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ENUMERATIVE GECMETRY AND INTERSECTION THEORY
(n introduction to FULTON's and MACTZHTRSON's intersectiion

theory)

Boudewijn Moonen

Abstract

These notes deal with the following

~

Intersection construction: Let X be a smooth variety

(over a field) of dimensionn , U , V C X subvarieties,

dim U = % , dim V = ! . Then there is a canonical inter-

section class

UeV € A (UaT)

(where A* denotes CHOWhomology) with any good functo-
rial property one might wish. If each component of UanV

has dimension k + ! - n , it is the cycle

oV = ) 12y ,UoViX) 2y
o
in Ak+{-n(U“ V) = C—{D Z-2)\ , where the ,Zk are the

irreducible components of UnAV and i(Z} ,UoV;X) is



the intersection multiplicity of U and V along Z
in X as defined by SAMUEL or SERRE.

This is done in the book
(F1 : William FULTON, Intersection theory, Springer 1984

The construction of the class UOV is in direct geo-

metric terms; there is no need to move either U or V ,

in fact:

1) no assumption of quasi-projectivity
(no need for a 'moving lemma', usually based
on the homogeneity - of projective space)

2) no need for an a priori theory of intersec-

tion multiplicities-(these come out as a

consequence of the construction)

%) intersection passes to rational equivalence

and defines the intersection product
° : ALK — 4y, (D)
in the CHOWring A*(X).
< MoTéover, this construction is but a special case of &

general intersection construction which works in the singular

case as well (for a precise stament see 2.1 below).
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These are the worked- out notes of a series of lectures I
gave in Cologne in the Oberseminar HFRRMANN - LAMOTKE in
January - February 1984. The topic was to give an account
on the basic intersection construction of [F7] , together
with an overview of motivating ideas and underlying philo-
sophy, coming either from classical enumerative geometry or
the papers [5] - [€] (which still needed the assumption on

quasiprojectivity, though).

Those interested to go directly to FULTON's and MACPHERSON's
construction could read section 2 of Part A and then go
directly to Part B . Here, I have tried to give a complete,
but as short as possible, presentation of the construction

in [Fl , where complete means that I present all main lines
of thought while refering to [F] for the proofs of some minor
statements when they don't add to clarity. Perhaps the only
minor deviations from [F are that I put a little more
emphasis on the notion of rational equivalence as varying in
a projective family, and on making explicit the role of the
THOM isomorphism for vectorbundles in the intersection
construction, namely, that its geometric meaning is exactly
'intersecting with the zero section'. In the Appendix to

Part A , I give some more details on classical enumerative
geometry, mainly based on L’Kﬂ , and mention some recent
results (Eﬂ],[?},[ﬂ,[ﬁﬂ) - the first real improvements since
SCHUBERT's book [ 11] after more then 100 years.

I want to thank the Max - Planck -~ Ins®itut fiir Mathematik

for support.



Part A: Motivation

1. Classical intersection theory

1.1. From the beginning of the development of algebraic
geometry in the last century the following topics were

closely interrelated:
a) enumerative geometry
b) intersection multiplicities
¢) rational equivalence of cycles

d) canonical classes (characteristic classes, or

CHERN classes).

This comes about as follows. In enumerative geometry, one
considers families of geometric figures and asks how many
members of the family satisfy given conditions of inci-
dence imposed on them (e.g. pass through given points, be
tangent to given lines with given order of contact etc.).

A natural restriction, of course, is that the figures and
the conditions imposed should be defined by algebraic equa-

tions.

Example 1 a) The circles in the plane are parametrized by

E5 . The circles tangent to a given circle form a quadric



hypersurface in PB .

b) The plane conics are parametrized by E5 . Given a

line 2 and a conic C , the conics tangent to L form a
quadric hypersurface Hﬂ,’ and those tangent to C a
hypersurface HC of degree 6 (whose explicit equation
can be calculated from classical elimination theory as the

discriminant of the equations of C and a general conic,

see [6] a) .

In this way, the given family of figures is considered as
as an algebraic variety X , the points of X correspon-
ding to the individual members of the family, and the
conditions imposed define positive cycles on X whose
intersection corresponds to those memﬁers of the family

which satisfy the given conditions.

An important rdle in the development of these ideas was
played by the 'principle of consevation of number' (PCN,
also called 'principle of continuity'), stated by PONCE-
LET 1822; roughly, the idea behind it was that the number
of points in the intersection of cycles should not vary
under general change of the parameters on which the cycles
depended, so that the solution to an enumerative problem
could be obtained by moving the generic situation to a
special one by specializing the parameters which one could

possibly handle. Cycles in an allowable family of movement



should be thought of as being equivalent (with resvect to

the enumerative problem).

Example 2 a) The problem 'How many lines meet 4 given
lines in %- space' would be solved as follows. Move the
first two lines until they intersect, and similarly the
second two. Then there are exactly two lines meeting the

given four lines:

1st line = intersection line of the planes spanned
by the two pairs of lines
2nd line = 1line connecting the intersection points

of the two pairs

rig. 1

So the answer is 2 1in general (or & ).

b)'Given a curve C in the plane,; whose defining egqua-

tion has degree d 4 and given a
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family %€ of plane curves, now many members of & are

tangent to C 7!

Call this number N . Move C until it decomposes into
d 1lines in general vosition. Then for a member D of %

being tangent to C means

1) D 1is tangent to one of the 4 lines which
make up C
or
2) D passes through one of the d(d-1)/2 inter-

section points of the lines making up C .

Now, by PCN, the number YV of members of % touching a
line in general oosition is independent of that line and
hence a constant of £ , and the same is true for the number
p of members vassing through a general point. Now the con-
tributicn of 1) to N 1is d-y , while the contribution
of 2) 1is d(d-1)-m , each member of #. passing through
an intersection point being countéd twice, since one thinks

of it as a degenerate limit position of two members of & co=

ming together when moving C to its final position C

fin
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w)
Thus one arrives at the famous expression of CHASLES(1864):

(1) N =o<-pt+(3-v ,

where X ,{5 depend’ only on” the given condition and were

called the characteristics of the condition, and [ , ¥

depend only on the family, called the characteristics of

the family. The right hand side of (1) was called the

module of the condition. In our specigl case, the con-

dition iy 'being tangent to C' , with & = d(d-1) and

@ = d .

Note the following cases: - _.o’.
(i) Choose & to be the linear system of lines through
a general point. Then one sees easily Y =1, Yy =0 ',
and so

X = #.{tangents to C through a general point&,

a number classically called the class of C, and denoted

g’/ , since it depends only on the degree d of © ; in
fact, we now see dv = d(d-1) , so that we have derived

the classical expression for v .

Dually:
@ = % {points of C on a general lineg,

so the number of these points is just the degree of fh€~-'

%) this tvoe.of_classical argumentation has been made ri-

gorous only recently, sée el L?] , and the appendix
to Part A .
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defining ecuation of C , and therefore classically was

called the degree of C . (Incidentally, one should note

that it mey heppen for this definition to make sense

with respect to PCN one has to count the intersection

b

voints of € with = line with multiplicities; e.g. let
C be defined by a degree 2 equation which becomes a

sauare under specislization of the coefficients).

(ii) Choose C to be a conic; then < = (3 = 2 . Choose
% to be a linear system of conics ( a 'pencil'); e.g.
& = family of circles touching a line f at a point P
| R \“‘ :':4’_,‘-—-...\
: ' /- "-\‘\)g,: ,\ .\\
: S P }
NN
T N
- Pl I ———
1 .‘\‘
Fig. 3
Then W= 2, V = 1, ad N =22+ 21 = 6 ; hence,

there are six conics common to the hypersurface Hc of
conics touching C and the line %% in the 12 para-
metrizing the conics; 1n other words

deg H &

C=
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a result confirmed by rigorous computation (see example
1, b)).Note how elegantly the geometric argument gives

this number, compared to the brute force of computation.

From these simple examples it' is cléar that, for PCN to

be valid, one has to assign multiplicities to the compo-
nents of intersection of intersecting cyeéles; the assigne-
ment of these multiplicities being done 'with great vir-
tuosity but little explanation' (KLEIMAN) by the “19th
century geometers. The systematic procedure of attaching
multiplicities turned out to be a difficult problem. Another
complication for making the results derived with the help

of PCN rigorous was caused by excess intersections

(see 1.3 below ), this meaning the codimension of inter-
section being too small in certain 'degenerate' situations,
where the enumerative problem forces the corresponding

cycles to be in special position.

Besides the desire to make PCN rigorous, a further impact
for developing a theory of equivalence of cycles came from
the challenge to generalize the theory of the canonical

divisor class of a projective variety (i.e. the linear

equivalence class of the divisor of a meromorphic diffe-
rential form of highest degree), known from the beginning
of algebraic geometry, to higher codimension; in other words,

it came from the desire to define canonical cycles of any

codimension, well - defined up to an equivalence genera-
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lizing linear equivalence of divisors, which should be
intrinsic invgriants of the variety encoding some impor-
tant geometryigthis problem was solved by TODD and EGER
in 1937 for smooth projective varieties; these 'canoni-
cal classes' were shown, over € , to give the CHERN
classes of the cotangent bundle by NAKANO and SERRE in
1956).

Finally, after more than a century and the work of a great
many mathematicians (CHASLYES, SCHUBERT, SEVERI, V.D.WAERDEN,
CHEVALLEY, WEIL, SAMUEL, CHOW,...) a definite form for in—.
tersection theory was developed in the 1958 CHEVALLEY semi-

nar. To put it roughly, one proceéds as follows:
Let there be given a smooth variety X of dimension n .

(i) Given subvarieties U , V of dimension k , ? R
and a proper component Z of UV (that is,

dim 2 = k +-e—-n., define the intersection
multiplicity i(Z, UeV;X) of U and V along

Z in X

(ii) define 'virtual varieties' ( = cycles) and
a notion of equivalence between them ( rational

equivalence = variation in a family parametrized

/l
by ®) ;

(iii) given any two cycles, move one of them in

#) enumerative problems and the theory of canonical (=charac-
teristic)classes are inextricably interwoven. Historically, ‘
intinsic invariants were found b¥_enumerative.data(e.g.the
ZEUTHEN-SEGRE-invariant) thus ultimately lgadlng tg the theory
of characteristic classes, which nowadays in turn is used to
"so0lve enumerative problems. See[:9] (the story-is too long to
be told here).

)
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a system of equivalence as to intersect the other
one properly (unfortunately, this forces X to be
quasi- projective: CHOW's moving lemma), define
the intersection cyclé via (i) , and show the

result is well- defined up to rational equivalence.

Then the equivalence classes of cycles form a graded ring
A (X) = @ Ak(X) (graded by dimension), with the pro-
* k€ 4.

duct

+{-n

given by intersection. This is the CHOWring of X .

In 1975, FULTON generalized this by defining, for possibly
singular quasi- projective varieties, CHOW homology groups
A (XD, kec/, in a similar way (see [’1213 . Furthermore,
there are CHOW cohomology groups Ak(X) ’ k<§Z; and there

is an intersection pairing ('cap- product')
(3) O i AMEDB A () —> by p ()

generalizing (2) ; see again [jé:l ”

A

1.2. Refined intersections

Refined intersection problem (%)) : Given subvarieties
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U, V of the smooth variety X , dim X = n , dim U
=k , dim V = ¢ , define, in a 'canonical way' a re-

fined intersection class

UGoV € A

k+?-n(U“V)

with the two properties

1) U and V intersect properly = UoV 1is the
intersection cycle of U and V in Ap g (UnV .
= D 7+ 2 as given by the classi-

Z irr. comp of UnAV
cal theory,

2) it maps to the intersection given by (2) wunder
the mapping A*(Ur\V)——~> A*(X) induced by the in-

>

clusion UnV X .

Remark 1 In Algebraic Topology, doing so is possible: If
S ,T are simplicial cycles on a triangulated manifold of
(real) dimension X , L , there is a canonical intersec-

tion class

GeT € H g (slnlciiD .

R

Over ¢ , there is a natural transformation A,—>H_.( s L),

under which the constructions should correspond.

Remark 2(SEVERI) There are situations, where a refined in-
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tersection class is needed to solve enumerative problems
(see Example 1 revisited, b), below, and, for detailed

. exposition, ESI ,[5] , and [E] , 10.4)¢

Ixample 1 revisited a) Ask (APPOLONIUS) 'How many circles

in the plane are tangent to three given circles in general

position?’

The. number of these i§.- given by the intersection number
deg(H10H2°H3) of the three quadrics H, , i =1,2,3, in
@3 representing the families of circles tangent to just
one general .circle,and hence, by BﬁZOUT, the number should

be -\
22 - g |

which classically is known to be right (of course, such
a simple answer is only true when allowing complex solu-

tions).

b) Ask (STEINER 1848) 'How meny non singular conics in
the plane are tangeht to five given conics in general po-

sition?'

Let Ci sy 1 =1,00.,5 be the five given conics. As we -
have seen, the conics tangent to a Ci form a hypersurface
Hi in T5 of degree 6 ; so, arguing as in the APPOLO-
NIUS problem, the asked-~ for number should be
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67 = 7776 (STEINER-BISCHOFF 1859) ,

which is wrong. Instead of analyzing this situation here
(for the history I refer to the article of Steven KLEIMAN,
" lchasles's enumerative theory of conics. A historical in-
troduction',in: Studies in algebraic geometry, Math. Ass.
Am. Stud. Math. 20(1980), 117-138, and for the correct so-
lution also to this article as well as to ([F] and [6])
consider the following analogous problem where the same
reasoning gives a number which pléihly“, is absurd: ask

the question 'How many non singular conics in the plane are
tangent to five given lines?' The BﬁéOUT argument of above

then yields the number
22 = 32,

which obviously is wrong (just consider the dual problem;
by elementary analytic geometry, there is a unique conic
passing through five general points, so the number should
be 1 ). The reason for this is that even if the five
lines Ei sy 1 =150¢4,5 , are in general position, the
five corresponding hypersurfaces Hi in @5 whose
points parametrize the conics tangent to the 4€i Egﬁgg
are; in fact, they all contain the VERONESE surface V ¢ 1%
representing the double lines ( V consists of the conics
with the homogeneous equation (aozo+aqzq+a2z2)2 =0,

hence of those conics whose homogeneous coordinates in

W5 are. just the degree two monomials in 8,181,85 , SO
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vV = Eg embedded in E5 via the usual VERONESE embed-
ding) as a scheme theoretic component. Hence, the number

52.  has no enumerative significance, since it is the

intersection number of the six hypersurfaces H; , in
special position, when moving them into general position,
which destroys the geometric meaning of the intersection.
Instead, one has to isolate the contribution of V to

the intersection number, which turhs out to be 31 , leavigg
1 as the true solution. The same analysis applies to the
STEINER~- BISCHOFF~ problem; here, the VERONIESE V contri-
butes 4512 thus giving as the correct answer 7776 - 4512
= %264. This analysis was done by FULTON and MACPHERSON

in [6&67],based on their solution to the refined intersection
problem (see also the chapters 9 and 10 of [F] ) . This
solution to the refined intersection problem was based on
the classical intersection theory and hence depended on

the assumption of quasi~ projectivity; but a closer analy-
sislshows that it yields a new approach to defining ab ini-
fio intersections with the only prereguisite a theory for
intersecting with divisors, which amounts to a theory of
the first CHERN class of a line bundle. This point of view
is worked out in the book [F] and will be described in Part
B of these notes;for motivation of the construction, I de-
scribe in the following the solution of the refined in-

tersection problem given in [51 and {67 .

