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TRIVIALITY OF SCALAR LINEAR TYPE ISOTROPY SUBGROUP
BY PASSING TO AN ALTERNATIVE CANONICAL FORM OF A
HYPERSURFACE

VLADIMIR V. EZOV

ABSTRACT. The Chern-Moser (CM) normal form of a real hypersurfaces in CV
can be obtained by considering automorphisms whose derivative act as the identity
on the complex tangent space. However, the CM normal form is also invariant
under a larger group (pseudo-unitary linear transformations) and it is the prop-
erty that makes the C'M normal form special. Without this additional restriction,
various types of normal forms occur. One of them helps to give a simple proof of
a (previously complicated) theorem about triviality of scalar linear type isotropy
subgroup of a nonquadratic hypersurface. An example of an analogous nontrivial
subgroup for a 2-codimensional CR surface in C' is constructed.

1. ALTERNATIVE CANONICAL FORM

Let M € C*t! be a real-analytic hypersurface. For the coordinates in C**! we set
z=(z',...,2"), w=u+iv. We assume that M has nondegenerate Levi form (z, z)
at the origin.

Consider the space F of power series in (z, Z,«) such that the series itself, its diffler-

ential and the Hessian 5‘2;—2 vanish at the origin. A hypersurface M can always be
written in the form:
(1) v={(z,2)+ H,

where H(z,z,u) € F.

Any H € F can be written as a sum H = 37, ; Hy of homogeneous polynomials
of degree k in z and [ in Z with analytic in u coefficients. By I, 1y, k1) (H) we
denote the sum Hy, j, + ...+ Hy,,. In F we consider the subspace

(2) R= {2 ReX(<zaz) - v)'v:(z.z)}:
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where y runs over holomorphic vector fields of the form
0 .07

_ j
X=gleg L P

here Bf ) .
i0) = 2= _ 99 _ 99

£ 0~ g(o)_@zo Bwo_o
Let & = {(k,0),(k,1),(2,2), (3,2), (3,3)} and I1, be a projection on the corresponding
jet space. Il is an isomorphism on R (see [CM]), so below we identifly R and II,R.
Let N be any direct complement of R in . The R-component always can be
eliminated from the equation (1) of M. The freedom in the choice of A space leads to
various canonical forms of the equation. One of such canonical forms, constructed by
Chern and Moser ([CM]), has some natural advantages compared to others. Here we
introduce an alternative canonical form of a hypersurface to provide a simple proof
of Beloshapka and Loboda ([Be],[Lol]) theorem about the triviality of scalar linear
type isotropy subgroup of a nonquadratic hypersurface M. The original proof of this
theorem, based on Chern-Moser normal form is technically very hard.
It is convenient to consider two cases of the Levi form:

(3)

i.) (z,2) = 2Rez'z™ + 07 e4|2°]%,

”) ( 2, ) |Z |2 + 2022 sﬁ|zalzi
here e, =% 1.
Let Hy,; be an arbitrary polynomial of the type (k,{). Each time in Hj; the product
2!z occurs in case (i), or, z'z! in case (ii), we replace this product by (z,z) — (z, 2)',
where

n—1
(4) (z,z)' = z"2l 4 Z Ec,|z"|2,
a=2
or,

, n
(z,z) = Z 5a|za|2

in cases (1) and (ii) respectively. Thus, we obtain a decomposition of Hy; in the form

(5) [[kl —ZZH Qk a,l- ﬁ(z z)

1

where each monomial in Qk_q o does not contain z'z*, or z'z! respectively. Set

v = (z,z) and write the equation of M in the form
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v=v+ Y Hi(v,z,2,u),
kI

where polynomials Hy; are written in the form (5) and v is considered as an inde-
pendent variable.

By canonical form we call an equation of the type

(6) v=v+ Y Ny, z,z,u),
kI>2
where
5] H* &
E“I;'NTZ = E;Z-Ar‘w = -57;1\[33 =0.

The following is analogous to Chern-Moser theorem ([CM]):

Theorem 1. i.) Any hypersurface can be locally biholomorphically transformed
to a canonical form,
i.) Let & = (F(z,w),G(z,w)) be a lransformation lo canonical form. Let Jp be
the Jacobian of ®:

AU Aa
Jq’:(o s/\2)’

where ¢ =% 1, U is a pseudounitary matriz such that (Uz,Uz) = e(z,z),
acC,A2>0,r= Ref;%ci‘-h.
Then the set of initial data Iy = {U,a, v} determine ® uniquely, and, con-
versely, any set of parameters {U, a, A, 7} with the above properties corresponds
to the transformation of M to some canonical form.

ii.) Any formal transformation thatl transforms M lo a canonical form is auto-
matically holomorphic.

