COUNTING POINTS IN MULTIPLICATIVE POLYHEDRA AND SPLIT TORIC VARIETIES

Yu.I. Manin

Steklov Mathematical Institute 42 Vavilova
Moscow 117966
USSR

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

COUNTING POINTS IN MULTIPLICATIVE POLYHEDRA AND SPLIT TORIC VARIETIES

Yu.I.Manin

Introduction

In this note, we consider two counting problems.
Problem A. Let $B \subset \mathbf{Z}_{\geq 0}^{r+1}$ be a finite set with the following properties:
i) $\sum_{i=0}^{r} b_{i}$ does not depend on the choice of $b=\left(b_{o}, \ldots, b_{r}\right) \in B$.
ii)For every $i \in[0, r]$, there exists $b \in B$ with $b_{i}=0$.
iii) The set $\left\{b-b^{\prime} \mid b, b^{\prime} \in B\right\}$ spans r-dimensional sublattice in $\mathbf{Z}_{\geq 0}^{r+1}$.

For $x=\left(x_{i}\right) \in \mathbf{Z}_{>0}^{r+1}, b=\left(b_{i}\right)$, we put $x^{b}=x_{0}^{b_{0}} \ldots x_{r}^{b_{r}}, \quad x^{B}=\left\{x^{b} \mid b \in B\right\}$, and

$$
\begin{equation*}
h\left(x^{B}\right)=\frac{\max \left\{x^{b} \mid b \in B\right\}}{\operatorname{gcd}\left\{x^{b} \mid b \in B\right\}} \tag{0.1}
\end{equation*}
$$

We shall prove below that h is a counting function on $\mathbf{Z}_{>0, p r i m}^{r+1}=\left\{x \mid \operatorname{gcd}\left(x_{i}\right)=1\right\}$, that is, it tends to infinity on this set. We want to estimate

$$
\begin{equation*}
N(B ; H)=\operatorname{card}\left\{x \in \mathbf{Z}_{>0, p r i m}^{r+1} \mid h\left(x^{B}\right) \leq H\right\} \tag{0.2}
\end{equation*}
$$

or at least, to calculate

$$
\begin{equation*}
\beta(B)=\limsup _{H \rightarrow \infty}(\log N(B ; H) / \log H) . \tag{0.3}
\end{equation*}
$$

We call the set (0.2) " a multiplicative polyhedron".
Problem B. Let $X=T_{N} e m b(\Delta)$ be a split toric variety defined by a fan Δ in N_{R} over an algebraic number field k (we use notations of [O] and call X split if the Galois group $\operatorname{Gal}(\bar{k} / k)$ acts trivially upon N, the lattice of the 1-parametric algebraic subgroups of the basic torus over \bar{k}).

Let X be proper. Consider a support function $\eta:|\Delta| \rightarrow \mathbf{R}([\mathrm{O}], \mathrm{p} .66)$, that is a function taking integer values on $N \cap|\Delta|$ and linear on all $\sigma \in|\Delta|$. This function defines a divisor "at infinity" (i.e. outside the large orbit X_{0})

$$
D_{\eta}=-\sum_{\rho \in \Delta(1)} \eta(n(\rho)) V(\rho) .
$$

(Oda denotes support functions by h, but we use h for height). Here $\Delta(1)=$ the set of 1 -dimensional components of $\Delta, n(\rho)$ is the smallest (primitive) element of n in $\rho, V(\rho)$ is the closure of $\operatorname{orb}(\rho)$, and generally ([O], p.10)

$$
\operatorname{orb}(\sigma)=\left\{u: \hat{N} \cap \sigma^{\perp} \rightarrow C \quad \text { (group homomorphisms) }\right\}
$$

The sections of $\mathcal{O}\left(D_{\eta}\right)$ are spanned by characters (or "monomials") $e(m), m \in M_{\mathbf{R}}, M=$ \hat{N}, of the following type ([O], pp.72,76)

$$
\begin{aligned}
& H^{0}\left(X, \mathcal{O}\left(D_{\eta}\right)\right)=\oplus\left\{k e(m) \mid m \in M \cap_{\square}\right\} \\
& \square_{\eta}=\left\{m \in M_{R} \mid \forall n \in N_{R},\langle m, n\rangle \geq \eta(n)\right\} .
\end{aligned}
$$

