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Abstract

Let ¢ : G — G be an endomorphism of an abstract group. We prove when G has an Abelian
subgroup of finite index that R(¢) = 5(¢), where R(¢) is the Reidemeister number of ¢ and $(¢) is
the number of fixed points of the induced map @ on the unitary dual G of G. We construct a functor
F from groups with endomorphisms to groups with automorphisms and prove that R(F¢) = R(¢).

1 ' Introduction

Throughout this article G will be an abstract group and ¢ : G — G an endomorphism (not necessarily
injective or surjective). We shall refer to the unitary dual of G as G. There is an induced map ¢ : G = G.
We shall study the Reidemeister number R(¢), and the number S(¢) = #[‘lx(gb). These will be properly
defined below. In [1] it was shown that when G is either finite or Abelian R($) = S(¢). The classes of
finite groups and of Abelian groups have a rather small intersection, and so the question arises, under
what circumstances does the equality R(¢) = S(¢) hold? This article is an attempt to answer this
question. A group will be called almost Abelian if it has an Abelian subgroup of finite index. We prove
here that if G is almost Abelian and finitely generated then R(¢) = S(4).

Reidemeister numbers arose first in topology as an estimate for the number of fixed points of a map
f X — X of a topological space X to itself. The treatment here is mainly group-theoretical, although
[ give an account of the geometric interpretations in §1.4.

I would like to thank A.L.Fel’shtyn, S.J.Patterson and M.Tadi¢ for many many useful discussions. |
would also loke to thank SFB 170 in Gottingen and the Max-Planck-Institut fur Mathematik in Bonn
for their hospitality.

1.1 ¢-Conjugacy and Reidemeister Numbers.

Two elements z,y € G are said to be ¢-conjugate iff there exists & g € G with

zg = ¢(g)y.

We shall write {z}4 for the ¢-conjugacy class of the element z € G. The Reidemeister number R(¢)
of ¢ is defined to be the number of ¢-conjugacy classes in G. We shall also write R(¢) for the set of
¢-conjugacy classes of elements of . If ¢ is the identity map then the ¢-conjugacy classes are the usual
conjugacy classes in the group G.

1.2 Irreducible Representations and the number S(¢).

Let V be a Hilbert space. A unitary representation of G on V is a homomorphism p : G — U(V) where
U(V) is the group of unitary transformations of V. Two of these p; : G — U(V}) and pz : G — U(V2) are
1



2 I INTRODUCTION

sald to be equivalent if there is a Hilbert space isomorphism Vi = V5 which commutes with the G-actions.
A representation p : G — U(V) is said to be irreducible if there is no decomposition

Ve W,

in which V| and V; are non-zero, closed G-submodules of V.

One defines the unitary dual G of G to be the set of all equivalence classes of irreducible, unitary
representations of .

If p: G = U(V) is a representation then po ¢ : G — U(V) is also a representation, which we shall
denote ¢(p) If py and ps are equivalent then &(pl) and &(pg) are equivalent. Therefore the endomorphism
¢ induces a map ¢ : G = G from the unitary dual to itself.

Definition 1 Define the number S(#) to be the number of fized points of the induced map ¢ : G — G. We

shall write §(¢) for the set of fized points of ¢. Thus S(¢) is the set of equivalence classes of irreducible
representations p . G — U(V) such that there is a transformation M € U(V) satisfying

Ve e G, p(d(z)) =M plz)-M~". (1)
Note that if ¢ is an inner automorphism z — gzg~! then we have for any representation p,

p(d(z)) = plg) - p(z) - plo) ™",

implying that the class of p is fixed by the induced map. Thus for an inner automorphism the induced
map is trivial and S(¢) is the cardinality of G.

If G is an Abelian group then all of its irreducible representations are one dimsional. If p; and ps
are two 1-dimensional representations then their pointwise product (p1 - p2)(g) = p1(y) - p2(g) is also
a one-dimensional representation of (f. This multiplication makes (& into a group. There is a natural
topology on G for which G can be identified with the set of continuous 1-dimensional representations of
G. In this identification g € G is identified with the representation p — plg). When G is Abelian the
group G is called the Pontryagin dual of G.

