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Abstract

Let 4J : G -t G be an endomorphism of an abstract group. We prove when G has an Abelian
subgroup of finite index that R(4J) = S(eP), where R(cP) is the J:{eidemeister number of <P and S(eP) is
the number of fixed points of the induced map ~ on the unitary dual (; of G. We construet a funetor
F from groups with endomorphism~ to groups with automorphisms and prove that R(Frp) = R(<p).

1 'Introduction

Throughout this article G will be an abstract group and ,p : G -+ G an endomorphism (not necessarily
injective or surjective). \Ve shall refer to the unitary dual of G as G. There is an induced map J :G -+ G.
We sha11 study the Reidemeister number R(4J), and the number S(4J) = #Fix(J). These will be properly
defined below. In [1] it was shown that when G is either finite or Abelian R(,p) = S(,p). The classes of
finite groups and of Abelian groups have a rather sma11 intersection! and so the question arises , under
what circumstances does the equali ty R( 4» = s(tP) hold? This article is an attempt to answer this
question. A group will be called almost Abelian if it has an Abelian subgroup of finite index. \Ve prove
here that if G is almost Abelian and finitely generated then R(rp) =S(,p).

Reidemeister numbers arose first in topology as an estimate for the number of fixed points of a map
f : X --+ X of a topological space X to itself. The treatment here is mainly group-theoretical, although
I give an account of the geometrie interpretations in §1.4.

I would like to thC!-nk A. L. Fel'shtyn! S.J.Patterson and M.Tadic for many many useful discussions. I
would also loke to thank SFB 170 in Göttingen and the Max-Planck-Institut für Mathematik in Bonn
for their hospitality.

1.1 <,b-Conjugacy and Reidemeister Numbers.

Two elements x! Y E Gare said to be <p-conjugate iff there exists a 9 E G with

xg = 4J(g)y.

We shall wri te {x} 4' for the <p-conj ugacy class of the element x E G. The Reidemeister number R(,p)
of 1; is defined to be the number of ,p-conj ugacy classes in G. \Ve shall also wri te n (,p) for the set of
qIJ-conjugacy classes of elements of G. If 1> is the identity map then the <p-conjugacy classes are the usual
conjugacy classes in the group G.

1.2 Irreducible Representations and the number 5(4)).

Let V be a Hilbert space. A unitary representation of G on V is a homomorphism P : G --+ U(V) where
U(V) is the group of unitary transformations of V. Two of these PI : G ---+ U(Vd and P2 : G --+ U(V2 ) are
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2 1 INTRODUCTION

said to be equivalent if there is a Hilbert space isomorphism VI ~ V2 which commutes with the G-aetions.
A representation p : C -+ U(V) is said to be irreducible if there is no decomposition

V~VIEBV2

in which VI and V2 are non-zero l closed C-submodules of V.
One defines the unitary dual G of G to be the set of all equivalence classes of irreducible

J
unitary

representations of G.
If p : G -+ U(V) is a representation then po 4J : C -+ U(V) is also a representation l which we shall

denote J(p). If PI and P2 are equivalent then J(pt) and J(P2) are equivalent. Therefore the endomorphism
4J induces a map ~ : G-+ Gfrom the unitary dual to itself.

Definition 1 Define the number S(4J) to be the numbe7' of fixed points 0/ the induced map ~ : (; -+ G. We
shall write S(4J) for the set 01 fixed points oI~. Thus S(4J) is the set 01 equivalence classes 01 irreducib/e
representations P : C --t U(V) such that there is a tmnsJormation M E U(V) satisJying

Vx E Cl p(4J(x)) =M . p(x) . M- 1
•

Note that if 4J is an inner automorphism x t--+ gxg- I then we have far any representation Pl

p(4J(x)) = p(g) . p(x) .p(g)-l ,

(1)

implying that the class of p is fixed by the induced map. Thus for an inner automorphism the induced
map is trivial and S (4J) is the cardinali ty of G.

]f G is an Abelian group then all of its irreducible representations are one dimsional. Ir PI and P2
are two I-dimensional representations then their pointwise product (PI' P2)(g) := pdg) . P2(g) is also
a one-dimensional representation of G. This rnultiplication rnakes (; into a group. There is a natural
topology on (; for which G can be identified with the set of continuous I-dimensional representations of
(;. In this identification 9 E G is identified wi th the representation P t--+ p(g). \Vhen G is Abeli an the
group Gis called the Pontryagin dual of G.

