On an Explicit Formula for

Whittaker-Shintani Functions on Sp₂

by

Atsushi Murase

,

Max-Planck-Institut	and	Department of Mathematics
für Mathematik		Kyoto Sangyo University
Gottfried-Claren-Straße 26		Motoyama, Kamigamo
5300 Bonn 3, BRD		Kyoto 603, Japan

. . • .

• •

The boundary of the Eisenstein symbol

by

Norbert Schappacher¹ & Anthony J. Scholl²

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

1

 Department of Mathematics Science Laboratories South Road Durham DH1 3LE England

On an explicit formula for Whittaker-Shintani functions on Sp₂

by

Atsushi Murase

. ·

Introduction

The determination of an explicit formula for local Whittaker functions has been done by several authors (see [Shi], [K], [C-S], [B-F-H]; for various applications of this formula to the theory of automorphic L-functions, see [Bu]).

In [M-S], we studied the Whittaker-Shintani function on Sp_n that is one of variants of the Whittaker function first introduced by Shintani; we proved the uniqueness of local Whittaker-Shintani functions (see Theorem 1.1 in §1) and showed that a certain integral of the (global) Whittaker-Shintani function over a one-dimensional torus is expressed as a quotient of the L-functions attached to a Siegel modular form and a Jacobi form. This result is, in fact, essentially the same as an explicit formula for the local Whittaker-Shintani function on the torus (see Theorem 1.2).

In this short note, we present an explicit formula for the whole values of local Whittaker-Shintani functions on Sp_2 (Main Theorem in §2). It is noted that the general form of our explicit

1

formula is rather complicated than that for the usual Whittaker functions.

The content of this paper is as follows. In §1, we recall the definition of Whittaker-Shintani functions and summarize several results of [M-S]. The main result of this paper is stated in §2. Our explicit formula is described in terms of irreducible characters of SO(5, C) (= the dual group of Sp_2). The last section is devoted to proof of the Main Theorem. We prove the theorem by solving a system of difference equations satisfied by various values of a Whittaker-Shintani function.

The author would like to thank to the Max-Planck-Institut für Mathematik for its hospitality and financial support.

§1. Whittaker-Shintani functions

1.1 Let n be a positive integer and let $G_{n+1} = Sp_{n+1}$ be the symplectic group of degree (n + 1):

$$G_{n+1} = \{g \in GL_{2n+2} \mid {}^{t}g J_{n+1} g = J_{n+1}\} \quad (J_{n+1} = \begin{bmatrix} 1_{n+1} & 0 \\ 0 & 1_{n+1} \end{bmatrix}).$$

The Jacobi group \mathbf{G}_n of degree n is a subgroup of \mathbf{G}_{n+1} consisting of elements

$$(\lambda, \mu, \kappa) \begin{pmatrix} a \ b \\ c \ d \end{pmatrix} := \begin{bmatrix} 1 & 0 & \kappa & \mu \\ 0 & 1_n & ^t \mu & 0 \\ & 1 & 0 \\ & 0 & 1_n \end{bmatrix} \begin{bmatrix} 1 & \lambda & & \\ 0 & 1_n & & \\ & 1 & 0 \\ & & -^t \lambda & 1_n \end{bmatrix} \begin{bmatrix} 1 & & \\ a & b \\ & 1 \\ c & d \end{bmatrix}$$

where λ, μ are n-row vectors, κ is a scalar and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_n$. The center of G_n is $Z_n = \{(0, 0, \kappa)\}$.

1.2. Let F be a nonarchimedian local field and $o = o_F$ be the ring of integers of F. In what follows, we fix a prime element π of F and a nontrivial additive character ψ of F with conductor o. We denote by q the cardinality of $o/\pi o$. We use the same letter X to denote the group of F-rational points of a linear algebraic group X over F if there is no fear of confusion. Put $K_{n+1} = G_{n+1}(o)$ and $K_n = G_n(o)$.

