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NONCONJUGATE SUBGROUPS OF

INTEGRAL ORTHOGONAL GROUPS

F.E.Ä. JOHNSON

§O : Introdnetion :

In this note ",-e eonsicler a question raised hy C. Okonek in eonnection with bis
joint work with W. Ebeling on diffeomorpmsms of algebraie surfaees.

Qllestion: Let <, > : L x L --t Z he a nondegenerate symmetrie bilinear form
on a finitely generated free ahelian group L. DoeB there exist an infinite family of
isomorphie finitely generated subgroups (r")"EE of Alltz(L, <, » such that r fT is
not conjugate to r T for a =I=- T ?

\Ve answer the question affirmatively when (L, < , » splits a.." an orthogonal
direet sum

(L, <,» rv (Lh <,» ..L (L2, <,»
,\ihere (L" <, » ha.." signature (2,1), and Allt'z(L2 , <, » ha." a suhgroup of finite
index whieh maps epimorphieally onto Z ; this implies, arnongst other things,
that rkz (L2) > 3. In partieuIar, this always happens when (L1, <, >) and
(L2, <, » eaeh have signature (2,1). Ivlore generally, one may show that the
result holds when (L, < , » splits a." an orthogonal direct sum

(L, <,» ~ (Ll, <,» ..L (L2, <,» ..L ..... ..L (Lle, <,»
,vhere earh (~, <, » has signatun~ (2,1). The methods are a variation on those
of OUT earlier paper [2], although to show finite generation we do aetllally use the
main theorem of [2].

This work wa." done lN-hiist the author wa." on sahhatieal at the 11a...x-Planck
Institut fur Ivlathematik, Bonn. We lN-ish to thank Professor Okonek for raising
the qllestion here eonsidered. We especially wish to thank Professor Hirzehrllch
and the staff of the MPI for their hospitality.



§1 : Arithmetic sl1hgrOllPS and integral qllarlratic form.~ :

If G is a linear algehraic grOllp defined and semisimple over Q ( which we may
tal\:c to he imhedded GQ C G Ln(Q) ), hy an arithm,r.tic .'i7Lhgroup of G , '\ve mean
a sllhgrollP r of GR, which is cornmensllrahle with Gz = GQ n GLri(Q) . This
is independent of the particlllar irnhedding G Q C GLn(Q) chosen. Moreover,
for such a snhgrollp r, Gn/r has finite volllme.

Theorem 1.1 [2]: Let G he a linear algehraic grOllp defined and ",im,pie over
Q with the property that G R is noncompact. If r is an arithmetic sllhgrOllP of
G then r = Ge.

This ha~ the following conseqllence, where [r, r] denotes the comrnlltator suh
grOllp of f :

Corollary 1.2: Let G he a linear algehraic grOllp oefineo and semisimple over
Q \vith the property that G iIR. is noncompact for each Q -simple factor Gi . If r
1S an arithmetic sllhgrOllP of G then [f, r] = Ge.

Proof: First ohserve that G is isogenolls with the product of its Q -simple
factors G, x x G n so that f contains with finite index a sl1hgrOllP
of the form f, x x f n where f i is an arithmetic sllhgrOllP of Gi. Hence
[r" f,) x .... x [rn, f n] i8 contained in [r , r] so we need only consider the ca~e

\vhere G is Q -simple.
By Borel's Density Theorem in the froID of [2], f = Ge, and since Ge is

nonahelian, r is also non-ahelian; hence [r, r] i8 nontrivial. r normalises [r, r]
, so that f normalises [f, f]. However, hy (1.1), r = Ge. ,so that [r, r] is a
normal complex algehraic sllhgrOllP of Ge. moreover, since [f, r] i8 the Zariski
closllre of a sllhset of GQ , [r, r] is defined over Q , hy Weil's Rationality Criterion
[6]. Since [f, f] is Q -simple, and [r, r] is nontrivial, it follows that [r, r] = Ge.
as claimed. 0

Let <, > : L x L ---+ Z he a nondegenerate symmetrie integral hilineaJ' forin
on a free ahelim1 grOllp L of rank n, say. (L ,<, » is said to he i,c;otropü'; ( 07Jer
Z ) when there exists a non7.ero element x E L SllCh that < x, x > 0;
otherwise (L, < , » is said to he ani,c;otropü-:.

