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ABSTRACT. Let F be a field of characteristic different from 2. A ficld extension L/F
is called ezcellent if for any quadratic form ¢ over F' the anisotropic part (¢r)an of
¢ over L is defined over F. We study the excellence property for the function fields
of Severi-Brauer varieties.
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§0. INTRODUCTION

Let F be a field of characteristic different from 2 and ¢ be a non-degenerate
quadratic form over F. It is an important problem to study the behavior of the
anisotropic part of forms over F' under a field extension L/F. A field extension L/F
is called excellent if for any quadratic form ¢ over F' the anisotropic part (¢ )an of
¢ over L is defined over F (i.c., there is a form & over F such that (¢r)an = €L).
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2 O. T. IZHBOLDIN

Any quadratic extension is excellent. Since any anisotropic quadratic form
over F' is still anisotropic over the field of rational functions F(t), every purely
transcendental field extension is excellent.

Let F(X) be the field of rational functions on a geometrically integral variety
X. One of the important problems is to find conditions on X so that the field
extension F(X)/F is excellent. We say that F(X)/F is universally excellent if for
any extension K/F the extension K(X)/K is excellent. The following varieties are
most important in the algebraic theory of quadratic forms: quadric hypersurfaces,
Severi-Brauer varieties, varieties of totally isotropic flags, and products of such
varieties.

If X is rational (or unirational) then F(X)/F is purely transcendental (respec-
tively, unirational), and it follows from Springer’s theorem that F(X)/F is excellent -
and moreover that it is universally excellent.

In the case of a hyper-surface X = X defined by the equation ¢ = 0 where g is a
non-degenerate quadratic form, the following results are known: 1) if ¢ is isotropic,
then F(X,)/F is universally excellent (for in this case X, is rational); 2) if the field
extension F(Xg)/F is excellent and ¢ is anisotropic, then g is a Pfister neighbor
[Kn2]; 3) if dimg < 3 (or dimg = 4 and det ¢ = 1), then X, is universally excellent
(see [ELW, Appendix II] or [Ro2], [LVG]); 4) if ¢ is anisotropic, then F'(X,)/F is
universally excellent if and only if ¢ is a Pfister neighbor of dimension < 4 (see
(Izh1} or [H2]).

Thus the problem whether the field extension F(X)/F is universally excellent is
completely solved in the case where X is a quadric surface X,.

In this paper we study the case where X is a Severi—Brauer variety. In the
simpliest case where X is the Severi—~ Brauer variety of a quaternion algebra (a,b),
the field extension F(X)/F is excellent. Indeed, in this case the variety X coincides
with the quadric hypersurface X4, where ¢ = (1, —a, —b).

The next interesting case is the case of a biquaternion division algebra A. We
study this case in Sections 3 and 5. In Section 3 we prove that the field extension
F(SB(A))/F is not universally excellent for any biquaternion division F-algebra A.
Moreover we construct a unirational field extension E/F such that E(SB(A))/E
is not excellent (see Theorem 3.3). Applying this result, we find a condition on a
central simple algebra A under which F(SB(A))/F is universally excellent. Theo-
rem 3.10 asserts that the field extension F(SB(A))/F is universally excellent only
in the following two cases: 1) the index of A is odd; 2) the algebra A has the form
Q ®p D, where Q is a quaternion algebra and D is of odd index. In addition, we
show that the field extension F(SB(A))/F is not excellent for an arbirtary algebra
A of index 8 and exponent 2 (see Theorem 3.11).

In our proof of the main result of Section 3 we apply some deep results of E. Peyre
and N. Karpenko concerning the groups ker (H3(F,Z/2Z) - H*(F(X),Z/2Z))
and Tory CH?(X), where X is a product of Severi-Braucr varicties of algebras of
exponent 2 (see [Pe}, [Karl], [Kar2]). In Section 2 and Appendix A we prove some
results concerning Chow grops and Galois cohomology. In particular, in Appen-
dix A we prove the following

Theorem. Let A and B be central simple algebras of exponent 2 over F. Let
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X = SB(A) x SB(B). Then the homomorphism

ker (H*(F) = H*(F(X))) =2, Tor, CH?(X)
: .

[AJU HY(F)+ [B]U H(F)

is an isomorphism. Here H*(F) = H*(F,Z/2Z) and the homomorphism &, is
induced by the homomorphisme: H*(F(X)/F,Q/Z(2)) - CH?*(X) defined in [Su].

This theorem plays an important part in the proof of the non universal excellence
of the function fields of the Severi-Brauer varieties of biquaternion division algebras.

In Section 4 we prove the following statement: For any central simple F-algebra
A the field extension F(SB(A))/F is 5-exccllent (this means that if dim¢ < 5
then (¢r(sp(a)))an is defined over F). We prove that if u(F") < 6 then the field
extension F(SB(A))/F is cxcellent. In §5 we construct explicit examples of a
biquaternion division algebra A such that the field extension F(SB(A))/F is not
excellent!. In particular, we prove that the biquaternion algebra A = (a,b) ® (¢, d)
over the field of rational functions in 4 variables F(a, b, ¢, d) yields such an example
(see Corollary 5.11). In Appendix B we study the excellence property for generic
splitting fields. In particular, we find a criterion of universal excellence for the
function fields of integer varieties of totally isotropic subspaces (see Theorem B.21).
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visiting researcher at the Max-Planck-Institut fiir Mathematik, Bonn. I would like
to thank this institute for its hospitality. I am grateful to N. Karpenko for numerous
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useful suggestions. I also wish to thank A. S. Merkurev who told me about some
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§1. MAIN NOTATION AND FACTS

1.1. Quadratic forms and central simple algebras. By ¢ .l 9, ¢ = ¢, and [¢)]
we denote respectively orthogonal sum of forms, isometry of forms, and the class of
¢ in the Witt ring W (F') of the field F. The maximal ideal of W (F') generated by
the classes of even dimensional forms is denoted by I'(F). We write ¢ ~ 1 if ¢ is
similar to 1, i.e., k¢ = ¢ for some k € F*. The anisotropic part of ¢ is denoted by
¢an and iw (@) denotes the Witt index of ¢. We denote by {(a,,...,a,)) the n-fold
Pfister form
(1: —(11) Q- ® (1: —(L.”_)

and by P,(F) the set of all n-fold Pfister forms. The set of all forms similar
to n-fold Pfister forms we denote by GP,(F). The fundamental Arason-Pfister
Hauptsatz (APH for short) states that if ¢ € I*(F) and dim¢ < 2" then [¢] = 0;
if ¢ € I"'(F) and dim¢ = 2" then ¢ € GP,(F). An easy corollary from Arason-
Pfister Hauptsatz (APH’ for short in what follows) states that if ¢,v € GP,(F)
satisfy the condition ¢ = ¥ (mod I"*!(F)) and the intersection Dp(¢) N D (1))
is not empty then ¢ = 1. For any ficld extension L/F we put ¢ = ¢ ® L,
W(L/F) = ker(W(F) —» W(L)), and I"(L/F) = ker(I"(F) = I™(L)).

! Another example (a little more complicated than ours)} was independently constructed by
A. Sivatskii.
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Let ¢ be a quadratic form such that dim¢ > 2 and ¢ 22 H. The function field

F(¢) of the form ¢ over F is the function field of the projective variety X, given

by equation ¢ = 0. In the case where dim¢ < 1 or ¢ = H, we set F(¢) o)

Let A be a central simple algebra (CS algebra for short) over F. By deg(A),
ind(A), and [A] we denote respectively the degree of A, the Schur index of A, and
the class of A in the Brauer group Br(F). By SB(A) we denote the Severi-Brauer
variety of an algebra A.

We recall that two field extensions E/F and K/F are stably isomorphic if
and only if t%l’ere exist indeterminates xy,...,%4,41,.--,¥y, and an isomorphism

E(zy,...,z,) 2 K(y1,...,ys) over F. We will write E/F st K/F if E/F is stably
isomorphic to K/F.
If [A] = [A'] in Br(F) then the field extensions F(SB(A))/F and F(SB(A"))/F

are stably isomorphic. Moreover we have the following

Lemma 1.2. Let Ay,..., Ax and A}, ..., A} be SC algebras over F. Suppose that
the subgroup ([Ai],-..,[Ax]) of the Brauer group Br(F') generated by the classes
of algebras A1, ..., Ax coincides with the subgroup ([A}},...,[A]]) generated by the
classes of algebras A, ..., A;. Then the field cxtensions

F(SB(A) % -+ x SB(A))/F  and  F(SB(A}) x -~ x SB(A))/F

are stably isomorphic.

Let ¢ be a quadratic form. We denote by C(¢) the Clifford algebra of ¢. If
¢ € I?(F) then C(¢) is a CS algebra. Hence we get a well defined element [C(¢)]
of Bry(F) which we will denote by ¢(¢).

Good references for the basic theory of quadratic forms and central simple al-
gebras are books of T.Y. Lam [Lam], W. Scharlau [Sch], P. K. Drax] [Dr], and
R. S. Pierce [Pi}.

1.3. Cohomology groups. Let F be a field of characteristic # 2. By H™(F)
we denote the cohomology group H™(F,Z/2Z). The groups H*(F) (n > 0) form a
graded ring, with the multiplication given by the cup product.

Obviously HO(F) & Z/2Z. By Hilbert theorem 90 we have H'(F) & F*/F*2.
Thus any element a € F™* gives rise to an element of H1(F) which we will denote
by (a). The cup product (a1} U---U (a,) we will denote by (ay,...,a,).

The group H?(F) is isomorphic to Bra(F). This isomorphism maps the element
(a,b) = (a) U (b) of the group H2(F) to the class of the quaternion algebra (a, b)
in the Brauer group Bra(F). We will identify the groups Bro(F) with the group
H?*(F). Thus for any CS algebra A of exponent 2 we get an element [A] of the
group H2(F).

If the field extensions E/F and E/K are stably isomorphic then ker(H*(F) —
HY(E)) = ker(H'(F) = H'(K)).

For n = 0,1, 2, 3,4 there is a homomorphism

¢ s I(F)/ I Y(F) — H™(F)

which is uniquely determined by the condition €*({ai,...,a,)) = (a1,...,an).
This homomorphism was constructed by Arason [Ar2] for n < 3, and by Jacob,
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Rost [JR] and Szyjewsky [Sz| for n = 4. The homomorphism e™ is a isomorphism
for n = 0,1,2,3 (see [Me], [MS], and [Ro1])?2. The homomorphism e? maps a
quadratic form ¢ € I?(F) to c(¢) € Bry(F).

1.4. The group f{"(F). Let Aq,...,Ar be CS algebras of exponent 2 over F.
We have [Al]a vy [Ak] S BFQ(F) = H2(F) Let Xl = SB(A1), . ,Xk = SB(Ak)

—

Let us denote by H™(F') the group

S kor (H"(F) = HM(F(Xy x -+ x Xg))).