Remark. For n = 2 and for quadrics v = (z,z) the described canonical form
coincides with the Chern-Moser normal form.

By Gy we denote the group of locally defined isotropic holomorphic automorphisms
of M at 0. If M is written in canonical form then any ® € (5 can be considered as a
transformation between canonical forms, so the set of initial data {U, a, A, r} uniquely
determines ®. If M is a quadric then all parameters of initial data are free, \f M
is nonquadratic, i.e. not locally equivalent to a quadric, Beloshapka and Loboda
([Be],[Lol]) proved that matrix U uniquely determines other parameters {a, A,r}.
This result can be reformulated if we denote by Gig xia the subgroup of (/g consisting
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of the automorphisms with U = id (Gpia is called em scalar linear type isotropy
subgroup) as follows:

Theorem 2. If M is a nonquadratic hypersurface then Go xia = {id}.

Remark. Analogous theorem does not hold for higher codimensional C' R surfaces
as the example in the last section of the paper shows.

2. TRIVIALITY OF CONFORMAL ISOTROPIES

We start with the proof of Theorem 1, which basically [ollows the proof of Chern-
Moser theorem ([CM}).

Proof. We check that the described A space is complementary to R. Expanding the
right hand side of the expression for R we observe, that

R ={> (Hro+ Hox) + Y _(Hiy + Hix) + (TzBi(w)2) +
0 2

(2,2)("2Ba(u)Z) + (2,2)" ({2, Bs(u)) + (Bs(u), 2)) + ba(u)(z, 2)*},

where Bj(u) and Ba(u) are hermitian matrices, 3,(0) = 0, Bs(u) is an arbitrary
vector in C*, bs(u) is a real-valued function.
It is clear that the subspace
2 3

N - {]Z{ € fIHk'() = Hk,l = %f‘]zz == 8()72"[‘[32 = 585
is a direct compliment to R in F. So we can follow Chern-Moser scheme to elim-
inate R-component in the equation of M. By the "Convergence” part of ([CM])
the holomorphic transformations that do this job are parametrized by {U,a, A,r}.
By the "Formal theory” of ({CM]), any formal transformation with fixed initial data
{U, a, A, r} that eliminates R-compnent is unique, so, it has to be holomorphic. This
completes the proof of Theorem'1l. O

H33 — 0}

We continue with the proof of Theorem 2.

Proof. Consider ® € (G ia. Since Ig determines ® uniquely, it_suffices to show that
Iy = (id,0,1,0), which corresponds to the identity. Let a« € lo. We consider two
cases:

(7)

i.) a is an isotropic vector for (z,z), i.e. {a,a) =0.
it.) (a,a) =1 (without loss of generality this represents the situation (a,a) # 0).
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Consider a new basis {a, e, ..., e,} in C* such that in the case (i) of (7)
(6_7'., a) = 0, (BJ', ek) =__*__ 5}",1;;
in the the case (ii):

(en,a) =1, (e;,a)=0, {eje.)=0, (ejer)=F8r, 7,k=2,..,n,

d;& here is a Kronecker delta.

Let 2* be coordinates in C* in the new basis and C be the corresponding n-matrix
that determines the coordinate change in C**! via z = Cz*,w = w*

In (2*,w*) coordinates the Jacobian of ® equals to

A
0

I = C-' 0\ {Aid Xe\ [C 0\ _[Xid AC7'a) _[Aid |
=L o 1/vo xjlo 1/ Vo a7 0
0 A2

The equation of M takes the form

v={z,z) + N(z,z,u),

where (z, z) has the form (i) and (i1} of (3) in the cases (i) and (ii) of (7) respectively.
We introduce weight »r to the variables and to the coordinate differential operators

in standard way:
_ d d

(%) = 32(2%) = — 3 (af) = -3 (%) =1

end extend this weight to polynomials in (z, Z,w,) by linearity and homogenuity.
We expand an equation of M in a canonical form (6) as the sum of weighted homo-
geneous polynomials in (z, z,u):

(8) v=v+ )Y Hy(v,z%u)

r24

Let 7o be the first value of 4 such that H, # 0. As ® € G i4, there exists vector
field
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0 0 ag ..,0 .. 0
(9) X:(]n/\za +2ln/\wa )+( 01-{—222 —9-—+2zz wgl-ﬂ-)—{-

11026 rw? ) Ing, -zg.mHaw +...,

such that & = exp(x).
In the definition of y we assume that

5.
5. = L
d .0
ZE - Zz Oz’

&4

here € = n or € = 1 in the cases (i) or (ii) of (7) respectively. The collected terms in
(9) represent the components xo, x1, X2 and x,,-1 of x of weights 0, 1, 2 and
Yo = 1 respectively.

