.

Arguments of proving the second assertion are entirely the same as the calculations

in the proof of [CM17, 3.3.3], where we just change the v-adic convergence to ∞-adic

convergence. �

Remark 4.2.4. We do not know the precise forms of those coordinates not interpreted

on the right hand side of the identity above.

5. P  T ..

5.1. Formulae for MZV’s via CMPL’s. When r = 1 and s = 1 ∈ N, the series (4.1.1)

is called Carlitz logarithm, which is the formal inverse of the exponential map of the

Carlitz module C. For r = 1 and any s ∈ N, the series Lis in (4.1.1) is called the

sth Carlitz polylogarithm studied in [AT90]. Unlike the classical case there is a simple

identity between ζ(s) and certain specialization of the classical multiple polylogarithms,

ζA(s) is in fact a k-linear combination of Lis at some integral points, which will be

reviewed in the following section. It turns out that such an identity for ζA(s) is a

crucial connection that enables us to give a logarithmic interpretation for ζA(s) in

Theorem 1.2.2.

Remark 5.1.1. For recent advances of transcendence theory for CMPL’s, see [CY07, M17].

We now recall the Carlitz factorials. We set D0 := 1, and Di :=
∏i−1

j=0
(θq

i
− θq

j
) ∈ A

for i ∈ N. Given a non-negative integer n, we express n as n =
∑
i≥0

niq
i

for

0 ≤ ni ≤ q− 1. The Carlitz factorial is defined as

(5.1.2) Γn+1 :=
∏
i

D
ni
i ∈ A.

To introduce the formula of ζA(s) in terms of Lis, we need to review the Anderson-

Thakur polynomials [AT90, AT09]. Let t be an independent variable from θ. We put

F0 := 1 and define polynomials Fi ∈ A[t] for i ∈N by the product

Fi =

i∏
j=1

(
tq

i
− θq

j
)

.

We then define the sequence of Anderson-Thakur polynomials Hn ∈ A[t] (for non-

negative integers n) by the generating function identity(
1−

∞∑
i=0

Fi
Di|θ=t

xq
i

)−1

=

∞∑
n=0

Hn

Γn+1|θ=t
xn.

Define the sup-norm ‖f‖ := maxi {|ai|∞} for polynomials f =
∑
i ait

i ∈ C∞[t], and note

that the Anderson-Thakur polynomials have the following property

(5.1.3) ‖Hn−1(t)‖ < |θ|
nq
q−1∞

for every n ∈N.

Remark 5.1.4. The bound above comes from [AT90, (3.7.3)]. However, we shall mention

about the difference of notation. Our Hn(t) is exactly the same as Hn(y, T) in [AT90]

replacing y by θ and replacing T by t. One can compare with [AT09], where their T is

referred to our t and their t is referred to our θ.
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In what follows, we fix an r-tuple of positive integers s = (s1, . . . , sr) ∈ Nr
. For each

1 ≤ i ≤ r, we expand the Anderson-Thakur polynomial Hsi−1(t) ∈ A[t] as

(5.1.5) Hsi−1(t) =

mi∑
j=0

uijt
j
,

where uij ∈ A with uimi
6= 0 and by (5.1.3) it satisfies

(5.1.6) |uij|∞ < q
siq
q−1 for j = 0, . . . ,mi.

We define

Js := {0, 1, . . . ,m1}× · · · × {0, 1, . . . ,mr} .

For each j = (j1, . . . , jr) ∈ Js, we set

uj := (u1j
1
, . . . ,urjr) ∈ Ar,

and

aj := aj(t) := t
j
1
+···+jr

.

Note that by (5.1.6), we have uj ∈ D ′s for every j ∈ Js.
Set Γs := Γs

1
· · · Γsr ∈ A. The first author of the present paper established the following

formula that extends the work of Anderson-Thakur [AT90] for r = 1.

Theorem 5.1.7. ([C14, Thm. 5.5.2]) For each s = (s1, . . . , sr) ∈ Nr, let Js, aj and uj be
defined as above. Then the following identity holds.

ΓsζA(s) =
∑
j∈Js

aj(θ)Lis(uj).

In the following section, we have to express the right hand side of the identity in

Theorem 5.1.7 in terms of CMSPL’s since such a formulation plays a crucial role in the

proof of Theorem 1.2.2.

5.2. Formulae for MZV’s via CMSPL’s. To express CMPL in terms of CMSPL’s, one

just needs the inclusion-exclusion principle on the set

{i1 > · · · > ir ≥ 0} .

Let us take a simple example for r = 2, which would simply allow one to understand

what we do in the more general setting. Since we have

{i1 > i2 ≥ 0} = {i1 ≥ i2 ≥ 0} \ {i1 = i2 ≥ 0} ,

it follows that

Li(s
1
,s

2
)(z1, z2) = Li

?
(s

1
,s

2
)(z1, z2) −Li

?
s
1
+s

2

(z1 + z2).

So one can obtain that Lis can be expressed as a linear combination of CMSPL’s, which

is presented in Proposition 5.2.3.