Consider the height function, for $x \in X_{0}(k)$:

$$
\begin{equation*}
h_{\mathcal{O}\left(D_{\eta}\right)}(x)=\prod_{\nu \in M_{k}} \max _{m \in M \cap \square_{\eta}}\left\{|e(m)|_{\nu}(x)\right\} \tag{0.4}
\end{equation*}
$$

where ν runs over all places of k, and $|\cdot|_{\nu}$ is the multiplier of the additive Haar measure on k_{ν}.

If $\mathcal{O}\left(D_{\eta}\right)$ is very ample, (0.4) is a Weil height and a counting function on $X_{0}(k)$, so that we can define

$$
\begin{gather*}
N_{X_{0}}\left(\mathcal{O}\left(D_{\eta}\right) ; H\right)=\operatorname{card}\left\{x \in X_{0}(k) \mid h_{\mathcal{O}\left(D_{\eta}\right)}(x) \leq H\right\} \tag{0.5}\\
\beta\left(\mathcal{O}\left(D_{\eta}\right)\right)=\lim \sup \left(\log N_{X_{0}}\left(\mathcal{O}\left(D_{\eta}\right) ; H\right) / \log H\right) \tag{0.6}
\end{gather*}
$$

(Notice, however, that (0.4) can be a counting function even if $\mathcal{O}\left(D_{\eta}\right)$ is not very ample).
For $k=\mathbf{Q}$, one can reduce the split torus count to a multiplicative polyhedra count.
Namely, choose a basis in M, that is, a multiplicative basis $\left\{z_{1}, \ldots z_{r}\right\}$ in $\{e(m) \mid m \in M\}$. Identifying $M \cap_{\square_{\eta}} \subset M$ with a subset $B^{0} \subset \mathbf{Z}^{r}$, we can construct the respective $B \subset \mathbf{Z}_{\geq 0}^{r+1}$ as follows. First, translating B^{0} by a vector in \mathbf{Z}^{r}, we do not change the isomorphism class of $\mathcal{O}\left(D_{\eta}\right)$. Thus, we may and will assume that $B^{0} \subset \mathbf{Z}_{\geq 0}^{r}$, and that for every $i \in[1, r]$, there exists $b^{0} \in B^{0}$ with $b_{i}^{0}=0$. Second, we shall "homogenize" B^{0} by putting $d=\max \left\{\sum_{i=1}^{r} b_{i}^{0} \mid b^{0}=\left(b_{i}\right)^{0} \in B^{0}\right\}$ and

$$
\begin{equation*}
B=\left\{\left(d-\sum_{i=1}^{r} b_{i}^{0}, b_{1}^{0}, \ldots, b_{r}^{0}\right) \mid b^{0} \in B^{0}\right\} \subset \mathbf{Z}_{\geq 0} \tag{0.7}
\end{equation*}
$$

If a point $x \in X_{0}(\mathbf{Q})$ is represented by the vector $\left(z_{1}(x), \ldots, z_{r}(x)\right) \in \mathbf{Q}^{r}$, and $z_{i}(x)=$ x_{i} / x_{0} for $\left(x_{0}, \ldots, x_{r}\right) \in \mathbf{Z}_{>0, p r i m}^{r}$, one can check that the D_{η}-height (0.4) of x coincides with (0.1) evaluated on $\left(x_{0}, \ldots, x_{r}\right)$. (The rest of the points of $X_{0}(\mathbf{Q})$ can be obtained from this subset by changing signs of $x_{1}, \ldots x_{r}$ which does not influence heights.)