Since the iterations of ® preserve the equation (8), it follows that y satisfies the
equation

(10) H=2Rey ((z 2y —v+ > Hy(v 2z, u)|,,_”+27>_'0”1 y’“u)) =0

Y270
Considering component H.,, of weight 45 in (10) we obtain that
(vo —2)In AH., =

and since 9 > 4, it implies that A = 1.

To obtain that ¢ = 0 we consider the next, H,,+1, component. By defect of a
polynomial in (z,z) we mean the difference in its degrees in holomorphic and anti-
holomorphic variables. Let H,y 4m be the component of H, of maximal defect and
minimal degree in (v, u) (see (5)).

By p —a,s,... we mean the contribution of an expression p into the component of
the type (e, 3,4, ...), having weight «, defect 8, degree § in (v, u), and other specifi-
cations denoted by the dots.

For simplicity in further computations we introduce the variables

w=u-+iw, W=u-—1iv

Thus, the degree of a polynomial in (u,r) cquals to the degree in (w,w). So, the
expression (5) for H.,, 4 takes the form :
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(11) Hyim =3 i WG Oz, 2)

m a=0

Consider at first the case (i) in (7). Collecting in H the terms of type (yo+1,d+1,m)
we obtain:

, d d . n
7‘L70+1’d+1|m = {(ZZ“ (225 + w%) -+ LU‘@) I‘[Am‘d'm -z ]'[ﬁ'o.d.m+

(12) 2Re ({f,2) = Gvottlo=r)} —vot1,d1m

Remark. The differential operator in the latter formula is applied to the Hy gm
only, the term of minimal degree in (w,®), because neither of

9 0
ow’ waz_‘

decreases the degree in (w,@). Moreover, operators 12"w

(13) 2iz"%, 12w

8. 4 s ,
57, W3y increase the de

gree in (w, @) unless applied to w™~%@ in (11).

[ixact computation shows that in terms of the contribution to (yo + 1,d + 1,m) type
component, the operators (13) can be substituted respectively by

- (8 9N\ . (a8
(14) iz (2h1d+(w—w)(%—a—g)), a.zw(a_w—}.%),

Making the sum of the operators in (14) we obtain a diagonal operator D:

(15) 212" D = 242" (h id -I—w%)

So far, in (12) we obtain:

m

(16) Hogtt,drim = 202" Y (m—a+h — D™ 0" Qnolz,2) +

a=0

(2R€ Xeyp—1 (¥ — V) |vmss —Fmgt1,d41,m )

Suppose that x,~1 # 0. Then the last termin (16), i.e. 2Re xoy—1(v—=0)|vmr —Frpt1,d41,m
contains a nontrivial R component. So, DH., 4.m must contain R terms as well. Tt
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is easy to check that two operators that compose 2:z" D, namely, 2iz“-c%/quad and

;'z"w%/quad preserve N space. So, the R component in DH., 4 may arise only
rom

I,
(17) waz'l‘H‘m,d,m —y+1,d+1m
Degree m in {w,w) does not increase if “_"52'1 is applied only to v (and not to

@m-alz,Z)).
What sort of R component may arise?

Term R, can not appear in (17) from ‘7’3_2TH2.2 because, by (6), 2 Ha 2 = 0.
2

Analogously, Ra2 = (2,b)v* can not arise from (16) because ggHg‘g =0.
Term Ra,; may arise from u™ 'vQ;(z,%) in Hy as

3}
Qﬁ(u’"_vaz.l) —R UT 2 Qa1 = v 2 (@20, 2)
Z

This implies for x,,-1 that for compensation,

7,
X,m__] = —wmang’OE.
Therefore, by (16) and (10)

m

Hopt1,2,m = —2iw™ (2" Q20, 2)2" Z(m —a+2—-Dw" 0 Qn_alz,2) =0

a=0

Thus,

1 m
Hog2m = mw (@20, 2)

But in usual coordinates the latter expression contains a (3,1) term

1

m"m@z,o, Z),

which does not lie in the A space. Contradiction. So, Ra; can not arise as well.
Term Ri,y, k > 4 can arise from u™ ?1?Qy_20 or from w™ 'vQy_y,(2,%). The
second option is considered as above.

Consider the first option:

i
02!