The Pontryagin dual of a finite Abelian group G has the same cardinality as G. If G = Z" is a free
Abelian group then G = R"/Z" is a torus. The dual of a direct sum is that direct sum of the duals. This
is all proved in [5]

1.3 Statements of Results
We shall prove the following
Theorem 1 If G is a finitely generated almost Abelian group and ¢ an endomorphism of G then

R(¢) = 5(¢). (2)

By specialising to the case when ( is finite and ¢ is the identity map, we obtain the classical result
equating the number of irreducible representations of a finite group with the number of conjugacy classes
of the group.

The equation (1) was first conjectured in [1], where it was proved in the following cases:

1 If there is a natural number n such that ¢"(() is Abelian.
2 If G is a finite group.

In §5 we shall describe a functor

Groups with a chosen Groups with a chosen
F: . — .
endomorphism automorphism (3)
(G, 9) — (FG,F¢)

with the property that that R(¢) = R(F¢).
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1.4 Geometric Interpretation of Reidemeister Numbers

In this paragraph let X be a topological space with fundamental group 7;(X} and universal cover pr :
X X. If f: X = X is a self map of X, a lifting of f is a commuting square

X 4L x
pr 1l 1 opr.
x L ox

Two of these are said to be equivalent if there is a commuting cube:

X £ X
fr fa
Ve v

X £ X X .

f
o v
x & x

The Reidemeister number R(f) of the self-map f : X — X was defined by K.Reidemeister to be the
number of equivalence classes of liftings of f. This was intended as an estimate on the number of fixed
points of f in X. It is known, for example that when X is a compact polyhedron, there is a self-map
g : X = X homotopic to f such that g has < R(f) fixed points. The number R(f) is a homotopy
invariant of f.

The map f induces an endomorphism m1(f) of the fundamental group m{X) which is defined upto
composition with an inner automorphism. Using the fundamental group to parametrize the liftings f of
f, one finds that lifting classes correspond to m(f)-conjugacy classes in 71(X). One therefore has (see
2)

R(f) = R(m(f)),

the right hand side being the group-theoretical Rejdemeister number defined in §1.1. The fact that 1 (f)
is only definied modulo inner automorphisms corresponds to the following which is easily proved:

Proposition 1 Let ¢ : G = G be any group endomorphism and let g € G. Let ¥ be the endomorphism
given by ¥(z) = g~ 1¢(z)g. Then two elements z,y € G are $-conjugate iff zg and yg are P-conjugate.
In particular R(¢) depends only on ¢ modulo inner automorphisms of G.

Note also that ¢ (and therefore also §(¢) and S(¢)) depends only on ¢ modulo inner automorphisms.

Let T be the mapping torus of the map f : X — X, ie. the quotient of the space X x [0, 1] obtained by
identifying the point (z,0) with (f(z), 1) for every & € X. There is a canonical projection 7: Ty — R/Z
given by (z,t) — t. This induces a map m,(7) : m(Ty) = Z.

It turns out that the Reidemeister number R(f) is equal to the number of homotopy classes of closed
paths v in 7; whose projections onto R/Z are homotopic to the path

c: [0,1] = R/Z
t — 1.

Corresponding to this there is a new group theoretical interpretation of R(m(f)) as the number of
usual conjugacy classes of elements y € m;(7T}) satisfying m,(7)(y) = 1. Here the symbol 1 means the
generator of the group Z = m(R/Z). The functor F mentioned in §1.3 takes the group m(X) to the
kernel of my(r) : m1(Ty) — Z and the endomorphism 7;(f) to the restriction to ker(m;7) of the inner
automorphism y = §y5~!, where m (7)(¢) = 0.

In this context it is interesting to note the following:
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Proposition 2 Let p be an irreducible representation of m(X). Then the class of p is fired by ¢ iff
p s the restriction to m(X) of an irreducible representation 5 of m(Ty). Thus S(¢) is the number of
irreducible representations of m1(X) which are restrictions of representations of m(Ty).