Before doing so, however, I would like to make some

more remarks on classical enumerative geometry, espe-
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cially on the impressive work of 3CHUBEZRT and some mo-
dern approaches to making his spectacular results ri-
gorous, as far as it is connected with the correctness
of the number 3264 of solutions of the STEINZR- BISCHOFF-

problem ; for more deteils see the apvendix.-

This number appeared in print for the first time in the
work of CHASLES (1864) , but was rederived independently
several times by others. CHASLES based his derivation on
his famous expression d}k+(3v s+ for an outline of his
argument ses zlso the appendix.

The first derivation |

meeting our today standards of rigour was given only
recently, namely by KLEIMAN in the 1980 paper cited above

(it existed in preprint form in 1974).

In his famous book 'Kalkill der abzshlenden Geometrie'
SCHUBERT based'his computations on a vast genersalization
of CHASLES's expression M +ﬁ1/ to the case of the
enumeration of varieties in a p - paremeter - family

t DE ™M ) touching p given varieties in general posi-

tion to obtain such spectacular results as

1) L §
) B 1

quadrics in general position& =

cuadrics in 5- snace touching ¢ given

666, 841,088 (confirmed 1982 by VAINSENCHER
and DE CONCINI - PROCESI (A7),
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2) & ;_twisted cubics in 5- space touching 12
ziven cuadrics iﬁ general positiong =
5,819,539, 783 €80 (as Zar as I know not
confirmed up to the vresent date, but ZIZNE

and others are working on this case)

In modern terms, SCHUBEZRT's general formula by which heﬁ>
arrives at these results is as follows: Let V & = be

a projective variety (which we allow to be reducible, but
it should be reduced) . Definerthe module Moy for the simple
condition of 'being tangent to V ' to be the fo;lowing -

formal expression in the indeterminates [Ajyeee, My 4

with Cﬁi(v) := (weighted) number of tangent spaces
(1) . .
to Vregr\ H meeting a given
general (N=-i-2)=- plane and limits
of such
= degree of the polar locus of V of

dimension i (classically the i-th class
of V),
where Vres is the manifold of regular noints of V and
H(i) a general plane of codimension 1 . Let N be the
number of varieties in a p - parameter family touching

D given varieties V,],...,VD in general position; then

SCHUBERT's generalization of 1.1 (1) is the formula

p .
(1 N = TJT m
) izl Vi ’
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with the following prescription: Zxpand the right hand side

J Iy-
into a sum of monomials }}OO .o y,Nﬁqq , and use the
interpretation
Jo Iy

nunber of varieties in the

(2) Mo ore Pen

given family simultaneously
touching jo O~ planes, jd
/t— planes,c.o,JII_q (I\T-q)—

planes in general vosition.
The case p =1, N =2 and the varieties béing conics
(or more generally curves) gives back the famous CHASLES

expression 1.1 (1) .

The numbers (2) are again called the characteristics

of the given family , and solving the given enumerative

problem basically consists of computing tThese characteris-
tics, which is very difficult in general (this being the

reason that 1) has been confirmed only recently and 2) ig

still open.) In his book, SCHUBZRT fills page. after page with
tables for the determination of these numbers, which are,n
in modern terms, CHERNnumbers of parameterspaces or sui-
table blowups of these,and ere worked out by SCHUBZIRT in
many special cases by means of a subtle analysis of sui-
table degenerations into special configurations with im-
vressive zeal. So the problem of enumeration of contacts

has been broken up into two steps:
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Step 1 : Reduction to a linear problem of deter-
mining the contacts with linear spaces;

this reduction is given by the formula

(1)

Step 2 : Determination of the characteristics
(2) ; this is the difficult part and
generally reQuires a good description
for the parameter space of the family

and the computation of its CHOWring.

For instance, in the case of the STEINER- BISCHOFF- problem,
the correct parameterspace is not the space E5 of all
conics in the planme, but 'P° blown up along the VERONESE,
which is the space of complete conics in the sense of STUDY
(see the discussion in the appendix, based on KLEIMAN's
article cited above); this is equivalent to the validity

of (1) in this case.

For a modern and rigorous treatment of SCHUBERT's formu-.

la (1) see L?]‘

I now finally turn to the description of the solution to
the refined intersection problem given in [51 , L6] ,
where classical intersection theory is assumed to be given.
So let X be a smooth quasi- projective variety of dimen-

sion n , U, VX subvarieties of dimensions k ,<ﬂ .
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We want to define a canonical intersection class UoV

in Ak+ e_n(X) .

For this, we may 7 assume V smooth; for, if this
case is settled, the general case follows by considering
UxV and the diagonal AX in XxX and observing
(UxV)a A)( ® U@V via the diagonal map (this stan-
dard trick is known under the heading 'reduction to the

diagonal').

Now, to find a possible candidate for UoV use the follo-

wing

Heuristic principle: Intersections should be 'preserved

under reasonable deformations' ( ES] , Do 12).

In fact, for any inclusion Vc2,sX of smooth varieties,
there is a very reasonable deformation, which deforms 1
into the inclusion VCa))¥ of V as the zero section of

% (philosophically, the normal bundle

its normal bundle Vv
should be thought of as the algebraic geometer's infinitesi-
mal substitute for the topologist's tubular neighbourhood).

If X 1is quasi- projective, this deformation may be visua-
lized as follows. Choose a vectorbundle E Jiarx and a sec-
tion s : X — E which defines V scheme- theoretically.
Identifying X with the zero section, and thinking of the

total space E as a 'box' containing X, we have the fol-

lowing picture:



\‘\\ - - ——- -
\ .
~ ]
Fig. &
. . 1
e consider the section Sg = ¥ S, te A - {Q} ,
out it = v <SS Xt to be the inclusion of V in

Xt = 1im Sy C E and push Xt to infinity; in other

words, we form
P := X x/A&* in E x & ,

where X x ¥ is embedded as a locally closed subscheme
in EXA via (x,t) > (£ s(x),t) , and the bar denotes
schematic closure. The projection pT, ¢ EXA — A re-
stricts to p : P —> A , and provides us with the com-

mutative diagram

VxAaCIdsrp

o ANE
/A

It then can be shown that
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(i)' p is a flat mapy

(i1) Fulling (3) Dback to t ¢ A gives
an embedding jt : VvV O Pt with
P, = p-q(t) . Then
a) For t # O , this embedding is iso-
morphic to the embedding i, : VC%-Xt
(and hence to the embedding i : V<5 X |

since i, ¥ 1 via 'TT\Xt)

b) For t = 0 , this embedding is iso-
morphic to the embedding of V as the
zero section of the normal bundle ‘V% of

V in X .

The diagram (3) is referred to as 'deformation to the
normal bundle' and is due to MACPHERSCN. The following
figure schematically sketches some stages of the defor-

mation process:
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Now suppose U is any subvariety of X . Then s|(Urde-
fines UAV in U scheme- theoretically, and the part

of U outside UnV gets pushed away to ¢ in the de-
formation for t 0 , while UAnV remains fixed. In fact,
one may show that under t - 0 the inclusion UG X goes
to the inglusion CUr\V-U-L’IJ% , where Cﬁr\V U is the

normal cone of UnV in U .

To make this more explicit, recall the definition of the
normal cone. For this, let U Dbe any scheme and W a
closed subscheme, defined by the coherent (bU - ideal 9
(all schemes will be algebraic schemes over a field %.
Locally, choosing generators f;,...,fy of 9  amounts
to representing W 1locally as the fibre f‘?{Ojf of the

morphism f : U —‘>/Ad

defined by ?he fi's-. Geometri-
cally, one thinks of the differentials dfi as defining
coordinates on the normal space of W in U , and since
one wants to keep track of the relations between them,
one thinks of the normal space CwU. as being locally
given by the relations between the differentials of the
equations defining W in U , i.e. in the setting above
to be locally the subscheme of W X m@ defined by the
relations between the dfi . This shows that CWU is a
cone, this meaning that the equations defining it are
homogeneous in the inderminates corresponding to the
coordinates on A% , which accounts for the name 'nor-
mal cone'. A little thinking shows that this informal

description amounts to the definition
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C,U := spectrum of the graded @w - alge-
k>0 o

We now return to the situation U , V& X with V
smooth. Now, given independent equations fq,...,fd
for V in X (locally) , the f3;|U define UV in

U (but need not be independent).The epimorphism

k /o k+1
@Uﬁvﬁdfq,...,dfdl — k@;)o g5/

given by £, — fil U then corresponds to the inclusion

X
(4) Cyav U S Yyl Uav

Remark Note that it is important to regard UAV .as a
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scheme; otherwise (4) would not alwavs hold.

Example i35 an exemple, consider the followtng simple
situation:
X = A° , U = {xy=0}Y , V := {x-y = ot

V
U—>
h - B N
K
Fig. 7
Then U~V has the equation: x2 = C in U ; set-

theoretically, (UaV) = {0}, wHereas UAV has to

red
be thought of as a 'fat point' of multiplicity two. One

nas

U = U

C
(Ur‘v>red

CUnv U = a double line, namely
spec(a [t ), where &

is the ARTIN ring
A= R /(%)
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(The last line comes from the general fact that, if U =
spec R , and the ideal TI<R defining the subscheme W
of U 1is generated by the regular sequence (fq,...,fd) ,

C,U = spec (R/I [t,l,...,td] ) for indeterminates t

These considerations are confirmed by the deformation to

the normal bundle, which in this case can easily be worked

out explicitely:

E — X is the trivial bundle ASX A —> A%

s : X—E is given by (x,¥)t— (x,y,x-7)

i

If Ex/A = A" has coordinates (x,7,w,t) , the em=-

bedding X % A*S E X /A 1is given by

X =X
J =7
/1
w = E(X-y)
t=t ,

and the total space P of the deformation is the hyver-
4

surface x-y = wt 1in /A" . For fixed ¢t , P, = {(x,y,w,t)\

x-y =wt}t , a plane. Choosing u := x+y and w as coor-

t

,‘,.-D, d_-l

3
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dinates on Pt , the image of U in Pt has the egua-
. 2 2.2 .
tion u™-w"t® = 0 , and putting t = 0 gives the equation

2 _ . X
u- = Q0 for cUr\V U in PO = Y v o= X .

The behaviour of the embeddings UC-v-Pt for t—=0 can

then be visusalized as follows:

For fixed t , Py is a 2 - plene in n° with coordi-
nates (x,y,%) , so we imagine the various P, 2s a
family of 2 - planes in 3 -space. PO is the plane
spanned by the line x=-y = 0 in the (x,y) - plane and
the w - axis. Tor t £ C , U is embedded as a pair
of distinct lines passing through the origin of Pt and
lying over U embedded in the (x,y) - plane, and for
t—=>0C , these two lines get pushed more and more away
from the (x,y) - plane, until they both coalesce into
the w -~ axis, which makes it plausible that CUerU
should be a double line.

An enelogous example is: q{:= /Ag

= 0ot , v = {y=o0}

y U = {ye(y+1)-x2
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We now return to the refined intersection problem. By the
heuristic principle on p.271 , ap];;lied to the deformation
into the normal bundle, we conclude: Intersecting V and
U on X should be the same as intersecting V and

X
CUan on VV .

We now suppose the total space V%{ to be quasi- projective.

(In fact, for the general intersection construction this is
no restriction at all, since, by the trick of reducing
to the diagonal, to intersect general U and V means
to intersect U X V and the diagonal AX in XX X,

and if X 1s quasi- projective, so is vxx"X = TX

X

?

the tangent bundle of X).

Now, by (4) , CUnV UQV%‘U(\V . By quasi- projectivi-
ty, we can move the zero section of v%l UnV as to clas-

sically intersect with C U on V%lUnV y 1e €4

UnaV
we can form

luAav]o [CUnV U}GAkJ_n(v%\UnV)
under FULTON's capproduct 1.1 (3)

An“f(v\);l UAV)®Ak(v§| UNT) —3 A p_ (Vi) UAV) .

+l-n

And, by the projection V%{ \ UnNV —> UnV , we can push

this class down to Ak+g_n(Ur\V).

This class is the answer to the refined intersection problem.



- %50 ~.

Remark If E ;Es X is a vectorbundle over a variety X ,
pushing down cycles by T does not immediately makes sense,
since T 1s not proper. Since, however, the normal cone
CUOVIJ has a canonical extension to the projective com-
pletion P(v @A) of V:-= \)% lU:\V s, Wwe can push down
" via the projection p : POV @ L) —> UaV , which is pro-
per. We will incorporate this remark in the generalization
of the refined intersection construction which we are going

to describe now.

For this, we first make a

Digression on cones Iet X Dbe a variety, or more generally

an algebraic scheme. Consider a positively graded (bx - al-

bra ‘90 and assume ;

(5) 5@' is locally of finite presentation, i.e.
X -can be .covered by open sets U so that over

each U there is an exact sequence

(O.U[T:l,...,lz]- > @U[T,],...‘,Tl;\ =Yy >0

of graded (p._ - algebras, where the T. , T. have
U 1 J

degree one.

Then the cone W : C —> X defined by1y’is defined to be
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specbp —— X . This means the following: Over U as in

2) we have a presentation
Jlv = Oy (25 es ] /(E0500055p)

£OT  fq,e.0,fy € Oy(m(7y,...,7] . The £, define the
subscheme C; & Ux /Ak , and define Ty : Cyp —> U
to be the restriction of the first projection. These local

pieces ‘WU then glue into the global T: C — X .

Furthermore, there is defined the projective cone p : P(C)
— X defined by S as proj(¥) —>x . Locally, py
is defined by the £ in U x P71 . The line bundle

@) on lPk'"/i lifts to U x IPk—I] and restricts to
I?P(C)U , and these locally defined line bundles glue into
a global line bundle (9 (1) —> P(C) , called the cano~-

nical line bundle.

Finally, let f be given and put a positive grading on
Slt]l , t an indeterminate, by letting t having degree
one. Then the projective cone defined by [tl is called
the projective completion of p : C—X and deﬂoted

p : PC®1) —> X or P: T —X.

As the most important example to us consider an ideal 9 S(DX

defining Y S X ; then P:i= @ 9d¥/9¥*1 4erines the
k30
normal cone as described on p. 2y,
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We now return to the intersection construction. Ve gene-

ralize the refined intersection construction in the situ-

ation

UaV C—— s U

vV S 5 X

to the following construction(assume all schemes to be quasi-

projective):

Refined intersection construction TLet X be a variety

of dimension n . Consider the cartesiansquare

‘_];

where i 1is a regular embedding of codimension 4 (i.e.