In what follows, the main target is to express ΓsζA(s) explcitly as an A-linear combi-

nation of some CMSPL’s at certain integral points. The details of the procedure below

are to explain that s`, b` and u` in Theorem 5.2.5 can be written down explicitly, and

that will explain why the constructions of Gs and vs in Theorem 1.2.2 are explicit. So

we suggest the reader to skip the following ahead to Theorem 5.2.5 unless one needs

explicit examples of Gs and vs.

An index of depth r is defined to be an r-tuple s = (s1, . . . , sr) ∈Nr
.
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Definition 5.2.1. Let s = (s1, . . . , sr) ∈ Nr be an index of depth r > 1. Let S be the set
consisting of the two symbols ’,’ (comma) and ’+’ (addition) and S× be the set consisting
of the two symbols ‘,’and ‘×’(multiplication).

(1) We define a map λ :=
(
w 7→ w×

)
: Sr−1 → S×r−1 by leaving ‘,’be fixed and changing

‘+’to ‘×’. That’s, if w = (w1, . . . ,wr−1), then w×i :=‘,’if wi = ‘,’; otherwise w×i :=
‘×’.

(2) For any w = (w1, . . . ,wr−1) ∈ Sr−1, we define w(s) := (s1w1s2w2 · · ·wr−1sr).
That’s, w(s) is a tuple of positive integers obtained from (s1, . . . , sr) by inserting
the symbol wi between si and si+1 for i = 1, . . . , r− 1.

(3) For any w = (w1, . . . ,wr−1) ∈ Sr−1 and u = (u1, . . . ,ur) ∈ k̄r, we define w×(u) :=
(u1w×1 u2w×2 · · ·w

×
r−1
ur). That’s, w×(u) is the tuple of algebraic elements over k

obtained from (u1, . . . ,ur) by inserting the symbol w×i between ui and ui+1 for
i = 1, . . . , r− 1.

For example, let w = (w1,w2) with w1 = ’,’ and w2 =’+’. Then for s = (s1, s2, s3) ∈N3
,

we have

w(s) = (s1, s2 + s3).

Furthermore, for u = (u1,u2,u3) ∈ k
3

, we have

w×(u) = (u1,u2u3).

Finally, we define ν(w) to be the number of ‘+’ in w.

Proposition 5.2.2. Fix an index s ∈Nr with r > 1. Then for any u ∈ D ′s (resp. u ∈ D ′′s )
and w ∈ Sr−1, we have that w×(u) ∈ D ′w(s) (resp. w×(u) ∈ D ′′w(s)). In particular,
Li

?
w(s)(w

×(u)) converges by Remark 4.1.3.

Proof. The assertion follows immediately from the non-archimedean property of | · |∞.

�

In order to make our formula of MZV’s convenient for use, for r = 1 we simply define

Sr−1 = S0 := {identity}, and denote by P(s) = s, P×(u) = u and ν(P) := 0 for P ∈ S0
.

Applying the inclusion-exclusion principle on the set {i1 > · · · > ir ≥ 0}, we have the

following identity.

Proposition 5.2.3. Let r be a positive integer, s ∈ Nr be an index and z1, . . . , zr be r
independent variables. Putting z = (z1, . . . , zr). Then the following identity holds:

Lis(z) =
∑
P∈Sr−1

(−1)ν(P) Li
?
P(s)(P

×(z)).

Remark 5.2.4. The similar statement of Proposition 5.2.3 for classical MZV’s can be seen

in [Ya13].

Recall that the special points uj in Theorem 5.1.7 belong to D ′s for every j ∈ Js,

and so Li
?
P(s)(P

×(u`)) converges by Proposition 5.2.2. Combining Theorem 5.1.7 and the

proposition above, we have the following expression for ζA(s) in terms of CMSPL’s.

Theorem 5.2.5. For any depth r index s ∈Nr, there are explicit tuples s` ∈Ndep(s`) with
wt(s`) = wt(s), dep(s`) ≤ r, explicit coefficients b` ∈ A and vectors u` ∈ Adep(s`) so that

ΓsζA(s) =
∑
`

b` · (−1)dep(s`)−1
Li

?
s`
(u`).
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Remark 5.2.6. Precisely, we have

ΓsζA(s) =
∑
j∈Js

aj(θ)Lis(uj)

=
∑
j∈Js

aj(θ)
∑
P∈Sr−1

(−1)ν(P) Li
?
P(s)(P

×(uj))

=
∑
j∈Js

∑
P∈Sr−1

(−1)r−1aj(θ) · (−1)dep(P(s))−1
Li

?
P(s)(P

×(uj)),

where we use the equality ν(P) + dep(P(s)) = r for each P ∈ Sr−1
. Let T be the cardi-

nality of the terms in the right hand side of the identity above. Then for convenience

we renumber the indexes ` of (b`, s`,u`) for which

(5.2.7) {(b`, s`,u`)|1 ≤ ` ≤ T } = {((−1)r−1aj(θ),P(s),P
×(uj))|j ∈ Js,P ∈ Sr−1},

and dep(s`) = 1 for 1 ≤ ` ≤ s, and dep(s`) ≥ 2 for s+ 1 ≤ ` ≤ T . Note further that when

r = 1, ie., s = s ∈ N, we have Lis = Li
?
s and so the formula above for ΓsζA(s) is the

same as Theorem 5.1.7, which was established previously by Anderson-Thakur [AT90].