The note is structured as follows. In $\S 1$ we recall an elementary summation formula which is probably well known and is easily deduced from Delange's Tauberian theorem. In $\S 2$ we deduce a lower and an upper bound for $\beta(B),(0.3)$, using linear programming, and state the conditions on B, ensuring the coincidence of these bounds. Finally in $\S 3$, we prove an upper bound for toric count, using an idea due to V.V. Batyrev, and discuss open questions.

§1 A summation formula

1.1. Notation. Let $b=\left(b_{0}, \ldots b_{r}\right) \in \mathbf{R}_{>0}^{r+1}, a=\left(a_{0}, \ldots a_{r}\right) \in \mathbf{R}^{r+1}$. Variable $x=\left(x_{0}, \ldots x_{r}\right)$ takes values in $\mathbf{Z}_{>0}^{r+1}$ or $\mathbf{Z}_{>0, p r i m}^{r+1}, x^{a}=x_{o}^{a_{0}} \ldots x_{r}^{a_{r}}$. Put

$$
\begin{equation*}
\sigma=\max _{i}\left\{\frac{1+a_{i}}{b_{i}}\right\}, \quad \quad m=\operatorname{card}\left\{i \left\lvert\, \frac{1+a_{i}}{b_{i}}=\sigma\right.\right\} \tag{1.1}
\end{equation*}
$$

Assume that $\sigma>0$, and put

$$
\begin{equation*}
C=\prod_{\left\{i \mid \sigma b_{i}-a_{i}>1\right\}} \zeta\left(\sigma b_{i}-a s_{i}\right) \tag{1.2}
\end{equation*}
$$

($\mathrm{C}=1$ if the index set is empty);

$$
\begin{equation*}
C^{\prime}=C \zeta\left(\left(\sum_{i} b_{i}\right) \sigma-\sum_{i} a_{i}\right)^{-1} \tag{1.3}
\end{equation*}
$$

Finally, let

$$
\begin{gather*}
\psi(H)=\sum_{\substack{x \in \mathbf{z}^{r+1} \\
x^{b} \leq H}} x^{a} ; \tag{1.4}\\
\psi^{\prime}(H)=\sum_{\substack { x \in \mathbf{z}^{r+1},{c}{>0, p r i m \tag{1.5}\\
x^{b} \leq H{ x \in \mathbf { z } ^ { r + 1 } , \begin{subarray} { c } { > 0 , p r i m \\
x ^ { b } \leq H } }\end{subarray}} x^{a}
\end{gather*}
$$

1.2 Proposition. We have

$$
\begin{aligned}
\psi(H) & =\frac{C}{\Gamma(m)} \frac{H^{\sigma}}{\sigma}(\log H)^{m-1}(1+o(1)) \\
\psi^{\prime}(H) & =\frac{C^{\prime}}{\Gamma(m)} \frac{H^{\sigma}}{\sigma}(\log H)^{m-1}(1+o(1))
\end{aligned}
$$

Proof: We start with recalling Delange's theorem [Del]. Consider a monotone nondecreasing function $\psi(t), t \geq 0$. Put $Z(s)=\int_{1}^{\infty} t^{-s} \psi(t)$, and assume that $Z(s)$ is analytic for $\operatorname{Re}(s) \geq \sigma>0$ except of a singularity at $s=\sigma$. Assume moreover that

$$
Z(s)=\frac{g_{0}(s)}{(s-\sigma)^{m}}+g_{1}(s)
$$

where g_{0}, g_{1} are analytic for $\operatorname{Re}(s) \geq \sigma$, with $C=g_{0}(\sigma) \neq 0$ and $m>0$. Then

$$
\begin{equation*}
\psi(t)=\frac{C}{\Gamma(m)} \frac{t^{\sigma}}{\sigma}(\log t)^{m-1}(1+o(1)) \tag{1.6}
\end{equation*}
$$

(Delange proves this for $\sigma=1$; the general case reduces to this one by the variable change $t \mapsto t^{\sigma}$).