Proof. Let T = my(T}), G = m(X) and ¢ = = (f). If G has a presentation
G =< gen|reln >
then it is known that " has the presentation
=< genU{t}relnU {t~1gtd(g)~" : g € gen} > .
Let p be a representation of G. If ¢(p) is equivalent to p then there is a matrix M with

pod=M-p- ML 4)

Define
pt) =M, plg):=plg) g€C.

We then have

pltat™") = plé(9)),
from which it follows that g can be extended to a representation of I'. Clearly p is the restriction of  to
G. Since p is irreducible it follows that j is irreducible.

On the other hand if p is an irreducible representation of I' whose restriction p|g to G is irreducible
then (1) holds with M = p(t), so ¢(p|¢) is equivalent to p|g.

1.5 Some Old Results on Reidemeister Numbers
We now describe some known results on Reidemeister numbers.

Lemma 1 ([2]) If G is a group and ¢ is an endomorphism of G then an element z € G is always
@-conjugate to its image ¢(z).

Proof. 1If ¢ = z™! then one has immediately gz = ¢(z)d(g). The existence of a g satisfying this equation
implies that z and ¢(z) are ¢-conjugate.

1.5.1 Abelian Groups

In this paragraph let G be an Abelian group, whose group law we shall write additively. The unitary
dual G of G is the Pontryagin dual of G. If ¢ is an endomorphism of G then z and y are ¢-conjugate iff
z—y = ¢(g)—g for some g € G. Therefore 12(¢) is the number of cosets of the image of the endomorphism

(¢-1):G - G
9 = ¢l -g
We thus have
Lemma 2 ([2]) If G is Abelian then R{¢) = #coker(¢ —1).

Note that coker(¢ — 1) is canonically isomorphic to the Pontryagin dual of ker(¢ — 1), where
(¢6-1):6 - G
g = élg)-g.

~

From this it follows that when coker(é¢ — 1) is a finite group, its order is equal to that of ker(¢ — 1}. On
the other hand an element of ker(¢ — 1) is the same thing as a fixed point of ¢. The number of fixed
points of ¢ is S(¢}. We therefore have

Lemma 3 ([1]) If G is Abelian and R(@) is finite then R(¢) = S(¢)



1.5.2 Finite Groups

In this paragraph let G be a finite group. In [1] the following theorem was proved using a counting
argument.

Theorem 2 ([1]) Let ¢ be an endomorphism of a finite group G. Then ¢ maps (usual) congruency
classes in G to congruency classes in . The number of congruency clusses in G which are mapped to
themselves by ¢ is precisely the Reidemeister number R(4).

Now let V' be the complex vector space of class functions on the group G. A class function is a
function which takes the same value on every element of a (usual} congruency class. The map ¢ induces
a map

p:V =V
fom= fod

We shall calculate the trace of ¢ in two ways. The characteristic functions of the congruency classes in
(' form a basis of V, and are mapped to one another by ¢ (the map need not be a bijection). Therefore
the trace of ¢ is the number of elements of this basis which are fixed by ¢. By Theorem 3, this is equal
to the Reidemeister number.

Another basis of V', which is also mapped to itself by ¢ is the set of traces of irreducible representations
of G (see [4] chapter XVIII}). From this it follows that the trace of ¢ is the number of irreducible
representations p of & such that p has the same trace as qb(p) However, representations of finite groups
are charcterized upto equivalence by their traces. Therefore the trace of ¢ is equal to the number of fixed
points of ¢, ie. S(¢). We therefore have by Theorem 2

Theorem 3 ([1]) Let ¢ be an endomorphism of a finite group G. Then R($) = S(¢).

2 Proof of Theorem 1

In this section we shall prove Theorem 1. [t seems plausible that one could prove the same theorem for
the so - called “tame” topological groups (see [3]). However we shall be interested mainly in discrete
groups, and it is known that the discrete tame groups are almost Abelian.

We shall introduce the profinite completion G of G and the corresponding endomorphism $:G oG
This 18 a compact totally disconnected group in which G is densely embedded. The proof will then follow
in three steps:

R(¢) = R(#), S(¢)=5(8), R(9)=S().