Note that the terms (−1)dep(s`)−1
Li

?
s`
(u`) in the identity above occur as certain coor-

dinates of the logarithm of the t-module considered in Theorem 4.2.3.

5.3. Proof of Theorem 1.2.2. Let r be a positive integer and fix any index s =
(s1, . . . , sr) ∈ Nr

. Let n := wt(s). We identify the set of triples (b`, s`,u`) occurring

in Theorem 5.2.5 as the set

T = {1, . . . , T } ,

where we understand that each element ` ∈ T corresponds to a triple (b`, s`,u`). We

further rearrange the indexes to decompose the disjoint union

T = T1 ∪T2

so that T1 consists of those indexes ` for which dep(s`) = dep(u`) = 1, and T2 consists

of those indexes for which dep(s`) = dep(u`) > 1.

Put s := |T1| and note that due to cancellations of the right hand side of the identity

in Theorem 5.2.5, we allow s to be either zero or T .
For each ` ∈ T equipped with (b`, s`,u`), we let G` be the t-module that is defined

in (4.1.5), and v` ∈ G`(k) be the special point defined in (4.1.6) that are constructed

using the pair (s̃`, ũ`), where ·̃ is defined to reverse the order of components (see the

definition in Theorem 4.2.3). Note that G` is the t-module associated to the Anderson

dual t-motive M ′
` that is associated to (s̃`, ũ`) and is defined in Remark 4.1.8. So by

Remark 4.1.10 M ′
` is rigid analytically trivial for each ` ∈ T . Note that wt(s`) = wt(s) =

n for every ` ∈ T . Therefore, by Theorem 4.2.3 the nth coordinate of logG`
(v`) is

(−1)dep(s̃`)−1
Li

?˜̃s`
( ˜̃u`) = (−1)dep(s`)−1

Li
?
s`
(u`) .

Put N := C⊗n, the nth tensor power of the Carlitz t-motive, and note that C⊗n is its

corresponding t-module (see [CPY14, Sec. 5.2]). By the definition of C⊗n, we see that

the nth coordinate of LieC⊗n(C∞) is tractable.

Note that for ` ∈ T1, M ′
` is isomorphic to N and for ` ∈ T2, M ′

` fits into the short

exact sequence of left k[t,σ]-modules

0→ N →M ′
` →M ′′

` → 0,
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where M ′′
` is an Anderson dual t-motive. Let M be the fiber coproduct of

{
M ′
`

}T
`=1

over N and so by Proposition 2.5.3 M is rigid analytically trivial. Let Gs be the

t-module associated to M , ie., Gs(k) ∼= M /(σ− 1)M as Fq[t]-modules. Hence Gs is

uniformizable by Remark 2.5.2.

Recall that every uj belongs to D ′s for j ∈ Js, and hence we have that for every ` ∈ T ,

u` belongs to D ′s` and hence ũ` ∈ D ′s̃` . Since (G`,v`) are constructed using (s̃`, ũ`),
which satisfy the conditions of Theorem 4.2.3, logG`

(v`) converges ∞-adically for every

` ∈ T .

Note that since all u` are integral points (see (5.2.7)), by Remark 4.1.7 the t-modules

{G`}
T
`=1

are defined over k and hence Gs is also defined over k by Corollary 3.2.6.

Now we let π : ⊕T`=1
G` → Gs be the morphism of t-modules over k given in Defini-

tion 3.2.2. Recall that to simplify notation, we use [a] for the action of a ∈ Fq[t] on

any t-module without confusion. For each ` ∈ T , we define

(5.3.1) Z` := logG`
(v`) ∈ LieG`(C∞),

and further set

(5.3.2) Zs := ∂π ((∂[b`(t)]Z`)`) ∈ LieGs(C∞),

and

(5.3.3) vs := π (([b`(t)]v`)`) ∈ Gs(k),

where b` ∈ A are given in Theorem 5.2.5. We note that by the functional equation (2.2.3)

we have

expG`
(Z`) = v`

and therefore by Lemma 3.3.2 we have

expGs
(Zs) = vs.

On the other hand, by Theorem 4.2.3 the nth coordinate of Z` is given by (−1)dep(s`)−1
Li

?
s`
(u`).

By Lemma 3.3.2 and the formula in Theorem 5.2.5 we see that the nth coordinate of

Zs is ΓsζA(s).

5.4. Examples.

Example 5.4.1. Take q to be a power of any prime number p and let s = (1, 1, 2). In
this case, we have Γ1 = Γ2 = 1, H1−1 = H2−1 = 1, J(1,1,2) = {(0, 0, 0)}, u(0,0,0) = (1, 1, 1),
a(0,0,0) = 1. Thus we have

ζA(1, 1, 2) = Li(1,1,2)(1, 1, 1) = Li
?
(1,1,2)(1, 1, 1) −Li

?
(2,2)(1, 1) −Li

?
(1,3)(1, 1) +Li

?
4
(1)

= (−1)1−1
Li

?
4
(1) + (−1)2−1

Li
?
(1,3)(1, 1)

+(−1)2−1
Li

?
(2,2)(1, 1) + (−1)3−1

Li
?
(1,1,2)(1, 1, 1),

and (b1, s1,u1) = (1, 4, 1), (b2, s2,u2) = (1, (1, 3), (1, 1)), (b3, s3,u3) = (1, (2, 2), (1, 1)),
(b4, s4,u4) = (1, (1, 1, 2), (1, 1, 1)).