(6)

M oS
L)

cC— —
J

C:——f——f?
3

the ideal jSE@k defining V 1is locally generated by a
regular sequence of d elements) and £ : U —X

is any morphism, dim U = k . Let ))§ _ffiy be the
normal bundle of 1 , \)31>w the 1ift of ﬁ}to W, and.
p : Py ®MA) —>V the projective completion of W .

Let T : CWU éﬁww:vbe“ﬁhercompleted.normal éone .of J s

then C UCE(r@® 14.) (see pe31 ) .
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The zero section ‘W V&P(y ® 4l)  defines a class in
(Y@ A) (see12) , and the refined inter-

i section class U © V is defined to be

(7 U0V = p,CLWle[C,U]) € ()

under the cap product o : Ad (P)@AR(P) —> Ak_d(P)
with P := POY@HA) (see 1.1 (3)).

1.3 Refined intersections and enumerative geometry. In

this section I will sketch how refined intersections can be
used to solve the enumerative problems in 'Example 1 re-
visited' , b) , on p. 14 .The references are [6 | and

{F1 , 9.1. So let X Dbe a smooth, quasi- projective
variety, and let Uy €C X,1="7,e..,r be subvarieties

of dimension ki, regularly embedded, then the refined inter-

section construction above applied to the diagram

(A) U/]r\ LN ﬂUI' ~ \7- X
&
U4Y°"XUr —"—'*"—> XX.Ouyx,v ,
r

with (S the diagonal, gives rise to a refined intersection
T .
If the 72, are unions of connected components and a par-

tition of Ujo eeen U, %(an -+ nU.) decomposes as

? AP(Z)\) y and correspondingly U, 0 ... 0oU, decomposes
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P A Z r - 1

oqrfa'E_Ap(Zx ) , called the equvalencesof Z) for the

intersection qu ces OUr .

For a complete variety Y there is the degree map

deg AO(Y) —> 7, mapping a o -cycle to its sum of
: r
coefficients. We consider the case 2_ ki = n,s0 p=20 %
i=0

and X. projective. Define the intersection number .

U/‘. . & o .Ur

deg(qu cee oUi) .

then it decomposes as

N

U,|' ece .UI‘ %(U,]‘ see .UI‘)

Vi
for uniquely defined numbers (Uq- cee 'Ur) 4 . Now, if
Ujn+es 00U, decomposes as a union of connected components

Z common to all the U. and isclated points P , we get the

i
formula

: Z
(1) :;. i(P) = Ugs wee 2 U, - (Uq' .o .Ur)
where i(P) = i(P,U; ... U,;X) is the intersection

multiplicity off the U, at P (here we assume, for simpli-

city, that the ground field is algebraically closed).Now,
Ujr eee 'Uf is often’known for global reasons since it

can be computed in A#(X) (e.g. by BEZOUT ) , so if one can
determine (U;+ ... °Ui)Z , one gets at least a formula for

the weighted number of points in U,n ...err -2 , and
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in favourable cases, where the U; meet transversally at
the isolated points P (i.e. 1i(P) =1 for all P ) ,

a formula for -#F(Uqr\...(in -72) .

Now, in order to isolate the equivalence (qu oo on)Z

Z Z
and to compute (U ... QU = deg(U; ... o,
one expresses the intersection product by means of charac-
teristic classes, thus being able to use the powerful
manipulating machinery of characteristic classes and to

perform actual computations.

Digression on characteristic classes: CHERN and SEGRE classes

In what follows, X can be a quasi- projective variety,

an arbitrary variety or even an algebraic scheme over a
fiel&? references for the following discussion are [j?],[51‘
Yﬁ:lfor the quasi- projective case and F for the general
case; for the manipulations with characteristic classes in

the smooth case, see also the article E?ijih . -

~

let n := dim X . X has CHOW
4
homology groups Ak(X) , CHOW cohomology groups A (X)
and a pairing, the cap product

0

(2) At AT ® A —> A (D)

between them. Furthermorse, (- is a graded ring; there

is a cup product.

*) we need only the quasi - projective case
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(2a) VR _qk(x)®A.Q(x)——;~ Ak+2(X) .

The fundemental class (X1e4 (X) defines the FOINCARE
duality map Dy : Ak(X)Eﬁgi An_k(X) , which is an isq—
morvhism for X non - singular; in fact, Ak(X) = An_k(X)
for smooth quasi - projective X by construction. Under this
identification, both (2) and (2a) correspond to the
intersection product © , so we will in general denote N and

U also by o , the latter also simply by - .

The Ak(-) are covariant functors for proper maps. The

Ak(-) are contravariant:

et £ : X'——= X be a map of smooth varieties X' , X

of dimension n' , n . Then there are defined GYSIN homo-

.morvhisms

(3 £* AR — A5

for egch k by outting, for a k -codimensional subvzriety

WG X
£ o= p (LT glole'x wl)

where I"f C X'xX is the graph of f and p : X'x X—> X'

the first projection. In the singular case, there also is

£* , and, moreover when f 1s flat, there is
* x, .
(3a) £ A (O —> 2, o(X")
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corresvonding to (2) wunder duality if X , X' are smooth

(see Part B, 1) .

Let & — X be a vectorbundle of rank r . Then ¥ has
diRNclasses ci(ED e A* (Y ,1i=0,1,2,... with the fol-

lowing proverties:

1) Kormalization  2) cO(E) =1 ,¢c;(E) =0 for iy 1.
So, if E = L a line bundle, ci(L) =C for i>1.
Then

b) If L ¥ Ly , The line dbundle associated to a divisor

D (see Fart B, 2.3),

4 (LD) ~1x] = i% o]

where 1 : DX 1is the inclusion and LD] the funda-

mental class of D (see Part B , 2.2).

We put c¢(E) = 1 + cq(E) + ce(E) + eee £ A¥(X) and call

it the total CHzRNclass of E .

2) Punctoriality If f : X' —=X 1is any morphism,

]

oy (£*E) £%(c; (E)

for all 1 .



3) WHITNEY sum formula if

0 —E'"" — £ —=LE' —0

- 1is an exact seaquence of vectorbundles on X ,

c(E) = c(EYec(E'") .

1) and 2) settle uniqueness of CHEZRN classes by the so-
called splitting principle. A slick construction can be

given by means os SEGRE classes; see [El and (&) Dbelow.

We need the fcllowing generalization of 1) b) : Let
s : X —% embed X via a section. -If X , and

hence = , is smooth, there is

s : Ak(E) —= A ()

k=1

by (3) . If X is singular, s* is not defined via (3&)
since s need not be flat. However, even then s* can

be canonically defined(see 2.1 below; this possibility is
the key to constructing an intersection theory without a

moving lemma). Then

4) 'Selfintersection formula' : For all «é& Aﬁ(X)

c(Bad = %, (W .
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We now compute the refined intersection class. First a
general remark: If E —> X 1s a rank 1r vectorbundle
and p : P(E®N) —> X the projective completion,
there is the tautological line bundle @E@ :ﬂ(—’l)ép*(E@ﬁL)

(éee Part B , 3.2),and so the exact sequence
(4) 0 — Opp 4(-1) —P"EB®L) 5 Q — O

defines a rank T bundle on P (E@® 1L) , called the
canonical quotient bundle Q . The embedding U S E@® 4
defines a map 4 —» p*(E® 4 ) and hence a section

of pXE@A) — P(E® M) vanishing precisely on
XGP(E® L) embedded via the zero section X C» E,

and from 4) results

(5) c(n{PEe@1) = Xl in aA(PE®1)) .

(This is in fact the only case of 4) we need and can
be given a direct proof with the setup of Part B , 3.2 ,
see {F| , 3.3 ). Turning to the situation (6) in 1.2,
we get by (7) of 1.2 and (5) above:

DoV = py(eg(@n §,15T0])
where j : C,UCs P(y® 4 ) the inclusion, and Q the

rank d quotient bundle on P(Y®@ 1 ) . Consider the

following commutative diagram:
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;
Tl C— P(Y@® 1)

and conclude, since cd(Q)r\j¥LC§U1 = j&(j*cd(Q)(\[Caﬁ]),
vov = T,(3%,4(Qa 0D
= T,y (i ETD
The exact sequence (4#) for E =V restricts via

to the exact sequence

0 — mc-ﬂ)—-ﬁ“mﬁ—» i* —>o0
thus

() = (e@alfelOapy(-1Tg

where ( )d denotes taking the piece in graduation 4 .
Thus

)  Uvov T (T (/@ 1) o U107y

(O INT (9 g1 G, , -

The class on the right hand side depends only on the cone

CwU and leaads to the following definition.
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Definition Let T : C ——=X Dbe a cone on X . The

SEGRE class s(C) ¢ A*(X) is defined to be

5(0) = W, (e(6 (17 (T

— —_—

where T : C —= X 1is the projective completion of T .

These classes have the following properties:
(i) For a vectorbundle E

& c(B)Tn{xl= s(E)

It follows that for smooth X this completely determines

c(E) via s(E) , and, in fact, is a good definition for

CHERN classes. For singular X , one may define refined

SEGRE classes s (E) characterized by the properties

s*(£*E) = *s*(E)
for all morphisms f : X'——= X and all bundles E on
X , and

3 — -1 _»
(8; s (E)ynX = 7 *(C(@IP(E@’]I )<"])) AT o)

p*(C(@[P(E)(—-ﬂ)Tqr\ P )

1l

for all Q‘G.A*(X),qwhere p : P(E)—X is the projec-

tive bundle of E .
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Now the properties 1) and 2) of the CHERN classes de~
fine CHERN classes for line bundles and hence refined

SEGRE classes for vectorbundles. Then put
* -
®) c(E) := s (E) .

This definition then gives all CHERN classes, and (7) re-

mains true in the singular case.

(ii) If C dis pure dimensional and p : P(C) —>X is
surjective, we have in generalization of the second equa-

lity in (8)

1l

(9) 5(0) = 2, (c(Upgy (-1 o [P(CY])

g  2y(eq Doy TCE)

(iii) Let Y be a subscheme of X . Then the SEGRE class
s(X,Y) ¢ Aﬂ(Y) of Y in X is defined to be

S(X,Y) = S(CYX) ,'

where CYX is the normal cone of Y in X . It follows:

a) If the embedding Y+ X is regular (es-
pecially if Y is a submanifold of the manifold
X ) with normal bundle V |,

(10) s(X,7) = O nlY] .
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b) In general, if X 1is a variety:

(11) s(X,Y) = igop*(cq((OEPCYX(ﬂ))i(\&tPCYX])
with p : PCYX ——> Y the projective normal cone.
It follows that the SEGRE classes can be computed
by blowing up: Let T : X —> X be the blowup
of X along Y , E := ’Tt_q(Y) ¢ X Dbe the ex-
ceptional divisor. Then T|E : E —>Y is just
p : PCyX —>»Y , and Q%PCYXCQW) = GQ(E) , or

in previous notation Lp , the line bundle asso-

ciated to E . Put e := cq(%CY}i(j))_eA/l(E) . The
refined intersection construction applied to the
diagram

FE =—=—— E

E C——— X
gives E° := EoE €A _,(E) , n = dim X , and by
(6) EoE =-e n[E]. Hence, by iterating, we

get for the k - fold selfintersection X i
EO..e OF An_k(X) the formula EX =
(-1 K [E]. There results

(42) s(X,7) = p,(c(b (-ENT'n [E])

I

(). E) (e*n LED)
ST
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i .
- 2 (Y ale (FD .
130
¢) SEGRE classes are covariant for birational maps:
If Y£X, f : X*—>X is birational , and Y' :=

-1 ! .
£7(Y) , then s(X,Y) = gﬁs(X',Y'),;w1th g=r7Y'.
Since we need this result, I give the proof (see[ﬁ:h):
1) If Y is a divisor, one has by (11)

ST - 2 e (G lv]
i3 0
Then, if both Y and Y' are divisors, (7 (Y')
= (0 , and g LYl = (Y}, so g*(cq((p(Y')i
NYD = g, (% (0N 1) = (M) ag, Y]

which implies the claim .-

2) If f is the blowup of X along Y , it is
just (1) .

In general, form the diagram

P ‘ﬂ"l

ol
L E— ¥

Ne— X
]

—_—
N

where Tt blows up Y and Tﬁ blows up Y' 3 f
is the unique morphism meking the diagram commute
existing by the universality of the blowup ‘T . The

result then follows from 1) and 2) .
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e -

The definition of SEGRE classes thuslge:ﬁg&cploﬂ:_ed,/v_@,

return to (6) and get the

Main intersection formula In the situation of 1.2 ,

(6)

(13) UoV = (O(V)f\S(an))k_d

This formula may now be used to manipulate intersection products
and compute the equivalence of the VERONESE in the examples
above. Before doing so, we end this digression by making some

calculations for projective space used below.

So let [PN be given as the space of lines in /Aﬁ'm , and
let (9(—'1) —= PV be the canonical (tautologicel) line
bundle. Then its dual (J(1) is the line bundle (7(H) :=
LH associated to the divisor of a hyperplane H , i.e.

to the divisor defined by a linear equation. Put, for an in-
teger 4 (9(d) ‘= @(1)®d for positive and @(—1(’%{'@
for the negative d ; then @ (&) ¥ (V) for any hyper-

surface defined by a homogeneous polynomial of degree d s dyo.

One has A™( {PN) = 7] /(tNM) as a-ring under the cor-
respondence h <>t , where h := c,](CQ (1) ¢ A Y

and so h = [H] QAN—A( 1‘PN) for any hyperplane H*) It
follows that c,l((Q(V)) = dh for V a hypersurface dedined

by an equation of degree d . The usual exact sequence

*) therefore h is called the hyperplane class



gives

N+1

(14) c(TPY (1 + 1)

Secondly, let V QIPN be a subvariety of codimension ‘k .

Then V = dh¥ in AN_k(iPN) for a unique integer d

k]

since that group is freely generated by hk « The integer
d 1is called the degree deg(V) of V ; one has
deg(V) = deg(hkr\[V])

with n¥a V] € a( Py and deg : A Py o 7 the

degree mapping (augmentation). Thus
deg(V) = deg( LH]kc>V )

so by 1.1 deg(V) has the interpretation of the number

of intersection points of V with a k - codimensional
hyperplane -intersecting properly, and properly counted.

E.g. 1f V 1is a hyperplane defined by an equation of degree
d , this says that V has d intersection points with a
line, which surély was to be expected and accounts for

the name degree of a variety. In this case, the normal

bundle of V in [P" is the line bundle { (V)|V=:Y, and so

(15) cy) = 1+ dh .
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We now are in a position to compute the SEGRE class we
are interested in. So consider, thirdly, the d - fold
VERONESE embedding vy : PPC—®' , N := (®% , which
is defined by mapping a point with homogeneous coordinates
Zose ey to the point whose coordinates are all monomials
in the z5 of degree d . Since any linear equation lifts
under V4 to an equation of degree d there follows

vi(hy) = dh_ , where h € A'(PY) and n_e AT(PY)
are the hyperplane classes. Identifying P? with its image
V in TN‘ (the 'd ~ fold VERONESE') and putting h := h

n
there results f;om the exact sequence

0 — W 3 PNV —y —0

where  is the normal bundle of V in IPN

)

(16) s@Y,v) ck)™"

vzc(ﬂPN)_q-c(V)

(1 + an)" D 4yt

E.g. for the VERONESE embedding P°C—» P° there results,

using the~formal identity (4-x)-(k+q) = z: (n;k) x?  and
n30

h’ =0

“17) s(P?,1) = (1 +20)7°(1 + h)?