The Pontryagin dual of a finite Abelian group G has the same cardinality as G. If G ~ zr is a free
Abelian group then ä =:: IRr /71/ is a torus. The dual of a direct surn is that direct sum of the duals. This
is all proved in [5]

1.3 Statenlents of Results

We shaH prove the following

Theoreol 1 IJ C is a finitely ge71emted (llmost Abelian grottp and 4J an endom07']Jhism oJ G then

R(4J) = S(4J). (2)

By specialising to the case when C is finite and tP is the identity map, we obtain the classical result
equating the number of irreducible representations of a finite group with the number of cOlljugacy classes
of the group.

The equation (1) was first conjectured in [1], where it was proved in the following cases:

If there is a natural number n such that 4Jn(G) is Abelian.

2 If G is a finite group.

In §5 we shall describe a functor

F: [
Groups with a chosen]

endomorphism
(C, tft)

with the property that that R( 4J) = R(F4J).

[
Groups with a chosen]

au tomorph isrn
(FG, F4J)

(3)
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1.4 Geometrie Interpretation of Reidenleister Numbers

In this paragraph let X be a topological space with fundamental group 1r1 (X) and universal cover pr :
X ---+ X. If f : X ---+ X is a self map of X, a lifting of f is a commuting square

JY L X
pr ~ ~ pr

X -4 X

Two of these are said to be equivalent if there is a commuting cube:

X !!... X::::::

il f'J
./ ./ ~

JY !!... JY X=
J

4- ~ ./
X id Xt------t

The Reidemeister number R(J) of the self-map f : X ---+ X was defined by K.Reidemeister to be the
number of equivalence classes of liftings of f. This was intended as an estimate on the number of fixed
points of f in X. It is knowll , for example timt when X is a compact polyhedron , there is a self-map
9 : X ---+ X homotopic to f such that 9 has ~ R(f} fixed points. The number R(f) is a homotopy
invariant of f.

The map f induces an endomorphism 1l"1 (1) of the fundamental group 1r1 (X) which is defined upto
composition with an inner automorphism. Using the fundamental group to parametrize the liftings f of
f I one finds that lifting classes correspond to 1l"d J)-conj ugacy classes in 11"1 (X). One therefore has (see
[2])

the right hand side being the group-theoretical Reidemeister number defined in §1.1. The fact that 11"1 (I)
is only definied modulo inner automorphisms corresponds to the following which is easily proved:

Proposition 1 Let <p : G ---+ G be any grottp endomorphism and let 9 E G. Let t/J be the endom01phism
given by 1,b(x} = g-l<jJ(x}g. Then two elements X, y E G are <jJ-conjugate ilJ xg and yg are ljJ-conjugate.
In particular R(<jJ) depends only on <jJ modulo inner automorphisms 0/ G.

Note also that ~ (and therefore also S(<jJ) and S(<jJ)) depends only on <jJ modulo inner automorphisms.
Let TJ be the mapping torus of the map f : X ---+ X, ie. the quotient of the space X x [O, 1] obtained by

identifyi ng the point (x I 0) wi t,h (f (xLI) for every x EX. There is a canonical proj ection T : TJ ---+ IR jZ
given by (x, t) 1-7 t. This induces a map 1r1 (T) : 1rdTJ) ---+ Z.

It turns out that the Reidemeister number R(f} is equal to the number of homotopy classes of closed
paths , in TJ whose projections onto IR/Z are homotopic to the path

(j: [0 , 1] ---+ IRjZ
t ~ t.

Corresponding to this there is a new group theoretical interpretation of R( 1r1 (f)) as tlle number of
usual conjugacy classes of elements, E 1r1(TJ} satisfying 1l"l(T}(,) = 1. Here the symbol 1 means tbe
generator of the group ;;Z = 1rdIRjZ). Tbc functor F mentioned in §1.3 takes the group 1rdX) to the
kernel of 7i"1 (T) : 1r1 (TJ) ---+ Z and tbe endomorphism 1rl (I) to the restriction to ker( 1T1 T) of t,he inner
automorphism,l-7 u,u-1, where 1T1(T}(Ö') = (T.

In this context it is interesting to note the following:
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(4)

Proposition 2 Let P !Je an irreducible repn~sentation 01 1rI(X). Then the dass 0/ p is fixed by J iff
p is the restriction to 1rl (X) 0/ an irredtlcible representation p 0/ 1rl (Ti)' Thtl8 S( rjJ) is the numbe,' 0/
irreducible representations 0111"1 (X) which are restrictions 01 representations 0/ trI (TJ ).