Now, $\psi(H)$ in (1.4) is the summatory function of the Dirichlet series

$$
A(s)=\prod_{i=0}^{r} \sum_{x_{i}=1}^{\infty} \frac{x_{i}^{a_{i}}}{x_{i}^{s b_{i}}}=\prod_{i=0}^{r} \zeta\left(s b_{i}-a_{i}\right),
$$

and Delange's theorem is clearly applicable with σ and C from (1.1), (1.2).
Similarly $\psi^{\prime}(H)$ in (1.5) is summatory function of

$$
B(s)=\sum_{x \in \mathbb{Z}_{>0, p r i m}^{r+1}} \frac{x^{a}}{x^{b s}},
$$

and

$$
\begin{equation*}
A(s)=\left(\sum_{d=1}^{\infty} \frac{d^{\left(\Sigma a_{i}\right)}}{d^{\left(\Sigma b_{i}\right) s}}\right) B(s)=\zeta\left(\left(\sum_{i} b_{i}\right) s-\sum a_{i}\right) B(s) \tag{1.7}
\end{equation*}
$$

The rightmost pole of $\zeta\left(\left(\sum_{i} b_{i}\right) s-\sum a_{i}\right)$ is

$$
\sigma=\frac{\sum a_{i}+1}{\sum b_{i}} \leq \max _{i} \frac{a_{i}+\frac{1}{r+1}}{b_{i}}<\max _{i} \frac{a_{i}+1}{b_{i}}=\sigma
$$

Hence the rightmost pole of $B(s)$ is still at σ, and only C should be replaced by C^{\prime}.
§2 Points in multiplicative polyhedra.
2.1 Notation. In the situation of Problem A, consider the following polyhedron $P=P(B)$ in the \mathbf{R} - space of the dual lattice $\hat{\mathbf{Z}}^{r+1} \otimes \mathbf{R}$:

$$
P=\left\{\xi \in \mathbf{R}^{r+1} \mid \forall b \in B,\langle b, \xi\rangle \leq 1 ; \forall i \in[0, r], \xi_{i} \geq 0\right\}
$$

Put

$$
\begin{equation*}
\beta_{-}(B)=\beta_{-}=\max \left\{\sum_{i=0}^{r} \xi_{i} \mid \xi \in P\right\} \tag{2.1}
\end{equation*}
$$

Let $\xi^{0} \in P(b)$ be a point at which the maximal value β_{-}of $\sum_{i=0}^{r} \xi_{i}$ is achieved. Put

$$
I^{0}=I^{0}\left(\xi^{0}\right)=\left\{i \in[0, r] \mid \xi_{i}^{0} \neq 0\right\}
$$

Consider the following list of conditions that may or may not be satisfied by B.
C1). There exists $\xi^{0} \in P(B)$ with $\sum_{i=0}^{r} \xi^{0}=\beta_{-}$and a weighted average $\tilde{b}=\sum_{b \in B} \epsilon_{b} b$, $\epsilon_{b} \geq 0, \sum_{b \in B} \epsilon_{b}=1$ such that:
a) $\epsilon_{b} \neq 0$ only for $b \in B$ with $\left\langle b, \xi^{0}\right\rangle=1$.
b) On $I^{0}\left(\xi^{0}\right)$, coordinates of $\sum_{b \in B} \epsilon_{b} b$ are all equal, and take their minimal value.
c) $\tilde{b}_{i} \neq 0$ for all $i \in[0, r]$

C2) B satisfies C1), and moreover,

$$
\min \operatorname{pos}_{\lambda \in \hat{Z}_{\geq 0}^{r+1}}\{\langle\tilde{b}, \lambda\rangle\}=\min \operatorname{pos}_{\lambda \in \hat{Z}_{\geq 0}^{r+1}}\left\{\langle\tilde{b}, \lambda\rangle-\min _{b \in B}\langle b, \lambda\rangle\right\}
$$

where "min pos" = "minimal positive value".
We will prove the following result.
2.2. Theorem. a) We always have