H"(F)
Clearly H*(F) is a ideal in H*(F), i.c., for any m,n we have H*(F)H™(F) C
H™m(F),
Obviously HY(F) = H'(F) = 0. The group H2(F) coincides with the subgroup
([A1],---,[Ak]) of H2(F) generated by the classes of the algebras Ay, ..., Agx. The
first nontrivial group is H 3(F). This group contains the group

H*(F)H'(F) = [A]JH'(F) + - - + [AJH'(F).

It is a natural question whether the group H3(F) coincides with H2(F)H(F).
This question gives rise to the study of the following factor group
H3F) _ ker (H*(F) » H3(F(SB(A1) x - -- x SB(Ay)))
H2(F)HY(F) [AHY(F) + - + [AJHY(F)

We denote this factor group by ['(F; Ay, ..., Ag).

It follows from Lemma 1.2 that the group I'(F; Ay, ..., Ag) depends only on the
subgroup ([A1],...,[Ax]) of Brz(F) gencrated by [Ai],...,[Ax]. More precisely, if
CS algebras Af, ..., A} satisfy ([A1],...,[Ax]) = ([41],...,[4}]), then

D(F; Ay, ... Ag) =T(F Ay, .., AY)
In particular, for any algebras Ay, As, and B with [A,] 4 [A2] + [B] = 0, we have
[(F; Ay, Ag, B) = D(F; Ay, Ag) = D(F; Ay, B) = T(F; A, B).

In the case k = 1 the following result is known
Theorem 1.5. (see [Arl, Pe]). If ind(A) < 4 and exp(A) = 2, then [A|HY(F) =
ker (H3(F) — H3(F(SB(A)))).

Applying this theorem and the injectivity of the homomorphism €3, we get the
following

Corollary 1.6. Let A be a biquaternion algebra and q be a corresponding Albert
form. Then I3(F(SB(A))/F) C [qJI(F)+I*F). O

2Bijectivity of e? was announced by M. Rost. Recently V. Voevodsky proved that there is a
well defined bijective homomorphism e™ for all n > 0. We do not use these resuts in our paper.
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1.7. Chow groups. For any smooth projective variety X, the homomorphism
from the group ex : ker (H3(F,Q/Z(2)) - H3(F(X),Q/Z(2))) to thé group CH?(X)
was constructed in [Su, Sec. 23]

We need the following

Theorem 1.8. (see [Pe, Th. 4.1]). Let Ay,..., Ar be CS algebras over F. Let
X = SB(A)) x --- x SB(Ag).

1) The homomorphism € induces an isomorphism

ker (H3(F,Q/2(2)) — H3(F(X,Q/Z(2)))
[AJH(F,Q/Z) + - - + [AJH ' (F, Q/Z)

= Tor(CH?*(X)).

which we will denote by Ex or €.
2) If all the algebras A, ..., Ax have exponent 2 then the homomorphism €
induces a monomorphism

ker (H*(F) — H*(F(X))) — Tory CH?(X)

(ALJHY(F) + -+ - + [A]HY(F)
which we will denote by Ex 2 or &;.

Thus &: T(F; A1,. .., Ag) = Torg CH?*(SB(A;1) X - x SB(Ag)) is 2 monomor-
phism.

It is not difficult to show that for any CS algebras A,,..., A the torsion sub-
group of CH2(SB(A1)x- - -xSB(Ag)), depends only on the subgroup ([A1], ..., [Ax])
of Br(F), generated by [A1],. .., [Ax]. More precisely, if CS algebras Aj, ..., A] sat-
isfy ([A1),...,[Ax)) = ([A1),...,[A]]}), then

Tor CH*(SB(A1) x - -+ x SB(Ay)) = Tor CH*(SB(A}) x - -- x SB(A})).
In particular, for any algebras A, A, and B with [A;] + [A2] + [B] = 0 we have
Tor, CH(SB(A;) x SB(A3) x SB(B)) & Tor, CH*(SB(A,) x SB(B)).
The group Tor CH?(SB(A)) was studied by Karpenko. One of his reults asserts
that for any algebra A of exponent 2 the group Tor CH2(SB(A)) (and hence the
group T'(F; A)) is either zero or isomorphic to Z/2Z (see [Karl, Proposition 4.1}}.

It is an interesting question to give an explicit description for an element of H3(F)
which determines a generator of the group

T(F; A) = ker (H3(F) — H*(F(SB(A)))) /IAJH'(F).
In the case k > 1 the groups Tor CH?(SB(A;) X - -+ x SB(Ay)) were also inves-

tigated by N. Karpenko. In our paper we need the following particular case of the
main theorem from [Kar2].
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Theorem 1.9. Let A and B be algebras of exponent 2 such that ind(A) € 4 and
ind(B) < 2. Let X = SB(A) x SB(B). Then

1) The group Tor CH*(X) is trivial or isomorphic to Z/2Z.

2) If the group Tor CH?(X) is not trivial then ind(A) = 4, ind(B) = 2 and
ind(A ®p B) = 4. In particular, if at least one of the algebras A and B 1s
not a division algebra then Tor CH?*(X) = 0.

3) If ind(A®FrB) = 8 then there is a field extension E/F such that ind(A®p
B)g = 4 and TorCH?*(Xg) = Z/2Z. Moreover we can take for E the
function field F(Y') of the generalized Severi-Brauer variety Y = SB(A®p
B, 4).

Corollary 1.10. Let Ay and A, be biquaternion algebras and B be a quaternion
algebra such that [A1]+[Aq]+[B] =0. Let X = SB(A,)x SB(A2) x SB(B). Then
the group Tor CH?(SB(X)) is trivial or equals to Z/2Z. Moreover if at least one
of the algebras Ay, Ay, and B is not a division algebra then the group Tor CH?*(X)
is trivial.

1.11. The group I'(F;qi,...,q1). Let qu,...,qx € I*(F). The Clifford algebras
C(q),...,C(gx) are CS algebras of exponent 2 over F. Let us define the group
T(F;q,...,qk) by the formula

F(Fa q1y- - an) = F(F,C((]l), v 70((1}‘:))
Note that for another collection ¢i,...,q € I?(F) with
(W (F) + -+ [@]W(F) + IP(F) = []W(F) + - + [q]W(F) + P(F),
we have I'(F;qq,...,qx) = T(F;q},...,q}). In particular, for any q1, ¢2,qs € I*(F)
satisfying q; L g2 L g3 € I*(F), we have
F(F: QIaq2aQ3) = F(Fa (11102) = F(F: Q11Q3) = F(F:QLQI})

Let X = SB(C(q1)) X -+ x SB(C(gx))- By the Peyre’s Theorem 1.8 we have the
embedding & : T'(F;qy,...,qx) = Tora CH?(X). Therefore we have a well-defined
homomorphism,

IP(F(X)/F) 2, ker (H3(F) = H3(F(X))) > T(F;q1, .-, x) & Tor, CH2(X).
Thus for any ¢ € I3(F(X)/F) we get the clements e*(¢) € T'(F;qy,...,q) and
£y 0¢3(¢) € Tor, CH(X).

Lemma 1.12. Let X = SB(C(q1) x -+- x SB(C(qy))) and ¢ € I*(F(X)/F). The

following assertions are equivalent:

1) (@) =0 inT(F;q,...,qk)-

2) ;0e%(¢) =0 in Tor, CH?(X).

3) ¢ € [alI(F)+ -+ [ I(F) + I'(F).
Proof. 1)<=2) since &, is injective. To prove 1)<=>3) it suffices to show that the
isomorphism e? : I3(F)/I*(F)} — H3(F) induces an isomorphism

I3(F) H3(F)

@I E) + & @ I(F) + 5F) " [Clan)JH(F) + -+ [Clan) JH(F) .
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1.13. The case dim(g),...,dim(gx) < 6 and ¢ L -+ L g € I3(F). Let
X = SB(C(q1)) x - -+ x SB(C(qx)). Obviously (@1)r(x),---, (ar)r(x) € IP(F(X))
The assumption dim(g;) < 6 (¢ = 1,...,k) and APH imply that [(¢1)rx)] =
= {gr)Fr(xy) = 0. Thus q1,...,qx € W(F(X)/F). Hence ¢z L --- L qx €
W(F(X)/F). Since g1 L --- L qx € I3(F), we have ¢, L --- L g € I3(F(X)/F).
Thus we get the elements e*(q; L -+ Lqx) € C(F;qu,...,q,) and &y0e3(qy L -+ L
qx) € Toro CH*(Xg,,..a0)-

§2. SPECIAL TRIPLES

Definition 2.1. Let F be a field of characteristic # 2.

1) We say that a triple (g1, gz, 7) of quadratic forms over F is special if the
following conditions hold:
a) ¢ and gy are Albert forms and « is a 2-fold Pfister form.
b) ¢1 Lgo L e I3F)
2) We say that a triple (Ay, A2, B) of F-algebras is spectal if the following
conditions hold:
a) A and A; are biquaternion F-algebras and B is a quaternion algebra.
3) We say that a triple (¢1, g2, 7) is enisotropic if all the forms gy, g2, and 7
are anisotropic. We say that a special triple of forms (g1, q2, 7) corresponds
to a special triple of algebras (Aq, Ay, B) if ¢(q1) = [A1], ¢(g2) = [A2] and
e(r) = [B).

It is clear that for any special triple of forms (g1, ¢, ) there exists a unique
special triple of algebras (A, Az, B) which corresponds to (g1, gz, 7). Converserly,
for any special triple of algebras (A, Az, B) there cxists a special triple of forms
(g1, g2, ™), which corresponds to the triple (A;, A2, B). In the latter case, the qua-
dratic forms g1, g2, and 7 are uniquely defined up to similarity.

In view of 1.13 we have a well defined element e*(q; L gz L 7) € T'(F; q1, g2, 7).

Proposition 2.2. Let (q1,q2,7) be a special triple. Then:
1) D(F;q1,92,7) = T(F;q1,q2) = T(F;q1, ) = T(F; g2, 7).
2) The group T'(F;qq,q2,7) 1s either 0 or Z/2Z.
3) The element e3(q1 L g2 L m) generates the group T(F; q1,qa, 7).
4) The homomorphism

&2: D(F;q1, g2, ) = Tors CH*(SB(C(q1)) x SB(C(az)) x SB(C(n)))

18 an tsomorphisin.

Before we adduce the proof, we want to note that the proof of the assertion 3) in
Proposition 2.2 presented below is a slight modification of Laghribi’s proof of the
following result:

Proposition 2.3. (see [Lag]). Let A be a biquaternion algebra and B be a quater-
nion algebra over F such that ind(A® B) = 8. Let X = SB(A) x SB(B). Then

ker (H*(F) — H3(F(X))) = [AJHY(F) + [BJHY(F). O

In our paper we need the following



ON THE NONEXCELLENCE OF THE FUNCTION FIELDS 9

Lemma 2.4. Let A be a biquaternion algebra and B be a quaternion algebra over
F such that nd(A® B) =4. Then

ker (H3(F) — H3(F(SB(A) x SB(B)))) = [A|HY(F) + [BIH'(F) + () H*(F),

where the quadratic form ¢ is defined as follows: ¢ = q L ¢' L n, where ¢ and ¢
are Albert forms corresponding to the algebras A and A ®p B, and 7 is a 2-fold
Pfister form, corresponding to B.

