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TRIVIALITY OF SCALAR LINEAR TYPE ISOTROPY SUBGROUP
BY PASSING TO AN ALTERNATIVE CANONICAL FORM OF A

HYPERSURFACE

VLADIMIR V. EZOV

ABSTRACT. The ehern-Moser (CM) normal form of areal hypersurfaces in CN

can be obtained by considering automorphisms whosc derivative act as the identity
on the complex tangent space. However , the CA1 normal form is also invariant
under a larger group (pseudo-unitary linear transformations) and it is the prop­
erty t hat makes the C M normal form special. Withou 1, th is add i tional restriction,
various types of normal forms occur. One of them helps to give a simple proof of
a (previously complicated) theorem about triviality of scalar linear type isotropy
subgroup of a nonquadratic hypersurface. A tl example of an analogous nontrivial
subgroup for a 2-codimensional CR surface in Ci is constructed.

1. ALTERNATIVE CANONICA L PORM

Let M E cn+ 1 be a real-analytic hypersurface. For the coordinates in cn+1 we set
z = (Zl, ... , zn), W = U +iv. We assurne that NI has nondegcnerate Levi form (z, z)
at the origin.
Consieler the space :F of power scries in (z, z, u) such that the series itself, its differ-

ential and the I-Iessian 8~~i vanish at thc origin. A hypersUl'face M can always be
written in the form:

(1) v = (z, z) + H,

where H(z, z, u) E :F.
Any 11 E :F can be written as a sum H = Lk,l Hk,l of hOlllogeneous polynomials
of degree k in z anel l in z with analytic in u coefficicnts. By ll(k1,ld, ...,(k",I,)( H) we
denote the SUlll Hk1,ll + ... + Hk"l,. In F we consider the subspace

(2) R = {2 Re x( (z, z) - v) Iv=(z,z)},
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here

where X runs over halOIl1orphic vector fields of the fonn

an. a i
x=g(z,w)~+LjJ-a' ,

UW. zJ
J=I

Ij(O) = 8ji 10 = g(O) = og 10 = og 10 = o.oz oz ow
Let f\, = {(k, 0), (k, 1), (2,2), (3,2), (3, 3)} and n.... be a projection on the corresponding
jet space. 11,.. is an isoIll0rphism on R (see [eM]), so bc10w we identify R ancl I1I"R.
Let Ar be any direct complement of n in F. The R-component always can be
elilninated frOIn the equation (1) of M. The freedoll1 in the choice of N space leads ta
various canonical forms of the equation. One of such canonica.l forms, constructcd by
Chern and Mosel' ([CM]), has some natural advantages compared ta others. Here we
intraduce an alternative canonical form of a hypersurface to provide a simple proof
of Beloshapka and Loboda ([Bc],[Lol]) theorctn about the tl'iviality of scalar linear
type isotropy subgroup of a nonquadratic hypersurface 1\1. The original proof of this
theorenl, based on ehern-Mosel' normal for111 is technically very hard.
It is canvenient to consider two cases of thc Levi fonn:

(3)

i.) (z, z) = 2 Re Zl z-n +L~:~ Ca Izo12 ,

ii.) (z,z) = Iz l l2 + L~=2calzO'I2,

here Ca =~ 1.
Let Hk,l be an arbitrary polynomial of the type (k, l). Each tillle in lIk,l the product
Zl z-n occurs in case (i), 01', Zl z-t in case (ii), we replace this product by (z, z) - (z, z)/,
where

(4)

01',

(z, z)'

n-t

znz-1 + L colzol2
,

(\'=2

in cases (i) and (ii) respectively. Thus, we obtain a dccOlnposition of Hk,l in the fonn

(5)
m a

where each monomial in Qk-a,l-a does not contain Z 1zt~, or Zl ZI respectively. Set
v = (z, z) and write the equation of N! in thc form
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v = v + L lh,I(V,Z, z, u),
k,l

3

where polynomials Hk,l are written in the form (5) anel v is eonsidered as an inde­
pendent variable,

By canonical form we call an equation of the type

(6)

where

v = v + L Nk,l(l/, z, z, u),
k,l?2

8 82 83

IV -- 1\' -- 1\' --'08v 22 -- 8v2 32 -- ßl/3 33 -- ,

The following is analogous to Chern-Moser theorcrll ([CM]):

