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Whlttaker-Shlntanl functions on SP2

by

Atsushl Murase

Introduction

The determination of an explicit formula for local WhiUaker

functions has been done by several authors (see [Shi], [K], [C-S], [B-

F-H]; for various applications of this formula to the theory of

automorphic L-functions, see [Bu]).

In [M-S], we studied the Whittaker-Shintani function on SPn

that is one of variants of the WhiUaker function first introduced by
I

Shintani; we proved the uniqueness of local Whittaker-Shintani

functions (see Theorem 1.1 in §1) and showed that a certain

integral of the (global) Whittaker-Shintani function over a one-

dimensional torus is expressed as a quotient of the L-functions

attached to a Siegel modular form and a Jacobi form. This result

is, in fact, essentially the same as an explicit formula for the local

Whittaker-Shintani function on the torus (see Theorem 1.2).

In this short note, we present an explicit formula for the

whole values of local Whittaker-Shintani functions on SP2 (Main

Theorem in §2). It is noted that the general form of our explicit
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formula is rather complicated than that for the usual Whittaker

functions.

The content of this paper is as foliows. In §1, we recall the

definition of Whittaker-Shintani functions and summarize several

results of [M-S]. The main result of this paper is stated in §2. Our

explicit formula is described in terms of irreducible characters of

50(5, C) (c the dual group of 5P2). The last section is devoted to

proof of the Main Theorem. We prove the theorem by solving a

system of difference equations satisfied by various values of a

Wh ittaker-Sh intan i fu nction.

The author would like to thank to the Max-Planck-Institut tür

Mathematik tor its hospitality and financial support.
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§1. Whittaker-Shintani functions

1.1 Let n be a positive integer and let Gn+1 = SPn+ 1 be the

symplectic group of degree (n + 1):

The Jacobi group G n of degree n is a subgroup of Gn+1 consisting

of elements

1 0 K Jl 1 A 1

(Ä,~, K) (: :}= o 1n tJl 0 o 1n a b

1 0 1 0 1

o 1n
_tA 1 c dn

where /c,1l are n-row vectors, K is a scalar and (::)e Gno The

center of G n is Zn = {(O, 0, K)}.

1.2. Let F be a nonarchimedian local field and 0 = 0F be the ring

of integers of F. In what folIows, we fix a prime element 1t of F

and a nontrivial additive character 'V of F with conductor o. Ws

denote by q the cardinality of ol1to. We usa the same letter X to

denote the group of F-rational points of a linear algebraic group X

over F if there is no fear of confusion. Put Kn+1 = Gn+1(0) and

Kn = Gn(o).

The Hecke algebras Hn+1 and Hn of (Gn+1, Kn+1) and

(G n, K n; 'V) respectively, are defined as folIows:
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Hn+1 = {<1>: Gn+1 ~ C I

(i) <1>(kgk') =cI>(g) (g E Gn+l' k, k' E Kn+1)

(ii) <I> is compactly supported} J

Hn = {cp: Gn ~ C I

(i) <p((O, 0, K)kgk') = 'V(lC)'q>(g) (g E G n, k, k' E K n, lC E F)

(ii) <p is compactly supported modulo Zn}'

The multiplications of Hn+1 and H n are defined by

(<1>1 *11>2)(g) = J <1>1 (gx-1) <1>2(x) dx,

Gn+1

(1Il1*1Il2)(g) = J 1Il1(gx-1) 1Il2(x) dx,
Zn\G n

where dx (resp. dx) is the Haar measure on Gn+1 (resp. Zn\G n)

normalized by Jdx = 1 (resp. f dx = 1).

Kn+1 ZnKn\K n

There exist canonical isomorphisms (Satake isomorphisms)

-±1 ±1 W
<I> ~ FcI> and cp ~ fep of Hn+1 onto C[ I 1 ' ... , T n + 1] n+1 and of

Hn onto C["G
1

, ' .. , T ±~]w n respectively, where C ["G
1

, '.', T ±r
1

]W r

denotes the algebra of polynomials in "G
1

, '.', T ±r
1

invariant under

the automorphism group Wr of crG, "', T ±r
1

] generated by the

permutations of Tl' .. ', T r "and the involutions TI ~ Tj-
1 (15i5r)

(these isomorphisms are due to Satake and Shintani; see [Sa] and

[M]). It follows that the C-algebra homomorphisms of Hn+ 1 (resp.