(1=12h+841°) (1+3h+3h°)

1 - 91 + 51n° .
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Remark It is amusing to note that these computations
could have been carried out classically using the theory
of complete conics and the computation (12) of SEGRE
classes using the blowup. In fact, as explained in the ap-
pendix, the blowup T : X-——»IP5 of @5 along V iden-
tifies X with the space of complete conics in the plane
in the classical sense. As explained further there, A*(X)
is generated by two classes m , n & Aq(X) , where m is

the 1ift of hg ; end if E := T=1(V) is the excep-

tional divisor, 1 := i ({E]) € 4,(x) = £'(X) , where
i : ES X is the inclusion, one has the formulae
(18) 2m = n + 1

(19) m5=n5=1 ; m4n=mn4=2 ; M n =m n =7

o)
These are modern interpretations of classical formulae

(see appendix (13) and (25) , and (13a) and p. ); (18)
relates to the number of coincidences of a certain corres-
pondence on a line, and the numbers m*n°"1  are the number

of (complete) conics passing through i general points and

touching 5-i general lines. Now, by (12)

5 e 1 Bk Dok, Lk
@) = 5 (0l R, (P wE T b
and, since 2h = h5\V , one has

() ¢ EYE ) n®E - 1/2573’15ﬁkm27k
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Plugging 1l = 2m - n by (18) into this, one should have

'(2m—n)5m2 = 4
(2m-n)*m = 18
(em-n)? = 51

which can be checked by (19) .

This : ends our digression on characteristic classes,

and we now solve our enumerative problems via refined inter-
sections. Consider the intersection diagram (1) : The

main intersection formula (13) gives for the equivalence
(qu .o OU'r)Z if Z is a union of connected components

of Uqa ...(\Uf and vi the normal bundle of Ui in X :
Z T - _
(20) (Ugo eeeoU)” = ‘I'J c(vj_l Z) A s(x.,Z))‘3

We now first consider the case of five general lines Qi

i =1,ee.,5 in the plane, defining the five hypersurfaces

Hi of conics tangent to fi , which are hyper-
surfaces of degree 2 in the ES parametrizing the conics.

In order to compute and-decompose” 3(95,W)-,-where W is

the scheme- theoretic intersection qu ...(\H5 s, we apply

the birational invariance of SEGRE classes ((iii),c))

(21) s@®”,w) =(gsx, why
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where T : X — E5 is the blowup of P5 along the
VERONESE V . We have

-1 -
W o= g Hin... rwr"H5

Now, if H Q!Ps is a hypersurface, we get an equation

of divisors

§ B = "+ \E
where E = 9 -1V is the exceptional divisor, » a -sui-
N
table natursl number, and H != Tr—q(H - V) 'is the strict

transform of H ; this corresponds just to writing locally
on X f = J\-? , where f is a local equation of H on
P 2 lifted to X , e a local equation of E and T a
local equation of ﬁ’. In our case, we have H = Hi , and
then )\ = 1 ; this can be checked,once one has an equation
for H , by using the equations of blowing up a submanifold.
To obtain an eguation of H , choose coordinates [x:y:z}

on IP2 as to have { = Zi being given by z = 0 ;

then the conic ax2+bxy+cxz+dy2+eyz+f22 = 0 with coordi-
nates {a:b:c:d:e:f] touches { if and only if beetiad = O ,

which is an eguation for H .

It follows from this that, if fq,...,f5 are local equations
for Hy,..., Hg m W is locally defined by the ideal
(fq,o-o’f5) = (e)‘(f/‘,oot’fB) Y aIld SO, if e,, f/l,...,fs
are coprime, by the ideal (e)r\(fq,...,fB) , so that in
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this case E is a scheme theoretic component of quw .
Now it can be shown, as explained in the appendi:, that
E may be interpreted as the set of lines (corresponding
to the conics which are double lines) together with two
points on it called foci (which may coincide), and a point
in Er\Hi is such a line with ﬁi passing through one of
the foci. Thus, if no three {i pass through one point,
Ec\H,](\..(\H5 = @ , and this same condition guarantees
that no degenerate conic consisting of two distinct inter-
secting lines is tangent to all {i , because for those
‘being tangent to Jz; means Ifi passing through the point
of intersectiog. Thus all poinfs on ‘ﬁqn ...f\ﬁB =
qu\.. lﬂ; v represent nonsingular conics, and since
the projective group PGL(3) operates transitively on the
nonsingular conics, it foli;ws by a general theorem of
KLEIMAN that by suitably moving the Hi these points
are isolated points (even of transversal intersection) .
So then we are in the situation of (1a) , and W decom-
poses as V and isolated points P . So Z = V in (20) ,

and we get

)V

il

(H,0 +-+ oHg (TT o0y [Das@, M),

(((1+2n5)7 V) (1-9h+510%) - ((15),
(17))

[}

((1440)” (1-9n+510%) )

il

((1+20n+1608°) (1-9n+51h2) )
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_  160n2-180h°+510° .
So  (Hp® «.. ~H5)V - 31, and, since by BEZOUT, H,- .. 'Hg
- 22 . 32, there follows by (1a)
J_i(P) = 32 - 3
P
= 1 N

leaving exactly one point for the true solution (One may
show the above condition is already sufficient for having

.only isolated solutions outside V).

The case of -conics touching five given conics- Ci s 1 = 1,.
«.,5 , in the plane is similar. We use the same no-
tations as above, with the Hi HE HC , the hypersur-

i

face of conics touching Ci now of degree 6 ; an expli-

?

cit equation is given in (3. We then have

for H = Hi ; this can either be shown using the eplicit
equation, or by appealing to the following fact coming
from the theory of complete conics: If the hypersurface
HQJP5 represents a simple condition with characteristics
5 (3, then X =ﬁ in (21) . This allows as to write
locally for the ideal defining W on X (eg)r\(?a,...,?é)
as soon as EnH,I A ...(\H5 = ¢ . This is the case under
the following conditions coming again from the description

of E above:
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(i) No three C, pass through a point

(ii) there is no line with two points on it
such that each €, 1is either tangent to the line

or passes through one of the points .

So in this case there is a connected scheme theoretic com-

1Z = 2E as

ponent Z of W , supported on V , with
a divisor, and its contribution to s(TB,W) is, analogous

to  (21),

s(®?,2) = (ﬁ'\E)*s(X,'ﬁ_qz)
= (x| B, (c(@(-2E)) " [ED) .
since s@®,V) = (WlE),. (c(p(-myhED , we have, as _
c,((0(2ENT = 2%, (0 (E))* , for the components of degree k
s, (°,2) = 2% @7, V) ,
and so
s@®’,2) = 221 -2%9.n + 22.51.0°
Thus (Hyo ...c>H5)Z = ((146+20)7(8-144n+1632h%))

((1+60n+1440n%) (8-1440+16320°))

2 2

16%2h° 60+ 1441°+8 +1440h
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2

1632h24+20- 1441

1632h°+2880h°

It

4512n° .

Thus, by (1a) , if H;q ...(\H5 - V consists of isolated

points only,

67 — 4512

Y i(P)
P

D076 - 4512

n

3204 .

In fact, by the same transversality arguments as above,
the P will represent nonsingular conics with i(P) = 1
for (Cq,...,C5) in a nonempty ZARISKI- cpen subset of
(95)5 , S0 that generically'there are exactly 3264 diffe-
rent conics touching five given conics, and they all are
non singular. Precise conditions are, in addition to (i)

and (ii) the following (see [6) and [F], example 9.1.9)

(iii) no two of the five conics are tangent ,

(iv) the pairs of lines , each one of them
tangent to two of the conics, do not intersect

on the third ¢
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then the points in an ...c\H5 - V are isolated and re-
present only nonsingular conics; one has, if P represents

the conic C

1(®) =TT &= 4(Cnc)) .
1

We finally comment on the equality qr 'H = H + pE

when H 1is a hypersurface in E5 representing a simple
condition with characteristics @X ,Cﬂ ; for more details,
I refer to the appen@ix. This uses the fact that Aq(X),‘X be=-
Cmithe blowup of {P5 along V, is freely generated by
m := W *h , where h = h5 e-AqGPB) is the hyperplane
class, and 1 := ([E] , the class of the exceptional di-

visor.

First, let H Dbe the hyperplane of conics tangent to a
line. Then we have seen above that ﬁf"qH = H+ E as
divisors and so m*\Hl= [H] + 1 in 21(X) . on the other
hand, H has degree 2 , and so T (H| = 2m . If we put

n := |H] , we have 2m =n + 1, and m and h also

freely generate Aj(X) .

Secondly, let H be arbitrery, of degree d . Then the
characteristics are given by writing 'Yﬁ] = Xm + ﬁ>n .
On the other hand, (H] = dh in A'(P°) and so & *(H]

= dm. Putting this into < [H] = ['ﬁ] + A1 , using

2m = n + 1 and equating coefficients gives A = @; , as
desired, and, in addition, d = & + 2@ . S0 if H 1is the

hypersurface of conics tangent to a line, Y = O , ﬁ;: 1,
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eand H 1s of degree 2 = 0 + 2 1 , which checks, 2nd if

M

is The hypersurface of conics to z conic, H hzs cha-
racteristics W= 2 ,?;: 2 , and is of degree € = 2 + 2.2 ,

which =21so checks.

2. Intersection Theory revisited

2.1, Redefining intersections. The above discussion of

refined intersections shows upon a little thinking that
the only fthings needed in the construction of the refined

intersection class are:

a) a theory of ratiocnal eguivalence (CHOWgroups)

on possibly singular varieties

b) the possibility of, given a vectorbundle (of
rank r , say) E —s X over a possibly singular
variety, 'intersecting with the zero section',that
means, given & class € Ak(E) , to producé a _class

X oX € A __(X) in a cenonical way,

Establishing a) and b) is +the technical heart of the
intersection construction in (F] and will be exvosed ri-
gorously (thoush, of course, not in complete det2il) in Part
B Dbelow. As to b) , the_underlying philosophy is as follows:
since T : E —> X 1is flat, it induces the flat pullback

*® . -
T : Ak_r(x) — Ak(m)
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by lifting the local egquations of a . (k-r) - dimensional
subvariety V on X to local equations on E wvia Tt ,
thus getting a closed subscheme W of E , and then mapping

V to the class represented by W in Ak(E) (see Part B , 1.2

and 1.6 ) . Then one would like to have:
(1) Xon(%) = %
for any §(—2 Ak_r(X). Now there is the easy (see Part B,- 3.1)

Lemma ([F] , Proposition 1.9) m* is always surjective.

So, if (1) is to hold, TT* should better be an isomor-
phism; and that it is, is a central result for the theory.

In fact we have the

THOM isomorphism theorem (\¥] , Theorem 3.3) . For any

vectorbundle E 5 X of rank r , the flat pullback

T A (X) — A (E)

is an isomorphism.

Here, there is no assumption on quasi- projectivity of

X « The proof will be given in Part B .
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Corollary. ILet E :E%>X be as in the theorem, and let

s : X—>=E embed X as the zero section. Then there is,

for any k , a unigue homomorphism

S : Ak(E)-———ﬂ> Ak;r(x)

®

with s™e Tr* = id s¥ is called 'intersec-

Ay (x) -
ting with the zero section'.

We have X ex= s%*(&) by (2) .

Thus, granting a) and b)-, intersection theory proceeds

as follows. Recall the situation of the refined intersection
problem in 1.2 : U , V subvarieties of the smooth, quasi-
projective n- dimensional variety X of dimensions Kk ,'Q 3

and with V smooth. This gives the cartesian square

Unv —— U

v — X ,

and we produced an intersection class U c V € Ak+g_n(Ur\V) .

This situation is generalized as follows: Let there be given

a carteslian square




of schemes (all schemes are algebraic over a given field)

with:
1) 1 1is a regular embedding of codimension 4 ,
i.e. the ideal subsheaf of (9, defining V is
locally generated by a regular sequence of d ele-
ments;
2) U 1is pure dimensional, of dimension k , say;

3) f is any morphism.

We then have the following basic construction.

Main intersection comstruction ({F] , 6.1) : The inter-

section class
Uo V € Ak_d(w) R

d = codim i , k = dim U , is: constructed as follows:

Let the (0, - ideal 9 define i and (9/9°) =

X
v 5 be the normal bundle of V in X <(here we

identify a vectorbundle with the locally free sheaf of
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its sections), a d- dimensional vectorbundle on V .

Let <y := g% V3§ be the Lift of VI o W . Then
CyU <>V .

this inclusion corresponding to the epimorphism of

graded @7w - algebras
@ e"(q /94— © g/

where g t= f“q?] = 9 @U is the ideal sheaf
generated by < in (7U' via f which defines W

in U . Let 8 be the zero section of ¥ . Then define
the intersection product U© V of U and V to be

UoV := Wolcul = s*lc,u]l € a_, 00

(where the square brackets denote rational equivalence

classes in the CHOWgroups).

Remark 1 This construction passes to rational equivalence:

Given a cartesian square of schemes

f

< e <
o

L} Qg)
i .

with 1 a reguler embedding of codimension d and £
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any morphism, there is a refined GYSINhomomorphism
L ' .
(2) it o Ak(X ) ————TﬁAk_d(V )

!
given by i'[U] := [U‘oV] for any k - dimensional sub-
variety U € X' . It generalizes (1) and (2) of 2.4 in Part
B below. For details and functorial properties see [F] ,

Chap. 6 . In case f = id , 1%t will be denoted

X
(3) i* A (X) — A (D .

and called the GYSINhomomorphism of the inclusion.. V C1e>X-:

We also call it 'intersecting with V ' and write i*(u)= VoX .

Remark 2 Note. that for the main construction no moving lem-

ma and hence no assumption on gquasi- projectivity is needed.

2.2 - CHOWring and intersection multiplicities for nonsin-

gular varieties Suppose X is a smooth (not necessarily

quasi- projective) variety,of dimension n . Given subvarie-

ties U , V of dimension k , L , the cartesian square

Un Vv &

v

o
X
<

x < 8->X><X

with & the diagonal directly gives via the main construc—
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tion in 2.1 the refined intersection class of 1.2

UovVv & 4 ¢ (U~ V) .
. _ X * X |
Explicitely: ) " = TX , the tangent bundle, and
UoV = (WaNo{o;y(U xv\]

the intersection in TXI UnV of the normal cone of the
embedding UnV %>U x V with thé zero section of T UAV.
This construction passes to rational equivalence and gives
us the intersection product

X)

o Ak(X) ® .L(X) —_— Ak+€-n(

of 1.1 (1) =as the composite

—*
4,(X) @ 4 (X) i> A (X x X S, A fn (O

e
where 8 is the Gysinhomomorphism according to. (3). above.