Theorem 1. i.) Any hypersu1jace ean be loeally biholomorphically transJo1"med
to a canonical f01'm,

ii.) Let <I> = (F(z, w), G(z, w)) be a transfonnal-ion t.o canorücal form. Let J~ be
the Jacobian of <I>:

J __ (AU ).JJa)
cI> -- 0 c),.2 ,

where c =~ 1) V is a pseudounitary matrix s1.tch that. (Uz,Uz) = c(z,z))

a E cn, ),. 2:: 0, r = Re~~:~lo.
Then the set of initial data I~ = {U, a, "\, 1'} dctcnnine <P unique/y, and, con­
verse/y, any set 01 parameters {V,a, A, r} with the abovc ]J'1'operties corresponds
to the transform,ation of M to S01nc canonical form.

iii.) Any formal transformation that lransfonns Ai 1.0 a canonical form is auto-
matiea/ly holomorphie.

Remark. For n = 2 and for quadrics v = (z, z) the described canonical form
coincides with the ehern-Mosel' normal fonn.

By Go we denote the group of locally dcfined isotropie holonlorphic automorphisms
of M at 0. If M is written in canonical fOrIll then an)' q. E Go call be considered as a
transformation between canonical forms, so the set of initial data {U, a,),., r} uniquely
determines <P, If M is a quadric then all paralnctcrs of initial clata are free, if M
is nonquadratic, i.e, not locally equivalent to a quaelric, Beloshapka and Loboda
([Be], [Lol]) proved that matrix U uniquely dctenllines other parameters {a,"\, r}.
This result can be reformulated if we denotc by Go,>. id the subgroup of Go consisting



4 VLADIMIR V. EZOV

of the automorphisms with U = id (Go,>. id is cal1ed eIn scalar linear type isotropy
subgroup) as follows:

Theorem 2. 11 M is a nanquad1'atic hype1's1ujace then Go,>. id = {id},

Ren1ark. Analogous theorem does not hold for higher codimensional eR surfaces
as thc example in the last section of the paper shows.

2. TRIVIALITY OF CONFORMAL ISOTROPIES

We start with the proof of Theorem 1, which basically follows the proof of Chern­
Moser theorem ([Ct\1]).

Praof. We check that the described N space is complCinentary to R. Expanding the
fight hand side of the expression for R we observe, that

00 00

R = {L)Hk,O + HO,k) + 'L(lh,l + lJt,d + (TZB1(u)z) +
° 2

(z, z)CzB2(u)z) + (z, Z)2( (z, B3(u)) + (B3(u), z)) +b4(u)(Z, Z)3},

wherc B 1 (u) and 132 (u) are hermitian matriccs, 131(0) = 0, B3(u) is an arbitrary
veetor in cn, b4 ( u) is a real-valued funetion.
It is dear that the subspace

8 82
. 83

N = {li E F1 Hko = Hk1 = -81J22 = a 2 H32 = a 3 H33 = O}, , V 1/ V

is a direet complilnent to R in:F. So we can follow ehern-Moser scheIne to elim­
inate 'R.-cornponent in thc equation of lvI. By thc "Convergence" part of ([CM])
the holomorphic transfonnations that do this job are pararnetrized by {U, a,.x, r}.
By the "Formal theory" of ([eM]) , any fornla,l transformation with fixed initial data
{U, a,.x, r} that elilninates R-cornpn.ent is llnique, so, it has to be holomorphie. This
completes the proof of Theorem '1. .·0

We continue with thc proof of Theorem 2.

Proof. Consider 4> EGo,>. id. Since 1~ deternl ines <I> uniquely, it_ suffices to show that
l~ = (id, 0,1,0), which corresponds to the- identity. Let a E 1$. We consider two
cases:

(7)

i.) a is an isotropie vector for (z, z), i.e. (a, a) = 0.
ii.) (a, a) = 1 (without lass of generality this represents the situation (a, a) =/= 0).