The Hecke algebras H_{n+1} and H_n of (G_{n+1}, K_{n+1}) and $(G_n, K_n; \psi)$ respectively, are defined as follows:

$$\begin{split} H_{n+1} &= \{ \Phi \colon G_{n+1} \to \mathbf{C} \mid \\ & (i) \ \Phi(kgk') = \Phi(g) \ (g \in G_{n+1}, \ k, \ k' \in K_{n+1}) \\ & (ii) \ \Phi \quad \text{is compactly supported} \}, \\ H_n &= \{ \phi \colon \mathbf{G}_n \to \mathbf{C} \mid \\ & (i) \ \phi((0, \ 0, \ \kappa) \mathbf{kgk'}) = \psi(\kappa) \cdot \phi(g) \ (g \in \mathbf{G}_n, \ k, \ k' \in \mathbf{K}_n, \ \kappa \in \mathbf{F}) \\ & (ii) \ \phi \quad \text{is compactly supported modulo} \ \mathbb{Z}_n \}. \end{split}$$

The multiplications of H_{n+1} and H_n are defined by

$$(\Phi_{1}*\Phi_{2})(g) = \int_{G_{n+1}} \Phi_{1}(gx^{-1}) \Phi_{2}(x) dx,$$

$$(\phi_{1}*\phi_{2})(g) = \int_{Z_{n}\backslash G_{n}} \phi_{1}(gx^{-1}) \phi_{2}(x) dx,$$

where dx (resp. dx) is the Haar measure on G_{n+1} (resp. $Z_n \setminus G_n$) normalized by $\int_{K_{n+1}} dx = 1$ (resp. $\int_{Z_n K_n \setminus K_n} dx = 1$).

There exist canonical isomorphisms (Satake isomorphisms) $\Phi \to F_{\Phi} \text{ and } \phi \to f_{\phi} \text{ of } H_{n+1} \text{ onto } \mathbf{C}[T_{1}^{\pm 1}, ..., T_{n+1}^{\pm 1}]^{W_{n+1}} \text{ and of}$ $H_{n} \text{ onto } \mathbf{C}[T_{1}^{\pm 1}, ..., T_{n}^{\pm 1}]^{W_{n}} \text{ respectively, where } \mathbf{C}[T_{1}^{\pm 1}, ..., T_{r}^{\pm 1}]^{W_{r}}$ denotes the algebra of polynomials in $T_{1}^{\pm 1}, ..., T_{r}^{\pm 1}$ invariant under the automorphism group W_{r} of $\mathbf{C}[T_{1}^{\pm}, ..., T_{r}^{\pm 1}]$ generated by the permutations of $T_{1}, ..., T_{r}$ and the involutions $T_{i} \to T_{i}^{-1}$ ($1 \le i \le r$) (these isomorphisms are due to Satake and Shintani; see [Sa] and [M]). It follows that the C-algebra homomorphisms of H_{n+1} (resp. H_{n}) to C are parametrized by $\chi = (\chi_{1}, ..., \chi_{n+1}) \in (\mathbf{C}^{\times})^{n+1}/W_{n+1}$ (resp. $\xi = (\xi_{1}, ..., \xi_{n}) \in (\mathbf{C}^{\times})^{n}/W_{n}$) in the following manner:

(1.1)
$$\Phi \rightarrow \chi^{\wedge}(\Phi) := \mathsf{F}_{\Phi}(\chi_1, \cdots, \chi_{n+1}) \qquad (\Phi \in \mathsf{H}_{n+1})$$

$$(1.2) \qquad \phi \to \xi^{*}(\phi) := f_{\phi}(\xi_{1}, \cdots, \xi_{n}) \qquad (\phi \in \mathbf{H}_{n}).$$

1.3. For $\chi \in (\mathbb{C}^{\times})^{n+1}/W_{n+1}$ and $\xi \in (\mathbb{C}^{\times})^{n}/W_{n}$, let $WS(\chi, \xi)$ be the space of W: $G_{n+1} \to \mathbb{C}$ satisfying