$$
\begin{equation*}
\beta(B) \geq \beta_{-}(B) \tag{2.2}
\end{equation*}
$$

b)If, in addition, B satisfies C2), then

$$
\begin{equation*}
\beta(B)=\beta_{-}(B) \tag{2.3}
\end{equation*}
$$

Proof: a) Choose a vector $\xi^{0}=\left(\xi_{i}^{0}\right) \in \mathbf{R}_{\geq 0}^{r+1}$ with $\sum_{i} b_{i} \xi_{i} \leq 1$ for all $b \in B$. There are $>$ const. $H^{\Sigma \xi_{i}^{0}}$ of vectors $x=\left(x_{i}\right) \in \mathbf{Z}_{>0, p r i m}^{r+1}$ with $x_{i} \leq H^{\xi_{i}}$. On the other hand, $x^{b} \leq H^{\Sigma b_{i} \xi_{i}^{0}} \leq H$ for every $b \in B$. This proves (2.2).
b) To get an upper bound for $N(B, H)$ we take first an arbitrary weight vector $\left(\epsilon_{b}\right)$, $b \in B, \epsilon_{b} \geq 0, \sum_{b} \epsilon_{b}=1$. We have then from (0.1):

$$
\begin{equation*}
h\left(x^{B}\right) \leq H \Rightarrow \frac{x^{\sum_{b} \epsilon_{b} b}}{g c d_{b \in B}\left(x^{b}\right)} \leq H \tag{2.4}
\end{equation*}
$$

Therefore, for $\tilde{b}=\sum \epsilon_{b} b$,

$$
\begin{equation*}
N(B ; H) \leq \operatorname{card}\left\{x \in \mathbf{Z}_{>0, p r i m}^{r+1} \left\lvert\, \frac{x^{\tilde{b}}}{g c d\left(x^{b}\right)} \leq H\right.\right\} \tag{2.5}
\end{equation*}
$$

We want to undestand when the r.h.s. of (2.5) is bounded by $O\left(H^{\beta_{+}+\epsilon}\right)$ for every $\epsilon>0$, that is, when the upper estimate of $\beta(B)$ that can be deduced from (2.5) coincides with $\beta_{-}(B)$. If we replace in the r.h.s. of (2.6) the $g c d\left(x^{b}\right)$ by 1 , we will only diminish our upper estimate of β. Hence we must first understand when this diminished upper bound coincides with β_{-}. Obviously, we must have $\tilde{\beta}_{i} \neq 0$ for all i (this is C1 c.).

Applying Proposition 1.2 to the case $a=0, b=\tilde{b}$, we get:

$$
\begin{gather*}
\operatorname{card}\left\{x \in \mathbf{Z}_{>0, p r i m}^{r+1} \mid x^{\tilde{b}} \leq H\right\}=(1+o(1)) c H^{\beta_{+}}(\log H)^{m-1}, \tag{2.6}\\
\beta_{+}:=\min _{i} \tilde{b}_{i}^{-1} ; \quad m:=\operatorname{card}\left\{i \mid \tilde{b}_{i}=\beta_{+}^{-1}\right\} .
\end{gather*}
$$

Let us now compare β_{+}and β_{-}. Take a point $\xi^{0} \in P(B)$ such that $\sum_{i=0}^{r} \xi_{i}^{0}=\beta_{-}$. Define the subset $B_{0} \subset B$ by:

$$
b \in B_{0} \Leftrightarrow\left\langle b, \xi^{0}\right\rangle=1 ; \quad b \notin B_{0} \Leftrightarrow\left\langle b, \xi^{0}\right\rangle<1
$$

Define $I^{0}=I^{0}\left(\xi^{)}\right.$as in 2.1. We have

$$
\begin{equation*}
\sum_{b \in B}\left\langle\epsilon_{b} b, \xi^{0}\right\rangle=\left\langle\tilde{b}, \xi^{0}\right\rangle \geq \min _{i}\left(\tilde{b}_{i}\right) \sum_{j} \xi_{j}^{0}=\beta_{+}^{-1} \beta_{-} \tag{2.7}
\end{equation*}
$$

and the equality in (2.7) is achieved precisely when

$$
\left\{i \mid \tilde{b}_{i} \text { takes its minimal value }\right\} \supset I_{0}=\left\{i \mid \xi_{i}^{0} \neq 0\right\}
$$