ALTERNATIVE CANONICAL FORM

Consider a new basis {a, e2, ... , en } in cn such that in thc case (i) of (7)

(ej, a) = 0, (ej, ek) =~ <Sj,k;

in the the case (ii):

(en , a) = 1, (ei, a) = 0, (ej, en ) = 0, (ej, ek) =~ Oj,k, J, k = 2, ... , n,

5

<5j,k here is a Kronecker delta.
Let z* be coordinates in cn in the new basis anel C be the corresponding n-rnatrix
that determines the coordinate change in (;1+ 1 via z = Cz*, w = tu*

In (z*, tu*) coordinates the Jacobian of <I> equals to

J _ (0- 1 0) (A id Aa) (C 0) = (,X icl AC-Ia)_
41 - ° 1 ° A2 ° 1 0 ,X2 -

The equation of NI takes the form

,Xid

A

°

v = (z, z) + IV(z, z, u),

where (z, z) has the forn1 (i) and (ii) of (3) in thc cases (i) and (ii) of (7) respectively.
We introduce weight x to the variables anel to the coordinate differential operators
in standard way:

x(w) = x(w) = -x (~) = -;.{ (~) = 2;8w 010

x(ZO) = x(z-o) = -x (l!-) = -x (~) = 1.
fJzo Dzo

end extend this weight to polynon1ials in (z, z, tu, lli) by linearity and homogenuity.
We expand an equation of M in a canonical forn1 (6) as the SUD1 of wcighted hOlno­
geneous polynOlnials in (z, z, u):

(8) v = v+ 2: JJ~(v,z,z,u)
~~4

Let 70 be the first value of 7 such that f1~o -=1= O. As <l> EGo,>. id, there exists vector
field
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(9) X = (In AZ :Z + 21n AWa:) + (w a~' + 2iz' :Z +2iz'wa:) +

(

> 8 2 a) (r a .): a)
11VZ 8z + r10 810 + .""'0 fJz + ... Z9'YO+ 1 aw + ... ,

such that cI> = exp(x).
In the definition of X we assurne that

a
8z
8

z- =
8z

here c = n or c = 1 in the cases (i) or (ii) of (7) respectively. The collected terms in
(9) represent the components Xo, Xl, X2 and X/,o-l of X of weights 0, 1, 2 anel
1'0 - 1 respectively.
Since the iterations of cI> preserve the equation (8), it follows that X satisfies the
equation

(10) 11. = 2 Rex ((Z, z) - v + L H...,,(v, z, z, u)lv=(z z)+"'" TI (vz ZU)) == °, L..,.....,.>...,.o .., " ,
/'~IO -

Considering cOInponent 1-L.yo of weight ,0 in (10) we obtain that

('0 - 2) In )JJIO = 0,

and since 1'0 2:: 4, it implies that .A = 1.
To obtain that a = 0 we consider the next, ~o+l, component. By defecl of a
poIynoInial in (z, z) we mean the difference in its degrccs in holomorphic and anti­
holomorphic variables. Let HI'o,d,rn be the cotnponent of H..."o of maximal defect anel
minimal degree in (v, u) (see (5)).
By P --+a,ß,S, ... we mean the contribution of an expression p into the component of
the type (a,ß,o, ... ), having weight 0', defect ß, degree 0 in (lJ,u), and other specifi­
cations denoted by the dots.
For simplicity in furthel' computations we introduce thc variables

w = u + iv, w= u - iI/

Thus, the degree of a polynoIniai in (u,v) cquals to the degree in (w,w). So, thc
expression (5) for H-yo ,d,rn takes the forn1
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m

H"fo,d,m = L L wm-awO:Qm_a(z, z)
m 0::;;;:0

7

Consider at first the case (i) in (7). Collecting in H thc terms of type (1'0 +1, d+1, m)
we obtain:

1l.,.+l,d+l,m = {(iZn (2Z :Z +w a~v) +wa~l) IL",d,m - 2izn
lL",d,m+

(12) 2 Re ((f')'() , z) - 9"f0+I!v:;;;:v)} --+iO+1,d+l,m

Remark. The differential operator in thc latter fonllula is applied to thc H')'(),d,m
only, the term of Dlinimal degree in (w,w), because neither of

(13) 2
. n8 . n a _ a
1,Z 8z' 1,Z w-a ' w~

10 {Jzl

decreases the degree in (w, w). Moreover, operators i z l1w8: '
gree in (w, w) unless applied to wm-o:wo: in (1.1).