(1.3)
$$W((0, 0, \kappa)kgk) = \psi(\kappa)W(g) \ (g \in G_{n+1}, k \in K_n, k \in K_{n+1}, \kappa \in F)$$

$$(1.4) \quad (\phi * W * \Phi)(g) := \int_{Z_n \setminus G_n} d\mathbf{x} \int_{G_{n+1}} dy \ \overline{\phi(\mathbf{x})} \ W(\mathbf{x}gy^{-1}) \ \Phi(y)$$
$$= \overline{\xi^{\wedge}(\phi)} \ \chi^{\wedge}(\Phi) \ W(g) \qquad (\phi \in \mathbf{H}_n, \ \Phi \in \mathbf{H}_{n+1}).$$

We call each element of WS(χ , ξ) a Whittaker-Shintani function attached to (χ , ξ). In [M-S], we proved the following uniqueness theorem.

Theorem 1.1 ([M-S], Theorem 1.2, Corollary 3.2)

- (i) $\dim_{\mathbb{C}} WS(\chi, \xi) \leq 1$.
- (ii) If $W \in WS(\chi, \xi)$ is not identically equal to zero, then W(Θ) \neq 0, where e denotes the identity element of G_{n+1} .

1.4. We recall another result of [M-S]. For $\chi \in (\mathbf{C}^{\times})^{n+1}/W_{n+1}$ and $\xi \in (\mathbf{C}^{\times})^n/W_n$, define $Y_{\chi,\xi}(f) \in \mathbf{C}$ ($f \ge 0$) by

(1.5) $\sum_{f \ge 0} Y_{\chi,\xi}(f) t^{f}$

$$= \frac{(1 + t) \prod_{i=1}^{n} (1 - q^{-1/2} \overline{\xi_i} t) (1 - q^{-1/2} \overline{\xi_i}^{-1} t)}{\prod_{i=1}^{n+1} (1 - \chi_i t) (1 - \chi_i^{-1} t)}.$$

Then Theorem 6.1 in [M-S] implies the following:

Theorem 1.2 Let $W \in WS(\chi, \xi)$. Then

(1.6)
$$W\left(\begin{bmatrix} \pi^{f} & & \\ & 1_{n} \\ & & \pi^{-f} \\ & & & 1_{n} \end{bmatrix}\right) = q^{-(n+1)f} Y_{\chi,\xi}(f) \cdot W(\Theta) \quad (f \ge 0).$$

§2. Main result

2.1. In the remaining part of the paper, we only deal with the case n = 1 and write G, K, G, K, Z for G₂, K₂, G₁, K₁, Z₁.

Lemma 2.1. ([M-S], Lemma 2.1, Proposition 2.2)
(i) For
$$W \in WS(\chi, \xi)$$
, $W((\lambda, \mu, \kappa) \begin{bmatrix} \pi^{f} \\ \pi^{m} \\ \pi^{-f} \end{bmatrix}) = 0$ if $f, m \ge 0$

and μ∉ o.

(ii) The support of $W \in WS(\chi, \xi)$ is contained in

$$\bigcup_{\substack{f,m\geq 0,\ 0\leq r\leq m}} ZK(\pi^{-r},\ 0,\ 0) \begin{bmatrix} \pi^{f} & & \\ & \pi^{m} & \\ & & \pi^{-f} & \\ & & & \pi^{-m} \end{bmatrix} K.$$

We denote by W(f, m; r) the value of
$$W \in WS(\chi, \xi)$$
 at
 $(\pi^{-r}, 0, 0) \begin{bmatrix} \pi^{f} \\ \pi^{m} \\ \pi^{-f} \end{bmatrix}$. For simplicity, we write W(f, m) for

W(f, m; 0). Note that W(f, m; r) = W(f, m) if $r \le m - f$.

2.2. Let SO(Q, C) be the special orthogonal group of

$$Q = \begin{pmatrix} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{pmatrix}$$

Let λ_i be the character of a maximal torus $T = \{x = diag(x_1, x_2, 1, x_2^{-1}, x_1^{-1})\}$ of SO(Q, C) given by $\lambda_i(x) = x_i$ (i = 1, 2).