H n) to C are parametrized by X = (Xl' .'., Xn+1) E (C x)n+l/Wn +1

(resp. ~ = (~l' ... , ~n) E (Cx)n/W n) in the following manner:
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(1 .-1 )

(1 .2)

cI> -) X/\(cI» :a F(f)(X1' "', Xn+1)

cp -) ~/\(<p) := fcp(~1' ... ~ ~n)

1.3. For X E (C x)n+1 /W n+1 and SE (Cx)n/W n"' let WS(X, s) be the

space of W: Gn+1 -) C satisfying

(1.3) W((O, 0, K)kgk) = 'V(K)W(g) (g E Gn+1, k E Kn, k E Kn+1, K E F)

(1.4) (cp*W*<1>)(g):c f dx f dy cp(x) W(xgy-1) <1>(y)
Zn\Gn Gn+1

We call each element of WS(X, s) a Whittaker-Shintani function

attached to (X, ~). In [M-S], we proved the following uniqueness

theorem.

Theorem 1.1 ([M-S], Theorem 1.2, Corollary 3.2)

(i) dime WS(x, s) ~ 1.

(ii) If W E WS(x, s) is not identically equal to zero, then

W(e) "* 0, where e danotes the identity element of Gn+1.

1.4. We recal! another result of [M-S]. For X E (C x)n+1 /W n+1 and

~ E (Cx)n/Wn' define Yx,~ (f) E C (f 2: 0) by

(1 .5) L, Yv ~(f) tf
f~O ",.~

=

n
(1 + t) rr (1 - q-1/2~t)(1 - q-1/2~-1t)

i = 1
n+1rr ( -1 )1 - Xit ) (1 - X i t
iJ=l 1

5



Then Theorem 6.1 in [M-S] impl ias the tollowing:

Theorem 1.2 Let W E WS(X, ~). Then

(1 .6) W( -f1t

§2. Main result

2.1. In the remaining part of the paper, we only deal with the

case n = 1 and write G, K, G, K, Z tor G2 , K2 , G1 , K1 , Z1-

Lemma 2.1. ([M-SJ, Lemma 2.1, Proposition 2.2)

1t f

(i) For W E WS(X, ~), W(('A, Jl, K)

and Jl E O.

-f
1t

-m
1t

) = 0 if f, m ~ 0

(ii) The support of W E WS(x,~) is contained 'in

U ZK(1t-r, 0, 0)
f,m~O, O~r~m

6
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We denote by W(f, m; r) the value of W E W8(X,~) at

7[f

m
1t

-f
1t

-m
1t

. For simplicity, we write W(f, m) for

W(f, m; 0). Note that W(f, m; r) c W(f, m) if r S;; m - f.

2.2. Let 80(0, C) be the special orthogonal group of

1

1

Oe: 1

1

1

Let Ai be the character of a maximal torus T = { x = diag(x1' x2' 1,

X-21. X11)} of 80(0, C) given by Aj(x) = xi (i :::I 1, 2).

For f1 ~ f2 ~ O. let X(f1, f2 ) be the irreducible character of

80(0, C) with highest weight f1/... 1 + f2A2' Ta give an explicit form

of X(f1, f2), define Xf(x) E C for fEZ, f ~ 0 and x = diag(x1' x2'

1, X21
, X11

) E T by

00 1 + t
(2.1 ) r Xf(x) t

f
=

- x1t)(1 - X1 1t)(1 - x2 t )(1
1 .

f=D ( 1 - x2" t)

We put Xf(x) :::I 0 if f < O. Then X(f1, f2) is given by

(Xf,(X) Xf,_1(X) + Xf,+1(X»)
(2.2) X(f1, f2)(x) = det X (x) X (x) + X (x) (x E T).

f2-1 f2-2 f2

2.3. In what folIows, ws fix X = (X1' X2) E (C x )2/W 2 and ~ E

CX/Wl' Without lass of generality, ws may assume W(e) = 1 if W
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E WS(x,~) is not identically equal to zero (see Theorem 1.1).