Wa~l increase the de-

Exact computation shows that in terms of thc contribution to (1'0 + 1, d + 1, 1n) type
component, the operators (13) can be substituted respectively by

(14) izn (2h id +(w-w) (~ - :w) ), iznw (:w + :w) ,
iznw (~ - :w)

Making the sum of the operators in (14) we obtain a diagonal operator D:

(15)

So far, in (12) we obtain:

m

(16) 'l-Lyo+l,d+l,m = 2izn L (m - a + h - 1)wm-owD:Qm_cr(Z, z) +
0-:;;;:0

(2ReX/O-l(v - v) Iv:;;;: V --+iO+1,d+l,m)

Suppose that X/0-1 f O. Then thc last term in (16), i.e. 2 Re X')'0-1 (v-v) Iv:;;;: V --+')'0+1 ,d+l ,m

contains a nontrivial R component. So, Dli...fQ,d,m must contain R terms as weIl. Tt
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is easy to check that two operators that C01nposc 2iznD, natncly, 2izntz /quad and
iznw a:/quad preserve Ar space. So, the R cOInponent in DH-ro,d,m Inay arise only
from

(17)
a

w8z 1 H,o,d,m ---+-ro+ 1,d+l,m

Degree 1TI In (w, w) eloes not increase i[ wa~l is applied only to v (and not to
Qm-a(z, z)).
What sort of R component may arise?
Term R 2,1 can not appeal' in (17) from wa~l 1f2,2 because, by (6), tvH2,2 = O.

Analogously, R3 ,2 = (z, b)v2 can not arise froll1 (16) bccause .;; H3,3 = O.
Term R 3,1 Inay arise [roln U

m- I VQ2,I(Z, z) in 1[3,2 as

- a ( m-l Q) , m _nQ ,Tl n(Q )
W a;1 U v 2,1 ---+n LL.:- 2,1 = U Z 2,0, Z

This implies for X-ro- 1 that for cOlnpensation,

m nQ a
X')'o-1 = -w Z 2,0 8z'

Therefore, by (16) and (10)

m

'tL.ro+l,2,m = -2iwm
(ZnQ2,o, z)zn '2:(117. - 0' +2 - l)wm-awaQm_a(Z, z) = 0

a==O

Thus,

1 m(Q )
~o,2,m = 2i(m. +1) w 2,0, z

But in llsual coordinates the latter expression contains a (3, 1) term

2i(m
1
+ 1) U

m
(Q2,O, z),

which does not lie in the N space. Contradiction. So, R 3 ,1 can not arise as weil.
Term Rk,I, k 2:: 4 can arise from U m -

2
U

2
Qk_2,0 01' [1'0111 um

-
1
VQk-l,I(Z, z). The

second option is considered as above.
Consider the first option:

- 8 m-2 m n m-I n
W a;I(U VQk-2,O) ---+n U Z Q2,1 = 2u vz Qk-2,O

It follows that for compensation
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2 m-l nQ a
X,o-I = - W l.JZ k-20Z ""2)

, (jz

and so,

2R ( )1 . rn-I ( -) nQ . m nQ . rn-I - nQe X,o-I V - V tJ=lI = 'lW W - W Z k-2,0 = tW z k-2,0 - lW WZ k-2,0'

Equations (10) and (16) inlply that

1l,O+I,k-l,m =
m

. m nQ . m-I- nQ +2' n '""' ( + k 3) m-o -oQ (-) 0lW Z k-2,0 - lW wz k-2,0 lZ ~ 1'11. - a ., - W W m-O' Z, Z =.
0=0

Thus,

9

. .
l m 1, m-I-

~0,k-2,m = - + k 3W Qk-2,0 + + A 4W WQk-2,0 =
1TI - n~ '";-

(
i rn i rn-I-)

Qk-2,0 - k 3w + k W w.m + ~ - . n1 + ~ - 4

The latter does not lie in the N space sincc it contains a (k-l, 0) term. Contradictioll.
Suppose now that X')'o-I = O. Then (10) irnplies thai;

m

DH')'Q,d,m = 2izn L:(m - a + h - l)wm
-

G wO'Qm_O' = 0
0=0

This can happen only in two cases

i.) h = 1,0' = m,
ii.) h = 0, a = 7TI - 1.