For $f_1 \ge f_2 \ge 0$, let $X(f_1, f_2)$ be the irreducible character of SO(Q, C) with highest weight $f_1\lambda_1 + f_2\lambda_2$. To give an explicit form of $X(f_1, f_2)$, define $X_f(x) \in C$ for $f \in Z$, $f \ge 0$ and $x = diag(x_1, x_2, 1, x_2^{-1}, x_1^{-1}) \in T$ by

(2.1)
$$\sum_{f=0}^{\infty} X_f(x) t^f = \frac{1 + t}{(1 - x_1 t)(1 - x_1^{-1} t)(1 - x_2 t)(1 - x_2^{-1} t)}$$

We put $X_f(x) = 0$ if f < 0. Then $X(f_1, f_2)$ is given by

(2.2)
$$X(f_1, f_2)(x) = det \begin{pmatrix} X_{f_1}(x) & X_{f_1-1}(x) + X_{f_1+1}(x) \\ X_{f_2-1}(x) & X_{f_2-2}(x) + X_{f_2}(x) \end{pmatrix} (x \in T).$$

2.3. In what follows, we fix $\chi = (\chi_1, \chi_2) \in (\mathbb{C}^{\times})^2/W_2$ and $\xi \in \mathbb{C}^{\times}/W_1$. Without loss of generality, we may assume W(e) = 1 if W

 \in WS(χ , ξ) is not identically equal to zero (see Theorem 1.1).

To simplify notation, for $(f, m) \in \mathbb{Z}^2$, we set

(2.3) {f, m} =
$$\begin{cases} X(f, m)(x_{\chi}) & \text{if } f \ge m \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where $x_{\chi} = diag(\chi_1, \chi_2, 1, \chi_2^{-1}, \chi_1^{-1}) \in T$. Furthermore we set

(2.4)
$$Y(f, m) = \{f, m\} - q^{-1/2} \equiv \{f - 1, m\} + q^{-1} \{f - 2, m\}$$

for f, $m \in Z$, where

(2.5)
$$\Xi = (\xi + \xi^{-1})$$
.

We denote by $\delta_{f,f'}$ the Kronecker symbol: $\delta_{f,f'} = \begin{cases} 1 & \text{if } f = f' \\ 0 & \text{otherwise} \end{cases}$.

Main Theorem Let $W \in WS(\chi, \xi)$ and assume that W(e) = 1. Then the values W(f, m; r) $(f, m \ge 0, 0 \le r \le m)$ are given as follows:

(a) For
$$f \ge 0$$
, $q^{2t}W(f, 0) = Y(f, 0)$.

(b) For $f \ge m > 0$, $q^{2f+m} (q + 1) W(f, m) = q \cdot Y(f, m) - Y(f, m - 1) - \delta_{f,m}Y(f - 1, f - 1).$

(c) For
$$m > 0$$
,
 $q^{m}(q + 1) W(0, m) = q^{1-m/2} \{\xi^{m} + \xi^{-m} + (1 - q^{-1}) \sum_{j=1}^{m-1} \xi^{2j-m}\}$
(d) For $f \ge 1$, put $A_{f}(t) = \sum_{j=0}^{\infty} q^{3f+j}(q+1)W(f, f + j) t^{j}$. Then

$$A_{f}(t) = \frac{\alpha_{1}t + \alpha_{0}}{t^{2} - q^{1/2} \Xi t + q}$$

where

$$\alpha_{1} = -q \cdot Y(f, f) + (q^{1/2} \Xi - q) Y(f, f - 1) + Y(f - 1, f - 1),$$

$$\alpha_{0} = q^{2} Y(f, f) - q \cdot Y(f, f - 1) - q \cdot Y(f - 1, f - 1).$$

(e) For $f > m \ge 0$, put $B_{f,m}(t) = \sum_{j=0}^{\infty} q^{2f+m+j}(q^2-1)W(f, m + j; j) t^j$.