If one omits the requirement that G is almost Abelian then one can still show that R(¢) > R(¢) and

S{¢) > S{¢). The third identity is a general fact for compact groups (Theorem 4).

2.1 Compact Groups

Here we shall prove the third of the above identities.

Let C be a compact topological group and ¢ a continuous endomorphism of €. We define the number
S*°P(¢) to be the number of fixed points of ¢ in the unitary dual of C, where we only consider continuous
representations of C. The number R(¢) is defined as usual.

Theorem 4 For a continuous endomorphism ¢ of a compact group C one has R(¢) = 5*°P ().

The proof uses the Peter-Weyl Theorem:
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Theorem 5 (Peter - Weyl) If C is compact then there is the following decomposition of the space
LY(C) as a C ® C-module.

LY(C) = @ Home(Va, Va).
el
and Schur’s Lemma:
Lemma 4 (Schur) IfV and W are two irreducible unitary representations then
0 VEW
C vw

Proof of Theorem 4. The ¢-conjugacy classes, being orbits of a compact group, are compact. Since there
are only finitely many of them, they are also open subsets of C' and thus have positive Haar measure.

We embed C' in C @ C by the map g — (g,#(g)). This makes L*{C) a C-module with a twisted
action. By the Peter-Weyl Theorem we have (as C-modules)-

L(C) = EB Homc(Va, Vg yy)-
AeC

Homee (V, W) = {

We therefore have a corresponding decomposition of the space of C-invariant elements:

L*(0)° = D Homec (Va, V)
reC

We have used the well known identity Home(V, W) = Homgee(V, W).

The left hand side consists of functions f : C — C satisfying f(gzé(y)~!) = f(z) for all z,g € C.
These are just functions on the ¢-conjugacy classes. The dimension of the left hand side is thus R(4).
On the other hand by Schur’s Lemma the dimension of the right hand side is S*P(¢).

2.2 The End of the Proof

Let G be an almost Abelian group with an Abelian subgroup A of finite index [G : A]. Let A° be the
intersection of all subgroups of G of index [ : A]. Then A® is an Abelian normal subgroup of finite index
in G and one has ¢(A°) C A° for every endomorphism ¢ of G.

1 — A° - G = F o1
} @l ao l¢ il
1 -5 A° - G = F =51

Lemma 5 If R(¢) is finite then so is R(¢|a0).

Proof. A ¢-conjugacy class is an orbit of the group G. A ¢|q0-conjugacy class is an orbit of the group
A, Since A? has finite index in G it follows that every ¢-conjugacy class in A® can be the union of at
most finitely many ¢|40-conjugacy classes. This proves the lemma.

Let G be the profinite completion of G with respect to its normal subgroups of finite index. There is
a canonical injection G — G and the map ¢ can be extended to a continuous endomorphism ¢ of G.
There is therefore a canonical map

R(¢) = R(4).

Since G is dense in G, the image of a ¢-conjugacy class {z}4 is its closure in G'. From this it follows that
the above map is surjective. We shall actually see that the map is bijective. This will then give us

R(¢) = R(4).
However ¢ is an endomorphism of the compact group G so by Theorem 7
R(¢) = §'°P(9).

It thus suffices to prove the following two lemmas:



Lemma 6 If R(¢) is finite then S©P(§) = S(¢).

Lemma 7 If R(¢) is finite then the map R{$) = R(¢) is injective.

Proof of Lemma 6. By Mackey’s Theorem (see [3]), every representation p of G is contained in a repre-
sentation which is induced by a 1-dimensional representation x of A. If p is fixed by ¢ then for all a € A°
we have x(a) = x(é(a)). Let A' = {a-¢(a)™! :a € A°}. By Lemma 5 R(¢|40) is finite and by Lemma
2 R(¢|a0) = [A® : A*]. Therefore A' has finite index in G. However we have shown that y and therefore
also p is constant on cosets of A'. Therefore p has finite image, which implies that p is the restriction to

G of a unique continuous irreducible representation 5 of G. One verifies by continuity that H(p) = p.

Conversely if 5 € S(¢) then the restriction of g to G is in S§(#).