Fllt r = Allt.z(L, < , ». The assoeiated real form

<,>:LIl9R X L~R---+ R

is diagonalisahle as
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p n

L XiYi - L XiYi
i=l i=p+1

assigning to (L, < , » the signatllre (p, q ), p + q = n , and r imheds &'i a
rliscrete sllhgronp of finite covohune in the grOllp

AlltR.(L ~ R , < , » O(p, q) ;

moreover, r is coeornpact preeisely when (L ,<, » is anisotropie. (When < , >
is indefinite, we note that, hy a elassieal theorem of Meyer [4), this ean only
happen if TI < 4).

When the signatnre of (L , <, » is (2,1), the symmetrie space of 0(2,1) is
the npper half-plane, so that r is a Fllf'.hsian grOllp. When (L , < , » is isotropie,
r eontains a non-ahelian free sllhgroup of finite index, wherea..c;;, when (L , < , »
is anisotropie, r contains, a..c;; a suhgroup of finite index, a Sllrface grOllp 'Ed";
that is, the flmdamental group of an orientahle sllrface, of genus g > 2, having a
presentation of the following form ;

g'Et = < Xl, ... ,Xg, Yl, ... ,Yg,: TI [Xi, Yd >.
i=l

We sllnunarise these ohservations thllS :

Proposition 1.3 : Let r he the alltomorphism grollp of a nondegenerate integral
q11adratic form of signatllre (2,1) ; then r is finitely generated and

(i) r contains a Sllrface sl1hgrOllP of finite index when (L ,<, »
is anisotropie ;

(ii) r eontains a nonahelian free sllhgronp of finite index wben
(L ,<, > ) is isotropie.

Let H he a sllhgrOllP of a grOllp G ; we denote hy NGH tbe normaliser of H in
G ; tbat is

NGH = {g E G : gHg-1
}

Let G he a linear algehraie grOllp defined and semisimple over C . For any
S11hgrollp H of G , we denote hy H the elosllre of H in tbe Zariski topology of G.
H is then an algehraic sllhgrOllP of G. Let H he a sllhgrollP of a grOllp G ; we
oenote hy NG H the normaliser of H in G ; that is
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NaH = {g E G : gHg-1
}.

If H is an algehraie sllhgrOllP of G , then NGH is at"o an algehraie sllhgrOllP
of G .

The ohviollS isomorphism

C", EB ... EB C"m C:::! C", +.. '+"m

indllees an injeetion

O(n], C) x .... x O(nm , C) C D(nl + ... + nm , C).

A straightforward mat.rix calclliation in the Lie algehra shows that

Proposition 1.4: G(nl' C) x .... x G(nm, C) is a self-normalising sllhgronp
of G(nl + ... + nm, C ), provided that each ni > 2.

Proposition 1.5 : Let L he finitely genf/rated fTee ahelian grollp, and

<,>:LxL-+Z

a nondegenerate symmetrie hilinear form whieh splits as an orthogonal direct Slun

(L, <, » f"V (L], <, » ..L (~, <, » ..L ..... ..L (Lm , <, »
\vhere m > 2 , and each rkz(L1) > 2. Let G (rp.sp. Gi ) he tbe linear algehraic
,group Vv·hose group of k-rational points is AUt.k(L 0 k, <, »
.(fesp. Autk(Li Q9 k, <, » , and let

H = G 1 X .... X Gm C G ;

Then AlltZ(L1, <, » X ... X Antz(Lm, <, >) is contained aB a suhgroup of
finite index in KG(H ) n Autz(L, <, ».