Proof. Let r = 7rI(TJ), G = 7rI(X) and 4> = 1f'1 (I). If G has a presentation

G =< genIreln>

then it is known that r has the presentation

r =< gen U {t}lreln U {t- 1gt4>(g)-1 : gEgen} > .

Let p be a representation of G. If J(p) is equivalent ta p then there is a matrix 111 with

p 0 eP = /1.1 . p . /1.1- 1 .

Define
p(t) := M, p(g):= p(g) 9 E G.

\Ve then have
p(tgt- 1) = p(IjJ(g)),

from which it follows that pcan be extended to a representation of r. Clearly p is the restriction of p to
G. Since p is irreducible it follows that p is irreducible.

On the other hand if p is an irreducible representation of r whose restrietion pie to G is irreducible

then (1) holds with M = p(t), so ~(ple) is equivalent to pie.

1.5 Sonle Old Results on Reidenleister Numbers

We now describe some known results on Heidemeister numbers.

Lemma 1 ([2]) 11 G is a group and l' is an endomorphism 0/ G then an element x E G is always
4J -conjtlgate to i ts image l' (x) .

Proof. Ir 9 = x-I then one has immediately gx = 4J(x)4J(g). The existence of ag satisfying this equation
implies that x and 4J(x) are 4J-conjugate.

1.5.1 Abelian Groups

In this paragraph let G be an Abelian group, whose group law we shall write additively. The unitary
dual Gof G is the Pontryagin dual of G. Jf rjJ is an endomorphism of G then x and y are <p-conjugate iff
x - y = rjJ (g) - 9 for same 9 E G. Thereforc R( cP) is the number of cosets of the image of the endomorphism

(rjJ-l):G --+ G

9 ~ rjJ(g) - g.

\Ve thus have

LeInma 2 ([2]) I/ G is Abelian then R(4J) = #eoker( 4> - 1).

Note that eoker (tP - 1) is eanonieally isomorphie to the POllt ryagin cl tl al of ker (~ - 1Lw here

(~-l):G --+ (;

9 ~ ~(g) - g.

From this it follows t,h at when eoker (1' - 1) is a fini te graup, its order is equ al t.o that of ker (~ - 1). On
the other hand an element of ker(~ - 1) is the same thing as a fixed point of J. The number of fixed
points of ~ is S(rjJ). We therefore have

LeIuma 3 ([1]) If G is Abelian and R(tP) is finite then R( rjJ) = S( rjJ)
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1.5.2 Finite Groups

In this paragraph let G be a finite group. In [1] the following theorem was proved using a eounting
argument.

Theorenl 2 ([1]) Let 4J be an endomorphism 0/ a finite group G. Then 4J maps (usual) congruency
c/asses in G to congruency c/asses in G. 'The number 0/ congruency classes in Gwhich are mapped to
themselves by 4J is precisely the Reidemeister n umber R( ifJ).

Now let V be the eomplex vedor space of dass fundions on the group G. A dass fundion is a
fundion whieh takes t,he same value on evcry element of a (usual) eongruency dass. Thc map 4J induees
a map

If':V -+ V

f ~ fo4J

\Ve shall ealculate the traee of If' in two ways. The eharacteristic fllnctions of the eongrueney classes in
G form a basis of V, and are mapped to olle another by If' (the map need not be a bijection). Therefore
the trace of If' is the number of elements of this basis whieh are fixed by If'. By Theorem 3, this is eqllal
to the Reidemeister Ilumber.

Another basis of V I whieh is also mapped to itself by If' is the set of traces of irreducible representations
of G (see [4] chapter XVIII). From this it follows that the trace of If' is the nUll1ber of irreducible

representations p of G such timt p has the same traee as ~(p). However, representations of finite groups
are charcterized upto equivalence by their traces. Therefore the trace of If' is equal to the number of fixed
points of ~, ie. S(4J). \Ve therefore have by Theorem 2

Theorem 3 ([1]) Let ifJ be an endomorphism 01 a finite group G. Thell R(4J) = S(ifJ).

2 Proof of Theorem 1

In ihis sedion we shall prove Theorem 1. It seems plausible that one could prove the same theorem for
the so - called "tarne" topological groups (see [3]), However we shall be interested mainly in diserete
groups, and it is known that the discrete tame groups are almost Abelian.