Intersection multinlicities arise as follows. Let Y be
2 scheme. Then any two rationally equivalent cycles on Y
contain a given irreducible component of Y with the same
multiplicity; hence, for any ™ & A*(Y) and Z an irre=-
ducible component of Y , there is a well- defined multi

plicity
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e(Z,¥3;Y) := coefficient with which Z appears

in any cycle representing ¥ .

Definition. If Z is & proper component of U A V , i.e.

dim Z = k +{ - n , then
i(Z2,UeoV; X) = e(Z,UoVyUaV)

is called the intersection multiplicity of U and V

along 2 in X .

In fect, one has
i(2,U © V;X) = e(TX Z,CU(\VU”XV;TX\UR\V) .

Theorem({F] , 7.1.1., 7.1.2). This intersection multi-

plicity agrees with the multiplicity defined by SAMUEL,

and hence with those of WELL, CHEVALLEY, SERRE,

2.3. Applications of the theory (see [F] ) . Here I just

list some topics which can be treated rigorously and satis-

factorily with the methods and results of the general theory:

1) Theory of CHERN classes for vectorbundles on singular

varieties ( [F1 , Chapter 3)

2) Theory of excess intersections; double point formula

for maps with no codimension restriction on the double
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point locus ( [F1 , Chapter 9).

3) Rigorous formulation of the 'principle of conservation
of number' and rigorous solution of some classical enume-

rative problems ( [F]l , Chapter 10).

4) Theory of 'dynamic' intersection ( in contrast to the
above approach, which classically would be qualified as

" being 'static') ( (F] , Chapter 11).

5) Formulae for degeneracy loci of sections of vector-
bundles ('THOM - PORTEOUS - formulae') with no restric-

tions on the codimension of the loci ( LF] , Chapter 14).
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Appendix

On CHASLES'S and SCHUBERT'S theory of enumeration

General references are:

Steven KLEIMAN: Chasles's enumerative theory of conics:
A historical introduction, Aarhus University Preprint
Series 1975/76, No. 32, and in: Studies in Algebraic
Geometry, MAA Studies in Math. 20, A. Seidenberg editor
(1980), 1117-138)

(This article contains a wealth of information about the
history and the modern rigorous solution of the STEINER-
BISCHOFF- problem~on the number of conics in the plane tangent
to five others, as well as all necessary bibliographical

items for the work of STEINER, BISCHOFF, CHASLES, DE

JONQUIXRES, SCHUBERT and others.)

"~ Herrmann SCHUEERT: Kalkiil der abzshlenden Geometrie,

Reprint of the1879 Teubner edition with an introduction

by Steven KLEIMAN, Springer 1979

Willigm FULTON, Steven KLEIMAN and Robert MacPHERSON:
About the enumeration of contacts, Proceedings of the
conference on open guestions in algebraic geometry,

Ravello 1982, SLN



In 1864, CHASLES asserted that the number “N of conics in

a 1- parameter- system submitted to a simple condition was

of the form
(1) N = X-J + (g-v ,

with & and ﬁ? depending only on the condition, called the

characteristics of the condition, and H, and ) . depending

only on the family, called the characteristics of the family,

in fact

(2). M = AF{ﬁembers of the family passing through
a general point}

and, dually

(3) y = c%’{members of the family touching a

general line% .

Here, a condition imposed on a class. of geometric :figures.
parametrized by the points of an algebraic variety is called
'simple' if the points representing the figures satisfying

the given condition form a hypersurface in the parameterspace.

CHASLES did not give a rigorous proof -but verified it in

some 200 examples; in 1.1, example 2 b) we have seen formula
(1) holds for the condition 'being tangent to a general
curve of degree d ' , for any family of curves, not only

conics, with
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(22) X - 4t {tengents to C through a general
' pointk
= the class d = d(d-1) of ©
and dually
(3a) B- = #={points of' C on a general lineg

the degree 4 of C

n

where C 18 the given curve of degree d . Recall that the

method of proof consisted of appealing to the PCN (Principle
of Conservation of Number) and moving C to a special, de-

generate position where the problem becomes amenable to

analysis.

CHASLES then proceeded to determine the number of curves
subject to several simple conditions at the same time. For
instance, consider a 2- parameter~ system of curves in the
plane and two independent conditions c, and Co.

CHASLES would argue as follows:

The curves in the 2- parameter- system satisfying Ch form
a 1- parameter- system, call it (cq) , which has the
characteristics p , » , say, and.then by (1) the
number N(cq,c2) of curves satifying both ¢, and ¢, is

the number of members of (cq) satisfying c¢, and thus by



(1) given as
(4) N(c,],cg) = AUy R+ %2@) ,

where Th, and (%2 are the characteristics of the con-
dition s , and M,V still to be determined. For this
determination, let p denote the condition of passing
through & general point p , and ! denote the condition of
being tangent to a general line £ . Then, by “(2) , M=

N(p,cq) s, the number of members of (cq) passing through p ,

and so by (4) applied to p and ¢, instead of ¢, and

€

(5) tl = b(q'}-ke + @q/Uj v,] 3

]

with PLZ number of members of the system passing through

2 .general points,N(p,p) ; and Pj'vq := number of members
of the system passing through a general point and touching

a general line, N(p,ﬂ) . Similarly:

(&) Vo= oy pL,}' * '@q‘vg

with ))/' PJ := N(L,p) and \,/2 1= N(E,E) .
Plugging t5) and (6) into (4) gives CHASLES'S formula

for N(cq,cz), which can be generalized and neatly expressed

in a way discovered by HALPHEN (1872)
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Obviously, the argument above iterates; thus, if CraeeesCp
are r independent conditions, the numbér N(cq,...,cr)
of members in an 1r- parameter family of plane curves

satisfying the conditions is given by

T
(7) N(C,«I,o..,Cr> = E (ui‘H‘ + @i.v ) R
where
(8) (uﬁi,@j) "= characteristics of the con-

dition Ci 9
i, ¥V ere indeterminates, and (7) is to be read as fol-
lows: expand the right hand side formally with respect to
the powers pbly)r_l and put

(9) }»bivr-i = N(\I_)L-(-_-_bpaea"'se)
i r-i

number of members in the family
passing through 1 general
points and touching r-i ge-
neral lines.

The P}x)r-l depend only on-the family and are called the

characteristics of the family. Thus the enumerative pro-

blem has been reduced to the determination of the charac-~
teristics of the individual simple conditions involved and

to the determination of the p}”vr_l , Which is an im-

provement, because for them the general conditions have
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been replaced by linear ones, namely involving only passing

through points and touching lines.

SCHUBERT generalized this to higher dimensions; thus, given
an 1T- parameter- system of varieties in PN and indepen-

dent simple conditions (cq,...,cr) , then

A
(10) N(C,] ,...,Cr) = l \ it
i=1 i

is the number of members in the family satisfying the

conditions CqreeesCp where

mci = O(O(Ci) }Lo + eess + QIN_q(Ci) #N-’I

is the so-called module of the condition c¢., the Mﬁ

indeterminates and the (Xj(ci) , depending only on ci',-

being

the characteristics of Ci and the prescription for

evaluating (10) is as before, with

J IN-
(1) Mo eee s

i3

number of varieties in the
family simultaneously touching
jo general o- planes, 31 ge-—

nerel 1- planes etc.

So again the enumerative problem has been reduced to the
determination of the characteristics of the ¢y and
the corresponding enumerative problems for the given

family with respect to linear conditions.
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Consider, for instance the important case of r varie-

ties Vi in general position and c. to be the condi-

i
tion (also called Vi) 'to be tangent to V:'. In this
case, SCHUBERT would prove (10) analogously to (7) ,

namely reducing to the case r =1 as above, then defor-

ming Vq continuously to a special configuration and

appealing to the PCN. In this case, there comes

i}

(12) cxj(vi) degree of the polar locus

of Vi of dimension
‘=t J- th class of V;

= number of tTangent planes
(and limits of such) to a
general section of (Vi)reg
with an j- codimensional
plane meeting a general

N-j-2- plane,

and so the corresponding enumerative problem has been re-
duced to the computation of the charactefistics (11),
which remains, in general, a hard problem . In fact, the
only principle used by the classical geometers to derive
(7) respectively (10) has been the PCN , and for the
determination of (11) in concrete cases one has to appeal

to a second classical principle, the correspondence principle

CP . Roughly, this states: Let T Dbe an (o ,@a) - corres-
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pondence between the points of a line, i.e. to each point

P there correponds a set T(P) of (3 points, and to

each point Q a set qu(Q) of o points. Then there

are b(+f£ coincidences of a point P with a point in

T(P) , or 0Q many. (The argument was like this: The graph
of T is defined in Eﬂx Eﬂ by an equation homogeneous

of degree Y 1in one variable and of degree (3 in the other.
Setting the variables equal gives an equation of degree tx+§
or the zero equation. SCHUBERT based his whole book Ejﬂ] on
the PCN and CP . For a modern treatment of CP and an ex-

planation of SCHUBERT'S ideas see L8) »

We are now in a position to derive CHASLES'S number 3264

as the solution of the STEINER- BISCHOFF- problem. So consi-
der (7) for r =5 and ¢, meaning 'being tangent to
the general conic Ci' . In this case, u:i = @’i = 2 by
(2a) and (3%a) , since 4 = 2 . So the number N of plane

conics tangent to the Ci is

=
]

(2p+ 2v )2

25(\/5+5}A%y +10 P?‘y2+10 PE V5 +5 Pﬁf4+‘v5) .
Obviously, v ™™ = [ FFy b by quality, end @0 =y’ =
1 by elementary analytic geometry (this checks, of course,

with the more sophisticated discussion
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We thus must compute p,4 and }L5\>2 . This was classi-

cally done as follows. Consider a 1- parameter- system of
conics with characteristics W and V . Let T be the

correspondence on a given general line'ﬁgiven as

(x,5) & T : = there is a member of the
system passing through

X and ¥y .

By (2 , T is a (Ek,p_) - correspondence. So, by the
CP , the number of coincidences is 2W . On the other hand,
a coincidence of T is either a member of the system tan-
gent to { , or a double line in the system. There results

the formula
(13) 2 = V + N,
where '\ is the number of double lines in the system. Con-

sidering now the 1- parameter- system (04020504) of conics

tangent to C,,...,C, , there results 2 R5 = yp&\+ X}&A .

)}Lq = 0 , since no double line passes to 3% , so a forte-
riori 4 , general points, and, since }L5 = 1 , there results
yy& = 2 . The same reasoning gives 2;L4p =\%ﬁ’+)ﬁp§

and so “?1)2 = 4 , The result is

, i |

and so
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22( 1 + 5.2 + 104 + 104 + 5.2 + 1)

=
I

il

32:2:(1 + 10 + 40)

= 6457

it

3264

SCHUBERT has the following spectacular numbers based on
the formulae (10), (11) and (12):

As a first example, consider the quadric surfaces in 3%- space.

Since, in homogeneous coordiqates ZoreceaZz they have

. Jo 35 . . .
the equatlon.'Ei_ajo...jB IR = 0 with j+...+Jy
== 2 and not all a, . = 0 , they are parametri-

Yotrtd3 o
zed by ®2 , since there are ( 2_ ) = (2) = 10 mono-

mials of degree 2 in 4 variables. Thus they form a 9-
parameter- family. Let Qi y 1= 14...,9 be 9 quadrics
in general position. Then, by (12) , WO(Qi) = Vﬂ(Qi) =

Ug(Qi) = 2 , and the number N of quadrics in 3- space

touching 9 quadrics is by (10)

@ur+2y + 20)7

=
I

22w +y +0)

(where we have accepted SCHUBERT'S notation H_: P s V =

o
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Wq and O= }Lg Y. The (9+g-1) = 55 numbers M11)3K39—1—j
are worked out in the table on p.105 of Dq:] and give

(13Db) N = 666,841,088 .

As a second example, consider the twisted cubic space curves.
They form a 12- parameter- family. Therefore, the number of

them touching 12 quadric surfaces in general position is
N = (2y + 2,0)/"2

212y +p Y12
(again SCHUBERT's notation). The 13 numbers 1/iﬁ)12-i
are computed on p.178 of *ﬂ1] and give (Ej] , D. 184):
(130 ’

N 212(80 160 + 12.134 400 + ('2)+209 760 + ("g).egv 280
("2)-375 296 + ("2)-415 360 + ('g)-401 920 + ('2)-343 360

("2).264 320 + ("2).188 256 + (]2)-128 160 + (}7) 85 440

+

+

+ 56 960 )
5,819,539,785,680 .

This determination won SCHUBERT a gold medal from the Roygl
Danish Academy 1875 .
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Of course, the classical derivation of (1) and its gene-
ralizations (7) and (10) does not meet our today- stan-
dards of rigour, since the PCN is hardly:to be made:pre-
cise without a fully developed intersection theory and

. theory of rational or numerical eguivalence (see (¥l , 10.2,
for a modern account). Soon, counterexamples to the ex-
pression (1) were discovered (see [10] ) , and so the need
arises to explore the range of the validity of (1) and

its generalizations.

In modern terms, the deformation proof of (1) should be
thought of as determining the rational equivalence class of
the cycle representing the figures obeying the given condi-
tion in the CHOWring of the parameterspace, and the PCN
then will appear in the guise of the principle that inter-
section numbers are stable under rational equivalence. Thus,

informally, one should think of (1) as follows:

Suppose the figures considered are parametrized by the
points of a complete (i.e. compact, if the field of defini-
tion is C ) variety X . An i - fold condition c¢ 1is to

be considered as a class in A_ .(X) (passing to ratio-

n-i
nal equivalence classes includes already the freedom to
move), where n = dim X . Suppose further that A _.(X)
is generated (modulo torsion, which can be neglected for
enumerative purposes) by finitely many classes R L
so that modulo torsion ¢ can be written
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c = o . m.
:% Jd J

and the mj can be thought of as basic conditions, into

which ¢ degenerates with multiplicities given by the 0(j

when moving it into special position. Consider the degree

homomorphism

deg : AO(X) — 74

mapping a o - cycle to the sum of its coefficients (if

X is irreducible, it is isomorphic) One has

d 3 = deg(coaa) )

when the a? form, modulo torsion, a dual basis to the

mj under intersection; i.e.

deg(mio a‘j) = S‘j

-1

the é’j being called the dual conditions.

Now suppose given an 1 - parameter - family; this defines
a class f € Ai(X) , and the number N(c¢) of members of

the family satisfying ¢ 1is

N(c) = deg(cof)

> . deg(m,of) .
3 J J
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We thus arrive at the formula

(14) N(e) = % o Py
with
(15) I-'J. = deg(mj o f)

—— -

1#-{members of the family f satis-

fying the condition cjg

and
(16) ¥ = deg(c o ad)
= ﬂ#{lmembers of the family aj satis=-
fying the condition ¢§
(14) - (1%5) is the modern interpretation of 1) - (3) .