Proot: Put Ai = rkz(L j ), and A = L: Ai. Hand (KaR) are hoth linear algehraic
groups defined over Q , so that tbe groups of real point.s, HR. and (NGH)n.
respeetively, are Lie grOllpS having only finitely many eonneeted components.
Ohserve that Ge (respeetively Gi,e) is isomorphie to O(A , C) (repectively
O(Aj, C ). It follows from (1.4) that

He = (NGH)e.

Sillee H C NGH it follows easily that the identity eomponents of the COf

responding real groups are therefore equal ; that is, HU,D = (NGH) R,D. Sillce
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Alltz(Ll, <, » x ... x Alltz(Lm , <, » and I\G(H ) n AlltZ(L, <, » are hoth
arithmetic in NGH, anrl Alltz(Ll , <, » x ... x Alltz(Lm , <, » is contained in
KG(H ) n Alltz(L, <, », the conclllsion noVv' follows.

§2 : Kormal sllhdirect prodllcts :

By a prOd1J,ct ,c;trnctnTe on a gronp G we mean a seqllence 9 = (Gr) 1:5r:$n of
normal sllhgroups of G such that G is the internal direct prodllct

G G1 0 •• 0 Gn • ;

that is, each g E G can he expressed uniqnely a.,c;; a product g = gl· .. gn ;
,vith gi E Gi. For any grOllp H let Rah denote the ahelianisation

Hah = H/[H, H].

Ohserve that to any prodnct ,c;trnctnTf,

9 = (Gr)l:$r:$n

we may a.,c;;sociate its ahelianisation

gah = (G~h)l:$r:;n'

Moreover, a prodllct strllcture 9 = (Gr)l<r<n gives rise to projection maps

7ri: G l 0 .. 0 Gn ~ Gi.

A suhgronp H of G = Gl 0 .. 0 Gn is said to he a ,c;nbdirect prodnct of G
(or, more accllrately, of 9 (G r)l:5r:$n) when, for all i ,7ri(H) = Gi. Let
,S(G" .. Gn ) denote the set of an norrnal ,'inbdirect pmdnct,c; of G1 0 .. 0 Gn ; that
-is, suhdirect prodllcts which are also normal sllhgrOllpS. If cjJ : G1 0 .. 0 Gn ~

Gah Gah d t th h l' . t' A..' d .1 0 . . 0 n eno ,es I e a e laTIlSa ,Ion map, "p In nces a rnapplng

cjJ-l : S(G1h .. G~h) ~ S(G1 •. Gn )

hy Ineans of H ......... 4>-1 (H). In [3], we sho'\\l"ed

Theorem 2.1: For any prorlnct strnctllre 9 = (G r )l:$r:$n

4>-1 : S(Gt .. G~h) --+ S(G1 •• Gn) is hijective.

We shall also need the folloVv"ing result of [3]' which is important in thc seqllel ;

Theorem 2.2: Let H he anormal sllhdirect prodllct of G l 0 ... 0 G n • Then H
is finitely generated (a.,c;; a gronp, not merely a,c; 0, norm,al .'l1J,hgronp ) if and only if
each Gi is finitely generated.
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The concIllsion of Theorem 2.2 is false if the assllmpt.ion of normality on H is
dropped.

§3 : A constrllct.ion for ahelian sllhdirect. prodllct.s :

In this section, we '\\I'ill consider prodllct strllctllres wit.h two factors on ahelian
gTOllpS ; for this rea."on we will writ.e onr grOllpS acloit.ively . ThllS Sllppose that

is a product strllct.l1re on the finitely generat.ed ahelian grOllp A, and suppose,
moreover, that

(ii) Al is free o,helin.11, of rank rl > 2.