In other words, the element e3(¢) generates the group I'(F; A, B).

Proof. We actually have rewritten the first part of the proof from the paper of
Laghribi cited above. Let X = SB(A), Y = SB(B), and L = F(Y) = F(SB{(B)).
Since ind(A), ind{B) < 4, Theorem 1.5 implies that

ker (H(L) = H*(L(X))) = [AL]H'(L),
ker (H*(F) — H*(F(Y))) = [BIH(F).

Let u € ker (H3(F) - H*(F(X x Y))). We need to prove that u € [A]JH'(F) +
[BIH(F) + *(¢)H°(F).

We have uy, € ker (H3(L) & H3(L(X))) = [AL]H*(L). Hence there is f € L*
such that uy = [AL] U (f) = e*(g{f)), where ¢ is an Albert form corresponding

to A. Since the homomorphism e? is surjective, there exists ¢ € I*(F) such that
13(¢) = u. We have

pr) =up = [AL]U(F) = (@M =e* (e L —f - 1)

Hence ¢r, — g + f - qr, € ker(I3(L) <, H*(L)) = IY(L). Let 7 = f - qpgy).
Since L = F(Y), we have 7 = f - qp(v) = (¢ L —¢)r(vy (mod I*(F(Y))). Hence
for any O-dimensional point y € Y we have 92(7) = 0 (mod I°(F(y))). Since
dim7 = 6 < 8, it follows from APH that 82(r) = 0. Since 82(r) = 0 for each
0-dimensional point y on the projective conic Y, it follows from [CTS, Lemma
3.1] that the form 7 is defined over the field F' (see also [Ge]). This means that
there exists a 6-dimensional form ¢ over F' such that q;, = 7 = [ ¢r. Therefore
(@) = ¢(q)r = [AL]- Hence ¢(§) — [A] € Bro(L/F). Since L = F(SB(B)), we
have Bry(L/F) = {0, [B]}. Therefore ¢(q) € {[A],[A ® B]}.

Consider the case ¢(q) = [A]. Since [A] = ¢(q), we have ¢(q) = ¢(¢g). Thus ¢ ~ q.
Let k € F* be such that ¢ = kq. Then f-q;, = g1 = kqr. We have

up = €*(gp L —f-qp) = €*(qr L ~kqr) = (*(g{k)))2 = (AU (8))z.

Hence u — [A] U (k) € ker (H*(F) —» H¥*(F(Y))) = [BJH'(F). Therefore u €
[AJHY(F) + [B]JH'(F).

Suppose now that ¢(7) = [A @ B]. By the assumption of the lemma, c¢(¢’) =
[A ®F B]. We have ¢(q) = ¢(¢'). Hence g ~ ¢'. Choose k € F* such that ¢ = k¢'.
Then fqr, = qr = kqy- Since [rz] = 0, we have

up = e*(qr L —far) = *(qr L ~kqr) = (¢ + 4 +7) — ' (kD)
= (*(¢) = [e(@N U ()L = (($) — [A]U (k) = [B]U (k).
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Thus u + [A] U (k) + [B]U (k) — €*(¢) € ker (H*(F) — H*(F(Y))) = [B|HY(F).
Therefore u € [A]JHY(F) + [BJHY(F) + e2(¢)H(F). O

Proof of Proposition 2.2. The assertion 1) was proved in 1.11. The assertion 3)
follows immediately from Lemma 2.4 since I'(F; qq, g2, ) = T(F; q1, 7). Obviously
3) implies 2). The assertion 4) is proved in Appendix A (see¢ Corollary A.11). O

Remark 2.5. Both Proposition 2.3 and assertion 2) in Proposition 2.2 are obvious
consequences of the results of E. Peyre and N. Karpenko (sece Theorem 1.8 and
Corollary 1.10).

Lemma 2.6. Let (g1, q2,7) be a special anisotropic triple over F' and let (Ay, A, B)
be the corresponding triple of algebras. Let E = F(SB(Ay)). Then
1) (¢2)E s tsotropic, and dim((g2)E)an = 4.
2) For any s € DE(((q‘Z)E)ﬂ-n) we have ((QZ)E)an =8-TEg.
3) If ((g2) E)an s defined over F', then there exists s € F* such that ((q2) g)an =
s-7Tg.

Proof. 1},2). Since [A1] + [A2] = [B] € Bry(F) and [(A1)g] = 0 € Bra(E), we have
[(A2)g] = [Bg]). Therefore the (A2)g is not a division algebra. Hence its Albert
form (go) g is isotropic and dim((g2)g)an < 4.

We claim that dim{{g2)g)an = 4 (and hence ({(g2)g)an € GP2(E)). Otherwise
we would have [(¢2)g] = 0, and hence [(A3)g] = 0. Then [A;] € Bry(E/F) =
Bry(F(SB(A,))/F) = {0,[A1]}. Therefore either [A2] = 0, or [B] = [A;1]+[A2] =0,
which is a contradiction.

Let s € DE(((q2)E)a.n)- Since C(Q‘z)E = [(AQ)E] = [BE] = C(?T)B = C(SWE), it
follows that ((g2)g)an = s7g (mod I*(E)). By APH’ we have ((¢2)g)an = - 7E.

3). If ((g2)E)an is defined over F, we can choose s in Dg(((¢2)E)an) N F*. O

Proposition 2.7. Let (q1,q2,7) be a special anisotropic triple over F and let
(A1, Aa, B) be the corresponding triple of algebras. The following conditions are
equivalent: '

1) ((g2)F(sB(Ay)))an 15 defined over F,

2) ((q1)F(sB(A3)))an 18 defined over F,

3) a1 L q2 lLre [(j]_]I(F) + [qz]I(F) + [TT]I(F) +I4(F)
4) There exist ky, ko € F* such that

qul L kggg lre 14(F)

5) The group T'(F; q1,q2,7) is trivial.
6) The group Tora CH?(SB(A1) x SB(Az) x SB(B)) is trivial.

Proof. 1t suffices to prove that 1) = 3) = 4) = 1) and 3) <= 5) <= 6).

1) = 3). Let E = SB(A;). It follows from Lemma 2.6 that therc exists s € F'*
such that [(q2)g] = [smg]. Hence (g2 L —sm) € W(E/F). Since q; € W(E/F), we
have (q1 L g2 L —sw) € W(E/F). Therefore (g1 L ¢2 L 7) € W(E/F)+ [#]I(F).
Since ¢ = q1 L g L m € I3(F), we have ¢ € I>(E/F) + [x]I(F). 1t follows from
Corollary 1.6 that I3(E/F) C [qJI(F) + I*(F). Hence

¢ € [ I(F) + [x][(F) + I*(F) C [)I(F) + (g2} (F) + [7)I(F) + I*(F).
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3) = 4). Since ¢ € [q1]I(F) + [qo]I (F) + [n]I(F) + I*(F), there exist p1, 19, p3 €
I(F) such that [¢] - [qlul] - [(huz] - [W,lL3] € 14(F) Let r; = det.i Hi (‘L =1, 2, 3)
Since p; = ((ry)) (mod I*(F)), we have [¢] = [q1 (r1))] — [g2(r2)] — [7{ra))] € I*(F).
Since [¢] = [q1]+[g2]+[7], we have [rigi]+[reqz]+[raw] € T*(F). Sctting ky = /73
and ky = ro/r3, we have [k1q1] + [kage] + [r] € T*(F).

4) = 1). Let E = SB(A;). We have (ki1 L koq2 L m)p € I'*(F) and
[(¢1)e] = 0. Using APH, we have [(k1g1)g] + [7g] = 0. Hence ((q1)g)an = —k17E
is defined over F.

3) <= 5). Obvious in view of Lemma 1.12 and Proposition 2.2.

5) <=> 6). See Proposition 2.2. O

§3. A CRITERION OF UNIVERSAL EXCELLENCE FOR THE
FUNCTION FIELDS OF SEVERI-BRAUER VARIETIES.

In this section for any biquaternion division algebra A over F' we construct a
field extension E/F such that the field extension E(SB(A))/E is not excellent.
The construction is based on the following obvious consequence of Propositions 2.2
and 2.7:

Lemma 3.1. Let (q1,q2,m) be an anisotropic special triple over E and (A,, A2, B)
be the corresponding triple of E-algebras. The following conditions are equivelent:

1) For any ky, ko € F* we have kg1 L kogo L 7 ¢ T(E),
2) The group I'(E;q1, q2,7) = T'(EF; A1, A2, B) is not trivial.
3) T(E;q1,q2,m) =T(E; A1, A3, B) 2 Z/2Z.
4) The group Tora CH%(SB(A;) x SB(A2) x SB(B)) is not trivial.
If these conditions hold then the field extension E(SB(A1))/E is not excellent. O

Proposition 3.2. Let A be a biquaternion division algebra. Then there exists a
unirational field extension E/F, a biquaternion algebra A’ over E, and a quaternion
algebra B over E such that [Ag)+[A']+[B] = 0 € Bry(E) and Tor, CH*(SB(Ag) %
SB(A"Y x SB(B))=Z/2Z. [

Proof. Let K = F(u,v) be the field of rational functions in 2 variables. Let By
be the quaternion algebra (u,v) over K. Clearly, ind(Ax ®g Bp) = 8. Let E be
the function field F (Y} of the gencralized Severi-Brauer variety ¥ = SB{(Ax ®
By, 4). Let B = (By)g = (u,v)p. By Theorem 1.9, we have Tory CH?(SB(Ag) xE
SB(B)) 2 Z/2Z.

It follows from the properties of the generalized Severi-Brauer varieties [Bla] that
the algebra Ag ® g B has the form My(A’) where A’ is a biquaternion E-algebra.
Obviously [Ag]+[A’]+[B] = 0 € Bra(E). Hence the triple (Ag, A, B) is special and
Tor, CH?(SB(Ag) x SB(A’) x SB(B)) & Tor, CH*(SB(Ag) x SB(B)) 2 Z/2Z.

Now we need to verify that the field extension £/F is unirational. Let K =
K(\/u). Since [(Bo)j] = 0, we see that ind((Ax ®x Bo)g) = ind(Ag) < 4.
Hence the variety Yz = SB((Ax ®k Bo)g,4) is rational. Therefore the ficld
extension KE/K = K (Y) /I? is purely transcendental. Obviously K /F is purely
transcendental. Hence KE /F is purely transcendental too, and hence the field
extension £/F is unirational. O
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Theorem 3.3. Let A be a biquaternion division algebra. Then there exists a uni-
rational field extension E/F such that the field extension E(SB(A))/E is not ez-
cellent.