Proof of Lemma 7. We must show that the intersection with G of the closure of {z}4 in G is equal to
{z}4. We do this by constructing a coset of a normal subgroup of finite index'in G which is contained in
{z}4. For every a € A® we have 2 ~4 za if there is a b € A with z7'bz¢(b)~! = a. It follows that {z},
contains a coset of the group A2 := {z~1bz@(b)~! : b € A®}. It remains to show that A2 has finite index
in G.

Let ¢(g) = z¢(g)z~'. Then by Proposition 1 we have R(1/) = R(4). This implies R(3) < oo and
therefore by Lemma 5 that R(1|1,) < co. However by Lemma 2 we have R(1|4,) = [A° : A2]. This
finishes the proof.

3 A Useful Lemma

The following lemma is useful for calculating Reidemeister numbers. It will also be used in the proof that

R(¢) = R(F¢).

Lemma 8 Let ¢ : G — G be any endomorphism of any group G, and let H be a subgroup of G with the
properties
#(HYCH

Ve € G dn € N such that ¢"(z) € H.

Then
R(¢) = R(¢ |n),
where ¢ |pp: H — H is the restriction of ¢ to H. If all the numbers R(¢™) are finite then

Rg(z) = Ry, (2).

From this follows immediately:
Corollary 1 Let H = ¢"(G). Then R(¢) = R(¢ |n).

Proof of Lemma 8. Let z € G. Then there is an n such that ¢"(z) € H. From Lemma 1 it is known that

x is ¢-conjugate to ¢™(z). This means that the ¢-conjugacy class {z}4 of £ has non-empty intersection
with H.

Now suppose that x,y € H are ¢-conjugate, ie. there is a y € G such that

gz = yé(g).

We shall show that £ and y are ¢|g-conjugate, ie. we can find a ¢ € H with the above property. First
let n be large enough that ¢"(g) € H. Then applying ¢" to the above equation we obtain

$"(9)8" (2) = ¢"(¥)¢" "' (9).
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This shows that ¢"(z) and ¢"(y) are ¢|;-conjugate. On the other hand, one knows by Lemma 1 that z
and ¢"(z) are ¢|y-conjugate, and y and ¢"(y) are ¢|y conjugate, so z and y must be $|y-conjugate.
We have shown that the intersection with H of a ¢-conjugacy class in G is a ¢|y-conjugacy class in
H. We therefore have a map
Rest: R(¢) — R(d|u)
{z}¢ = {e}snH
This clearly has the two-sided inverse
{z}o1n = {2}
Therefore Rest is a bijection and R(¢) = R(¢|n).

4 Reduction to the case of Automorphisms

In this § we begin with a group endomorphism ¢ : ¢ = G and we construct a group FG and an
automorphism F¢ : FG — FG with the property

R(F¢) = R(¢).

QOur reduction will be in two steps. We begin by reducing to the case of injective endomorphisms. After
that we reduce from injective endomorphising to automorphisms.

4.1 Reduction to Injective Endomorphisms

Let G be a group and ¢ : G — G an endomorphism. We shall call an element € G nilpotent if there is
an n € N such that ¢"(z) = id. Let N be the set of all nilpotent elements of G.

Proposition 3 The set N is a normal subgroup of G. We have ¢(N) C N and ¢~ (N) = N. Thus ¢
induces an endomorphism [¢/N] of the quotient group G/N given by.

[¢/N](zN) := ¢(z)N.
The endomorphism [¢/N]: G/N — G/N is injective, and we have
R(¢) = R([¢/N]),  S(¢) = S([¢/N}).

Proof. (i) Let £ € N, g € G. Then for some n € N we have ¢"(z) = id. Therefore ¢"(yzg~!) =
¢"(gg~!) = id. This shows that gzrg~! € N so N is a normal subgroup of G.

(i) Let « € N and choose n such that ¢”(z) = id. Then ¢"~!(¢(z)) = id so ¢(z) € N. Therefore
#NYCN

(iii) If ¢(z) € N then there is an n such that ¢"(¢(z)) = id. Therefore ¢"*1(z) = id so x € N. This
shows that ¢~1(N)} C N. The converse inclusion follows from (ii).