This is C1 b).
On the other hand,

$$
\begin{equation*}
\sum_{b \in B}\left\langle\epsilon_{L} b, \xi^{0}\right\rangle=\sum_{b \in B_{0}} \epsilon_{L}+\sum_{b \notin B_{0}} \epsilon_{B}\left\langle b, \xi^{0}\right\rangle \leq 1, \tag{2.8}
\end{equation*}
$$

and since $\sum_{b} \epsilon_{b}=1$, the equality in (2.8) is achieved precisely when $\epsilon_{b}=0$ for $b \notin B_{0}$. (This is C1 a.). Taken together, (2.7) and (2.8) show that $\beta_{+}^{-1} \beta_{-} \leq 1$ which of course was to be expected.

The net result so far is that C 1 is necessary and sufficient for $\beta_{-}=\beta_{+}$.
Put now

$$
\beta_{+}^{\prime}=\limsup \log \operatorname{card}\left\{x \in \mathbf{Z}_{>0, p r i m}^{r+1} \left\lvert\, \frac{x^{\tilde{b}}}{\operatorname{gcd}\left(x^{b}\right)} \leq H\right.\right\}
$$

Obviously, $\beta_{+}^{\prime} \geq \beta_{+}$, and we want to prove that C 2 implies $\beta_{+}^{\prime}=\beta_{+}\left(=\beta_{-}\right)$.
In the semigroup of products of fractional powers of primes in $\mathbf{R}_{>0}$ consider the equation

$$
\frac{x^{\tilde{b}}}{\operatorname{gcd}\left(x^{b}\right)}=n, x \in \mathbf{Z}_{>0, p r i m}^{r+1}
$$

Let $c(n)$ be the number of its solutions. Notice first that $c(m n)=c(n) c(m)$, if $(m, n)=1$. To prove this, it suffices to show that if $\operatorname{ord}_{p}\left(x_{i}\right)=0$, then $p \nmid x_{i}$ for all i. Otherwise, putting $\xi_{i}=\operatorname{ord}_{p}\left(x_{i}\right)$ and comparing p-orders, we obtain:

$$
\langle\tilde{b}, \xi\rangle=\sum_{i} \tilde{b}_{i} \xi_{i}=\min _{b \in B}\left(\sum_{i} b_{i} \xi_{i}\right)=\min _{b \in B}(\langle b, \xi\rangle)>0
$$

with $\xi \neq 0$. But

$$
\langle\tilde{b}, \xi\rangle=\sum_{b \in B} \epsilon_{b}\langle b, \xi\rangle \geq\left(\sum_{b \in B} \epsilon_{b}\right) \min _{b \in B}\langle b, \xi\rangle,
$$

and the equality is achieved precisely when $\langle b, \xi\rangle$ does not depend on b. This happens only if $\left\langle b-b^{\prime}, \xi\right\rangle=0$ for all $b, b^{\prime} \in B$, which implies that ξ is proportional to $(1, \ldots, 1)$ in view of the condition iii) in the statement of Problem A (Introduction). But since $\operatorname{gcd}\left(x_{i}\right)=1$, at least one of the coordinates of ξ vanishes so that $\xi=0$, leading to a contradiction.

Let now $n=p^{r}, r \in \mathbf{Q}_{\geq 0}$. Then $c\left(p^{r}\right)$ depends only on r, and equals

$$
\begin{equation*}
c\left(p^{r}\right)=\operatorname{card}\left\{\lambda \in \mathbf{Z}_{\geq 0}^{r+1} \mid \exists i, \lambda_{i}=0 ;\langle\tilde{b}, \lambda\rangle-\min _{b \in B}\langle b, \lambda\rangle=r\right\} \tag{2.9}
\end{equation*}
$$