Then

$$B_{f,m}(t) = \frac{\beta_2 t^2 + \beta_1 t + \beta_0}{t^2 - q^{1/2} \Xi t + q}$$

Here $\beta_i \in C$ (i = 1, 2, 3) are given as follows: If m = 0,

$$\begin{split} \beta_2 &= q \cdot Y(f, \ 1) - (q^{1/2} \equiv + \ 1) Y(f, \ 0) - \delta_{f,1}, \\ \beta_1 &= -q^2 Y(f, \ 1) + (q + q^{1/2} \equiv) \ Y(f, \ 0) + \delta_{f,1} \ q, \\ \beta_0 &= q(q^2 - 1) \cdot Y(f, \ 0). \end{split}$$

If $m \ge 1$,

$$β_2 = q \cdot Y(f, m + 1) - q^{1/2} Ξ \cdot Y(f, m) + Y(f, m - 1)$$

- δ_{f,m+1}Y(f - 1, f - 1),

$$\begin{split} \beta_1 &= -q^2 Y(f, m+1) + q \; (q^{1/2} \Xi - q + 1) \; Y(f, m) \\ &+ \; [q^{1/2}(q-1) \Xi - q^2] \; Y(f, m-1) + \delta_{f,m+1} \cdot q \; Y(f-1, f-1), \end{split}$$

.

 $\beta_0 = q (q - 1) \cdot [q \cdot Y(f, m) - Y(f, m - 1)].$

.

§3. Proof of Main Theorem.

3.1. To prove the theorem, we derive a system of difference equations satisfied by W(f, m; r). Let $\Phi_1 \in H = H_2$ be the

characteristic function of K
$$\begin{bmatrix} \pi \\ 1 \\ \pi^{-1} \end{bmatrix}$$
 K. For $r \ge 0$, denote by

 $U_{r} = \{ \varepsilon \in o^{\times} \mid \varepsilon \equiv 1 \mod \pi^{r} \}.$ The following two results follow from the left K-coset decomposition of K $\begin{bmatrix} \pi & & \\ & 1 & \\ & & \pi^{-1} & \\ & & & 1 \end{bmatrix}$ K.

Lemma 3.1. Let W be a function on G satisfying (1.3). Then, for $g \in G$, we have

$$(W*\Phi_1)(g) := \int_{G} W(gy^{-1}) \Phi(y) dy$$

$$= W(g \begin{bmatrix} \pi^{-1} & & \\ & 1 & \\ & & \pi \end{bmatrix})$$

+
$$\sum_{\lambda \in \pi^{-1} o/o} W(g \begin{bmatrix} 1 & & \\ & \pi^{-1} & \\ & & \pi \end{bmatrix} (\lambda, 0, 0))$$

$$+ \sum_{\kappa \in U_{0}/U_{1}} W(g(0, 0, \pi^{-1}\kappa))$$

$$+ \sum_{\substack{\chi \in U_{0}/U_{1}, \mu, \kappa \in \pi^{-1}o/o \\ \pi\kappa\chi = (\pi\mu)^{2} \mod \pi}} W(g \begin{bmatrix} 1 & \pi^{-1}\chi \\ 1 & 1 \end{bmatrix} (0, \mu, \kappa))$$

$$+ \sum_{\substack{\chi \in o/\pi^{2}o, \mu \in \pi^{-1}o/o}} W(g \begin{bmatrix} 1 & \pi^{-1}\chi \\ 1 & \pi^{-1}\chi \\ 1 & \pi^{-1} \end{bmatrix} (0, \mu, 0))$$

$$+ \sum_{\substack{\lambda, \mu \in \pi^{-1}o/o, \kappa \in \pi^{-2}o/o}} W(g \begin{bmatrix} \pi & 1 \\ \pi^{-1} & \pi^{-1} \\ 1 & \pi^{-1} \end{bmatrix} (\lambda, \mu, \kappa)).$$

Lemma 3.2. $\chi^{\wedge}(\Phi_1) = q^2\{1, 0\} - 1.$

We next consider the action of $\mathbf{H} = \mathbf{H}_1$ on $WS(\chi, \xi)$. Let φ_m ($m \ge 0$) denote the element of \mathbf{H} with support $Z\mathbf{K}\begin{pmatrix} \pi^m \\ \pi^{-m} \end{pmatrix}\mathbf{K}$ and satisfying $\varphi_m(\begin{pmatrix} \pi^m \\ \pi^{-m} \end{pmatrix}) = 1$. By the left $Z\mathbf{K}$ -coset decomposition of $Z\mathbf{K}\begin{pmatrix} \pi^m \\ \pi^{-m} \end{pmatrix}\mathbf{K}$, we obtain