We shall introduce the profinite completion G of G and the corresponding endomorphism 4> : G --+ G.
This is a cornpact totally disconnected group in which G is densely embedded. The proof will then follow
in three steps:

R(4J) =R(4)), S(4J) =S(4)), R(4)) =S(~).

Ir one omits the requirement that G is almost Abelian then one ean still show that R(4J) 2:: R(~) and
S(4J) 2:: s(~). The third identi ty is a general fact for eornpaet groups (Theorem 4).

2.1 Compact Groups

Here we shall prove the third of the above identities.
Let C be a compact topologieal group and 4J a continuous endomorphism of C. We define t.he number

stop (q») to be the num ber of fixed points of J in the uni tary clual of C, where we on Iy consider continuous
representat ions of C. The nurnber R(4J) is definecl as usual.

Theorem 4 Por a continuous endomorphism 4J 0/ a compact group C one has R( ifJ) = .)top (4J).

The proof uses the Peter-Weyl Theorem:
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Theorem 5 (Peter - Weyl) If C is compact then there is the following decomposition of the space
L1(C) as a C Ei:) C-module.

L 1(C) =:: EB Hornc(V>., V>.).
>.ec

and Schur's Lemma:

Lemma 4 (Schur) If V and W are two irredtJcible unitary representations then

Homcc(V, W) ~ {~ ~;:

Proof of Theorem 4. The q)-conjugacy c1asses! being orbits of a compact group! are compact. Since there
are only finitely many of them 1 they are also open subsets of C and thus have positive Haar measure.

\Ve embed C in C Ei:) C by the map 9 ~ (g, q)(g)). This makes L2(C) aC-module with a twisted
action. By the Peter-Weyl Theorem we have (as C-modules)'

L 2(C) == EB Homc(V>.! V~(>.)).
>.ec

We therefore have a corresponding decomposition of the space of C-invariant elements:

L2(C)c =:: EB Homcc(V>'l V~(>\)) .
..\ec

We have used the weil known identity Homc(V1 W)C =Horncc(V, W).
The left hand side consiats offunetions f: C -t C satisfying f(gxq)(g)-l) = f(x) for alt x!g E C.

These are j ust funetions on the q)-conj ugacy cl asses. The dimension of t he ieft hand side is thus R(1J).
On the other hand by Schur's Lemma the dimension of the right hand side is ,St0P(q)).

2.2 The End of the Proof

Let G be an almost Abelian group with an Abelian Sll bgroup A of fi ni te index [G : A]. Let A0 be the
intersection of all subgrollps of Gof index [G : A]. Then AO is an Abelian normal subgroup of fmite index
in G and one has ~(AO) C AO for every endomorphism ~ of G.

1 -4 AG -t G -t F -t 1
-!-q)IAO -!-~ -!-

1 --+ AO --+ G --+ F --+ 1

Lemma 5 If R(q)) is finite then so is R(q)IAO).

Proof A q)-conjugacy c1ass is an orbit of the group G. A q)IAo-conjugacy c1ass is an orbit of the group
AG. Since AG has finite index in G it follows that every qS-conjugacy c1ass in AO can be the union of at
most finitely many 1JIAo-conjugacy c1asses. This proves the lemma.

Let G be the profinite completion of G with respect to its normal subgroups of finite index. There ia
a canonical injection G --1 G and the map <p can be extended to a continuous endomorphism ~ of G.

Therc is therefore a canonical map
'R(1J) --+ 'R(~).

Since G is dense in G! the image of a ljJ-conjugacy class {x}<,t> is its closllre in G. Fram t.his it follows t.hat
the above map is surjective. \Ve shall actually see that the map is bijective. This will then give us

R(1J) = R(~).

However 4> is an endomorphism of the compact group G so by Theorem 7

It thus suffices to prove the following two lemmas:
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Lemma 6 If R(q,) is finite then st°P(~) =S(q,).

Lemma 7 If R( q,) is finite then the map 'R(q,) ~ 'R.(~) is injeetive.

Proof 0/ Lemma 6. By Mackey's Theorem (see [3]), every representation p of G is contained in a repre

sentation which is induced by al-dimensional representation X of A. lf p is fixed by J then for aH a E AO
we have x(a) =x(q,(a)). Let Al ={a . q,(a)-l : a E AO}. By Lemma 5 R(q,IAO) is finite and by Lemma
2 R(4JIAO) = [AO : Al]. Therefore Al has finite index in G. However we have shown that X and therefore
also p is eonstant on cosets of Al. Therefore p has finite image) whieh implies that p is the r;strietion to

G of a unique continuous irreducible representation p of G. Oue verifies by continuity that ~(p) = p.
Conversely if p E S(~) then the restrietion of p to G is in S(q,).