By an oriented splitting for Al we shall mean a t.riple S of the forln S =
(:Nls, KS, F.s) where

Al = Ms EB 1\s

in whicll 1\8 is free of rank 1, and F.s E Ks is a generator. We shall denote hy
S the set of all orienteo split.t.ings of Al.

1\0'\\1' make c.hoices, once ano for a11, of a specific split.ting

A2/Tor(A2) = 1\1 EB P

,vhere 1\1 is also free of rank 1, and a specific generat.or 4J E K /. For eacll S
E 5, put.

~(S) = Ms EB < F.s + 4J > EB P

and let. A(S) denot.e the preimage of ß(S) in Al EB A2 nuder the natural mapping

Al EB A2 -+ Al EB (A2/Tor(A2)).

It is ea."y to see t.hat. ear.h A(S) is a (necessarily normal) sllhdirect product of
Al EB A2.

The gronp Ant(Al) act.s transitivelyon t.he set S of oriented split.tings of Al.
Moreover, Aut(A l ) act.s on Al EB A2 hy ~t.ending its natural act.ion on A_1 hy the
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identity on A2. Fix a "ha..'iepoint splitting" T ES. Since S is ohviously infinite,
,ve ohtain t.he following :

Theorem 3.1: There is a suhset. 8 C Allt.(Al) such that

8(A(T)) (8 E 8)

is an infinite family of (normal) suhrlirect prOdllc.ts of Al EB A2 having tbe property
that 8(A(T) is mstinc.t from a (A(T)) for 8 t: a.

§4 : Infinite familip$ of non-c.onjllgate isomorphic. imheddings :

Let. Al he a nonahelian free grOllp of finite rank m > 2, and let A2 he a finitely
generat.ed grOllp suc.h that A2h is infinite. Pllt Ai = Aib for i = 1 , 2. Since
Al f'V zm, and A2 maps epimorphic.ally onto Z , we may apply Theorem (3.1)
above to obtain the existenc.e of a faithflllly indexed infinite family of

8(A(T))

of normal sl1bdirec.t prOdllc.ts of Al EB A2, where 8 ranges over some sllbset
e of Allt(A l ) ~ GLm(Z)). Let

cf> : Al x A2 ---+ Al X A2

deuote the abelianisat.ion map. As ,ve have seen, cf> iudllces a mapping

</J-l : S(Al , A2) ---+ S(Al , A2)

,by lueans of A 1-+ 1>-1 (A). Pllt r = </J-l(A(T) ; then r is anormal snbdirect
·prOdllc.t of Al x A2, and so is finit.ely generat.erl hy Theorem (2.2). Fllrthermore,
the grOllp Allt(Al) x Allt.(A2) ac.ts natllrally on SUbgrOllPS of Al x A2 , and the
orhit of r nuder this action c.onsist.s entirely of norrno,Z suhdirect. prodllcts of
Al x A2. In fact, we only need c.onsirler t.he orhit of r uuder t.he ac.tion of the
sl1hgronp Allt(Al ) (f'V Allt(Al) x {1}) of Ant(Al) x Ant(A2).

Sinc.e Al is free, hy a theorem of Kielsen J5], every alltomorphism f} of Alh =
Al lifts (nollllniqllcly) to an antomorphism 8 of Al ~ Al x {1}. Pllt

r n = O(r)
,vhere for eac.h 8 E A1h = Al, {} is sorne chosen lifting for (J. It is c.lear that eac.h
ro is isomorphic. to r. We may sllmmarise onT progress a..'i folIows;
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Theorem 4.1: Let Al he a nonahelian free gronp of finite rank > 2, and let
A2 he a finitely generated gronp Vv'hich maps epimorphica1Iy outo Z ; there is a
snhset e c Allt(A l ) parametrising an infinite family

(8 E e)

of mlltually isomorphie finitely generated normal snhdirect prorlllets of Al x A2.
with the property that r (} is distinet from r t1 for 8 #- a.