Proof. Take E/F, A" and B as in Proposition 3.2. Let Ay = Ap and A; = A’. Ob-
viously the triple (A;, A2, B) is special over E, and Tor, CH?(SB(A;) x SB(A2) x
SB(B)) = Z/2Z. 1t follows from Lemma 3.1 that the field extension E(SB(A))/FE
is not excellent. [

Definition 3.4. We say that the field extensions £ /F and E;/F are g-equivalent
(and write B, /F < Ey/F) if the following conditions hold:
1) For any quadratic form ¢ over F, the form ¢g, is isotropic if and only if

¢, is isotropic.
2) W(E,/F) = W(Ey/F).

We have the following examples of g-eqivalent field cxtensions.

Lemma 3.5. Field extensions Ey/F and FEy/F are always q-cquivalent in the fol-
lowing cases:
(1) Ey C E; and Ey/Fy is a finite odd extension.

(2) By C E2 and E2/E; is a purely transcendental field exziension.
(3) If E1/F and E3/F are stable isomorphic.

Proof. (1) Obvious in view of Springer’s theorem [Lam, Ch. VII, Th. 2.3]; (2) fol-
lows from [Lam, Ch. IX, Lemma 1.1]. (3) Since E;/F and Ey/F are stable isomor-
phic, there is a field K such that K/E; and K/E; are purely transcendental. By

(2), we have E1/F A K/F X BEy/F. O

Lemma 3.6. (see [ELW, Lemma 2.6]) Let E1/F and Ey/F are field extensions
such that Ey/F s Ey/F. Then E1/F is ezcellent if and only if Ey/F is excellent.

Lemma 3.7. Let Ay and A, be CS algebras such that ind(A; ®p AJF) is odd. Then

1) The field extensions F(SB(A1))/F and F(SB(Aj3))/F are q-equivalent.
2) The field extension F(SB(A,))/F is excellent if and only if F(SB(A2))/F
15 excellent.

Proof. 1) Let X, = F(SB(A;)) and X; = F(SB(Aj3)). Since ind(4; @ A7) is
odd, there is an odd field extension K/F such that [(A; @ A )k] = 0. Then
[(A1)k] = [(A2)k]. By Lemma 1.2, the field extensions K (X)/K and K(X3)/K
are stably isomorphic. Therefore K(X,)/F and K(X;)/F are stably isomorphic
too. By Lemma 3.5, we have K(X;)/F ~ K(X,)/F. Since [K(X,) : F(X1)]
[K(X3) : F(X2)] = [K : F] is odd, it follows from Lemma 3.5 that F(X,)/F
K(X1)/F & K(X3)/F % F(X3)/F.
2) Obvious in view of Lemma 3.6. [

Corollary 3.8. Let A and B be CS algebras over F such that [A] = [B] in Br(F).
Then the field extension F(SB(A))/F is excellent if and only if F(SB(B))/F is

excellent. O

2= I



ON THE NONEXCELLENCE OF THE FUNCTION FIELDS 13

Corollary 3.9. Let A be a CS algebra over F' and let A{2} denote the 2-prime
component of A. Then the following conditions are cquivalent:

1) The field extension F(SB(A))/F is excellent,
2) The field extension F(SB(A{2}))/F is excellent. O

Theorem 3.10. Let A be a CS algebra over F. Let X = SB(A). The following
conditions are equivalent:

1) F(X)/F is universally excellent,
2) ind(A) is not divisible by 4.
In other words, the field extension F(SB(A))/F is universally excellent only in the

following two cases: 1) index of A is odd; 2) algebra A has the formn Q®p D, where
Q is a quaternion algebra and the index of D is odd.

Proof. 1) = 2). Suppose that deg(A) has the form deg(A) = 4k. Let Y =
SB(A, k) x SB(A®?) and K = F(Y). Obviously ind(Ax) < 4 and 2[Ax] = 0. By
the Blanchet’s index reduction formula (see [Bla] or [MPW]), we have ind(Ag) = 4.
Hence there is a biquaternion algebra A over K such that [Ak] = [Z] It follows
from Theorem 3.3, that there is a field extension E/K such that E(SB(A))/FE is
not excellent. By Corollary 3.8 the field extension E(SB(A))/E is not excellent
too.

2} = 1). In view of Corollary 3.9, we can suppose that A as a division algebra
and deg A = 2". Since ind(A4) is not divisible by 4, we see that A is a quaternion
algebra or A = F. Hence F(SB(A))/F is universally excellent. [

For algebras of index 8 we have the following

Theorem 3.11. Let A be a CS algebra of index 8 and exponent 2. Then the field
extension F(SB(A))/F is not excellent.

Since any algebra of index 8 and exponent 2 is Brauer equivalent to a 4-quaternion
algebra, it suffices to prove the following lemma.3

Lemma 3.12. Let A = (ay,b1) ®F (az,b2) ®F (a3, b3) ®F (as,bs) be a 4-quaternion
algebra over F such that ind A 2 8. Then the field extension F(SB(A))/F is not
ezcellent.

In the proof of this lemma we will use the lollowing deep theorem.

Theorem 3.13. (see [EKLV, Corollary 9.3]) Let ¢ be a quadratic form over F
such that ind C(¢) > 8. Let K = F(SB(C(¢))). Then ¢r ¢ I*(K) (and hence

[#rsBC@O)))] #0)-

Proof of Lemma 3.12. Let E = F(SB(A)) and q € [*(F) be an arbitrary 10-
dimensional quadratic form such that ¢(q) = [A). Since ¢g € I*(F) and dimgg =
10, the form qg is anisotropic (see [Pf]). Hence there is v € GP3(E) such that
[qe] = [v] € W(FE). Suppose at the moment that the field extension E/F is
excellent. Then « is defined over F. It follows from Lemma 3.14 bellow that there is
a € GP3(F) such that vy = ag. We have [gg] = [7] = [ag]. Let ¢ =¢ L —c. Then

3We adduce here the proof suggested by D. Hoffinann which is essentially shorter than the
original author’s proof.
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[#E] = 0. Since a € I*(F), it follows that c(¢) = ¢(q) = [A]. Therefore the field
extension F(SB(C(¢)))/F is equivalent to E/F. Hence it follows from [¢g] = 0
that [¢r(sB(c(e))) = 0, which provides a contradiction to Theorem 3.13. O

Lemma 3.14. Let E/F be an ezxcellent field extension and v € GP,(FE) be a form
defined over F'. Then there is « € GP,(F) such that vy = ap.

Proof. Since 7 is defined over F, there is ¢ € Dg(y) N F*. Then the form ¢ = ¢y is
an n-fold E-Pfister form which is defined over F. By [ELW, Proposition 2.10] there
is an n-fold F-Pfister form f such that ¢ = Bg. Setting o = ¢f3, we have v = «ap,
eGP, (F). O

84. FIVE-EXCELLENCE OF F(SB(A))/F

Let n be a positive integer. We say that a ficld extension L/F is n-excellent if
for any quadratic form ¢ over F' of dimension € n the quadratic form (@p)a, is
defined over F. In this section we prove the following

Theorem 4.1. The field extension F(SB(A))/F is 5-excellent for any CS algebra
A over F.

The following lemma is obvious.
Lemma-definition 4.2. Let A be a CS algebra. Let us construct an algebra A(g)
in the following way. We set Aigy = F if exp(A) is odd. If exp(A) is even we let
A2y be a division algebra such that [A(g)] = eipE(él[f-‘l].

The algebra Ay is subject to the following properties:

1) [A(z)] € Bry(F),
2) For any m € Z such that m[A] € Bry(F) we have m[A] = [A(g)] or m[A] =

0.
3) If m € Z is a minimal positive integer such that m[A] € Bro(F) then m[A] =
A@l O

Lemma 4.3. Let g be an anisotropic Albert form and A be a CS algebra. Let
E = SB(A). Suppose that qg is isotropic. Then there is 7 € Py(F) such that
[A2)] = e(m)+clqg). Moreover if c(q) = [A(g)) then qr is hyperbolic. If c(q) # [A(z)],
then dim(gg)an = 4, and for any s € Dg((¢g)an) we have (qg)wm = STE.

Proof. Since qg is isotropic, we have ind(C(gg)) < 2. By the Schofield-Van den
Bergh-Blanchet index reduction formula (see [Blal, [SV], or [MPW]) we have

ind(C(gz)) = min{ind(C(q) ® A®™) | m € Z}.

Hence there exists m such that ind(C(q) ® A®™) < 2. Therefore there exists
7 € Py(F) such that c(q) + m[A] = ¢(x). Hence m[A] = ¢(q) + () € Bro(F). By
Lemma 4.2, we have m[A] = [A ()] or m[A] = 0.

We claim that m[A] = [A()]. Indeed, otherwise m[A] = 0, and hence ¢(7) =
c(q) + m{A] = ¢(q). However ind(C(n)) < 2 and ind(C(q)) = 4, a contradiction.

It follows from m[A] = [A(g)] that [A(y] = c¢(¢) + (7). Since [Ag] = 0, we have
cqg) = c(ng) + mlAg| = ¢(7g).
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Case 1. c(q) = [A()] : we have c(1) = c(q) + [A(2)] = 0. Hence ¢(¢g) = c(ng) =0,
i.e., gg is hyperbolic.

Case 2. c(q) # [A(z)] : Tt follows from Lemma 4.2 that ¢(q) # m[A] for any m € Z.
Therefore ¢(q) ¢ {m[A] | m € Z} = Br(E/F), ie., gg is not hyperbolic. Thus
dim(gg)an = 4. Since c¢(¢g) = (), it follows that (¢g)a, = mp (mod I3(F)). By
APH’ we have (qg)an = s7g for any s € Dg((¢g)an))- O

Lemma 4.4. Let ¢ be an anisotropic 5-dimensional quadratic form and A be a CS
algebra over F. That (¢r(sp(a)))an s defined over F

Proof. Let E = F(SB(A)). We can supposc that ¢g is isotropic. Let s = —det ¢
and ¢ = ¢ L (s). If ¢ is isotropic, then ¢ is a 5-dimensional Pfister neighbor. In this
case ¢ is an excellent form (see [Kn2]). Then (¢g)an is defined over F. So we can
suppose that ¢ is an anisotropic Albert form. Then the conditions of Lemma 4.3
hold. Let m € P,(F') be as in Lemma 4.3.

If c(q) = [A¢2)], then gg is hyperbolic and hence [¢g] = [¢r] — [(s)] = [(—8)].
Then (¢g)an = (—$). Therefore (¢pg)an is defined over F.