]n (i) case
H -wmQ')'o,d,rn - 1,0,

which contains UmQI,O E R; in (ii) case

H m-I-Q
lo,d,rn = W W 1,0,

which contains UmQI,O E n as weIl. Contradictioll. Hence, a = 0 in the set of initial
data of <I> in case (i) (7).
The case (ii) in (7) is sinlilar: instead of of ff'"Yo,d,m wc take

m

H - ~ '""' m-O' - 0 -I dl Q (-)
,0,d,m,dI - ~ ~ W W Z m-et-d l Z, Z ,

m 0=0

the component of H,o,d,m of minimal degrce clI in Zl.

Ir eh = 0 then the proof goes literally as above. Let clI i: 0 then operators
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a a _ (J

2 · 1 • 1 J
tZ 8z' tZ w-a ' w----=-W ozl

being applied to wm-owo, contribute to the cOlnponents of degrees 1n and 1n + 1 in
(w,w). We are interested in thc contribution to thc 111inimal elgree 1n:

'I-l-,O+l,d+l,m,dr-r = 2i (z '-;)' (D - id) [[~O ,d,m,d1+
Z

(2 Re X')'Q-I (v - v)lv=v ---+')'o+l,d+l,m,d I -I) =
m

2i(z, z)' L (m - 0:' + h - 1)wm - crWO';1 d
I
-I Qm-O'-d

I
(z, z)+

0'=0

(2 Re X')'o-I (v - v) 11.1= V ---+')'o+l,d+1 ,m,dI -I)

(see (4) anel (15) for (z, z/ anel D). The latter expression does not vanish 'for the
same reasons as above. This proves that a = 0 in both cases (i) anel (ii) of (7), anel

so Xl = O.
The relnaining part is to show that l' = O. Consider

a fJ
xz = 1'WZ- + rw2

-.
I oz fJw

It surely preserves the N space, so it in1plies that X = X2. Hut it is cleal' that
2 Re Xz doesn't annulate the equation of At (it suffices to consider the component of
H')'o,d,m,du of Inaximal degree du in u anel to obsel'vc that Xz on this component is just
a multiplication tilnes u). 0

3. COUNTEREXAMPLE FOR 2-CODIMENSIONAL eR SURFACES

Let M E Cl be a real-analytic Levi-nondegenerate eR surface of coelilnension 2. Set
z = (ZI,z2), W = (w l = u l + iv l , w2 = u2 + iv2) for coordinates in (['1. Up to
nondegenerate linear transformation in (z, w) thc Lcvi fonn of M may have one of
three types, namely, elliptic, hyperbolic and parabolic (see [L02]).
Isotropy group GoA1 is defined like for hypersurfaces. Set

GO,id lvf = {<I> E Gollt! : d<I>(O) IT~"1 = {iel}}.

If M is a quadratic surface, i.e. it is locally equivalcnt eR quadric, its autolnorphism
group, and, in particular, GO,idM are described in ([ES]). If !vI is nonqua,elratic thc
description of GoM remains an open question. On thc contrary to the Theorem 2
even for nonquadratic AI the subgroup GO,idM Illay bc nontrivial as thc exalnple
below shows:
Let At! be a surface with the parabolic type of the Levi r01'111, elefineel by the equation
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(18) VI Iz 112

V2 = 2 Re z 1Z-2 + 1z I 1
8 •

To check that M is nonquadratic one may cstimatc the din1ension of the autOlTIOr­
phisln graup.
Let X be the vector field

(19) X = i (2(ZI)2~ +2ZIWl~ - iWl~)
/ 8z2 ffw 2 8z 2

It is easy to check that X and M satisfy thc identity:

(

Iz 1 1
2

- ~ ( 10 I - 1~ I ) )

2ReX 2Rez1z2 _ ~ytv2 -(02) + Iz118 IM == O.

Therefore, <I> generates al-parameter subgroup in GO,idM, nalncly, <I>t = exp(tx),
Slnce

d~t(O) = (ll11)
The I-parameter subgroup <pt consists of polynon1ial tl'ansfonnations

Zl f---7 ZI

Z2 f---7 Z2 + tw 1+ 2il(Zl)2

w l
f---7 wl

w2
f---7 w 2 + 2itw 1z 1
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