Proof of Lemma 7. We must show that the intersection with G of the closure of {x},p in G is equal to
{x },p. We do this by constructing a coset of anormal subgroup of finite index' in Gwhich is contained in
{x},p. For every a E AO we have x "",p xa if there is ab E AG with x- 1bxcjJ(b)-1 = a. It follows tImt {x},p
contains a coset of the grou pA; := {x -1 bxq, (b) -1 : b E AG}. Itremains to show tImt A; has fi ni te index
in G.

Let 1/;(g) = x<jJ(g)x- 1
. Then by Proposition 1 we have R(1j;) = R(q,). This implies R(1j;) < 00 and

therefore by Lemma 5 that R(1/JI A o) < 00. However by Lemma 2 we have R(1/JIAo) = [AG: A;]. This
finishes the proof.

3 A U sefnl Lemma

The following lemma is useful for calculating Reidemeister numbers. Tt will also be used in the proof that
R(q,) = R(F4J).

Lemma 8 Let <jJ : G -+ G be any endomorphism 0/ any group G, and let H be a subgroup 0/ G with the
properties

4J(H) C H

\:Ix E G 3n E N such that <jJn(x) E H.

Then
R(4J) = R(<jJ IH),

where <jJ 1/1: H -+ H is the restrietion 0/4J to H. If all the numbers R(4Jn) are finite then

From this follows immediately:

Corollary 1 Let H = 4Jn(G). Then R(ifJ) =R(q, lH).

Proo/ 0/ Lemma 8. Let x E G. Then there is an n such that 4Jn(x) E H. From Lemma 1 it, is known that
x is ifJ-conj ugate to <jJn (x). Th is means th at the <jJ-conj ugacy dass {x} tP of x has non-ernpty intersection
with H.

Now suppose that x) y E H are cjJ-eonjugate l ie. there is ag E G such that

gx = y4J(g).

We shall show that x and y are <jJIH-conjugate, ie. we can find a gEH with the above property. First
let n be Iarge enough that <jJn(g) EH. Then applying <jJn to the above equation we obt,ain
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Th is shows that ifJfl (x) and ifJn (y) are tP lu-conj ugate. 0 n the other hand I one knows by Lemma 1 that x
and t,bn (x) are tP IlJ -conj ugate, and !J anel tP n(y) are rjJ IH conj ugatc, so x and y mlist be tP !u-conjugate.

\Ve have shown timt the intersection with H of a 4J-conjugacy dass in G is a cPlH-conjugacy dass in
H. \\Te therefore have a map

Rest: n( cP) --+ 1\'-( ifJ lu )
{x}qS ~ {x}qSnH

This clearly has the two-sided inverse
{X}qSIH ~ {x}qS.

Therefore Rest is a bij ect ion and R(cP) = R(cP lu ).

4 Reduction to the case of Automorphisms

In this § we begin with a group endomorphism tP : G --+ G and we construct a group FG and an
automorphism FcP : FG --+ FG with the property

R(FifJ) = R(tP).

Our reduction will be in two steps. \Ve begin by reducing to the case of injective endomorphisms. After
that we reduce from injective endornorphisms to automorphisms.

4.1 Reduction to Injective Endomorphisn1s

Let G be a group and cP : G --+ G an endomorphism. \Ve shall call an element x E G nilpotent. if there is
an n E N such that 4>n(x) = id. Let N be the set of aH nilpotent elements of G.

Proposition 3 The set N is a nomzal SUbgroliP 0/ G. vFe haue 4>(N) C N and rjJ-l(N) = N. Thus ljJ
induces an endomorphism [cPINJ 0/ the quotient grotlp GIN given by.

[4>1 N](xN) := cP(x)N.

The endomorphism [4>1 N] : GIN --+ GIN is injeetiue, and we haue

R(4)) = R([4>IN]) , S(ifJ) = S([tP1N]) .

Proof. (i) Let x E N 1 9 E G. Then for some n E N we have 4>n (x) = id. Therefore ifJn (gxg- l ) =
ifJn(gg-l) = id. This shows that gxg- l E N so N is anormal subgroup of G.

(ii) Let x E N and choose Tl such that 4>n(x) = id. Then IjJn-1(1J(x)) =id so ifJ(x) E N. Therefore
tP(N) C N

(iii) If tP(x) E N then there is an n such that cPn(ifJ(x)) = id. Therefore cPn+1(x) = id so x E N. This
shows that cjJ -1 (N) c N. The eonverse inelusion follows from (i i).