For ` = 1, we have G1 = C⊗4, and hence its t-action on G4

a is given by

C⊗4

t =


θ 1

θ 1

θ 1

τ θ

 .
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We further have v1 = (0, 0, 0, 1)tr ∈ C⊗4(k), and Z1 = (∗, ∗, ∗, Li
?
4
(1))tr ∈ LieC⊗4(C∞).

For ` = 2, we have G2 = G5

a with the t- action

[t] =


θ 1

θ 1

θ 1

τ θ −τ
θ+ τ

 ,

and
v2 = (0, 0, 0,−1, 1)tr ∈ G2(k),

Z2 = (∗, ∗, ∗,−Li
?
(1,3)(1, 1), Li

?
1
(1))tr ∈ LieG2(C∞).

For ` = 3, we have G3 = G6

a with the t-action

[t] =


θ 1

θ 1

θ 1

τ θ −τ
θ 1

τ θ

 ,

and points
v3 = (0, 0, 0,−1, 0, 1)tr ∈ G3(k),

Z3 = (∗, ∗, ∗,−Li
?
(2,2)(1, 1), ∗, Li

?
2
(1))tr ∈ LieG3(C∞).

For ` = 4, we have G4 = G7

a with the t- action

[t] =



θ 1

θ 1

θ 1

τ θ −τ τ
θ 1

τ θ −τ
θ+ τ


,

and
v4 = (0, 0, 0, 1, 0,−1, 1)tr ∈ G4(k),

Z4 = (∗, ∗, ∗, Li
?
(1,1,2)(1, 1, 1), ∗,−Li

?
(1,1)(1, 1), ∗, Li

?
1
(1))tr ∈ LieG4(C∞).

Therefore we have G(1,1,2) = G10

a with the t-action

[t] =



θ 1

θ 1

θ 1

τ θ −τ −τ −τ τ
θ+ τ

θ 1

τ θ
θ 1

τ θ −τ
θ+ τ


,
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and
v(1,1,2) = π(v1,v2,v3,v4) = (0, 0, 0, 0, 1, 0, 1, 0,−1, 1)tr ∈ G(1,1,2)(k),

Z(1,1,2) = (∗, ∗, ∗, ζA(1, 1, 2), Li
?
1
(1), ∗, Li

?
2
(1), ∗,−Li

?
(1,1)(1, 1), Li

?
1
(1))tr ∈ LieG(1,1,2)(C∞).

Example 5.4.2. Take q = 2 and s = (1, 3). In this case, we have Γ1 = 1, Γ3 = θ2 + θ,
H1−1 = 1, H3−1 = t+ θ2, J(1,3) = {(0, 0), (0, 1)}, u(0,0) = (1, θ2), u(0,1) = (1, 1), a(0,0) = 1,
a(0,1) = t. Thus we have

(θ2 + θ)ζA(1, 3) = Li(1,3)(1, θ
2) + θLi(1,3)(1, 1)

= Li
?
(1,3)(1, θ

2) −Li
?
4
(θ2) + θLi

?
(1,3)(1, 1) − θLi

?
4
(1)

= (−1)1−1
Li

?
4
(θ2) + θ · (−1)1−1

Li
?
4
(1)

+(−1)2−1
Li

?
(1,3)(1, θ

2) + θ · (−1)2−1
Li

?
(1,3)(1, 1),

and (b1, s1,u1) = (1, 4, θ2), (b2, s2,u2) = (θ, 4, 1), (b3, s3,u3) = (1, (1, 3), (1, θ2)), (b4, s4,u4) =
(θ, (1, 3), (1, 1)).

For ` = 1, we have G1 = C⊗4, and points

v1 = (0, 0, 0, θ2)tr ∈ C⊗4(k),

Z1 = (∗, ∗, ∗, Li
?
4
(θ2))tr ∈ LieC⊗4(C∞).

For ` = 2, we have G2 = C⊗4, and points

v2 = (0, 0, 0, 1)tr ∈ C⊗4(k),

Z2 = (∗, ∗, ∗, Li
?
4
(1))tr ∈ LieC⊗4(C∞).

We also have
[t]v2 = (0, 0, 1, θ)tr ∈ C⊗4(k).

For ` = 3, we have G3 = G5

a with the t- action

[t] =


θ 1

θ 1

θ 1

τ θ −θ2τ
θ+ τ

 ,

and points
v3 = (0, 0, 0,−θ2

, 1)tr ∈ G3(k),

Z3 = (∗, ∗, ∗,−Li
?
(1,3)(1, θ

2), Li
?
1
(1))tr ∈ LieG3(C∞).

For ` = 4, we have G4 = G5

a with the t- action

[t] =


θ 1

θ 1

θ 1

τ θ −τ
θ+ τ

 ,

and
v4 = (0, 0, 0,−1, 1)tr ∈ G4(k),

Z4 = (∗, ∗, ∗,−Li
?
(1,3)(1, 1), Li

?
1
(1))tr ∈ LieG4(C∞).
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We also have
[t]v4 = (0, 0, 1, θ+ 1, θ+ 1)tr ∈ G4(k).