Lemma 3.3. Under the same assumption of Lemma 3.1, we have

$$(\phi_{m} * W)(g) := \int_{Z \setminus G} \overline{\phi(\mathbf{x})} W(\mathbf{x}g) d\mathbf{x}$$
$$= \sum_{\lambda \in \pi^{-m} o/o} W((\lambda, 0, 0) \begin{pmatrix} \pi^{m} \\ \pi^{-m} \end{pmatrix} g)$$

$$+ \sum_{\substack{-(m-1) \le i \le m-1 \\ \mu \in \pi^{-m} o/o, \ x \in U_0/U_{m-i}}} \psi(-x^{-1}\mu^2 \pi^{m-i}) \cdot W((-\pi^{m-i}x^{-1}\mu, \mu, 0) \begin{pmatrix} \pi^i \pi^{-m} x \\ 0 & \pi^{-i} \end{pmatrix} g) \\ + \sum_{\substack{x \in o/\pi^{2m} o, \ \mu \in \pi^{-m} o/o}} W((0, \ \mu, \ 0) \begin{pmatrix} \pi^{-m} \pi^{-m} x \\ 0 & \pi^m \end{pmatrix} g).$$

Lemma 3.4.

$$\begin{aligned} \xi^{\wedge}(\phi_m) &= q^{3m/2} \left\{ \, \xi^m + \, \xi^{-m} + (1 - q^{-1}) \, \sum_{j=1}^{m-1} \, \xi^{2j-m} \, \right\} \\ (\text{In particular,} \ \xi^{\wedge}(\phi_1) = q^{3/2} \, \Xi_{\cdot}) \end{aligned}$$

3.2 We now present a system of difference equations that will be used in proof of the theorem.

Proposition 3.5. Let $W \in WS(\chi, \xi)$. (3.1) For $f \ge 1$,

$$q^{2}(q + 1) W(f, 1) = -W(f - 1, 0) + [q^{2}\{1, 0\} - q\} W(f, 0)$$

- $q^{4} W(f + 1, 0).$

(3.2) For $f \ge m \ge 1$,

$$\begin{split} q^3 W(f, m + 1) &= - q^4 W(f + 1, m) + q^2 [\{1, 0\} - 1] W(f, m) \\ &- W(f - 1, m) - q W(f, m - 1). \end{split}$$

(3.3) *For* $f \ge 1$,

$$q(q^2-1) W(f, 1; 1) = -q(q + 1) W(f, 1) + q^{3/2} \equiv W(f, 0).$$

(3.4) *For* f, $m \ge 1$,

$$q^{2}(q-1) W(f, m + 1; 1) = (q - 1) W(f, m; 1) - q^{2} W(f, m + 1)$$

+ $(q^{3/2} \equiv -q + 1) W(f, m) - W(f, m - 1).$

(3.5) For $m > f \ge 1$,

,

$$q^3 W(f, m + 1) = q^{3/2} \Xi W(f, m) - W(f, m - 1).$$

(This is a special case of (iv).)

(3.6) For f, m ≥ 1 and 1 ≤ r ≤ m,

$$q^{3} W(f, m + 1; r + 1)$$

$$= q^{3/2} \Xi W(f, m; r) - W(f, m - 1; r - 1)$$

$$-\begin{cases} W(f, m; 1) - W(f, m) & \text{if } r = 1 \\ 0 & \text{if } r \ge 2 \end{cases}$$

Proof: These follow from the definition of W, Lemma 2.1 (i) and Lemmas 3.1–3.4. q.e.d.