(14) shows that CHASLES's expression (1) cannot be based
on the conics being parametrized by points of T5 : for
then BéZOUT‘s theorem would supply the following result.
We have, as a ring, A¥( Eﬂj = /AR /(tN+q) under the
correspondence h <« t , where h = [Hl ¢ A’I( EPN) =
AN_q(iPN) is the class of a hyperplane H (see the Struc-
ture Theorem in Part B , 3.2). A 1~ parameter- system of
conics would be a class m & A,( @5) , and a simple condi-

tion a class cé& ch PS) = A4( @5) , and there would result
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N(c) = Ot

with ¢ = deg ¢ and po= deg m , a result already arrived
N

erroneously at by DE JONQUIERES in 1861 (see EQ] and

the Enzyklopédie article of ZEUTHEN).

So something more subtle must be behind (1) . The idea be-

hind it is to choose a compactification "X ©of the space of

nonsingular conics different from P5 by adding certain

degenerate configurations (already explicit in SCHUBERT's
book qu} on p. 92) so that the pathology that every double
line represented by a point in the VERONESE V & E5 is
tangent to every conic cannot occur.(This pathology 1s caused
by the fact that two conics C and D are said to be tan-
gent if they intersect in less than four points; from this
follows that every double line is tangent to every conic.)

The degenerate configurations added were

(i) two lines together with their point of inter-

section

(ii) a double line together with two points on
it, called 'foci' (in modern terminology:
a double line together with a divisor of

degree two on it)

The condition of being tangent to a conic C for these

degenerate configurations was then
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For i) C 1s tangent to one of the lines in the usual

sense, or passes through the point of inter-

section

For ii : C passes through one of the foci, or is tan-

gent to the line in the usual sense.

The space X parametrizing the nonsingular conics and

the degenerate configurations (i) and (ii) was.called

the space of complete conics, after STUDY 1886 .and

VAN DER WAERDEN (Zur Algebraischen Geometrie XV, Math.
Ann. 115(1938)). If one thinks of configurations in (i)
as two lines together with the pencil of lines through

the point of intersectioﬁ? and of configurations in (ii)
as a double line together with two pencil of lines through
two points on igf)the configurations (i) and (ii) cor-
respond under duvuality. Thus there is a well- defined dua-

lity map
d : X —> X

which maps a nonsingular conic to its usual dvual and inter-

changes (i) and (ii) , extending the rational map
5 w5
(7 S ow b

defined by sending a conic to its dual, which is only de-

fined outside the VERONESE. To be precise, if one let a

¥) called a-§ in W] ¥x) called an % in EA]
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conic be represented by a 3% x 3 symmetric nonzero matrix

up to a scalar multiple, .25, maps a matrix to its ad-
joint matrix of 2x2 - minor;? so it is not defined on

the subscheme of E5 defined by the vanishing of all 2x2 -
minors, which scheme-theoretically is Jjust the VERONESE V .

Thus ,X is given as
, \Y%
(18)" . ‘ X = graphg - (P5><TP5 )

the scheme- theoretic closure of the graph of the map (f?jf.
(see the description of X in V.D.WAERDEN, loc.cit. p.o646-647),
This showst
(19)- The first projection p : X ﬂ~>IP§ realizes X

as the blowup of P°. along the VERONESE V .
This shows further that X can be interpreted as the space
of pairs (C,E) where C 1is a nonsingular conic,together
with its dual, and pairs (%im Cy ,%}m é} where (CK}QAiS

Q -3 0

a degenerating 1- parameter- family of conics, which is
the way classical geometers use to think about complete
conics. For instamce, a configuration in (i) can be
thought of as the limit position of the %- paremeter-
2x2*a2y2

family of hyperbolas (in affine coordinates) b
2

1N

configurations in (ii) as the limit of the confocal

family of ellipses box2+(b%+ A\°)y° = b2(b%+ X 2), with

, with the degenerate line- pair the asymptotes,and

the two points being the two foci of the ellipses.

%) If the symmetric matrix A represents the ngnsingular

conic C , it suffices to show ph represents . But the pro-~’
jective automorphisms act transitively and intertwine § , so

1t suffices to prove this for A =4 , which represents the
conic ZZQ{' = 0 ; this has tangent L 2%2z. = 0 .at the point of
P? with coordinates 2?9 y» so the tang%n% has coordinates zf

in the dual space B2 L Qed.
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Now, with the interpretation (49)- of the appropriate
parameterspace X of complete conics at hand, the CHASLES

expression (1) can be derived.

The CHOWring of a blowup is known (see. LF] , 6.7). One
v

has: Let p + X —€>IP5 and q : X —e>IP5 be the maps

given by the first and second projection. Then Aq(X)

*)

has a base consisting of m , n with
¥

(20) m = p (h) ,

where h = [H]e.Aq( 95) is the class represented by a
hyperplane, which can be thought of as the linear system
of all conics passing through a general point; so m is

the condition of passing through a general point; in a

similar vein
(21) n := g (h)

£ 1 N
where h € A (lP5) is the class represented by the
system of &all conics whose duals pass through a general point
in the dual plane, hence n is the condition of being

tangent to a general line.’
If now c¢ ¢ Aq(X) is a simple condition and ~fE§A1(X) a
1- parameter- family of complete conics, (14) gives the-

CHASLES formula : (1) , and (15) confirms (2) and (3) .

*) Aj(X) has a distinguished base, namely m and 1 ,
where 1 1is the class of the exceptional divisor of the

blowup p + That m and n form a base then follows from
the formula (25) proved below.
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Secondly, let c. € A'(X) , i =1,...,r. be T . inde-
péndent simple conditions. Then the composite condition

¢ of satisfying simultaneously the cy is just the inter-
section product c¢ = ’T?[ c; € Ar(X) , and the number

of members of an- r - pa;ameter- family f e ‘KC(X) of

=z complete conics satisfying ¢ 1is given as

N(c) = deg(Tj'cio £)
i

But ¢, = ®;m + f3i n , and deg(mént o' f) is just
the number u} T=1  4in the interpretation of (9) , which

proves HALPHEN's formula (7) .

Finally, we verify the reasoning based on (13) leading
to the characteristics (13a) p}\/5-l for the plane
conics, thus completing the verification of the number

3264

For this, we contemplate on the description .(18)
of X . Generally, if Y is a variety , and D 1is

a divisor on Y , there results a rational map
v
ry Y —> (V)

where V is the vectorspace HO(Y,LD) of sections of
the line bundle I, associated to D , by mapping a point
¥y in Y to the hyperplane in ™.V of the sections of Ly’

vanishing at y . Forming, in generalization of (18),
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—_ v
X := graph ry & Y « B(V)
. the first projection p : X —7Y.  exhibits X as

the blowup of Y along the locus B of indeterminacy of Ty
(i.e. the base locus of the linear system defined by D ),

and the second projection gq : X ——a.ﬁ(V) extends ;D to an eve-
rywhere defined .map on X . This is a classical construc-
tion, and is such that a hyperplane E c EKV) pulls back

to D under Ty - Let péjD be the divisor on X ob-

tained by lifting the equations of D , i.e. the scheme-
theoretic inverse image of D ; then p_qD is called the

total transform of D . Furthermore, p \X - p-qB : X - p_qB

—> Y - B is isomorphic, and - D e p'q(D - B) is called

the strict transform of D . The following equation holds

in Div(X)
(22) P = D o+ XE for some AE W
where E := p_qB is the eXceptional divisor of the blowup

p (just check local equations) . We thus obtain
v i
(23) p*[0] = a*({H]) +ALlE]

in An_q(X) (n :=dim Y = d;m X)) .

5 %5 . |
—> . By the description of /

We now apply this to & : ®
the map 8 . given on the top of p. , we see that it

. ) v
is Jjust the map ry P> —> P2 given by a divisor
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of degree two (e.g. take any of the equsticns defined by
the vanishing of a 2% 2 - ninor of 2 3x3 - symmetric

metrix). Thus ws have, with the notation (2C)

(24) 7D} = 2

Thus, by (23) =and (21)s; since. A = 1! N
(25) 2m= n+1 |,

where 1 := [El1 € Aq(K) represents the simple condition
'to be a degenerate configuration of type (ii) ' , i.e.

'to be a double line with a degree two divisor on it'.
This is the modern interpretation of (13) . Multiplying

4 4 5 1

. 4 .
with n gives 2m5 =mon +mel ; deg m” = , Since

D pushes m” down to a generator of A5(fP5) = Z , and
m4a1 = 0 , since no four general points lie on & line. So

*»5 =1, Pﬁﬁ) = 2 . The rest of (13%3a) 1is verified
analogously. Thus, to complete the verification of the num-

ber 3264 , one has to compute <L = (3 = 2 . This can
be done in various ways. One way is the following: Let H
C E5 be the hypersurface of conics tangent to a general

conic; then use the explicit equation (see [3] ) to com-

pute‘ deg H = 6 and ™9 = H + 2F ; The claim follows
from the facts T*E = H + (> and %+ 2R = deg E ,
which are explained on p. . Another way is to use spe-

cial families for which N is known (recall & and @ de-

pend only on the condition) |, see'[ﬂoj , D. 127 .
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Of course, there remains the question whether the 3264
conics are all distinct and nonsingular if the five given
conics are in general position. This is not settled by the
above considerations. In fact, the answe& is yes;this can
be shown by a closer analysis of the strict' transforms

of Hq,...,H5 (see p.”20) or by invoking KLEIMAN's
theorem on the transversality of general translates under
the transitive operation of an algebraic group (note that

PGL(3) operates transitively on the non singular conics) ;

see Lés] and EO] .

I would like to conclude this description of the classical
method with a short discussion of 1its relation to the
method of refined intersections used in 1.3 . The gist

of CHASLES's method may be summarized in that it consists

of replacing a simple condition as represented by a hyper-

surface in E5 by its strict transforms under the blowup

T @ X— E5 of P5 along the VERONESEf)and then com-

puting intersection numbers in X . So if H,I,...,H5 are
five simple conditions, CHASLES's method gives for the num-
ber of conics fulfilling these conditions the intersec-

tion number

o~ S ~J
H,.I|_' e n @ <'H5 = deg(l_H,ﬂ C eeoe OK_H;) .
The difference between BEZOUT's number Hy eee Hg =

deg %T*[H{XO ---o%r*(ﬁ5\) and ﬁ%'\"'-;ﬁ5 can be expressed

using the fact (explained on p. 34 ) 11*{Hi} = \ﬁ;} + f%i 1,

*) as to get rid of the unwanted excess contribution of V
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and may be shown to give just the expression for the-equi-
valence of qu ces OH5 {om the component of qu ...nH5

supported by V -( H; is to have characteristics (o(i,(%i)).

For instance, in the case of the STEINER - BISCHOFF - pro-
blem, all @3_ = 2 4 we get for the difference

deg( ¥ [Hilo ..o on’*[Hﬂ) - deg(( ™8] - 2.1)0...o(v*‘[H§ -91))

Since deg can be computed on IP5 by pushing down via the

projection formula, we get the degree of the class
(3)-6% n7(21)°- () 6-m(21)* '+ (21)°

which is easily seen to be exactly (Tﬂ'c(yi[z)r\s(m5,z))o
i

as calculated in 1.3 . One may also use the values of

215 4

the numbers m , M1, 17 given on Dp. to evaluate

this expression to be

100368+ 4 - 5:6.16.18 + 32-51 32036 =240-3%6 + 3251
= 80:36 + 32+51

= 2880 + 1632

= 4512

as desired.

The derivation of (1) and its generalization (7) given de-
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pends on the compactification of the parameter space of non-
singular curves which i1s peculiar for cénics, so 1t is re-
stricted to this case. In fact, (7) holds for arbitrary
curves and can be given a different proof without using

'non standard compactifications'. This proof is due to
"FULTON and MacPHERSON and given in full detail in [F] ,
10.4 , S0 I have not repeated it here. It is based on

the geometry of the incidence correspondence
2 Yo
I = {(P,LeP%PYP e}

i.e. on the structure of A*(I) . This proof generalizes
to the general case of an r- parameter- system of varie-
ties in EN and the condition of touching r varieties
in general position and so to a proof of (10) in this
important case, which is given in (3] ¢ If Vg;IPN is

a variety, define the conormal variety CV to be

N N '
eV := {(P,H)CPx[P | PEV,,, end TV HS

v
the closure taken in ENKYPN . Then, if

1 = {@Emepx Y| pend

is the incidence correspondence, the following formula

holds in A*(I) (see E?l , (2.23)):

(26) evl = & (NMTCH]T + ... + oy (Do 11,

where the GE(V) are given by (12) , and Hj is a
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n
%
5

linear subspace of dimension J . Thi e thought of
as another modern intervretation of CEASLES's expression

(1) in arbitrary dimensions. Using the definition
. V touches W :<=> CV~ CW #£ 0 s

the formula (10) results, as in the case of conics, by -

multirlying and extracting degrees (see L71" (2.22)).

In E?} , verious proofs for (26) are given. Cne variant
(loc.cite. D175 ££f) Jjust makes precise SCHUBERT's zpvroach
of degenerating the given varieties Vi o be touched in

a family of rational ecuivalence into linear spaces by expo-
sing them to a continuous fzmily of special maprings, called
'Homographien' by SCHUBIRT (cf.{jﬂl, 2.91) , and ‘'nhomo-
lographiés' in.L?] . This is also the spirit of proof in LF] .
. Especially, the classical procedure sketched in Part A , p. 7

for proving (1) can thus be made rigorous.

Besides this, LZ] contains a thorough discussion when the
contacts are proper and what the multiplicities are with

which the solutions have to be counted.

Another beautiful generalization of CHASLES’S theory has been
developed by DE CONCINI and PROCESI (see [1] and 121).

To motivate it, consider the case of quadric hypersurfaces

in [P (which is also classical, see the references in{j}and

&gl). The starting point is the observation that the svace
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X := -{Q \ Q@ a smooth guadric in [PnH
= P(syn(¢™))
Eﬂ(n) s q(n) = (n+1)(n+2)/2 - 1

is a homogeneous space PGL(n+1) / PO(n+1) of a special

type, which DE CONCINI and PROCESI call 'symmetric varieties'.
In general, they define a symmetric variety to be a quotient
X := GéH s where G is a semisimple algebraic group of adjoint
type, and H the fixed group dg of an involution @ : G=+G .
If we think of X as a parameter space, whose points repre-
sent geometric objects, and of cycles a € Zk(X) as r- dimen-
sional conditions on these objects, the 'naive' intersection

product

(27) o :ZXNRL(X) —m—Z

a 4, b L > ‘*k anb'\

where a , b are represented by irreducible varieties and

a” and b” are generic G- translates, need not be well- defined
due to the noncompactness of X . On the other hand, if one
chooses a 'bad' requivariant compactification: Xl of X sO
that a and b have a G - orbit at infinity in common

(which happened to be the case for X = [P5 in the case

of plane conics), the intersection product in x! does not

compute the number of generic points in X satisfying both

conditions a and b .
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DE CONCINI and PROCESI construct a canenical smooth G = equi-
variant compactification X of X . Among their findings

are the following properties:

(1) X - X is a union of smooth hypersurfaces. All intersections
are orbit closures, with incidence strucure given by ex-

plicit combinatorial data.