Therefore we have G(1,3) = G6

a with the t-action

[t] =


θ 1

θ 1

θ 1

τ θ −θ2τ −τ
θ+ τ

θ+ τ

 ,

and
v(1,3) = π(v1, [t]v2,v3, [t]v4) = (0, 0, 0, 1, 1, θ+ 1)tr ∈ G(1,3)(k),

Z(1,3) = (∗, ∗, ∗, (θ2 + θ)ζA(1, 3), Li
?
1
(1), θLi

?
1
(1))tr ∈ LieG(1,3)(C∞).

6. v-   

Throughout this section, we fix a finite place v of k corresponding to a monic ir-

reducible polynomial of A that is still denoted by v for convenience, and then fix an

embedding k ↪→ Cv. Let | · |v be the normalized v-adic absolute value on Cv. For a

matrix γ = (γij) with entries γij ∈ Cv, we define

|γ|v := max

i,j

{
|γij|v

}
.

In this section, we will define v-adic multiple zeta values inspired by Furusho’s defi-

nition of p-adic multiple zeta values in [F04]. The primary goal of this section is to give

a logarithmic interpretation for v-adic MZV’s. Together with Theorem 1.2.2, we apply

Yu’s sub-t-module theorem [Yu97] to prove Theorem 1.3.1 .

In what follows, for a t-module G defined over k we denote by logG(x)v the v-adic
convergence value of logG at x ∈ G(Cv) whenever logG(x)v converges, ie., logG converges

v-adically at x.

6.1. Definition of v-adic MZV’s.

6.1.1. The set up. Fix an index s = (s1, . . . , sr) ∈ Nr
with n := wt(s). As in Sec. 5.3, we

identify the set of triples (b`, s`,u`) occurring in Theorem 5.2.5 as the set

T = {1, . . . , T } ,

where we understand that each element ` ∈ T corresponds to a triple (b`, s`,u`). Recall

that each u` is an integral point in Adep(s`). We let G` be the t-module defined over k
(Sec. 4.1) and v` be the special point in G`(k) constructed using the pair (s̃`, ũ`). We

then let Gs be the t-module associated to the fiber coproduct M of the Anderson dual

t-motives

{
M ′
`

}T
`=1

over C⊗n. Finally, we define vs := π (([b`(t)]v`)`) ∈ Gs(k).
Note that Gs has dimension d := ds := n+ hs+1 + · · ·+ hT (see (3.1.1)), where n+ h`

is the dimension of G` for s+ 1 ≤ ` ≤ T .
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6.1.2. v-adic analytic continuation of Li
?
s . For each ` ∈ T , we consider the CMSPL Li

?
s`

and its v-adic convergence. We note that Li
?
s`

converges on the open unit ball centered

at the zero of C
dep(s`)
v and it is shown in [CM17, Sec. 4.1] that Li

?
s`

can be analytically

continued to the closed unit ball centered at the zero of C
dep(s`)
v . Since u` is an integral

point in Adep s` , we have |u`|v ≤ 1 and hence Li
?
s`

is defined at u` in the sense of v-adic

convergence. We denote by Li
?
s`
(u`)v the v-adic convergence value of Li

?
s`

at u`, where

we add the subscript v to emphasize the v-adic convergence. More precisely, Li
?
s`
(u`)v is

the value
(−1)dep(s`)−1

a(θ) multiplied by the nth coordinate of logG`
([a]v`)v for some nonzero

polynomial a ∈ Fq[t] with |[a]v`|v < 1. Since the coefficients of logG`
are matrices with

entries in k (see [CM17, (3.2.4)]), we have Li
?
s`
(u`)v ∈ kv.

6.1.3. The definition. Now we are ready to define v-adic MZV’s using Li
?
s`
(u`)v.

Definition 6.1.1. For any index s = (s1, . . . , sr) ∈ Nr, let notation be given in Theo-
rem 5.2.5. We define the v-adic MZV ζA(s)v to be the following value:

ζA(s)v :=
1

Γs

∑
`

b` · (−1)dep(s`)−1
Li

?
s`
(u`)v ∈ kv.

We call wt(s) :=
∑r
i=1
si the weight and dep(s) := r the depth of the presentation ζA(s)v.

6.2. Logarithmic interpretation of v-adic MZV’s. The primary goal in this subsec-

tion is to give a logarithmic interpretation for ζA(s)v, where the depth one case was

established in [AT90].

6.2.1. The v-adic convergence of logGs
.

Proposition 6.2.1. Fix any index s ∈ Nr. For any x ∈ Gs(Cv) with |x|v < 1, we have
that logGs

converges v-adically at x in LieGs(Cv).

Proof. We write logC⊗n =
∑∞
i=0
Riτ

i
(Ri ∈ Matn(k)) for the logarithm of C⊗n. We

denote the logarithms of Gs and G` by

logGs
=
∑
i≥0

Qiτ
i (Qi ∈ Matd(k)) and logG`

=
∑
i≥0

Q`iτ
i (Q`i ∈ Matn+h`(k))

respectively. For each s+ 1 ≤ ` ≤ T , we can write

Q`i =

(
Ri R ′`i

R ′′`i

)
(R ′`i ∈ Matn×h`(k), R

′′
`i ∈ Math`(k)).