(The condition $\exists i, \lambda_{i}=0$ follows from $x \in \mathbf{Z}_{p r i m}^{r+1}$).
We want to estimate

$$
\sum_{\substack{n \in R>0 \\ n \leq H}} c(n)
$$

by calculating the convergence abscisse of $D(s)=\sum_{n} c(n) / n^{s}$. From the multiplicativity of $c(n)$ it follows that

$$
\begin{equation*}
D(s)=\prod_{p} \sum_{r \in \mathbf{Q}_{\geq 0}} \frac{c\left(p^{r}\right)}{p^{r s}} \tag{2.10}
\end{equation*}
$$

From (2.9) it is clear that $c\left(p^{r}\right)$ counts the number of lattice points in a compact domain linearly depending on r. Hence $c\left(p^{r}\right)$ is bounded by a polynomial in r. Therefore, the convergence abscisse of (2.10) is determined by the first positive value of r such that $c\left(p^{r}\right) \neq 0$, and equals to the inverse of this value. On the other hand,

$$
\beta_{+}^{-1}=\min _{i} \tilde{b}_{i}=\min \left\{\langle\tilde{b}, \lambda\rangle \mid \lambda \in \mathbf{Z}_{\geq 0}^{r+1}, \exists i, \lambda_{i}=0 ;\langle\tilde{b}, \lambda\rangle>0\right\}
$$

because $\min \tilde{b}_{i}$ is clearly achieved on a vector λ of the form ($0 \ldots 010 \ldots 0$)
In this way, we obtain the condition C 2 .

§3 Toric varieties

3.1. Finite heights. Recall that if L is an invertible sheaf on a projective variety V defined over an algebraic number field k, and h_{L} is a Weil height, then a representation of L in the form $\mathcal{O}(D), D$ a divisor, allows one to construct a decomposition $h_{L}(x)=$ $h_{D, \infty}(x) h_{D, f}(x)$. For example, if L is very ample, $\left(s_{0}, \ldots s_{n}\right)$ is a basis of $\Gamma(L)$, and $s_{0}=0$ is an equation of D, we can put

$$
\begin{equation*}
h_{D, f}(x)=\prod_{\nu f \text { finite }} \max _{i}\left(\left|s_{i} / s_{0}\right|_{\nu}\right) \tag{3.1}
\end{equation*}
$$

The following result is a version of an idea due to V.V.Batyrev, and a slight generalisation of Lemma 1.2 in [MaTschi]. Denote by ρ the rank of the group of units of k.
3.2. Proposition. Let $D_{0}, \ldots D_{n} \subset V$ be a family of pairwise distinct effective divisors; $U=V \backslash \cup_{i=0}^{n} D_{i} ; L=\mathcal{O}\left(D_{o}+\ldots+D_{n}\right)$. Assume that for some $m>0$, there exists a family of sections $s_{0}, \ldots s_{N} \in \Gamma\left(L^{m}\right)$ whose zeroes are supported by $D_{0} \cup \ldots \cup D_{n}$, such that the $\operatorname{map} \sigma: U \rightarrow \mathbf{P}^{N}, \sigma(x)=\left(s_{0}(x): \ldots s_{N}(x)\right)$ is well defined and has finite fibers. Then, for $H \rightarrow \infty$, among the points $x \in U(k)$ with $h_{L}(x) \leq H$, there can exist no more than $O\left((\log H)^{n \rho}\right)$ points having the same family of finite heights $\left(h_{D_{0}, f}(x), . . h_{D_{n}, f}(x)\right)$.

Sketch of proof: Denote by E_{i} the divisor $s_{i}=0$. Representing $\sigma(x)$ by "almost relatively prime" integer homogeneous coordinates in $k,\left(s_{0}(x), \ldots s_{n}(x)\right) \in A^{N+1},(A$ is
the ring of integers in k), we see that $h_{E_{i}, f}(x)$ coincides with $N_{k / \mathbf{Q}}\left(s_{i}(x)\right)$ up to a finite valued factor. For fixed $h_{D_{j}, f}(x), \ldots, j=0, \ldots, n$, the finite heights $h_{E_{i}, f}$ are also fixed. The norms of the coordinates $s_{i}(x)$ being known, the remaining freedom of choice of $s_{i}(x)$ reduces to coordinate-wise multiplication by units. Looking now at $h_{D_{i}, \infty}(x)$ and using the Dirichlet theorem, one achieves the desired conclusion.
3.3. Theorem. With the assumptions of the Prop.3.2, one has for $\left(b_{0}, \ldots, b_{n}\right) \in \mathbf{Z}_{>0}^{n+1}$:

$$
N_{U}\left(\mathcal{O}\left(b_{0} D_{0}+\ldots+b_{n} D_{n}\right) ; H\right)=O\left(H^{\sigma}(\log H)^{\rho n+t}\right)
$$

where

$$
\sigma^{-1}=\min \left(b_{i}\right), \quad t=\operatorname{card}\left\{i \mid b_{i}=b\right\}-1 .
$$

In particular

$$
\beta_{U}(L) \leq 1
$$

Proof: We may and will assume that $h_{D_{i}, f}(x)$ takes integer values on U. For $M=$ $\mathcal{O}\left(b_{0} D_{0}+\ldots+b_{n} D_{n}\right)$, we have

$$
h_{M}(x) \geq c \prod_{i=0}^{n} h_{D_{i}, f}^{b_{i}}(x)
$$

for some $c>0$. Putting into one class all points with $h_{M}(x) \leq H$ and a fixed system of finite heights $\left(h_{D_{i}, f}(x)\right)$ we see that there are $O\left(H^{\sigma}(\log H)^{t}\right)$ such classes (apply Prop.1.2 with $\left.r=n, a=0, b=\left(b_{0}, \ldots, b_{n}\right)\right)$. It remains to apply Prop. 3.2.
3.4. Application to toric varieties. Let X be a complete split toric variety, X_{0} the big orbit, $\left\{D_{i}\right\}$ the set of all irreducible divisors at infinity, $i \in \Delta(1)$. Then $-K_{X}=\sum_{i} D_{i}$. If $-K_{X}$ is very ample, or at least verifies the conditions of Prop. 3.2, we have

$$
\begin{gathered}
N_{X_{0}}(-K ; H)=O\left(H(\log H)^{(\rho+1) n}\right) \\
\beta_{X_{0}}(-K) \leq 1
\end{gathered}
$$

Furthermore,

$$
\alpha\left(b_{0} D_{0}+\ldots b_{n} D_{n}\right) \leq \min \left(b_{i}\right)^{-1}
$$

where $\alpha(M)$, in notation of [BaMa], is defined by

$$
\alpha(M)=\inf \left\{\gamma \in \mathbf{R} \mid \gamma[L]+K_{V} \in N_{e f f}^{1}(V)\right\} .
$$

3.5. Open questions. a) Generalize $\S 2$ to arbitrary number fields k.
b) In toric interpretation, elucidate the algebro-geometric meaning of conditions C1, C2 of $\S 2$. Is there an optimal choice of coordinates in N leading to the maximal value of $\beta_{-}(B)$?

Can one prove the [BaMa]-type equality $\beta_{X_{0}}(L)=\alpha(L)$ for toric varieties with non necessarily ample $-K$?

Acknowledgement. I would like to thank the Max-Planck-Institut für Mathematik in Bonn, where this note was written, for financial support and excellent working conditions.

References

[Del] H. Délange. Généralisation du théorème de Ikehara. Ann.Sci.ENS, 71 (1954), 213-242.
[O] T.Oda. Convex bodies and algebraic geometry. An Intoduction to the theory of toric varieties. Springer, 1985.
[MaTschi] Yu.I.Manin, Yu. Tschinkel. Points of bounded height on del Pezzo surfaces. Preprint, 1991.
[Ba] V.V.Batyrev. Rational points of bounded height on toric varieties. Preprint, 1991.
[BaMa] V.V.Batyrev, Yu.I.Manin. Sur le nombre des points rationnels de hauteur bornée des variétés algébriques. Math.Annalen, Bd. 286 (1990), 27-43.
|