If ¢(q) # [A(2)), then dim(gg)an = 4. Therefore dim(¢g)an = dim(gg)an —1 = 3.
Since ¢ is isotropic we have dim(¢g)an = 3. Therefore (¢g)an = (PE)an L (8).
Hence s € Dg((qg)an)- By Lemma 4.3, we have (¢g)an = s7g. Let 7’ be a
pure subform of #. Since (@g)an L (s) = (gB)an = s = s7g L.(s), we get
(¢E)an = (s7')p. Hence (¢g)an is defined over F. O

Proof of Theorem 4.1. Let ' = F(SB(A)) and let 7 be a quadratic form of dimen-
sion € 5 over F'. We need to verify that 75 is defined over F'. In view of Lemma 4.4,
we can assume that dim7 < 4. Since all forms of dimension < 4 are excellent, we
can suppose that dimr = 4.

Let ¢ = 7pqy L (t) and £ = (Tg)an. We have £gyy L (t) = (T@))an L (t) =
(f;bE(t))an = (¢F(t)(SB(A)))an- By Lemma 4.4, (¢F(t)(SB(A)))an is defined over F(t)
Hence gy L (t) is defined over F(t). It follows from Lemma 4.5 bellow that
& = (Tg)an 18 defined over F'. O

Lemma 4.5. Let E/F be a field extension and £ be a quadratic form over E.
Suppose that Egeyy L (t) is defined over F(t). Then £ is defined over F.

Proof. Let v be a quadratic form over F(t) such that gy L (£) = vgq). We can
write Yp((zy) in the form ypp)) & Ape)) L t)\},((t)) where A and X' are quadratic
forms over F. Obviously &guy) L t(1) = Agy L t/\’E((t)). Since £ and (1) are
anisotropic, we have £ = Ag, (1) = Ag. Hence ¢ is defined over F. 0O

Theorem 4.6. Let A be a CS algebra over F. If u(F) \<,'6, then the field extension
F(SB(A))/F is excellent.

Proof. Let E = F(SB(A)). Let ¢ be an anisotropic quadratic form over F. We
need to prove that (¢g)an is defined over F. By Theorem 4.1, we can assume that
dimg > 5. Since u(F) < 6, we conclude that g is an anisotropic Albert form.
Therefore the conditions of Lemma 4.3 hold. Let v € I*(F) be an anisotropic form
such that ¢(y) = [A(z)]. Then ¢(yg) = 0 and hence vg € IP(E). Since u(F) < 6,
we have dim~y < 6. By APH, [yg] = 0.

It follows from Lemma 4.3 that ¢(7) +c(g) = [A(z)] = ¢(v). Hence [¢] = [7] + [7]
(mod I*(F)). Since u(F) < 6, we have I*(F) = 0. Hence [q] = [r] + [y]. Therefore
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lge] = [rE]+ [vE] = [7E]. Hence (qg)an = (7E)an. Since 7 is a Pfister form, we see
that (¢g)an = (TE)an is defined over F. O

Corollary 4.7. Let A be a biquaternion division algebra over F. Then there is
a field extension E/F such that Ag is a division algebra and the field extension
E(SB(A))/E is excellent. O

Proof. By [Me2] there is a field extension E/F such that w(E) = 6 and Ag is a
division algebra. 0O

Corollary 4.8. There exist a field F and a biquaternion division algebra A over
F such that the field extension F(SB(A)}/F is excellent. O

§5. EXAMPLES OF NONEXCELLENT FIELD EXTENSIONS F(SB(A))/F

In this section we give some explicit examples of nonexcellent field extensions
F(SB(A))/F. The main tool for constructing these examples is the following as-
sertion.

Lemma 5.1. Let pu1, po, pia, 18, ith, it be anisolropic 2-dimensional quadratic forms
over K. Let m € GPy(K). Suppose that TK (u;) 1S anisotropic for allv=1,2,3. Lel

K = K((z))((y)) and k,k' € K*. Then

E(py Lowpp Loyps) LE () Loapy Lyps) Lng ¢ I4(I?).

Proof. In view of Srpinger’s theorem we can identify W(I? } with the direct sum
W(K)ezW(K)oyW (K)®zyW (K). Moreover we can regard W (K) as a subring
of W(K).

Let ¢ = k(py L Ty L ypz) LK (p) L 1;&2 1 yuy). Suppose at the moment
that ¢ L 7y € I4(K) Then ¢ L mp € GP4(K). Since (¢ L 'rrK)K( y is isotropic,

it is hyperbolic. Hence ¢p . is hyperbolic. Therefore ¢ & [ﬂ'K]W(K ).

Since W(K) = W(K) @ «W (K) & yW(K) @ zyW (K), we can write [¢] in the
form [¢] = [m1] + z[r2] + y[m3] + zy[r4) where = (i = 1,2,3,4) are defined over
K. Since all the forms p;, p; (2 = 1,2,3) have dimension 2, we have dim7; < 4
(i=1,...,4). Since

[¢] € [rp]W RK) = [7]|W (K) @ z{r|W (K) & y[r|W (K) & zy[z]W (K)

we have 71, 72, 73, T4 € [T]W(K).

Suppose that there exists 7 such that [r;] # 0. Since dim7; € 4 and 7; €
[r}W(K), we see that 7; ~ . By the definition of ¢, there exists ¢ (1 < ¢ < 3)
such that p; is similar to a subform in 7;. Therefore j; is similar to a subform
in m and hence the form mg,,) is isotropic, which yiclds a contradiction (see the
assumptions of the lemma).

Therefore ;] = 0 for all 7 = 1,2,3,4. Then [¢] = 0. It follows from ¢ L :er €
I4(K) that 73] € I*(K). Hence [] € I*(K). By APH the form 7 is isotropic, a
contradiction. (O
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Corollary 5.2. Letr,s,u,v be elements of a field K and let m € P2(K) satisfy the
properties:

1) e(m) = (r,u) + (s,v),

2) 7 is anisotropic over the fields K (\/u), K(\/v), and K(\/uv).
Let g = (wv) L —z{u) L —y(v) and g2 = (uo) L —wrlu) L —ys{v) be
quadratic forms over K = K(z,y). Then (q1,q2,7) is a special triple over K and
K q1,q2,7) = Z/27.

Proof. Obviously q, and ¢, are Albert forms. Since ¢{q; L ga L 7} =c(—q1 L q2 L
m) = c(z{u, ) L y{s,v) L ) = (u,7) + (s,v) + c(r) = 0, the triple (g1, q¢2, 7)
is special. The quadratic forms p; = {uv), po = — (), pua = —{v), ¢y = {uv)),
py = —s{u), u5 = —r{v)), and 7 satisfy all the conditions of Lemma 5.1. Hence
for any ki, ke € K = K((.’E))(( )) we have ki(q)p L ko) L 7 ¢ I"‘( )
Therefore for any ki, ky € K = K(:E y) we have kiq1 L kygo L mp ¢ I4HK )

follows from Lemma 3.1, that F(K,ql,qz, TR)=2Z/2Z. O

Remark 5.3. Under the assumptions of Lemma 5.2, we have c(q) = (z,y) +
(zws, ywy) and c(q2) = (rz, sy) + (rzws, syw;).

Lemma 5.4. Let wy,we € F'* be such that wy,wq, wawy ¢ F*2. Let K = F(t) be
the field of rational functions in one variable. Let

r=—tuy, S§=—twy, u=t-+w, v=_Ii+wy, and 7= wiw).

Then r,s,u,v € K* and m € P,(K) satisfy all the conditions of Corollary 5.2.

Proof. 1} We have (r, u)+(s,v) = (—tw, t+w1)+{(—tws, t+ws) = (t,w1)+ (¢, wp) =
(¢, wiwe) = c(r).

2) Let p(t) be equal to one of the polynomials v = t 4+ wy, v = t + wsy, or
wv = t2 + (w; + wo)t + wrwe. We need to verify that 7 is anisotropic over the
field K(1/p(t)). Supposc that K (/D) is isotropic. Then p(t) € Dp(—n') where
7' = (—t, —wiws, twywsy) is the pure subform of m (see [Sch, Ch. 4, Th. 5.4(ii)]).
Therefore p(t) € Dpqy((t, wiwz, —tunwy)). By Casscls—Pfister theorem? there are
polynomials py (t), p2(t), pa(t) € F[t] such that

p(t) = tp%(t) + wlwgpg (t) — twmng(t) (5.5)
= t(pf (t) — wywepi(t)) + wﬂuzp%(t).

If p(t) = t + wy, we have w; = p(0) = wyw2pi(0) € wiweF*?. Therefore wy €
F*2, a contradiction. If p(t) = t + ws, then wy = p(0) = wiwep3(0) € wywa F*2.
Then w, € F*2, a contradiction.

Let now p(t) = t2 + (wy + wa)t + wiws. Since wyw, ¢ F*2, it follows that
deg(t(p3(t) — wiwapi(t))) is odd and deg(p(t) — wiwap3(t)) is even. We get a
contradiction to the equation (5.5). O

4Note that the strong version of the Cassels-Pfister theorem assumes that all the coefficient of
a quadratic form are polynomials of degree € 1. In the books of Lam [Lam] and Scharlau [Sch] a
slightly relaxed version of the Cassels-Pfister theorem is adduced, in which all the coefficients of
a quadratic form belong to F.
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Corollary 5.6. Let wy,w; € F* and assume that wy,wy, wowy ¢ F*2. Let E =
F(t,z,y) be the field of rational functions in 8 variables. Consider the quadratic
forms

Il

g1 = (¢ +w)(t +w2)) L =zt +wi)) L —y{(t +w2)),
a1 = ((t +w1) (¢ +w2)) L wtw (¢ +wi) L ytwal(t + wa)),

m = ({t, wrws))

and algebras

A = (.’IJ, y) ® (T"(t + 'U)g), y(t + 1!)1)),
Az = (—ztwy, —ytws) ® (—ztwy (t + we), —ytwa(t + wy)),
B = (t, wyws)

over E. Then (q1,q2,7) is a special triple (and (Ay, Az, B) is the corresponding
special triple of algebras), and I'(E; Ay, Ay, B) =T(E; q1,¢2,7) =Z/2Z. O

Corollary 5.7. Let F be a field such that |[F*/F**| > 4. Let E = F(z,y,t) be the
field of rational functions in 3 variables. Then there is a biquaternion algebra A
over E such that the field extension E(SB(A))/E is not excellent.

Proof. Since |F*/F*?| > 4, it follows that there are wy, wy € F* such that wy, wo,
wiwg ¢ F*2. Now it suffices to set A = (z,7) ® (z(t +ws),y(t +w)). O

Lemma 5.8. Suppose that a field F' satisfies the following condition: there exists
w € F* such that w,w+ L,w(w + 1) ¢ F*2. Let E = F(a,b,c) be the field of
rational functions in 3 variables and define a biquaternion algebra A over E as
A={(a,b)® (a+1,c). Then the field extension E(SB(A))/E is not excellent.