Then Qi is expressed as

Qi =


Ri R ′s+1,i R ′s+2,i · · · R ′T ,i

R ′′s+1,i

R ′′s+2,i
.
.
.

R ′′T ,i


for each i since it forces the functional equation

∂π ◦
(
⊕T`=1

logG`

)
= logGs

◦π.
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Let x = (xtr

0
,xtr

s+1
,xtr

s+2
, . . . ,xtr

T )
tr ∈ Gs(Cv) with x0 ∈ Cnv , x` ∈ C

h`
v for s+ 1 ≤ ` ≤ T ,

and |x|v < 1. Note that by [CM17, Sec. 3.3] we have{∣∣∣∣∣Qs+1,i

(
x0

xs+1

)(i)
∣∣∣∣∣
v

} → 0 and

{∣∣∣∣∣Q`i
(

0
x`

)(i)
∣∣∣∣∣
v

} → 0 as i→∞.

It follows that

|Qix(i)|v ≤ max

s+2≤`≤T

{∣∣∣∣∣Qs+1,i

(
x0

xs+1

)(i)
∣∣∣∣∣
v

,

∣∣∣∣∣Q`i
(

0
x`

)(i)
∣∣∣∣∣
v

} → 0 as i→∞.

�

Proposition 6.2.2. For any index s ∈Nr, we continue with the notation as above. Then
there is a precise nonzero polynomial a ∈ Fq[t] (depending on s and v) so that |[a]vs|v < 1,
hence logGs

([a]vs)v converges.

Proof. Write s` = (s`1, . . . , s`r`) and set

a` := (v(t)s`1+s`2+···+s`r` − 1)(v(t)s`1+s`2+···+s`,r`−1 − 1) · · · (v(t)s`1 − 1) ∈ Fq[t]

and

a :=

T∏
`=1

a` ∈ Fq[t],

where v(t) := v|θ=t. Since u` ∈ Adep(s`) for each `, by Remark 4.1.7 we have that for

each α ∈ Fq[t], the coefficient matrices of τi of [α] are in MatdimG`
(A). It follows that

|[a]([b`(t)]v`)|v = |[b`(t)]([a]v`)|v ≤ |[a]v`|v ≤ |[a`]v`|v < 1, where the last inequality is

from the proof of [CM17, Prop. 4.1.1]. So by [CM17, Sec. 3.3] again logG`
([a]([b`]v`))v

converges in LieG`(Cv). Therefore we have

(6.2.3) |[a]vs|v = |π (([a][b`(t)]v`)`) |v ≤ max

`
{|[a]([b`(t)]v`)|v} < 1,

where the first inequality comes from Definition 3.2.2. It follows that

logGs
([a]vs)v = ∂π((logG`

([a]([b`(t)]v`))v)`)

converges in LieGs(Cv). �

Theorem 6.2.4. Fix a finite place v of k. Given an index s = (s1, . . . , sr) ∈ Nr, we put
n := wt(s) and let {(b`, s`,u`)}T`=1

be the set of triples in (5.2.7). Let G` be the t-module
defined over k and v` ∈ G`(k) be the special point which are constructed using the pairs
(s̃`, ũ`), and Gs be the t-module over k and vs ∈ Gs(k) be constructed as above. We take
a nonzero a ∈ Fq[t] for which |[a]vs|v < 1. Then the nth coordinate of logGs

([a]vs)v is
given by a(θ)ΓsζA(s)v.

Remark 6.2.5. Since the nth coordinate of LieGs(Cv) is tractable, it is enough to show

that the statement of Theorem 6.2.4 holds for some a. Indeed, assume that the statement

holds for a, and let a ′ ∈ Fq[t] be another nonzero polynomial with |[a ′]vs|v < 1. Then

we have

a(θ)× nth coordinate of logGs
([a ′]vs)v = nth coordinate of logGs

([a][a ′]vs)v

= a ′(θ)× nth coordinate of logGs
([a]vs)v

= a(θ)a ′(θ)ΓsζA(s)v.
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Proof of Theorem 6.2.4. Let T = {1, · · · , T } be given as before in Sec. 6.1.1. We first

take a nonzero polynomial a ∈ Fq[t] so that

• |[a(t)]vs|v < 1.

• |[a(t)]v`|v < 1 for all ` ∈ T .

Note that the second property can be obtained using the same arguments in (6.2.3). It

follows by Proposition 6.2.1 that logGs
([a]vs)v converges, and by [CM17, Thm. 3.3.3] that

every logG`
([a]([b`(t)]v`))v converges for every ` ∈ T . We have seen that

• a(θ)b`× (−1)dep(s`)−1
Li

?
s`
(u`)v is the nth coordinate of logG`

([a]([b`(t)]v`))v (see [CM17,

Def. 4.1.2]);

• The nth coordinate of LieG` is tractable (see (4.1.5)).

Recall by (2.2.6) that we have the following functional equation:

(6.2.6) logGs
◦π = ∂π ◦

(
⊕T`=1

logG`

)
.