The analogne of Theorem (4.1) in which Al is replaced hy the fundamental
gronp of a elosed orientahle snrface is also tnle ; we proeeed to olltline the nee
essary variations.

Let ~~ denote the elosed surface of genll..<:; g > 2, and let ~t deuote its flmda.
mental group

~i = 7rl (~~).

g

~i = < X" ... ,Xg , Yl, ... ,Yg,: TI [Xl' Yd >.
i=l

We may identify the ahelianisation A1(~t; Z) of ~t with Z2g ; t.hen the intersec
tion form on ~~) gives rise to a nondegenerate symplectic form

< , > : Z2g x Z2g -+ Z.

With this identification, .c;ymplectic G.1/,tom,orphi.c;m"c; of Z2g , that is elements of
SP2g(Z), lift hack to alltomorphisms of ~t = 7rl (~~), with transvections lifting
hack to Dehn twists.

Let {El, ... , EgZ 2g
, 4>1, ... , <Pu } he tbe standard symplectic ha~is for tohe form

< , > : Z2g X Z2g --+ Z; that is,

< Ei, Ei > = < cPi, cPi > = 0; < fi, cPi > = 8ij .

In constnlcting sllhdirect prodllcts in Al E9 A2 a~ in §3, where no,v Al 
H1(~t; Z) f'V Z2g, we take onr "ha.c;epoint splitting" T of Al f'V Z2g to he of
the form

z2g = MTffiNT

where Spanz{ f.l, ... , f g} C MT, and I\T C Spanz{ cP1' ... ,cPg}. There is a.n
infinite s11hset of SllCh splittings which ,ve may parametrise hy Slutahle elements
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of the group SP2g(Z). With these modifieations, we ohtain the folloVv·ing analoglle
of Theorem (4.1).

Theorem 4.2: Let Al he a Surface grOllp of genus g > 2, and let A2 he a
finitely generated grOllp ",·hieh maps epimorphieally onto Z ; there is a sllhset
8 C of SP2g(Z) parametrising an infinite family

r o = 8((A(T)) (0 E 8)

of IUlltually isomorphie finitely generated normal sllhdireet produets of Al x A2
'~iith tbe property that ro is distinet from r..,. for (J i=- a.

Sinee the familie...'; (rO)oe8 just construeted consist of norrnal suhgroups of
Al x A2, we see that :

Proposition 4.3: The families (ro)oee eonstrueted in Theorem~ (4.1) and (4.3),
possess the property that TIO two elements are conjugate in Al x A2.

!\oVv· let< , > : L x L --+ Z he a nondegenerate symmetrie hilinear form on a
finitely generated free ahelian grollp L, sueh that (L, < , » splits a.~ an orthogonal
direct sum

(L, <, » rv (L" <, » 1. (L2, <, ».

Then
Autz(Ll, <, » X Alltz(L2, <, » c Alltz(L, <, ».

Let G (resp. Gi ) he the linear algehraie grOllp whose group of k-rational
points is Alltk(L0k, <,» (resp. Alltk(Li~k, <,», and let H = G 1 X G2.
Antz(Li, <, » is a finitely generated linear gronp, and so, hy Selherg's Theorem
[1]' ha.'i a torsion free sl1hgrOllp, Ai say, of finite index. Sllppose that A2 maps
epimorphically outo Z, and that (L" <, » ha~ signatllre (2,1). If (L ,<, » is
isotropie, then Al is free, whils t if (L ,<, » is anisotropie, Al is a S1rrfaee grOllp
of genus g > 2. Either way, if A2 maps epimorphieally onto Z , we may apply
the rp-slllts of Theorem~ 5 and 6 to coneilloe that there is an infinite family of
ffilltllally isomorphie finitely generaterl sllhgronps ro (0 E 8) of Al X A2.