Proof. Let E' = F(t,z,y) be the field of rational functions in 3 variables. Let
wy = w, w2 = w+ 1. Let A = (z,y) @ (2(t + w1),y({ + w2)) = (z,y) ® (z(t +
w),y(t + w + 1)). All the conditions of Corollary 3.7 hold. Therefore the field
extension E'(SB(A’))/E’ is not excellent. Let us identify the fields E' = F(t, z, y)
and E = F(a,b,c) by menas of the birational isomorphism t — (a — w), z — ac,
7y — b. We have

(4] =(,y) + (@t + w), y(t + w + 1)) = |
— (ac,b) + (acla - w+w),bla—w+w+ 1)) =
= (ac,b) + (¢,b(a+ 1)) = (a,b) + (a + 1,¢) = [A4].
Since the algebra A’ maps to A, it follows that E(SB(A))/FE is not universally
excellent. [0

Example 5.9. Let E = Q(a,b,c) be the field of rational function in 3 variables
over Q. Let A = (a,b) ® (a+ 1,¢). Then the field extension E(SB(A)}/E is not
excellent.

Proof. 1t is sufficient to let w = 2 in Lemma 5.8. O
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Proposition 5.10. Let E = F(a,b,c,d) be the field of rational functions in 4
variables. Then there is a special triple (A1, A, B) over E such that Ay = (a,b) ®
(¢,d) and T'(E; Ay, A2, B) = Z/2Z.

Proof. Let F' = F(z) and E' = F(z,y,t, z) be fields of rational function in 1 and 4
variables correspondingly. Let w; = 1—2z and w; = 14-2. Obviously wy, we, wiwsy ¢
(F")*2. Tt follows from Corollary 5.6 that there is a special triple (A}, A%, B') over
E’ so that A} = (z,y)®(z(t+1+2),y(t+1—2)) and T'(E'; A}, A, B') 2 Z/2Z. Now
it is sufficient to identify the fields E = F(a,b,¢,d) and E' = F(xz,y,t, z) by means
of F-birational isomorphism: e =z, b— y, c = z(t+1+2),d—y(t+1-2). O
Corollary 5.11. Let E = F(a,b,c,d) be the field of rational functions in 4 vari-

ables and A = (a,b) ® (¢,d) be a biquaternion algebra over E. The field extension
E(SB(A))}/E is not excellent. O

Corollary 5.12. For any field F there exist a field extension E/F and a special
triple of quadratic forms (q1,q2, ™) over E such that T(E;q1,q2,7) = Z/2Z. O

Example 5.13. 1) Let £ = R(a,b,¢,d) be the field of rational functions in 4
variables over R. Let D = (a, b)®Eg(c, d) be a biquaternion algebra over E. Then the
anisotropic part of the quadratic form {(—a, b, —ab,c,d(a — 1), —cd(a — 1))E(SB(D))
is not defined over E. Sketch of the proof: let K = F(u,v) and r = -1, s =u — 1,
7w = (u— 1,uv). All the conditions of Corollary 5.2 hold. Let us identify the fields
F(u,v,z,y) and F(a,b,c,d) by the rool u = a, v = ¢, x = be, y = d. One can
verify that ¢(q1) = (a, b)+(c, d) and ¢(g2) — c({—a, b, —ab, ¢, d(a — 1), —cd{a — 1))).

2) Let K be an arbitrary finite generated field extension of the field Q@ and
let E = K(a,b,c) be the field of rational functions in 4 variables over K. Let
D = (a,b)®g (a+1,¢) be a biquaternion algebra over E. Then the field extension
E(SB(D))/E is not excellent. (Sketch of the proof: By Lemma 5.8 it is sufficient
to find w € K such that w,w + 1L, w(w + 1) ¢ K*2.)

Appendix A. SURIECTIVITY OF &: H*(F(X)/F, i$*) — Tor, CH?(X)
FOR CERTAIN HOMOGENEOUS VARIETIES

The main goal of this Appendix is to prove the following theorem.

Theorem A.1. Let A and B be CS algebras of exponent 2 over a field F' of char-
acteristic # 2. Then the homomorphism €

ker (H3(F) — H*(F(SB(A) x SB(B))))
(AJH'(F) + [BJH'(F)
is an isomorphism. Here H'(F) denotes H*(F,Z/2Z).

In this section we will use the following notation and agreements.

— Tory CH*(SB(A) x SB(B))

o We identify the group H3(F, u$2) with the m-torsion subgroup of the group
H3(F,Q/Z(2)). , _

¢ For any field extension E/F we set H*(E/F,Q/Z(3)) = ker(H*(F,Q/Z(j)) —
HY(E,Q/Z(5))) and HY(E/F, p}) = kev(H*(Fyp) — H(E, u§})).

e Recall that HY(F) = H*(F,Z/2Z). For any field extension E/F we let
HY(E/F) = ker(H'(F) — H'(E)).

The proof of the following lemma is standard and we omit it.
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Lemma A.2. Let X be a variety over F and let L/F be a finite field extension of
degree m such that X is unirational. Then

1) HY(F(X)/F,Q/Z(7)) C H'(L/F,Q/Z()),
2) H3(F(X)/F,Q/Z(2)) = H¥(F(X)/F,p$?). O

Theorem A.3. (sec [Arl]). Let g be an Albert form over F. Then the homomor-
phism H3(F) — H3(F(q)) is injective. O

Corollary A.4. Let g be an Albert form over F. Then the homomorphism

HY(F,Q/Z(2)) — H*(F(q),Q/Z(2))
18 injective.
Proof. Let X, be the projective quadric hyper-surface defined by the equation
q = 0. Let L/F be a quadratic field extension such that g, is isotropic. Then the
variety X, is rational. It follows from Lemma A.2 that H*(F(X,)/F,Q/Z(2)) =

H3(F(X,)/F,u$?) = H3(F(q)/F). By Theorem A.3, we have H*(F(q)/F) = 0.
Hence H3(F(q)/F,Q/Z(2))=0. O

We recall that a field F is said to be linked [Elm], [EL] if the following equivalent
conditions hold.
(a) The classes of quaternion algebras form a subgroup in the Brauer group
Br(F).
(b) All the algebras of exponent 2 have index < 2.
(c) All the Albert forms over F' are isotropic.

Lemma A.5. For any field F there ezists a field extension E/F with the following
properties:

1) The homomorphism H3(F,Q/Z(2)) — H3(E,Q/Z(2)) is injective,

2) The field E is linked.

Proof. Let us define the fields Fy = F, Fy, Fy,... recursively. We set F; to be
the free composite of all the fields of the form F;_;(q) where ¢ runs over all Albert
forms over F;_;. Further we let £ = U$2, F;. By Corollary A.4, the homomorphism
H3F,Q/Z(2)) — H3(E,Q/Z(2)) is injective. By the construction, all Albert forms
over K are isotropic. Hence the field E is linked. 0O

Proposition A.6. (cf. [Pe, Lemma 5.3)). Let Ay, Az be two F-algebras of index
<2 andlet X = SB(A;) x SB(Az). Then

H(F(X)/F,Q/Z(2)) = [A\H' (F,Q/Z(1)) + [AJH ' (F,Q/Z(1)).

- Proof. By [Kar2], the group Tor CH%(X) is trivial. Now it is sufficient to apply
Theorem 1.8. [J

Corollary A.7. Let Ay, A be F-algebras of inder < 2 and let X = SB(A;) X
SB(As). Then 2H3(F(X)/F,Q/Z(2)) = 0. O
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Lemma A.8. Let Ay and Az be algebras of exponent 2 and let X = SB(A;) x
SB(Ay). Then 2H3(F(X)/F,Q/Z(2)) = 0.

Proof. Let E/F be the field extension constructed in Lemma A.5. Since the ho-
momorphism H3(F,Q/Z(2)) — H*(E,Q/Z(2)) is injective, the homomorphism
H3(F(X)/F,Q/Z(2)) - H*(E(X)/E,Q/Z(2)) is injective too. Therefore it is suf-
ficient to prove that 2H3(E(X)/E,Q/Z(2)) = 0. This asscrtion follows immediately
from Corollary A.7 since any algebra over a linked field has index € 2. O

Proof of Theorem A.1. By Theorem 1.8 it is sufficient to verify surjectivity of
£y: H3(F(X)/F) — Tor; CH*(X). By Lemma A.8, we have H3(F(X)/F,Q/Z(2)) C
Tory H3(F,Q/Z(2)) = H?*(F). Hence H3(F(X)/F,Q/Z(2)) = H3(F(X)/F). By
Peyre’s Theorem 1.8, the homomorphism e: H3(F(X)/F,Q/Z(2)) — Tor CH%(F)
is surjective. Since H3(F(X)/F,Q/Z(2)) = H3(F(X)/F) it follows that the ho-
momorphism e3: H3(F(X)/F) = Tor CH?(F) is surjective too. Hence &3 is sur-
jective. [

Corollary A.9. For any F-algebra A of exponent 2 the homomorphism &,

ker (HC(F) = H*(F(SB(A))))
[ATH(F)

— Tor; CH*(SB(A))

15 an isomorphism U

Remark A.10. The analog of Corollary A.9 for algebras of prime exponent p is
proved in [Izh2].

Corollary A.11. Let A, B and C be algebras of exponent 2 over F such that
[A] + [B] + [C] = 0 € Bra(F). Let X = SB(A) x SB(B) x SB(C). Then the
homomorphism &» .
ker (H>(F) - H3(F(X)))
[AJH(F) + [B]H' (F) + [C]HY(

) — Tor, CH?(X)

is an tsomorphism.

Proof. Let Y = SB(A) x SB(B). The vertical arrows in the commutative diagram
H3(F(Y)/F) —25 Tor, CH2(Y)
H3(F(X)/F) X254 Tor, CH%(X)

are isomorphisms (see §1), hence we are done. [

Remark A.12. Let Aq,..., Ag be F-algebras of exponent 2. Let X = SB(A,;) x
-+ X SB(Ag). Tt is not true that the homomorphism

ker (H*(F) = H3(F(X)))

0.-'.2 2
— Tor, CH*(X). A.13
AT+ + (A E) e (13
is bijective for an arbitrary collection of algebras A;,..., A; of exponent 2. The

following counterexample was constructed by E. Peyre.
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Example A.14. (see Remark 4.1 and Proposition 6.3 in [Pe]). Consider an ar-
bitrary field F such that H3(F) # 0 and uy € F*. Let (a,b,¢) € H3(F) be an
arbitrary nontrivial symbol. Then the quaternion algebras A, = (a,b), A3 = (b,¢),
Az = (¢, a) yield the required counterexample, i.e., the homomorphism &; is not
surjective.