Recall by (5.3.3) vs := π (([b`(t)]v`)`) ∈ Gs(k). Now we consider the specializa-

tion at the point ([a]([b`(t)]v`))` ∈ ⊕T`=1
G`(Cv) of both sides of (6.2.6) under the

v-adic convergence. The LHS of (6.2.6) evaluated at ([a]([b`(t)]v`))` is the vector

logGs
([a]vs)v, which is identical to ∂π

(
(logG`

([a]([b`(t)]v`)))`
)

from the RHS of (6.2.6)

evaluated at ([a]([b`(t)]v`))`. By Definition 3.2.2 we see that the nth coordinate of

∂π
(
(logG`

([a]([b`(t)]v`)))`
)

is given by

T∑
`=1

nth coordinate of logG`
([a]([b`(t)]v`)) ,

which is exactly the value (by [CM17, Def. 4.1.2] and Definition 6.1.1)

T∑
`=1

a(θ)× b`(θ) · (−1)dep(s`)−1
Li

?
s`
(u`)v = a(θ)ΓsζA(s)v.

6.3. Review of Yu’s sub-t-module theorem. The following notion of regular t-modules

is due to Yu [Yu97, p. 218].

Definition 6.3.1. Let G be a t-module defined over k. We say that G is regular if there
is a positive integer ν for which the a-torsion submodule of G(k) is free of rank ν over
Fq[t]/(a) for every nonzero polynomial a ∈ Fq[t].

Note that every nth tensor power of Carlitz module C⊗n and Drinfeld modules defined

over k are regular [Yu97, p. 217]. Other examples of regular t-modules arising from

special Γ -values, see [S97, BP02].

Proposition 6.3.2. Given an index s ∈ Nr, we let Gs be the t-module constructed in
Section 6.1.1 . Then Gs is regular.

Proof. Note that Gs is the t-module associated to the rigid analytically trivial Anderson

dual t-motive M . Let ν be the rank of M over k[t]. Since Gs is unifromizable by

Proposition 2.5.3 and Remark 2.5.2, we have the following Fq[t]-module isomorphism

via expGs
:

LieGs(C∞)
/
Λs

∼= Gs(C∞),
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where Λs := Ker expGs
⊂ LieGs(C∞) ∼= CdimGs∞ is a discrete free Fq[t]-submodule of

rank ν by [HJ16, Thm. 5.28] (cf. [A86, Thm. 4]). It follows that the a-torsion submodule

of Gs(k) is isomorphic to

∂[a(t)]−1Λs

/
Λs

∼= (Fq[t]/(a))ν

for any nonzero polynomial a ∈ Fq[t]. �

Let G be a t-module defined over k. Any connected algebraic subgroup of G that

is defined over k and that is invariant under the Fq[t]-action is called a sub-t-module

of G over k. The spirit of Yu’s sub-t-module theorem stated in Theorem 1.1.2 is that

for a given logarithmic vector Z of an algebraic point on a regular t-module G defined

over k, the smallest ∂[t]-invariant vector subspace over k in LieG(C∞) containing that

logarithmic vector must be LieH(C∞) for some t-submodule H ⊂ G over k.

6.4. The main result. We call a positive integer n ‘‘even’’if n is divisible by q − 1;

otherwise we call n ‘‘odd’’. As mentioned in the introduction, (1−v−n)ζA(n)v is identical

to Goss’ v-adic zeta value at n, by [Go79] we know that ζA(n)v = 0 for n ‘‘even’’, and

by [Yu91] ζA(n)v is transcendental over k for n ‘‘odd’’. The main result of this section

is as follows.

Theorem 6.4.1. Let v be a finite place of k and fix a positive integer n. Let Z n be the
k-vector space spanned by all∞-adic MZV’s of weight n, and Z n,v be the k-vector space
spanned by all v-adic MZV’s of weight n. Then we have a well-defined surjective k-linear
map

Z n � Z n,v

given by
ζA(s) 7→ ζA(s)v,

and its kernel contains the one-dimensional vector space k · ζA(n) when n is ‘‘even’’.

In other words, the theorem above shows that the v-adic MZV’s of weight n satisfy

the same k-linear relations that their corresponding ∞-adic MZV’s of weight n satisfy.

Proof of Theorem 6.4.1. Suppose that we have a non-trivial k-linear relations among

some MZV’s of weight n

c1ζA(s1) + · · ·+ cmζA(sm) = 0,

which we rewrite as

(6.4.2) ε1Γs1ζA(s1) + · · ·+ εmΓsmζA(sm) = 0,

where

{
εi :=

ci
Γsi

}m
i=1

are not all zero. For each index si, let Gsi be the t-module defined

over k, vsi ∈ Gsi(k) be the special point and Zsi ∈ LieGsi(C∞) be the vector given

in Theorem 1.2.2. We identify LieGsi with AdimGsi /k, the affine variety of dimension

gi := dimGsi over k, and let Xi :=
(
Xi1, . . . ,Xigi

)
tr

be the coordinates of LieGsi . Let

G := Gs
1
⊕ · · · ⊕Gsm be the t-module as direct sum of {Gsi}

m
i=1

and so LieG is identified

with Ag
1
+···+gm/k with coordinates

X = (Xtr

1
, . . . ,Xtr

m)
tr

.