It follows that for compensation

("0 Qr-20) —r w2 Q21 = 2™ w2 Qrzp



ALTERNATIVE CANONICAL FORM 9

9,
I/Zan—z,oz—

0z

_ m—1
Xyo-1 = —2w

and so,

QRGX’)’U—I(U - V)|U=U = iwm-l(w - LD)Z"Q};_Q'O = iwmank_z‘o - iwm_IQZan_gro.

EEquations (10) and (16) imply that

Hoot1 k—1,m =
m

W2 Qpe20 — W™ 02 Qg0 + 2i2" Z(m —a+ k=30 Qmou(z,2) = 0.
a=0
Thus,
s = - Qe g
okt k-3 =20 k=1 k=20 =

___i__ m ; m—1 —)

Qk—z,o( m+k—3w +m-|—k—4w w)

The latter does not lie in the A/ space since it contains a (k—1,0} term. Contradiction.
Suppose now that x.,,—, = 0. Then (10) implies that,

DHopgam = 22" Y (m—a+h — D" @ Quoq = 0
a=0
This can happen only in two cases
i.) h=1,a=m,
i) h=0,a=m~1.
In (1) case
Hyam = w" @10,

which contains ©™@}y ¢ € R; in (i) case

m—1—
Hva,d,m =w le,Da

which contains ©u™Q);p € R as well. Contradiction. Hence, ¢ = 0 in the set of initial
data of ® in case (i) (7).
The case (ii) in (7) is similar: instead of of H, 4 we take

m
—a—a @ _
H’T[),d,m,d] = E Z wm Owﬂzl 1Qm-0"d1 (z’ Z)'}

m o=0
the component of H, 4., of minimal degree dy in 21,
If d = 0 then the proof goes literally as above. Let di # 0 then operators
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21‘2'3, izlwi, cbju—
0z Ow dz!

m—0 0

being applied to w™ @, contribute to the components of degrees m and m + 1 in
(w,w). We are interested in the contribution to the minimal dgree m:

{z,2) .
Hepottydt tmydp =1 = 21(}3—1>(D —id)Hoyy dmay+
(2 ReX"m—l(U — V)Iu:u _>'yg+l,d+1,m,d1—l) =
2i(z,z) > (m—a+h- 1)w"‘_"’t.ff‘*z_'d‘"’Qm_a,_p;I (z,2)+
a=0

(2 Re X‘)‘D—l(v - U)|u=u _>70+1,d+l,nl,d1—l)

(see (4) and (15) for (z,z) and D). The latter expression does not vanish for the
same reasons as above. This proves that ¢ = 0 in both cases (i) and (ii) of (7), and
so x1 = 0.

The remaining part is to show that » = 0. Consider

Je T QY 2 a

Y2 = Mvza + rw Ee
It surely preserves the AN space, so it implies that y = yz. But it is clear that
2 Re x2 doesn’t annulate the equation of M (it suffices to consider the component of
H., 4m.4, of maximal degree d,, in 1 and to observe that y, on this component is just

a multiplication times u). O

3. COUNTEREXAMPLE FOR 2-CODIMENSIONAL C R SURFACES

Let M € C* be a real-analytic Levi-nondegenerate C R surface of codimension 2. Set
z = (24,2%), w=(w'=1u! 4w, w?=u?+iv?) for coordinates in C'. Up to
nondegenerate linear transformation in (z,w) the Levi form of M may have one of
three types, namely, elliptic, hyperbolic and parabolic (see [Lo2]).

Isotropy group GoM is defined like for hypersurfaces. Set

GojaM = {® € GoM : d®(0)|7cy, = {id}}.

If M is a quadratic surface, i.e. it is locally equivalent C' R quadric, its automorphism
group, and, in particular, Go;aM are described in ([IES]). If M is nonquadratic the
description of GpM remains an open question. On the contrary to the Theorem 2
even for nonquadratic M the subgroup GgigM may be nontrivial as the example
below shows:

Let M be a surface with the parabolic type of the Levi form, defined by the equation
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(18) S vo= [
v? = 2Rez'z?+ |2

To check that M is nonquadratic one may estimate the dimenston of the automor-
phism group.
Let x be the vector field

1
— — =
dz° Jw? 02?2

[t is easy to check that x and M satisfy the identity:

(19) X = ) (2(z1)2i+2zlwl d . a )

12 _ 1g,,,1 _ .71
N Ty T .
Re x (2 Re 2122 — (w? — w?) + |22 lp =0
Therefore, ® generates a 1-parameter subgroup in GoiaM, namely, ® = exp(ty),
since

1000
01 ¢t 0
dq’t(o)=001o
0001

The 1-parameter subgroup ®* consists of polynomial transformations

P e

22 = 2t 4 tw! 4 2i(2Y)?
w' = w!

w? = w4 2tw's!
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