(ii) TFor any condition a € 2Z'(X) there is a smooth equi-
variant compactification X' 1lying over 3? such that
X
‘a meets all the closures of G - orbits in X' proper-

ly. X' arises from X by blowing up codimension 2 sub-

varieties.

From this they conclude that the intersection product (27)

———

can be computed in the CHOWring of a suitable blowup X' of X .

In favourite situations (e.g. in the case of quadrics, see
below), it suffices to consider X . In this case, it suffices
to know the numbers plon_P -1 of A, 1.2 (2) , which,

0 W1
in this setting, are the characteristic numbers Jixq...xd
TOr  XqgyeeesXy e.Hz(ib = Aq(X) , d = dim X . They produce an

explicit algorithm which allows, in principle, to compute all

these numbers in any particular case.

In the case of quadrics, X = PGL(n+1) / PO(n+1) , the results
are as follows. X 1is constructed in the following way: consider

the PGL(n+1) - equivariant embedding

¥) here a denotes the closure of a in X'
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L X Gy B(sym( AT T))
Q f— (K, A%Q,...,A"Q)

—

and put X := j(X) . Then:
1) X is nonsingular.

2) X -X= SqU ... USn for smooth hypersurfaces S,],...,Sn.

There is a bijection

@ iq,_”’n} {PGL(nM) - orbits in X‘S
. 0,

such that @I = n S and 61 = éI -
i€l 13;1
3) (ﬂ& nE is isomorphic to the flag variety ?oi‘ flags
govey

in % .

4.) HE(X;ZQ = A’](X) @Zx , Where [‘:D(R‘land
D(Tri) 1= {Q&X \ Q lS tangent to T . 7; for a chosen
flag T, €M C ...cT_,CP? .

5) The computation of numbers g X‘ can be reduced

%
A q(m)
to evaluations of numbers

\‘« J(q\\—n
N q

One may then prove:



- 0% ~

Theorem. Let VC P be a fixed subvariety, D := D(V) :=
{eex|q tangent to VY. Then

(i) D does not contain a PGL(n+1) - orbit.
n-I

(ii) If V is a quadric, [D_] = 2 ZXL in A’](X) .
L=0

Corollary. (i) SCHUBERT's formula (10) holds for

smooth quadrics tangent to subvarieties in general position.
(ii) 1In particalur, the number of smooth quadrics touching

hy points, h, lines,..., h _4 hyperplanes and h =~ quadrics

in general position, where hg+...+h = q(n), is given by

ho k'\_‘ h" .
N(hgyeeo,h ) = 2a(n) g )\o >\¢ (z)\t) .
L=D

X

From this, one gets SCHUBERT's number (see D])

N(0,0,0,9) = 666,841,088 .

More numbers have been computed in [51 . For example:
N(0,0,0,0,14) =  48,942,189,946,470,000

N(0,0,0,0,0,20) = 641,211,464,734,37%,953,791,690,014,720 .
Thus it appears that the basic formula (10), from which

SCHUBERT derives his numbers (13b) and (13¢c) has finally,

after more than 100 years, been put on a firm basis.



- o4 -

Part B: The construction

In this part, I will give the details needed to perform
the main intersection construction, namely, as formula-
ted in 2.1 of Part A , develop the theory of rational
equivalence on singular schemes, and construct the ope-
ration of intersecting with the zero section in vector-

bundles. The exposition consists of three steps:
1. Construction of the CHOW homology groups.
2. Intersecting with divisors ( = intersecting
with the zero section in line bundles =

theory of st CHERN class of line bundles).

3. Intersecting with the zero section in vector-

bundles ( = THOM isomorphism theorem).

In what follows, all schemes will be algebraic schemes over

a fixed field '& , that is, be ringed spaces covered by
finitely many parts of the type spec A , where A 1is

a finitely generated '& - algebra, i.e. of the form
fz(_x,],,..,XN] / I, with the X, indeterminates and I

a polynomial ideal . A variety- is an integral ( = reduced
and irreducible) scheme, that is, it is just a variety in
the classical sense ( disregarding the non closed points)
if ‘&, is algebraically closed. If V is a variety, R(V)

denotes the field of rational (or meromorphic) functions.
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1. CHOW homology

1.1 Cycles TLet X be a scheme; put

Z(X) := free abelian group on generators the

(closed) subvarieties of X

Z(X) has two Z - graduations:

7(x) = @ Zy (X) (by dimension)
k
= © Zk(X) (by codimension) .
k
If X is of pure dimension n , then X - ok *

Denote the image of a subvariety V in 2Z(X) by [Vl .
X has a fundamental cycle X1 € Z(X) defined as follows:

x1 = 2 AChy ¢, 0 (),
A o

the sum ranging over the irreducible components X, of X ,

and -0 (@x,xx ) denoting the length of the ARTINian

ring .

®X,XA

More generally, if Y € X 1is a closed subscheme, put
Lrl € z(Y) ¢ z(x) .

If X is of pure dimension n , [X] € Zn(X) .
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1.2 Functoriality a) If f : X — Y is proper, it

induces £, : Zk(X)<——> Zk(Y) via

deg(£\V). (£(V))} if dim V
= dim f(V)

]

£, Lv]

0 else

where V ¢ X is a k - dimensional subvariety, and deg(f | V)
:= [R(V):R(£(V))] , the degree of the function field ex-
tension R(£f(V)) ¢ R(V) (if &a is algebraically closed,
this is just the geometric mapping degree of f|V |, namely

the number of distinct preimages of a general point on f(V)).

This makes Zk a covariant functor for proper morphisms.

f¥ is called the pushforward (by f ) .

b) If f : X—>Y is flat, it irduces £* : Z(¥) — Z5(X)

via

* =1

(vl = [£7v] ,
for any k - dimensional subvariety VCX , where =y
is the schematic preimage of V . Hence f*[2Z]1 = [f_qzl
for any subscheme 2 & X . This makes Zk contravariant

for flat morphisms. f* is called the flat pullback (by f ).

If f 1is flat of relative dimension d , one has

¥

£7 Zk(Y)-——9 Zyeqg(X)



Xl —_— Yl

X —~> 1

is cartesian with f proper and g flat (hence. f' proper

and g' flat), one has

1.3 Meromorphic functions If X 4is a variety of dimension

k+1 , any meromporphic function = ¢ R(X)* defines a k -
cycle, denoted ([div(r)] : View r as a dominant (and

thus flat) morphism r : X —> lP,] and put

\—_div(r)l [r_1 (O)] - (_r—ll (00 )1

¥ ( ol -[{eol) .

In more classical terms: For any codimension one subvariety
Voof X andany fe (% % = (g - {0} define the
v ]

order of vanishing of f along V by

ord (f) := '{(@X,V / (£))
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and extend it to a homomorphism ordy : R(X)* —> 7 by

]

ordv(f/g) ordv(f) - ordv(g) .

Then

i

Ei. ord (r)-[V .
vVEX v ]
codim V = 1

Eiiv(r)]

There is the following

Key proposition ( [F] , Proposition 1.4) If £f :X—>Y

is a proper surjective morphism, then

div(N(r)) dim X = dim Y
f* [div(r)l =

0 else

where N denotes the norm in the field extension R(X) < R(Y)

(that is, N(») = detR(Y)(r) , r acting by multiplication

. in the R(Y) - vectorspace R(X)).

Sketch of proof The idea is to reduce, by base change, to

properties of length for one- dimensional local domains.
We consider only the most important case where f : X——> Y
is a finite surjective morphism of affine varieties, referring

for the full proof to [FJ1 .

tet A := R[x], B = &[Y] be the coordinate rings
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of X, Y, and K =R(X) , L =R(Y) be the corresponding
quotient fields of meromorphic functions. f corresponds to

an integral ring extension B ¢ A .

The claim is: For all codimension one subvarieties W of

Y and a ¢ K

(1) ordw(N(a)) = Z ordv(a)-KR(V):RCW)] .
Ve X

£(V)=w
W corresponds to a prime ideal ()I of height one; BUT =
@Y W 1s a one- dimensional local domain, and' A =

) Y

A®g Bq ( A viewed as a B - module) is a finite Byy -
algebra whose maximal ideals correspond to the V mapping
to W . ILet aeg A . Then (1) translates into the state-

ment

'E = ’ﬁ . al :
(2) Bq(BUI /N(a)) (% priué— of AO1 AéA?/ ) LA{S Bo(]

and it suffices to prove (2) , with a € A (since X =

Quot(A)). But now one has the

Temma( {F] , A.3) Let D be a one dimensional local do-

————

main, I := Quot(D) , M a finitely generated D - module,

and LfJ : M —> M a monomorphism. Then

(3) L (p/det(peidy) = L (W@ .

Putting D = BO( , M = AU( in (3) gives (2) , since
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%pri;lze: of AfAéAﬁ/a)'[Atg:Bql = {B[SlAm/a) . Q.e.d.
9

14 Rational equivalence Iet p : X — C be a flat

map from a scheme to a smooth curve. If V is a k - di-
mensional subvariety of X , p restricts to V , thus

defining, for given t ¢ C , a specialization morphism

where X, := p-q(t) is the schematic fibre of p over

t , as follows: Let V. := (pr)_q(t) and put

[vt] if p|V is dominant
‘StEV1' 1=

0 else .

(Note that, if p|V is dominant, it is flat, and then [Vt]
= (p\V)* el ).

One should think of ﬁjt as 'intersecting with Xt'.
These specialization morphisms enjoy the following functo~-

rial properties:

f
Proposition Let X —>» Y be a commutative

S




- 101 -

triangle , where p and q are flat morphisms to the

smooth curve C .

a) If f is proper, the diagram

i
2, (X) ———— 7, (Y)

Gy o
Zren (Kg) ———> e (Ty)

t«

commutes, where f = £} Xp oo

t

b) If f is flat of relative dimension d , the disgram

¥
2y (Y) _f—‘g' Zera (X

commutes.

Sketch of proof Ad a): (Intuitively, the assertion is that,

if £ : X — Y has degree 4 , it also has degree d on
the fibres of p and gq .) We may assume that f 1is
surjective, X , Y are varieties, and p dis dominant (hence

so is q , since p(X) = qf(X) and f£(X) = Y) .
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(i) @dim X = dim Y : The commutativity of the triangle
asserts

£, (%] = des(f): [v,] .

Restricting to an affine neighbourhood of t , assume C
= mj , that is, p and q are regular functions. It thus
suffices to show

£, [div(e¥e)] = deg(f)-[div(z)]

for r € R(Y)* , which follows from the key proposition
in 1.3 , since N(£¥*r) = rdeg(f)

(1) dim X > dim Y : Then dim X. ) dim Y,

Ad b) (this is essentially covariance of the flat pull-

back.) Let W& Y be a subvariety of dimension k . Suppose

[f_qwl = zg mi[Vi] ’

where the Vi are the irreducible components of f”qw . Then:

ST (W] =

Z moy (v = Ty [0pT®].

Now there is the
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Lemma( {F] , 1.7.2) Suppose X is a purely n - dimen-

sional scheme, D € X a closed subscheme, locally gene-

rated by a non- zero- divisor. Let X = zi m; [Xi] ,
i

where the Xi are the irreducible components of X , and

Jet Di = DA Xi . Then

bl = 2 m [p;]1 dn 2,0 .

1

Apply this lemma to X := £ W and D := f"‘wt . there

follows
r =1 .
e, - ]; mg £, A V]

in Zk+d—1(f_4w) , and so in 2, 4 4(X) . But, by definition:

£ AV, = (e[ V)T
= Gl Tw
hence
Lehw, ) - Z Ll ]
= 6ﬁ# twl .
The assertion now follows, since (£ W, 1 = £i(G . W]) .

R.c.d.
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If now p 1s trivial fibration with fibre F , we have

for each t & C  GYSINhomomorphisms (c¢f. (3) in Part A, 2.1)

G
t
¥
(1) g s Zk(X) —_—> Zk-ﬂ(x‘t) = Zk_q(F) ’
where i, : F C, X denotes the inclusion f > (f,t) .

A cycle B € Z,(X) then defines a family ((3(1:))te c of
cycles B (%) € Zk-;i(F) via

Blr) = 13(PBDY

called specializations of B . And we call two cycles

o) 7

X, € Z,_1(F) equivalent with respect to p if they
both are specializations of the same cycle, i.e. if there
is Bez, (X) , ¢t
g o= P

o T4 €C, with o0 = (’;(to) and

Theorem - Definition Let X be a scheme. For two cycles

Xy s Xy € Zk(X) , the following are eguivalent:

(1) ™, and o, are equivalent with respect to the

flat projection X x B P I?q .

C (i) There are finit'ely many (k+1) - dim,en‘sional sub= -

varieties wi of X x Ei;f such that p | wi is dominant

for each i and W, - X, = X([WJ(O) - W)y .
— i

(iii) There are finitely many (k+1)- dimensional sub-
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varieties V. of X d r; € R(Vi)* for each i
such that ¥ - &, = % laiv(rH] .
Such cycles are said to be rationally equivalent. |

The proof is easy and left to the reader (see [F1, 1.6).

We denote rational equivalence by o(o ~ O(,1 . For given
k , the cycles rationally equivalent to zero form a sub-
group Rk(X) of Zk(X) ; this follows most easily by
the description (iii) of rational equivalence in the

theorem, since div(1/r) = - div(r) .

1.5 CHOW homology There is but one definition to make:

Definition Ak(X) = % (X) / Rk(X) is called

the k -th CHOW homology group of X .

1.6 Functorial properties of CHOW homology

Theorem a) A, 1is covariant (of degree O0)) for proper -

"
morphisms.

b) A, 1is contravariant (of degree d ) for flat morphisms

(of relative dimension d ) .
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Proof Ad a): We use the description (i) in the theoren
above of rational equivalencq:' If /3 is a cycle of equi~-
valence for &, and &, , (fx id Eﬂ)*q%) is a cycle of
equivalence for f*(uo) and f*(u,1) - by a) of the pro~
position in 1.4 .

Or use (iii) and the key proposition of 1.3 .

Ad b): Ve use again (i); (£ x id 1)*(@) is a cycle of
P

equivalence for f*ﬁxé\ and f*@xq\ by b) of the propo-

sition in 1.4 . Q.e.d.

1.7 An exact sequence Let Y be a closed subscheme of

a scheme X , U:=X-Y, 1 : Y& X, j: U< X the

inclusions. Then, for all k , is the sequence

. K
) aD s A0 s AW s 0

exact. This is straightforward from the definitions and the

fact that ény subvariety of U extends to X Dby taking

its schematic closure.

2. Intersecting with divisors

2.1 Divigors Let X be a scheme. The sheaf VKK of
germs of meromorphic functions on X is defined to be the

sheaf associated to the presheaf

U — 50(U)_q-COX(U) , US X open ,
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the localization of @k(U) being with respect to the
subset Y (U) ¢ (;X(U) of those f which restrict , in

each local ring (©® , Xx €U, to a non- zero- divisor.