Note that since the nth coordinate of LieGsi is tractable for each i, so is the nth

coordinate of LieG by Lemma 3.2.3.

Let V be the smallest linear subspace of LieG(C∞) defined over k for which
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• V contains the vector Z :=
(
Ztr

s
1

, . . . ,Ztr

sm

)
tr ∈ LieG(C∞).

• V is invariant under the ∂[t]-action.

We define the following hyperplane over k

W := {ε1X1n + · · ·+ εmXmn = 0} ⊂ LieG,

where we simply use LieG for the base change of LieG over k when it is clear from

the contents, and note that Z ∈W(C∞). We further note that since the nth coordinate

of LieG is tractable, W is invariant under ∂[t]. Since the nth coordinate of LieGsi
is tractable for each i, we see that V ⊂ W(C∞). By Theorem 1.1.2 there exists a

sub-t-module H ⊂ G over k for which

V = LieH(C∞).

Let V ⊂ LieG be the linear sub-variety underlying V . That is, V is the variety defined

by the defining equations of V ⊂ LieG(C∞) over k. So we have V (C∞) = V =
LieH(C∞), and hence V = LieH.

For each si, by Proposition 6.2.2 we are able to pick a nonzero ai ∈ Fq[t] for which

|[ai]vsi |v < 1. Put a :=
∏m
i=1
ai. Note that by Corollary 3.2.6 the action [t] on each Gsi

has coefficient matrices with entries in A. Therefore, we have that

|[a]vsi |v ≤ |[ai]vsi |v < 1,

and hence by Proposition 6.2.1 logGsi
([a]vsi)v converges for each 1 ≤ i ≤ m. Define

v :=

 vs
1

.

.

.

vsm

 ∈ G(k).
Since V is invariant under ∂[t]-action, we have that ∂[a]Z ∈ V (C∞) = LieH(C∞),
whence

expG (∂[a]Z) = [a]v ∈ G(k)∩H(k) ⊂ H(k).
Let φ : H ↪→ G be the natural embedding morphism of t-modules. Fix an isomorphism

H ∼= Gh
a over k. By using this identification, we write

φ =

N∑
i=0

Aiτ
i : Ga

h ∼= H ↪→ G = Ga

g
1
+···+gm

, Ai ∈ Mat(g
1
+···+gm)×h(k)

and

logH =
∑
i≥0

Biτ
i
, Bi ∈ Math(k).

We also write

logG =
∑
i≥0

Ciτ
i
, Ci ∈ Matg

1
+···+gm(k).

By the functional equation (2.2.6), we have

A0 ◦

∑
i≥0

Biτ
i

 =

∑
i≥0

Ciτ
i

 ◦( N∑
i=0

Aiτ
i

)

as formal power series. Since LieH ↪→ LieG is an injective k-linear map (Lie(·) is

a left exact functor), we know that rankA0 = h. Therefore, the convergence domain

of

∑
i≥0

Biτ
i

is the same as that of

(∑
i≥0

Ciτ
i
)
◦
(∑N

i=0
Aiτ

i
)
. Since logG converges
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v-adically at [a]v from the choice of a, and H is invariant under the [a]-action, we can

pull back [a]v via the embedding φ, and it is contained in the convergence domain of(∑
i≥0

Ciτ
i
)
◦
(∑N

i=0
Aiτ

i
)
. This implies that

⊕mi=1
logGsi

([a]vsi)v = logG([a]v)v = logH([a]v)v ∈ LieH(Cv).

Note that since V (C∞) = V ⊂ W(C∞), we have LieH = V ⊂ W. It follows that the

vector ⊕mi=1
logGsi

([a]vsi)v belongs to W(Cv), whence satisfying the k-linear relations

ε1X1n + · · ·+ εmXmn = 0.

By Theorem 6.2.4 the nth coordinate of logGsi
([a]vsi) is the value a(θ)ΓsiζA(si)v and

hence we obtain the desired identity

c1ζA(s1)v + · · ·+ cmζA(sm)v = 0.

Note that by [Go79] we have ζA(n)v = 0 for n ∈ N ‘‘even’’as our v-adic zeta value

at n is Goss v-adic zeta value at n multiplied by (1− v−n)−1
(see [AT90, Theorem 3.8.3.

(II)]). Therefore the second assertion follows immediately.

Corollary 6.4.3. Let v be a finite place of k. Let Z :=
∑∞
n=1

Z n be the k-vector space
sappned by all MZV’s, and let Z :=

∑∞
n=1

Z n,v be the k-vector space spanned by all
v-adic MZV’s. Then we have the k-linear map

Z � Z v

given by
ζA(s) 7→ ζA(s)v.

Proof. By [C14, Thm. 2.2.1], we have a natural isomorphism ⊕nZ n
∼= Z of k-algebras.

Thus the k-linear maps Z n � Z n,v in Theorem 6.4.1 imply the k-linear map

Z ∼= ⊕nZ n � ⊕nZ n,v � Z v.

�

Remark 6.4.4. Based on the results above, the following are some natural questions

which need additional work.

(1) Does Z v have an algebra structure?

(2) For each positive integer n, what is the kernel of the above map Z n � Z n,v?

(3) Is the above map Z � Z v an algebra homomorphism? If so, what is its kernel?
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