with the property that no ro is conjngate to any r..,. for (J i=- a. The r(} are
still sllhgrOllPS of Hz so that, sinee Al X A2 has finite index in Hz , each r o is
conjllgate, in Hz , to at. most finitely many r..,.. In partiel11ar, we may choose
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an infinite snhfam.ily (riT )iTE E such that no two distinet elements HIe eonjllgate.
Thus we have proved ;

Theorem 4.4: Let <, > : L x L ---+ Z he a nondegenerate synunetrie hilinear
form on a finitely generated free ahelian grollp L, snch that (L, < , » splits a..'i
an orthogonal direct sum

(L, <,» I"V (Lt , <,» ..1 (~, <,»
where (LI, <, » ha..'i signatnre (2,1), and Antz(L2 , <, » ha..'i a snhgrollp of finite
index whieh maps epimorphieaJly onto Z . Then there exists an infinite farnily of
isomorphie finitely generaterl snhgronps (I' iT )iTEE of Antz(L, <, » snch that r iT is
not conjllgate, in Alltz(Lt , <, » X Alltz(L2, <, » , to r T for (1 =I T .

SllhgrOllPS r (1, rTfrom the family jllSt constrllcted , althongh not eonjllgate
in Autz(L t , <, » X Alltz(L2, <, », may heeome eonjllgate in AlltZ(L,. <, » .
We show, however, that for each T E ~, the set

{(1 E ~ : r (T is eonjl1gate to r T inAlltZ(L, <, >)}
is finite.

Theorem 4.5: Let <, > : L x L ---+ Z he a nonrlegenerate symmetrie hilinear
form on a finitely generated free ahelian grOllp L, such that (L, < , » splits as
an orthogonal direet SUffi

(L, <,»~ (Lt , <, » ..1 (L2, <, >)
:\vhere (Lt , <, » ha..'i signatllre (2,1), and Al1tz(~, <, » has a SUhgrOllP of finite
index which maps epimorphically onto Z . Then there exists an infinite family of
isomorphie finitely generated Sl1hgrollPS (r:U)~En of AlltZ(L, <, » sueh that r:u
is not eonjllgate, in Alltz(L, <, » , to r/l for w =I IJ, •

ProoE: Let r (T, r T he snhgrol1ps from the family eonstructed in (4.4), and
sllppose that for sorne g E AlltZ(L, <, » }

g r (1 g-t = r T'

Sinee r iT, r T are normal sl1hdirect prodllcts of At x A2, then, hy [3], [At, At] x
[A2 , A2] is eontained in hoth I'(1 and r T' Moreover, from (1.2), we see that

[A' A·] -' G·J, J - 1
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so that

[Al, Ad X [A2 , A2] = H.

from whicll it follows that g E KG(H) n Antz(L, <, ». Let v denote the index
of Antz(Ll, <, » X Antz(L2, <, » in KG(H) n Autz(L, <, ». By (1.5), v
is finite, so that, for each TEE, the set

C tT = {a E ~ : r tT isconjugateto rr in AlltZ(L, <, »}

is finite, with eardinality honnded hy v. Let [2 he a sl1hset of E ohtained hy
ehoosing exactly one element from each CtT ; then [2 is infinite, and the family
(r~)~En eonsists of isomorphie finitely generated suhgronps of Alltz(L, <, », and
has the desired property that r~ is not eonjl1gate, in Al1tZ(L, <, » , to r/l for
w i= /J, • D

By means of a more earefll1 analysis, nsing the methons of [3], Olle may show :

Theorem 4.6: Let <, > : L x L ~ Z he a nondegenerate symmetrie hilinear
form on a finitely generated free ahelian gronp L, snch that (L, < , » splits as
an orthogonal direet sum

(L, <,» r..I (Ll, <,» ..1 (L2, <,» ..1 ..... ..1 (Lk , <,»

where k > 2, and each (Li, <, » has signatl1re (2,1); then there exists an infinite
farnily (r~)~En of isomorphie, nonconjllgate finitely generated snhgrollps of
Alltz(L, <, ».
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