Sketch of the proof. Applying Theorem 1.8, one shows easily that the homomor-
phism (A.13) is not surjective if there exists an element v € H3(F, Q/Z(2)) with
the following properties: up(xy = 0, 2u # 0, and 2u € [A)H (F)+- - -+ [Ag]H(F)
(one can verify that in this case e(u) € Toro CH?(X) but £(u) ¢ imez). To com-
plete the proof it is sufficient to define u € H3(F,Q/Z(2)) as the image of the
element {a,b, c} by means of the following homomorphism

h
KY(F)/AK3N(F) =25 H(F,p$°) = H(F, p$%) < H*(F,Q/Z(2)).
Here h3 4, F is the norm residue homomorphism. U

Appendix B. A CRITERION OF UNIVERSAL EXCELLENCE
FOR GENERIC SPITTING FIELDS OF QUADRATIC FORMS.

Definition B.1. Let E/F be a finitely generated field extension. We say that £/F
is universally excellent if for any field extension K/F and for any free composite
EK of E and K over F, the field extension EK/K is cxcellent.

Remarks. 1) By a free composite of K and F over F' we mean the field of fractions
of the factor ring (K ®p E)/P, where P is a minimal prime ideal in K @ E. 2) In
the case where X is a geometrically integral variety over F and E = F(X), a free
composite EK is uniquely defined and coincides with K(X).

Let ¢ be a nonhyperbolic quadratic form over F. Put Fy = F and ¢g9 = ¢an.
Fori > 1let F; = Fi_1(¢i~1) and ¢; = ((¢i—1)F)an. The smallest h such that
dim ¢y, < 1 is called the height of ¢. The degree of ¢ is defined to be zero if dim ¢
is odd. If dim ¢ is even then there is m such that ¢,_) € GP,,,(Fx_1). In this case
we set deg ¢ = m.

The maint goal of this Appendix is to prove the following

Theorem B.2. Let ¢ be an anisotropic quadratic form over F and Fy, Fy,..., F),
be a generic splitting tower of ¢. Let s be a positive integer such that s < h. Then

1) If the field extension Fy/F is universally excellent then s = h.
2) The field extension Fy/F is universally excellent if and only if one of the
following conditions holds:
(a) ¢ has the form {a, b))y, where vy is an odd-dimensional quadratic form,
(b) ¢ L (—dety ¢} has the form ((a, b))y, where v is an odd-dimensional
quadratic form,
(c) ¢ has the form {a)y where v is an odd-dimensional quadratic form,
(d) there exist d ¢ F*2, w € Po(F) and two odd-dimensional quadratic
forms v, and vy such that the following conditions hold: T p(Vd) is

anisotropic, the field extension F(w,Vd)/F is universally excellent,
and [¢] = [r1]) + [{d)y2]. In this case dim¢ is even and dety ¢ =
dg¢ F*2,
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Remark B.5. We do not know whether there exist d and m (and hence the quadratic
form ¢) as in item (d) of Theorem B.2.

Definition B.4. Let ¢ be a quadratic form and k£ > 0. We say that a field extension
E/F is universal in the class of the field extensions over which the Witt indez of ¢
is greater or equal to k (for short (¢, k)-universal) if the following conditions hold:
1) iw(¢E) 2 k,
2) For any field extension K/F with iy (¢x)an = k and for any free composite
EK of the fields F and K over F, the field extension K E/K is purely
transcendental.

Lemma B.5. Let q be a quadratic form and k be a positive integer. Let Ey/F and
E,/F be (¢, k)-universal field extensions. Then Ey/F g E,/F.

Proof. By Definition B.4, Fy Ey/E, and EyEy/ E, are purely transcendental. Hence
EFL EyF. O

Proposition B.6. (see [Knl, Cor. 3,9 and Prop. 5.13]). Let ¢ be a quadratic form
over F. Let Fy,F,...,Fy be a generic splitting tower of ¢. Let ks = 1w (dF,)
(0 < s < h). Then the field extension Fs/F is a (¢, ks)-universal.

Theorem B.7. (see[Izhl, Th. 1.1}). Let ¢ be an anisotropic form over F'. The field
extension F(@)/F is universally excellent if and only if dim¢ < 3 or ¢ € GP(F).

Lemma B.8. Let ¢ be a non hyperbolic quadratic form over F and Fy, Fy, ..., F)
be a generic splitting tower of ¢. Let v be an integer such that 0 < r < h = h{¢).
Suppose that the field extension Fy/F is universally excellent. Then

1) For any s with 0 < s < r, the field extension F,. [ F, is universally excellent.
2) r=h and deg¢ < 2.

Proof. 1) Let F, and F! be “second copies” of the fields F and F,.. Let k = iw (¢F. ).
By Proposition B.6, both field extensions F/F,/F, and F, [ F, are (¢F,, k)-universal.

By Lemma B.5, we have F.F,/F, s F,/F,.
Since F,/F is universally cxcellent and F//F 2 F./F, it follows that F}/F is

universally excellent too. Hence F/F;/F, is universally excellent. Since F}F,/F, st

F,/F, it follows that F,./Fy is universally excellent.

2) Since F,./F is universally excellent, it follows that F,./F,._; is universally excel-
lent. Let ¢r—1 = (dF._, Jan- We see that Fr_q(¢dr—1)/F-—1 is universally excellent.
It follows from Theorem B.7, that either dim¢,_; < 3 or ¢,—1 € GPy(F,-1). In
both cases dim¢, < 1, i.e.,, 7 = h(¢). Since dim¢y,_; = dim¢,_; < 4, it {ollows
that deggp < 2. O

Notation B.9. Let ¢ be a quadratic form over F and Fy, F,. .., Fj, be a generic
splitting tower of ¢. We denote by Fy the field I, = Fy (4. For any field extension

E/F, we let E, ¥ B,,.
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Lemma B.10. Let ¢ be a quadratic form over F' and E/F be a field extension.
Then EFy/E £ E4/E.

Proof. Let k = [dim¢/2]. The field extensions EFy/FE and E4/E are (¢g, k)-
universal. By Lemma B.5, the proof is complete. O

Corollary B.11. Let ¢ be a quadratic form over F and E/F be a field exten-
sion. Suppose that the field extension Fy/F is universally cxcellent. Then E4/E is
universally excellent. [

Corollary B.12. Let ¢ € I3(F) a quadratic form such that the field extension
Fy,/F is universally excellent. Then ¢ is hyperbolic.

Proof. Suppose that ¢ is not hyperbolic. Since ¢ € I3(F), we have deg(¢) > 3.
This contradicts to Lemma B.8. [

Corollary B.13. Let ¢ be a quadratic form over F and E/F be a field extension
such that Fy/F is universally excellent. Then for any field extension E/F the
condition ¢ € I3(E) implies that ¢ is hyperbolic. [

Lemma B.14. Let ¢ and ¢ be quadratic forms over F'. The following conditions
are equivalent: 1) Fy st Fy; 2) dim(¢p,) < 1 and dim{eppr,) < 1.

Proof. 1)=2). Obvious; 2)=1). It follows from Proposition B.6 and Definition B.4
that the field extensions FyFy/Fy and FyFy, /Fy are purely transcendental. Hence

FREF, O
Examples B.15. 1) Let ¢ be an odd-dimensional quadratic form. Let ¢ = ¢ L
(= dety ¢). Then Fy/F X Fy/F.

2) Let m; be anisotropic m;-fold Pfister forms (my < mg < --- < my,). Let
Y1,y - - .,¥n be anisotropic odd-dimensional quadratic forms. Let ¢ be quadratic form

such that [¢) = [miy] + - + [Tuyn). Then Fy/F 2 F(my, ... 7))/ F.
3) Let m € GP,(F) and let v be an odd-dimensional quadratic form. Let ¢ = 1.

Then Fy/F 2 F,/F.

Proof. 1) Since ¢ € I(F), it follows that 1 r, is hyperbolic. Hence dim(¢r, )an = 1.
Since dim(yr, )an = 1, we have dim(¢r,)an < 2. It follows from 7 € I%(F) that

dim(¢p, )an = 0. By Lemma B.14, we have Fy/F % Fy/F.

2). Obviously ¢p(r,,...r,) is hyperbolic. Let B = Fy. 1t is sufficient to verify
that (71)g,..., (7m,)g are hyperbolic. Suppose that there is ¢ such that [(m;)g] #
0. Let i be the minimal integer such that [(m;)g] # 0. Obviously, [(mvi)e] =
[¢e] = 0 (mod I™+1(F)). Since dim+ is odd, we have [(m)g) = [(mivi)g] = 0
(mod I™*1(F)). By APH, we have [(7;)g] = 0, a contradiction.

3) Tt is sufficient to set n = 1 in previous example 2). O

The following lemma is a consequence of the index reduction formula [Mel].

Lemma B.16. (see [HR, Th. 1.6] or [Hol, Prop 2.1).) Let ¢ € I*(F) be a
quadratic form with ind(C(¢)) > 2". Then there is s (0 € s < h(¢#)) such that
dim¢, = 2r + 2 and ind C(¢s) =27. O
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Lemma B.17. Let ¢ € I%(F) be a nonhyperbolic quadratic form such that the field
Fy is universally excellent. Then ind C(¢) = 2.

Proof. By Corollary B.12, we have ¢ ¢ I*(F). Hence ind C(¢) > 2. Suppose that
ind¢ > 4. By Lemma B.16, there is s such that dim¢; = 6. Therefore ¢, is an
anisotropic Albert form. By Lemma B.8, the field extension Fy/F}, is universally
excellent. Replacing F' and ¢ by F, and ¢4, we can suppose that ¢ is an anisotropic

Albert form. Let A = C(¢). Clearly Fy/F 3t F(SB(A))/F. By Theorem 3.3, the
field extension F(SB(A))/F is not universally excellent, a contradiction. O

Proposition B.18. Let ¢ € I*(F) be an anisotropic quadratic form. Then the
following conditions are equivalent:

1) The field extension Fy/F is universally excellent,
2) ¢ has the form {a, b)), where p is an odd-dimnensional form.

Proof. 1)=>2). Suppose that the field extension Fg/F is universally excellent. By
Lemma B.17, we have ind C(¢) = 2. Therefore there exists an anisotropic 2-fold
Pfister form 7© = (a,b) such that [¢(¢)] = [c¢(m)]. Let E = F(x). Obviously
¢ € I*(E). By Corollary B.13, ¢g is hyperbolic. Hence there is v such that
¢ = {a,b)y. Since ¢ ¢ I’(F), dim~ is odd.

2)=1). Suppose that ¢ = {(a,b))y, wherc v is an odd-dimensional quadratic

form. Let # = ({a, b)). By Example B.15, we have Fy/F 8t F./F. By Arason’s the-
orem, the field extension Fir/F is universally excellent. Hence Fy/F' is universally
excellent. 0

Proposition B.19. Let ¢ be an odd-dimensional anisotropic quadratic form. Then
the following conditions are equivalent:

1) The field extension Fy/F is universally excellent,
2) ¢ L (—dety @) has the form {a, b))y, where pu is an odd-dimensional form.

Proof. Obvious by virtue of Proposition B.18 and Example B.15. 0O

Proposition B.20. Let ¢ be an even-dimensional anisotropic quadratic form with
d = det1(p) # 1 € F*/F*2. Then the following conditions are equivalent:

1) The field extension Fy/F is universally excellent.