Proof of Main Theorem: The statement (a) is a special case of Theorem 1.2 (Note that $Y_{\chi,\xi}(f)$ defined by (1.5) is equal to Y(f, 0)). By the well-known formula (see [Bo], Ch. VIII, §9, Proposition 2)

$$\{f, m\} \cdot \{1, 0\} = \{f + 1, m\} + \{f, m + 1\} + \{f - 1, m\} + \{f, m - 1\} + \begin{cases} \{f, m\} & \text{if } m \ge 1 \\ 0 & \text{if } m = 0 \end{cases}$$

we have

(3.7)
$$[\{1, 0\} - 1] \cdot Y(f, m) = Y(f + 1, m) + Y(f, m + 1) + Y(f - 1, m)$$
$$+ Y(f, m - 1) - q^{-1} \delta_{f,m+1} [Y(f - 1, f - 1) + Y(f - 2, f - 2)]$$
$$- \delta_{m,0} Y(f, 0)$$

for $m \ge 0$ and $f \ge m + 1$. Then we can prove (b) by induction on m using (3.1), (3.2) and (3.7). Since

$$(\phi_m * W)(e) = q^{3m-1}(q + 1) \ W(0, m),$$

we obtain (c) by Lemma 3.4. To prove (d) and (e), we first see

(3.8)
$$q^{2f+1}(q^2 - 1) W(f, 1; 1)$$

= $-q Y(f, 1) + (q^{3/2} \Xi + 1)Y(f, 0) + \delta_{f,1} \cdot 1$

for $f \ge 1$ by (3.3). We next observe

$$\begin{array}{ll} (3.9) & q^{2f+m}(q^2-1) \ W(f,\ m;\ 1) \\ \\ &= - \ q \cdot Y(f,\ m) \ + \ (q^{3/2} \ \Xi \ - \ q \ + \ 1) Y(f,\ m \ - \ 1) \ - \ q \cdot Y(f,\ m \ - \ 2) \\ \\ &+ \ \delta_{f,m} Y(f-1,\ f-1) \end{array}$$

for $f \ge m \ge 2$. This is proved by induction on m (we use the equation (3.4) and the formula (b)). We again apply (3.4) for m = f and use (3.9) and (b) to get

(3.10)
$$q^{3f+1}(q+1) W(f, f+1) = (q^{1/2} \Xi - 1) Y(f, f) - Y(f, f-1)$$

- $q^{-1}(q^{1/2} \Xi - 1) Y(f-1, f-1)$

for $f \ge 2$. Then (d) is a direct consequence of (b), (3.10) and (3.5). The last statement (e) follows from the equation (3.6) and the formulas (b), (3.8) and (3.9). q.e.d.

References

[Bo] Bourbaki, N., Groupes et algèbres de Lie, DiffusionC. C. L. S., Paris.

[Bu] Bump, D.: *The Rankin-Selberg method: A survey*, In Number Theory, Trace formulas and Discrete Groups, Symposium in Honor of Atle Selberg, Academic Press (1989).

[B-F-H] Bump, D., S. Friedberg and J. Hoffstein, *p-adic Whittaker* functions on the metaplectic group, preprint.

[C-S] Casselmann, W. and J. Shalika, *The unramified principal* series of *p-adic groups II: The Whittaker function*, Compositio Math. **41** (1980) 207-231.

[K] Kato, S., On an explicit formula for class-1 Whittaker functions on split reductive groups on p-adic fields, preprint (1978).

[M] Murase, A., L-functions attached to Jacobi forms of degree n, Part I: The basic identity, J. reine und ange. Math. **401** (1989) 122-156.

[M-S] Murase, A. and T. Sugano, Whittaker-Shintani functions on the symplectic group of Fourier-Jacobi type, preprint.

[Sa] Satake, I., Theory of spherical functions on reductive algebraic

15

groups over p-adic fields, I.H.E.S. Publ. Math. **18** (1963) 5-69. [Shi] Shintani, T., On an explicit formula for class-1 "Whittaker functions" on GL_n over P-adic fields, Proc. Japan Acad. **52** (1976) 180-182.

Max-Planck-Institut für Mathematik Gottfried-Claren Straße 26 5300 Bonn 3, BRD

and

ł

Department of Mathematics Kyoto Sangyo University Motoyama, Kamigamo Kyoto 603, Japan