X,x
If X 1is locally NO%THERian, which is the case in our con-
siderations since we suppose all schemes to be algebraic
over a fixed field, the stalk’ U“‘X,x at x € X 1is just
the total ring of quotients Quot(@x,x) , and if U ¢ X

is affine, one has
\MX(U) = Quot((y(W)
and so the presheaf
U > Quot((r4(U))

restricted to the open affines of X 1is a sheaf defining

via the usual extension process the sheaf \ﬂcx .

This understood, a (CARTIER) divisor on X 1is defined as

a section of the sheaf VK_; / Q)§ , and, by the above
remarks, can be thought of as being defined by a collection
i(q&,£¥)l , where the U, form an affine open cover of

X, f,& R(U)* (with, for U open affine, R(U) :=

WL(U) = Quot((P4(U))) ,such that £/ € CQX(U“ o 1{3)*
for all & , @ . The divisors form an additive group

Div(X) . Let Div'(X) denote the éubmonoid of effective
divisors, i.e. which can be given by £ € @X(th)'5 note that,
concebtually, an effective ‘divisor is just the same thing as
a closed subscheme locally defined by a non- zero- divisor,

i.e. defined by an invertible ideal sheaf.
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2.2 The cycle of a divisor A WEIL divisor on X is

defined to be an element of Zq(X) (our terminology will
be such that 'divisor' always means 'CARTIER divisor').

A divisor D on X has an associated WEIL divisor

cyc(D) or [D] , also called the associated cycle defined

via the homomorphism
cye : Div(X) — Zq(X) R
this homomorphism being well- defined by the requirements

(i) cyc is compatible with restriction to open

subschemes

(ii) if D e Div'(X) , then

cye(D) =  fundamental cycle of the

closed subscheme D C X .

If X 1s a variety of dimension n , it is easy to see,

then, by chasing the definitions, that

bl - éé% ordy(D)- (V] € 2z, _,(x)
codimV A
with = ordy(D) := ordy(f} ‘for f any local defining

equation of D in any open U with UnV £ @ , this
'order of vanishing of D alcng V' being well- defined

since f 1is locally well- defined up to units. Especially,
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if D is given by a single meromorphic function r € R(X)*
(such a divisor is called a principal divisor, denoted (r)

or div(r) ) , then [DI = [div(xr)} as defined in 1.3 .

2.3 Pseudodivisors ILet D &€ Div(X) be a divisor on the

scheme X . The support of D , supp D , 1is defined to be

»
the (closed) subset of those x € X such that £ & @X,x
for the germ of some (and hence any) local equation £ of

D at x . We also write |{D! := supp D , and

\D| = U v .

VeX subvariety
codimV="1
ordV(D)#O

Now let V be a k - dimensional subvariety of X . Our

intention will be to construct the intersection cycle

Do(V] e Zk—ﬂ( ID\a V)
as follows: Restrict D to V and put

Dolvl := [D|V] , the WEIL divisor
associated to D |V by 2.2 .

Unfortunately, D restricts to V only if Vﬂi,D . But

there is the following

Key observation: Line bundles always restrict.
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Now, to a divisor D is canonically associated a line

bundle Iy (also called (bk(D) ) together with a mero-

morphic section Sy if D dis given by the collection
{(QA’ﬂi)E » Iy has transition functions gu¢:= %i/%%
in QKK\ Uﬂ y and sp 1s given by %K in UN « If we

call pairs (L,s) and (L',s') of line bundles and mero-
morphic sections isomorphic if and. only if there is an
isomorphism L ¥ L; of line bundles carrying s into

s' , the assignment D (LD,SD) identifies divisors
with isomorphism classes of line bundles together with a-

nontrivial section.

This considerations, together with the key observation,

motivate the

Definition A pseudodivisor D on a scheme X 1is a

triple (L,Z,s8) , where L is a line bundle on X , Z

a closed subset of X , and s a nonvanishing section of

L | X-2 , up to obvious isomorphism.

Put D  := Z, Ly := @X(D) =L, sp :=8.

Now let X be a variety. Then any line bundle is the line
bundle of a divisor (in other words, any line bundle has a
nontrivial meromorphic section, and thig follows from
HA(X;dii) = O , which is due to the fact that Mix is a

constant sheaf). Furthermore, any two nontrivial sections

define linearly equivalent divisors, whose associated WEIL
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divisors consequently are rationally equivalent.

This considerations show the following: et D be a pseu- :
dodivisor on the variety X . Choose a divisor C with

LD = LC and Sp = 8¢ \ X- D under this isomorphism

(such a C 1is said to represent D ). Then {C1 is

well- defined in An*q(lDl) (n=dim X ) , i.e. does

not depend on the choice of C , and is called the WEIL

divisor class of the pseudodivisor D , denoted (D] EAh_q(lDl) .

2.4 Intersecting with pseudodivisors The notion of

pseudodivisor has been stated in such a way as to make
restriction to closed subschemes always possible. We now

are in a position to perform the

Main intersection construction for pseudodivisors

If X 1is a scheme, D a pseudodivisor on X ,

N Zk(X) , there is a well- defined intersection

class Dok éAk_q(lDltwlu]) , where |[A| := suppw
is the support of X , defined by {«} “Pk) V) when
m #0
K = P m}\{_V)\] . It is given-by »
A
po(v] := [D1v] , the WEIL divisor

class of the pseudodivisor

DIV on V

for V a k - dimensional subvariety of X .

-
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Notation Write DoX € Ak-1(Y) for any Y with
®lcy<x .

This construction has the expected properties: biadditivity,
projection formula, flat pullback, etc.; see [F] y 23

E.g. the projection formula is: If f : X — Y. 1is

proper, then

in the appropriate CHOW groups.(Note that pseudodivisors
always pull back,.)

Theorem([F], 2.4) Intersecting passes to rational equiva-

lence.

Idea of proof The main point is to show: X a variety,

D, D e Div(X) > Do[Dl = D'o(D] in An_e(lD\r\ID'l) .
(Note that the corresponding assértion on the cycle level

2

is false: If M : X —> /A~ ©blows up the origin O ,

put D := (A xO0) and D' := 1 (0 x/A).)

Then one has Do [div(r)] = div(zr)o (D], and inter-
secting with a principal divisor is zero by construction.
The conclusion follows by the description (iii) of rational

equivalence in 1.4 .

Consequence For any closed subscheme Y of a scheme X ,
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D a pseudodivisor on- X , there is a well- defined

homomorphism

(1) Do~ : A(Y) — A _,4([DlaY)
vl ¥+ 1D o v]

with the 'usual' properties, called intersecting with D .

Especially, if D is an effective divisor, and 1 the
inclusion D & X of the closed subscheme D , Y := X ,
we call it the GYSINhomomorphism induced by i and denote
it (cf. (3) in Part A , 2.1)

(2) i* . A(X) —> & (D) .

2.5 CHERN class of a line bundle The fact that for

any line bundle on a variety the corresponding WEIL divi-
sor class as defined in 2.3 1is uniquely defined can be
formalized conveniently by the usual apparatus of the
first CHERN class: If 1 is a line bundle on a scheme

X , define the first CHERN operators

c,,(L)r\ - Ak(X) _ Ak_,}(X)

by cq(L)n (V] := WEIL divisor class of L|V in Ay _4(X0)
for any k - dimensional subvariety V . If D is any pseu-

dodivisor with Ly = L , then
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c,](L)n_ = Do -

as defined in 2.4 . The operations cq(L)r\ - are endo-
morphisms of Aﬁ(X) with the usual properties (projection
formula, pullback, additivity,with respect to ® , etc.).
Their behaviour with respect to the GYSINhomomorphisms

i* of an effective divisor D C_in9 X defined at the

end of 2.4 1is as follows:

(1) i*i*(o()

Cq (LD) N X

5

K

. R 3N
(31) 171,00 cq(yD)r\(X , where VY i= Lp|D
is the normal line bundle of D

in X ('self intersection formula') .

3, Intersecting with the zero section

m . ‘
3.1 Decomposable bundles If L —X 1s a line bundle,

the zero section s : ¥ — I, embeds X as a divisor DL
on L , which, by trivializing I locally over the cove-

. -1 ~ ..
ring {qxg of X by means of T U 3 U, x A , is given

. g} : \
by the collection {(fw qx,ﬂx)} , where f  is
TT-qU 43 Ux A ——357%7 A 3 an explicit isomporphism of
¥ 2
schemes Dy = X is given by TT\DL . Define the GYSIN-
homomorphism

5™ 1 A (L) —> A, (X)
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via

with DI‘OCX E-Ak_quﬂ) defined as in 2.4 (so identi-

fiying X with D this is just the GYSINhomomorphism

L 9

of the inclusion s : XC 51 as defined in 2.4 ). Since
. . =1

the local equations of Dy , restricted to @ (qu o),

define U x f01 , one sees, applying the definitions:

s = ldAk_q(X)

hence T" is injective, s* suréective.

If now E :[a-x is a decomposable vectorbundle of rank
r , this construction can be iterated and yields
¥ :
) s 0 8 (00— A (D)
with
. .
s (‘T = ld .
Ay (X0

In fact, WT* is isomorphic with inverse s*

T
Lemma If E-—L>XI is any vectorbundle of rank r ,

* o, . . .
ar Ak_r(X)——+> AK(E) is surjective.

Corollary (THOM isomorphism theorem for decomposable
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bundles) If E 1is decomposable (i.e. a direct sum of line

bundles) , TT* is isomorphic with inverse s* .

Proof of the lemma et Y€ X be closed and consider

the commutative diagram

Ak(ElY) —> A(E) — Ak(E\X -—Y) —— 0
™ t T
B p (D) — by (0 —5 & (EX-Y) —o0

whose rows are exact by 1.7 . Thig diagram allows to
reduce to the case that E —X 1s trivial, that is,

the bundle X X ﬂf'——BEL_§ ¥ . Since PT, factorizes as

Xt — xxa™l, ... Sxxa _5x

induction on r reduces to the case 1 = 1 , where a direct

argument can be applied ( [Fl, Proposition 1.9 ) . Q.e.d.

3.2 General bundles In this section, we complete the

main intersection construction in Part A , 2.1 , by pro-

ving the

Theorem (THOM isomorphism theorem, [F] , theorem 3.3 )

For any vectorbundle E X on a scheme X of rank r ,

the flat pullback > : A, (X) —>A (E) is en iso-.
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morphism.

Hence, we may define the intersection with the zero sec-

tion s to be the homomorphism

1 A (E) —=h_ (X)) .

s¥ = (™)

In case E is a decomposable bundle, this agrees with 3.1,(1).

Proof of the THOM isomorphism theorem In view of the

lemma in 3.1 , we must prove that w* is injective.

.

T

' P
For any vectorbundle V — X , we let [P(V)-—X de-
note the associated projective bundle, whose fibre over
X ¢ X is the projective space of lines in Vx . Dver

[P(V) 1lies the line bundle

whose fibre over a point in f{P(V) is the line represen-
ted by that point. Let @w(ﬂ) be its dual; it has a re-

presentation as a quotient of p*VV via the exact sequence
0 — H —» p'Ve—s 0,(1) —> 0

where H is the hyperplane bundle on IP(V) , whose fibre
over a point ¥ in  [P(V) , i.e. a line in vV, with x:=
p(%) , is just that line considered as a hyperplane of the

dual space V; . We then have the
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Structure theorem Let V have rank r = e+1 . For any

k , the map
e
By : D by (0 —> HED)
J:

=] .
greees®) > 2 ca(Oy(12 A p¥(y)
J:

is a natural isomorphism.

We defer the proof of this structure theorem to the end of
this section; granting the theorem we turn to the proof
of the THOM isomorphism theorem. For this, we consider the

projective closure P(E®4) of E ; the name refers

to the fact that the inclusion E < E @4 induces

P(E) LL, P(E® L) which embeds P(E) as an effective
divisor, called the 'hyperplane section atoo' , and
P(E®4) - [P(E) = E in a canonical fashion. The pro-
jection E®A4 —> 4 gives a map on the total space E
which is linear on the fibres, hence a section of (E@A yY
which can be pushed down to a section of the quotient
@E@i(’i) of (E@i)v vanishing precisely on [P(E)

in fact, for any P eA(P(E@ L)) |

]

< cqt@mimnm/g = BB o3

1]
[N
L3
l_'-
*
T
.

Denoting by q : P(E)—> X, p: P(E®d4L ) —> X the

projections, there is a diagram
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i ,
b (BE) — > A (PE@L)) —> 4 (B) —>0

Ak-r(x)

with an exact row, from which follows

Tr*(cx) = 0 <= pX)eé im i,

But, by the structure theorem for ' P(E) , im i consists

*
of elements of the form

503 0 (G A aiky) =
j=0 J
e .
;A-_-:O 04((9}3@1 M)A i*i”‘p*(o(j) (by the pro-

jection formula, since i*(oE(Bi ) = @E('l) )

T v
2. (Og@qg NN PG) oy (1) .
3=1

So, if p*((x) is of this form, we conclude (X = O , since,
by the structure theorem for WP(E®4) , this form must

be unigue. Q.e.d.

Proof of the structure theorem (1) Qv is surjective:

As in the proof of the lemma in 3.1 we may assume V is
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the trivial bundle by NOETHERian induction. Hence we can
split V as V'@4 . Consider the following commutative

diagram with an exact row:

s . K
A (P(T)) X & (B(T)) —s (V') —> O

p* “\\\\\\:?) '
Ao (X)

with i : P(V') &G PV) and j : V'Cs P(V) the

inclusions and 7' = TF\V' the projection of V' .

If 3 e A V"), ,j*(p') =m'¥@®) for an X € A _ (X) by the

lemma in 3.1, and then (2 - pmﬂx) € im 1 by'exactness of

*

the row. The claim then follows by induction.

(ii) (av is injective: Assume a nontrivial representation
e . .
0 - 7 e (OyNTa PP (o) =2 3
J:: .
and let - be the largest 5 with o £ 0.

Lemma  For any u_E-Ak(X)
p*(%(@v(’l))j AP ) =

in A

k+e—j(x) *
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Proof of the lemma ‘Je may restrict to the case K = (U],

where U 1s a k - dimensicnal varilety in X . By consi-

dering pU = V{U-—>T and naturality, one further
is reduced to the case U = X, ™ = X1.

1) J<e Ak+e_j(}{) = 0.

2) j=e Ak+e_j(X) = A(X) = Z-[{] , hence

2, (e (O3 A () = m. Tx]
for some integer m , and to show is m =1 ., low p*(a )
= [EKV)] . Restricting to an open U < X with V [U
trivial, we may assume V 1is trivial and so splits as
V@4 just as is (i) above. Then, by (1)

p (e Gy A LD = p, G, TRV

- g, (LROTOY)

notations as in (i) above. Iterating:

P*(Cq(éjv(q))ef\ ) = [X] , G.e.d. lemma .

Now compute O = p*(cq(Q7V(1))e-2n @ ) = 0% , a contra~

diction. Q.e.d.

This completes the main intersection construction.
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