(iv) We shall now show that the map z = =N induces a btjection

R(¢) = R([¢/N]).
Suppose z,y € G are ¢-conjugate. Then there is a ¢ € ¢ with
g9z = yé(g).
Projecting to the quotient group G/N we have
gNzN =yNg(g)N,

gNzN = yN[¢/N](gN).



4.2 Reduction of Injective Endomorphisms to Automorphisms 9

‘This means that =N and yN are [¢/N}-conjugate in G/N. Conversely suppose that zN and yN are
[¢#/N]-conjugate in G/N. Then there is a gN € G/N such that

gNzN = yN[$/N](gN).

In other words
ged(g) 'y €N
From this it follows that there is an n € N with

¢"(gzé(g) "'y 1) = id.

Therefore
¢"(9)9" (z) = ¢" (¥)¢" (8(9)).

This shows that ¢"(z) and ¢"(y) are $-conjugate. However by Lemma 1 z and ¢"(z) are ¢-conjugate,
as are y and ¢"(y). Therefore & and y are ¢-conjugate.

(v) We have shown that z and y are ¢-conjugate iff zV and yN are [¢/N]-conjugate. From this it
follows that x — z N induces a bijection from R(¢) to R([¢/N]). Therefore R(¢) = R([¢/N]).

(vi} We shall now show that S(¢) = S([¢/N]). Let p € S(¢) and let M be a matrix for which

pod=M-p- M1
If z € N then there is an n € N with ¢"(z) = id. Therefore
M"™ p(z) M™" = p(¢"(z)) = 1d,
which implies that p(z) = id. Thus N is contained in the kernel of p and there is a representation f[p/N]
of G/N given by
[o/N](gN) := plg).
Since {p/N] satisfies the identity
[p/NYo[6/N]= M -[p/N}- M1,

we have [p/N] € S([¢/N]).
(vii) Conversely if p € S({¢/N]) then we may construct a 5 € §(¢) by
pz) := p(zN}.

It is clear that

[o/N}=pand /N = p
so it follows that S(¢) = S([¢/N]).

4.2 Reduction of Injective Endomorphisms to Automorphisms

Now suppose that ¢ : G — ( is any injective endomorphism of an almost Abelian group . Conslder
the directed system

Gdaba 365
where each G; is a copy of the group . We may form the limit of this system

G = limG;.
—_—

This is the union of the sets G; in which we identify the element = € G; with the element ¢"(z) in Gitn.
We now give G a group law. If 2,y € i then both z and y are represented by elements z;, y; in G; for
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sufficiently large i. We define the product zy € G to be the element of G represented by the element TiYi
of G;. The group axioms are trivial to check.

By identifying G with Gy, we can think of G as being a subgroup of G.

We now extend the map ¢ to an endomorphism of G. For any element T € G there is a representative
z; € G; of z in G; for some i. We may define (%) to be the element represented by ¢(z;) in G; (NOT
in Gi41, otherwise @ would be the identity map). This definition is independent of i.

Theorem 6 In the notation introduced above, ¢ is an automorphism of the group G and R(¢) = R($).

Proof. (i) Let £ € G be in the kernel of ¢. The element « is represented by some z; € G;. Since
#(Z) = id we know that ¢(z;) € G; is equivalent to id € Go. From this it follows (since ¢ is injective)
that ¢*(id) = ¢(z;) in G. Clearly this means that z; = id in G;. Therefore z =id in G, so ¢ is injective.

(i) Let # € G be represented by some z; € G;. Let y be the element of G represented by z; in Gigg.
Then #(y) is represented by ¢(=z;) in Gyy1, which in turn is equivalent to z; € ;. Therefore o(y) = =,
S0 ¢ 1s surjective.

(iii) Let « € G be represented by some z; € G;. Let y be the element of G represented by z; in Gy.
Then 3‘(:1:) is represented by ¢*(z;) € Gy, which is equivalent to z; € (5. Therefore for every element

zof Gthereisani € N such that & (z) € G. In addition we have ¢(G) C G. From this it follows by
Lemma 8 that R(¢) = R(¢).
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