To simplify notation! for (f, m) E Z2, we set

(2.3) {

X(f, m)(xx)
{f, m} =

o
if f~m~O

otherwise

(2.4) Y(f, m) = {f, m} - q-1/2 S {f - 1, m} + q-1 {f - 2, m}

for f, mEZ, where

(2.5)

{
1 if f = f'

We denote by Bf.t, the Kronecker symbol: Bf,f' c: 0
otherwise

Main Theorem Let W E WS(x,~) and assume that W(e) = 1.

Then the values W(f, m; r) (f, m ~ 0, °~ r ~ m) are given as foliows:

(a) For f ~ 0, q2fW(f, 0) = Y(f, 0).

(b) For f ~ m > 0,

q2f+m (q + 1) W(f, m) = q·Y(f, m) - Y(f, m - 1) - Bf mY(f - 1, f - 1).,

(c) For m>O,

m-1
qm(q + 1) W(O, m) = q1-m/2 {~m + ~-m + (1 _ q-1) L ~2j-m}.

j=1

00

(d) F0 r f ~ 1, put Af{t) = L q3f+j (q +1)W(f, f ~ j) t j . The n
j = 0
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where

Cl1 = - q·Y(f, f) + (q1/22, - q) Y(f, f -1) + Y(f -1, f -1L

2
Ci 0 = q Y(f, f) - q.Y(f, f - 1) - q.Y(f - 1, f - 1).

(e)

Then

00

For f > m ~ 0, put B, m(t) = Ir q21+m+i (q2_1)W(f, m + j; j) t i .
, i = 0

Here ßi E C (i = 1, 2, 3) are given as folio ws:

If m = 0,

ß2 = q·Y(f, 1) - (q1/22, + 1)Y(f, 0) - 8,1 ,,

2 1/2 ....
ß1 = - q Y(f, 1) + (q + q .::.) Y(f, 0) + 8

'
,1 q,

2ßo = q(q - 1)·Y(f, 0).

/f m ~ 1,

ß2 :: q·Y(f, m + 1) - q1/2 E·Y(f, m) + Y(f, m - 1)

- 8,.m+ 1Y(f - 1, f - 1),

ß1 = - q2Y(f, m + 1) + q (q1/2 E - q + 1) Y(f, m)

1/2 .... 2+ [q (q - 1) .::. - q ] Y(f, m - 1) + 8f m+1·q Y(f - 1, f - 1L,

ßo c:: q (q - 1).[q. Y(f, m) - Y(f, m - 1)].
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§3. Proof of Main Theorem.

3.1. To prove the theorem, we derive a system of difference

equations satisfied by W(f, m; r). Let <1>1 E H = H2 be the

1t

characteristic function of K
1

-1
1t

1

K. For r ~ 0, denote by

Ur c: {E E OX I E == 1 mod 1t
r}. The following twe results fellow fram

1t

the left K-coset decomposition of K
1

-1
1t

1

K.

lemma 3.1. Let W be a funetion on G satisfying (1.3). Then,

for 9 E G, we have

(W*C1>1 )(g) := f W(gy-1) C1>(y) dy
G

-1
1t

:::J W(g
1

1t

1

1
-1

1t

1 0

1

1t



+ L W(g (0, 0, 1t-
1K))

KE UO/U 1

1

L -1 W(g
1 1t-1X

(0, Il, K))+
xEU O/U 11 1l,KE1t 0/0 1

1tKXI!!!(1t1l)2 mod 1t 1

1
-1

+ 2 L -1 W(g
1t 1t X

1
(0, Il, 0))

XE 0/1t 0, IlE 1t 0/0

-1
1t

1t

+ -1 L -2 W(g
1

-1 (A. I Il, K)).
A, IlE 1t % I KE 1t 0/0 1t

1

Lemma 3.2. 2_ x"(<I> 1) = q {1, O} - 1.