2) There exist 1 € GP(F) and odd-dimensional quadratic forms v1, v2 such
that [¢] = [my1) -+ [(d)v2) and the field extension F(w,\/d)/F is universally
excellent.

Proof. 1)=2). Let L = F(v/d). Since Fy/F is universally excellent, it follows that
Lg/L is universally excellent. If ¢, is hyperbolic, we set 7 = 2H, which completes
the proof. Suppose now that ¢y, is not hyperbolic. By Lemma B.17, ind(C(¢r}) =
2. Since C(¢y) is defined over F, it follows that there is m# € GP(F) such that
Cl¢r) = C(xy). Let E = L(r) = F(r, Vd). Since Fy/F is universally excellent, it
follows that Ey/F is universally excellent. We have C(¢g) = C(ng) = 0. Hence
¢g € I3(E). It follows from Corollary B.13 that ¢g is hyperbolic. Therefore
[¢) € W(E/F) = [m]W(F) + [(d)]W(F). Choose 11 and <y, such that [¢] =
[7y1] + [{(d)72). Since ¢ ¢ I?(F), the dimension of vz is odd. Since deg C(pr) = 2,
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the dimension of ; is odd. By Example B.15, we have Fy/F 8t E/F. Therefore
the field extension E/F = F(n,/d)/F is universally excellent.
2)=1). Obvious in view of Example B.15. O

Theorem B.2 is now an obvious consequence of Lemma B.8 and Propositions B.18,
B.19, and B.20. O

Let ¢ be a non-degenerate quadratic form on an F-vector space V and k be
a positive integer such that £ < %dimV = %clim ¢. Let X (¢, k) be the variety
of totally isotropic subspaces of dimension k. It is well known that X (¢, k) is
geometrically integral if and only if & = % dim ¢.

Suppose now that k < 1dimé¢. Clearly, the field extension F(X (¢, k))/F is a
(¢, k)-universal. Therefore there exists 7 (0 < » < h = h(¢)) such that the field
extension F (X (¢, k))/F is stable isomorphic to F,/F. Obviously » = 0 if and only
if k < iw (). In the case where k > iy (¢), the integer » is defined by the condition
dim(¢y—1)an — 2 = dim ¢ — 2k > dim(¢,)an.

Theorem B.21. Let ¢ be a quadratic form over F' and X (¢, k) be the variety
of totally isotropic subspaces of dimension k (k < %dim @). The field extension
F(X(¢,k)}/F is universally excellent if and only if one of the following conditions
holds:

1) k< iw(9)

2) ¢an has the form {(a,b)y, where v is an odd-dimensional quadratic form
and k = %dim(,b— 1,

3) ¢an L (—decty @) has the form {a,b)y, where v is an odd-dimensional
quadratic form, and k = § dim(¢ — 1),

Proof. Let r be such that F(X (¢, k)) 5t F./F. If r = 0 then k£ < iw(¢) and the
proof is complete. Suppose now that 7 > 0. By Lemma B.8, we have r = h = h(¢)
and deg(¢) < 2. Therefore dim ¢ — 2k < dim(¢y—1) — 2 < 298¢ — 2 < 2. By the
assumption of the theorem, we have dim ¢ — 2k > 0. Therefore £ = %dimqb -1
or k = $(dim¢— 1). Since dimp_y > 2 + (dim¢ — 2k) > 3, it follows that .
either ¢ € I2(F), or dim¢ is odd. To complete the proof it is sufficient to apply
Theorem B.2. [0

REFERENCES

[Ar1] Arason, J. Kr., Cohomologische Invarianten quadratischer Formen, J. Algebra 36 (1975),
448-491.

[Ar2]  Arason, J. Kr, Ezcellence of F(¢)/F for 2-fold Pfister forms, Appendix II in [ELW]
(1977), 492.

[Bla] Blanchet, A., Function fields of generalized Brauer-Severi varieties, Commun. Algebra
19, No.1 (1991}, 97-118.

[Dr] Draxl, P. K., Skew Fields, vol. 81, London Math Soc., Lecture Note Series, Cambridge
University Press, 1983.

[CTS] Colliot-Thelene, J.-L.; Sujatha, R., Unramified Witt groups of real anisotropic quadrics,
Jacob, Bill (ed.) et al., K-theory and algebraic geometry: connections with quadratic
forms and division algebras. Summer Research Institute on quadratic forms and division
algebras, July 6-24, 1992, University of California, Santa Barbara, CA (USA). Providence,
RI: American Mathematical Society, (ISBN 0-8218-1498-2/libk), Proc. Symp. Pure Math.
58, Part 2 (1995), 127- 147.



[Elm]
(EL)

[ELW]

[EKLV]
[Ge]
[H1]
[H2]
[HR]
[1zh1]
1zh2]
[JR]
[Kar1]
[Kar2]
[Kn1]
[Kn2]
[Lam]
[Lag]
[LVG]
[Me1]

[Me2]

[MPW)]

[MS]

[Pe]

[Pi]
[P1]
[Rol]

ON THE NONEXCELLENCE OF THE FUNCTION FIELDS 27

Elman, R., Quadratic forms and the u-invariant. I1I, Proc. Conf. quadratic Forms,
Kingston 1976, Queen’s Pap. pure appl. Math. 46 (1977), 422-444.

Elman, R.; Lam, T. Y., Pfister forms and K-theory of fields, J. Algebra 23 (1972),
181-213.

Elman, R.; Lam, T.Y.; Wadsworth, A.R.; Amenable ficlds and Pfister ertensions, Proc.
of Quadratic Forms Conference (ed. G. Orzech) 46 (1977), Queen’s Papers in Pure and
Applied Mathematics, 445-491.

Esnault, H.; Kahn, B.; Levine, M.; Viehweg V., The Areson invarient and mod £ algebraic
cycles, K-theory Preprint Archive (http://www.math.uiuc.edu/K-theory/), N°151.

Geel J., Applications of the Reimann—Roch theorem for curves to quadratic forms and
division algebras, Preprint, Université catholique de Louvain, 1991.

Hoffmann, D. W., Splitting of quadratic forms, I, Preprint (1995).

Hoffmann, D. W., Twisted Pfister forms, Doc. Math. J. DMV 1 (1996), 67-102.
Hurrelbrink, J.; Rehmann, U., Splitting patterns of quadratic forms, Math. Nachr. 176
(1995), 111-127.

Izhboldin O. T., On the Nonezcellence of Field Extensions F(r)/F, Doc. Math. (Internet
http://www.mathematik.uni-bielefeld.de/DMV-J /) 1 (1996), 127-136.

Izhboldin O. T., Generalized Severi-Brauer variety and Galois Cohomology (Preprint
1996).

Jacob, B.; Rost, M., Degree four cohomological inunriants for quadratic forms, Invent.
Math. 96, No.3 (1989), 551-570.

Karpenko, N., Codimension 2 cycles on Severi—Brauer wvarieties, K-theory Preprint
Archives (http://www.math.uiuc.edu/K-theory/), N°90, submitted to K-theory {1995).
Karpenko, N., Codimension 2 cycles on products of Severi-Brauer varieties, to appear
in Publications Mathématiques de la Faculté des Sciences de Besancon {1997).
Knebusch, M., Generic splitting of quadratic forms, I, Proc. London Math. Soc. 33
{1976), 65-93.

Knebusch, M., Generic splitting of quadratic forms, II, Proc. London Math. Soc. 34
(1977), 1-31.

Lam, T. Y., The algebraic Theory of Quadratic Forms, Massachusetts: Benjamin (revised
printing 1980), 1973. '

Laghribi, A., Formes quadratiques en 8 variables dont Ualgébre de Clifford est d’indice
8, to appear in K-Theory .I. (1996).

Lewis, D.W.; Van Geel, J., Quadratic forms tsotropic over the function field of a conic,
Indag. Math. 5 (1994), 325 339.

Merkurev A. 5., Simple algebras and quadratic forms, Math. USSR, Izvestiya 38 (1992)
215-221.

Merkurev, A.S., Kaplansky conjecture in the theory of quadratic forms., Zap. Nauchn.
Semin. Leningr. Otd. Mat. Inst. Steklova (Russian) 176 (1989), 75-89; English transl. in
J. Sov. Math. 57, No.6 {1991}, 3489-3497.

Merkurev, A. S.; Panin, [. A.; Wadsworth, A. R., A List of Index Reduction Formnu-
las, Preprint(http://www.mathematik.uni-bielefeld.de/sfb343/), Biclefeld SFB-343 Se-
ries, N°94-079.

Merkurev, A S.; Suslin, A. A., The group Ks. for a field., Izv. Akad. Nauk SSSR Ser.
Mat. (Russian) 54, No.3 (1990}, 522-545; English transl. in Math. USSR, Izv. 36, No.3
(1991), 541-565.

Peyre, E., Products of Scveri~-Brauer varieties and Gelois cohomology, Jacob, Bill (ed.)
et al., K-theory and algebraic geometry: connections with quadratic forms and division
algebras. Summer Research Institute on quadratic forms and division algebras, July 6-
24, 1992, University of California, Santa Barbara, CA (USA). Providence, RI: American
Mathematical Society, (ISBN 0-8218-1498-2/hbk), Proc. Symp. Purc Math. 58, Part 2
(1995), 369-401.

Pirce, R. S., Associative Algebras, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
Pfister, A., Quadratische Formen in beliebigen Kérpern, Invent. Math. 1 (1966), 116-132.
Rost, M., Hilbert 90 for K3 for degree-two eztensions, preprint (1986).



28 O. T. IZHBOLDIN

[Ro2] Rost, M., Quadratic forms isotropic over the function field of a conic, Math Ann. 288
{1990), 511-513.

[Sch) Scharlau, W., Quadratic and Hermitian Forms, Springer, Berlin, Heidelberg, New York,
Tokyo, 1985.

[Su] Suslin, A. A., Algebraic K-theory and norm-residue homomorphism, J. Soviet Math. 30
(1985), 2556-2611.

[SV] Schofield, A.; Van den Bergh, M., The indez of a Brauer class on a Brauer-Severt variety,
Trans. Am. Math. Soc. 333, No.2 (1992), 729-739.

[Sz] Szyjewski, M., The fifth invariant of quadratic forms, Algebra Anal. (Russian) 2, No.1
{1990}, 213-234; English transl in Leningr. Math. 1. 2, No.1 (1991}, 179-198.

DEPARTMENT OF MATHEMATICS AND MECHANICS ST.-PETERSBURG STATE UNIVERSITY, PETROD-
VORETS, 198904, RussIA

Current address: Max-Planck-Institut fiir Mathematik, Gottiried-Claren-Strafie 26, D-53225
Bonn, Germany

Email adresses: oleg@mpim-bonn.mpg.de, oleg@izh.usr.pu.ru