(iv) We shaH now show that, tbe map x ~ xN induces a bijection

n (ifJ) ~ R. ([ ljJ1ND .

Su ppose x, y E Gare cP-eonj ugate. Then there is a 9 E G with

gx = y1J(g).

Projecting to the quotient group GIN we have

gN xN = !JN cjJ(g) N,

so
gN xN = yN[4>1N](gN).
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This means that xN and yN are [q)INJ-conjugate in GIN. Conversely Buppase timt xN anel yN are
[I/J IN]-conj ugate in GIN. Then there is a 9 N E GIN such th at

gNxN = yN[4>IN](gN).

In other words
gx4>(g)-l y-l E N.

From this it follows that there is an n E W with

Therefore

This shows that q)n (x) allel 4>n (y) are q)-collj ugate. However by Lemma 1 x alld q)n (x) are q)-conj ugate 1

as are y aud 4>n (y). Therefore x alld y are I/J-conj ugate.
(v) We have shown that x anel y are 4>-conjugate iff xN and yN are [q)IN]-conjugate. From this it

follows that x ~ xN ind nces a bijection from n (I/J) La n ([4> INJ). Therefore R(q)) = R( [4> INJ) .
(vi) \Ve shall UQW show that 5(4)) = S([4>INJ). Let pE S(I/J) alld let A1 be a matrix for which

p 0 4> = ]vI . p . !t1- 1 •

Ir x E N then there is an 71 E N with 4>n(x) = id. Therefore

Mn . p(x) . M-n = p(4)n (x)) = id,

which implies that p(x) = id. Thus N is contained in the kernel of p and there is a representation fpl N]
of GIN given by

[PIN](gN) := p(g).

Since [PINJ satisfies the identity

[pIN] 0 [4>IN] = AI· [pIN}· M- I
,

we have [PIN] E S([4>1N]).
(vii) Conversely if pE S((4>IN]) then we may construct a pE S(q)) by

p(x) := p(xN).

It is elear that
[pIN] =p and plN =p

so it follows timt 5(4)) = S([4>IN]).

4.2 Reduction of Injective EndomorphisnlS to AutomorphisnlS

Now suppose that 4> : G -t G is any injeetive endomorphism of an almost, Abelian group G. Cansider
the direeted system

Go .!!+ GI .!t G2 .!!+ G3 .!!+ ... 1

where each Gi is a copy of the group G. \Ve may form the limit of this system

G:=limGi.
--+

This is the union of the sets Gi in which we identify the element x E Gi with the element q)n (x) in GHn .
We uow gi ve G a group Iaw. If x, Y E G then hath x aud y are represented by elements Xi, Yi i Tl Gi for
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sufficiently large i, \Ve define the produet xy E G to be t,he element of G represented by the element XiYi

of Gi. The group axioms are trivial to check.
By identifying C with Go, we can think of G as being a subgroup of G.
\Ve now extend the map 4J to an endomorphism of G. For any element xE G there is a representative

Xi E Gi of x in Gi for some i. \Ve may define ~(x) to be the element represented by 1'(Xi) in Gi (NOT
in C i+ I, otherwise ~ would be the identi ty map). This c1efini tion is independent of i.

Theorem 6 In the notation introduced above] ~ is an automorph1'sm 01 the grotJ» G and R(4J) = R(~).

Proof. (i) Let x E G be in t.he kernel of (fi. The element X is represented by sorne Xi E Ci. Since
~(x) =id we know t.hat 4J(xd E Gi is equivalent to id EGo. From this it follows (since 4J is injeetive)
that 4Ji (id) = l' (::d in C, Clearly this means that Xi = id in Gi. Therefore ~= id in G, so ~ is inj ective.

(ii) Let x E G be represented by some Xi E Gi. Let y be the element of G represented by Xi in Ci+I.

Then ;j;(y) is represented by 4J(xd in Ci+I, which in turn is equivalent to Xi E Gi. Therefore ;j;(y) = x,
so ;j; is surjective.

(ii i) Let X E G be represented by some Xi E Gi, Let y be the element of G represented by Xi in Go.

Then t (x) is represented by 4Ji (xd E Gi, which is equivalent to xi EGo. Therefore for every element

x of G there is an i E N such that t (x) E G. In addition we have ""f(G) c G. From this it follows by
Lemma 8 that R(4J) = R(4)).
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