We next consider the action of H CI H1 on WS(X, ~). Let CPm

(m ~ 0) denote the element of H with support ZK (ltm lt-m)K

and satisfying <pm«(ltm lt-m)) = 1. By the left ZK-coset

decomposition of ZK (ltm lt-m)K. we obtain

Lemma 3.3. Under the same assumption o( Lemma 3.1, WB have

(<Pm*W)(g):= J <p(x) W(xg) dx
Z\G

1 1



(

-m -m )1t 1t X
+ 2 I W((OJ Jl, 0) m g).

XE ohr. mo, I...lE 1t-mo/o 0 1t

Lemma 3.4.

(In particular, ~"(CP1) = q3/2 8.)

3.2 We now present a system of difference equations that will be

used in proof of the theorem.

Proposition 3.5. Let W E WS(X, -~).

(3.1) For f ~ 1,

q2(q + 1) W(f, 1) = - W(f - 1, 0) + [q2{1, O} - q} W(f, 0)

- q4 W(f + 1, 0).

(3.2) For f ~ m ~ 1,

q3W(f, m + 1) = - q4W(f + 1, m) + q2[{1 J O} - 1] W(f, m)

- W(f - 1, m) - q W(f, m - 1).

(3.3) For f~ 1,

q(q2_1) W(f, 1; 1) = - q(q + 1) '('I(f, 1) + q3/2 8 W(f, 0).

1 2



(3.4) For f, m ;;::: 1,

q 2(q-1) W (f, m + 1; 1) = (q - 1) W (f, m; 1) - q2 W (f, m + 1)

+ (q3/2 E - q + 1) W(f, m) - W(f, m - 1).

(3.5) For m > f ;;::: 1,

q3 W(f, m + 1) = q3/2 E W(f, m) - W(f, m - 1).

(This is a special case of (iv).)

(3.6) For f, m ~ 1 and '1 :s; r :s; m,

q3 W(f, m + 1; r + 1)

= q3/2 E W(f, m; r) - W(f, m - 1; r - 1)

_{ ~(f, m; 1) - W(f, m) i f r = 1

i f r ~ 2

Proof: These follow from the definition of W, Lemma 2.1 (i) and

Lemmas 3.1-3.4. q.e.d.

Proof of Main Theorem: The statement (a) is a special case of

Theorem 1.2 (Note that Yx,~ (f) defined by (1.5) is equal to Y(f, 0)).

By the well-known formula (see [Bo], eh. VIII, §9, Proposition 2)

{f, m} . {1, O} = {f + 1, m} + {t, m + 1} + {f - 1, m}

we have

{
{t, m}

+ {t, m - 1} + 0

1 3

i f m ~ 1

if m ::: 0



(3.7) [{1, O} -1]-Y(f, m) = Y(f + 1, m) + Y(f, m + 1) + Y(f -1, m)

+ Y(f, m - 1) - q-1 0t m+1 [Y(f - 1, f - 1) + Y(f - 2, f - 2)],

- 0m,O Y(f, 0)

for m ~ 0 and f ~ m + 1. Then we can prove (b) by induction on m

using (3.1), (3.2) and (3.7). Since

(CPm*W)(e) = q3m-1 (q + 1) W(O, m),

we obtain (c) by Lemma 3.4. Ta prave (d) and (e). we first see

= - q Y(f, 1) + (q3/2::: + 1)Y(f, 0) + 0t,1· 1

for f ~ 1 by (3.3). We next observe

= - q·Y(f, m) + (q3/2 ::: - q + 1)Y(f, m - 1) - q·Y(f, m - 2)

+ Bt,mY(f - 1, f - 1)

for f ~ m ~ 2. This is proved by induction on m (we use the

equation (3.4) and the formula (b)). We again apply (3.4) for m = f

and use (3.9) and (b) to get

(3.10) q3t+1(q+1) W(f, f + 1) = (q1/2::: - 1) Y(f, f) - Y(f, f - 1)

- q-1 (q 1/2 ::: _ 1) Y(f - 1, f - 1)

14



for f;::: 2. Then (d) is a direct consequence of (b), (3.10) and (3.5).

The last statement (e) follows from the equation (3.6) and the

formulas (b), (3.8) and (3.9). q.e.d.
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