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Yu.I.Manin

Introduction

In this note, we consider two counting problems.

Problem A. Let B C Z~~l be a finite set with the following properties:

i) I:~=o bi does not depend on the choice of b = (bo , ..• , br ) E B.

ii)For every i E [0, r], there exists bEB with bi = O.

iii) The set {b - b'lb, b' E B} spans r-dimensional sublattice in Z~~l.

For x = (xd E Z;~l, b = (bi), we put x b = x~o ...x~r, x B = {xblb E B}, and

h(xB ) = max{xblb E B}
gcd{xblb E B}

(0.1)

We shall prove below that h is a counting function on Z;~~prim = {xlgcd(Xi) = I}, that
is, it tends to infinity on this set. We want to estimate

or at least, to calculate

ß(B) = limsup (logN(Bj H)/logH).
H-oo

We call the set (0.2) " a multiplicative polyhedron".

(0.2)

(0.3)

Problem B. Let X = TNemb(ß) be a split toric variety defined by a fan ß in Na over
an algebraic number field k (we use notations of [0] and call X split if the Galois group
Gal(k/k) acts trivially upon N, the lattice of the I-parametric algebraic subgroups of the
basic torus over k).

Let X be proper. Consider a support function fJ : IßI ~ R ([0], p.66), that is a function
taking integer values on N n I~I and linear on all a E I~I . This function defines a divisor
"at infinity" (i.e. outside the large orbit X o)

D1J = - 2: fJ(n(p))V(p).
pEß(l)



(0.4)

(Oda denotes support functions by h, but we use h for height). Here ~(I) = the set of
I-dimensional components of ~, n(p) is the smallest (primitive) element of n in p, V(p) is
the dosure of orb(p), and generally ([0], p.IO)

orb( (J) = {u : N n (J-l ~ C (group homomorphisms)}.

The sections of O( D.,.,) are spanned by characters (or "monomials" ) e(m), m E MR, M =
N, of the following type ([0], pp.72,76)

HO(X, O(D,,)) = EB{ke(m)lm E Mn o,,}

0" = {m E MRIVn E NR, (m, n) ~ 17(n)}.

Consider the height function, for x E Xo(k) :

hO(D )(x) = II max {le(m)lv(x)},
'I mEMno

vEMk 'I

where 1/ runs over all places of k, and 1.lv is the multiplier of the additive Haar measure
on kv .

If O(D.,.,) is very ample, (0.4) is a Weil height and a counting function on Xo(k), so that
we can define

Nxo(O(D,,); H) = card{x E Xo(k)lho(D'I)(x) ~ H},

ß(O(D.,.,)) = limsup (log Nxo(O(D,,); H)/logH).

(0.5)

(0.6)

(Notice, however, that (0.4) can be a counting function even if O(D,,) is not very ample).

For k = Q, one can reduce the split torus count to a multiplicative polyhedra count.

Namely, choose a basis in M, that is, a multiplicative basis {z}, ... zr} in {e(m)lm E M}.
Identifying MnO c M with a subset BO c zr, we can construct the respective B C z;t1

.,., -
as follows. First, transl&ting BO by a vector in zr, we do not change the isomorphism
dass of O(D.,.,). Thus, we may and will assume that BO c z;o, and that for 'every

i E [1, r], there exists bO E BO with b? = O. Second, we shall "hom~genize" BO by putting
d = max{L:~=l b? Ibo = (bi)O E BO} and

r

B = {(d- Lb~,b~, ...,b~)lbO E BO} c Z~o
i=l

(0.7)

If a point x E Xo(Q) is represented by the vector (Zl(X), ... ,zr(x)) E Qr, and Zi(X) =
Xi/XO for (xo, ... ,xr) E Z;O,prim , one can check that the D" -height (0.4) of x coincides
with (0.1) evaluated on (xo, ... ,xr). (The rest of the points of Xo(Q) can be obtained
from this subset by changing signs of x}, ••• X r which does not influence heights.)

The note is structured as follows. In §I we recall an elementary summation formula
which is probably well known and is easily deduced from Delange's Tauberian theorem.
In §2 we deduce a lower and an upper bound for ß(B) , (0.3), using linear programming,
and state the conditions on B, ensuring the coincidence of these bounds. Finally in §3,
we prove an upper bound for toric count, using an idea due to V.V. Batyrev, and discuss
open questions.
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§1 A summation formula

1.1. Notation. Let b = (bo, ... br ) E R;~l, a = (ao, ...ar ) E Rr+1. Variable x = (xo, ... x r )

t k I . zr+1 Zr+1 a - ao a r P ta es va ues In >0 or >O,prim' x - X o ... X r • U

{ Oll + ai }m = card z b. = (f
I

(1.1 )

Assume that (f > 0 , and put

c = rr (((fb i - aSi)

{iIO'bi- a i>l}

(C =1 if the index set is empty);

Finally, let

(1.2)

(1.3) ~

(1.4)

VJ'(H) = (1.5)

1.2 PROPOSITION. We have

C HO'
VJ(H) = r(m) ~(logH)m-1(1+ 0(1))

,p'(H) = r~~) :" (logH)m-l(l +0(1))

PROOF: We start with recalling Delange's theorem [DeI]. Consider a monotone non­
decreasing function VJ(t), t ~ o. Put Z(s) = Ilex:> t-sVJ(t), and assume that Z(s) is analytic
for Re(s) ~ (f > 0 except of a singularity at s = (f. Assume moreover that

90(S)
Z (s) = ( ) + 91 (S )

S - (f m

where 90,91' are analytic for Re(s) ~ (f , with C = 90((f) f= 0 and m > 0 . Then

C tO'
VJ(t) = r(m) ~(logt)m-1(1+0(1))
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(Delange proves this for a = 1j the general case reduces to this one by the variable change
t r-+ tU).

Now, 'lj;(H) in (1.4) is the summatory function of the Dirichlet series

and Delange's theorem is clearly applicable with a and C from (1.1), (1.2).
Similarly 'lj;' (H) in (1.5) is summatory function of

B(s) = 2:
xEZ r +1

> O,prim

and

(1. 7)

Hence the rightmost pole of B(s) is still at a , and only C should be replaced by C'.

§2 Points in multiplicative polyhedra.

2.1 Notation. In the situation of Problem A, consider the following polyhedron
P = P(B) in the R - space of the duallattice zr+l 0 R :

P = {~E R r +1 1Vb E B, (b,~) ~ 1jVi E [O,r],~i ~ O}.

Put
r

ß-(B) = ß- = max{2:~il~ E P}
i=O

(2.1)

Let ~o E P(b) be a point at which the maximal value ß- of l::~=o ~i is achieved. Put

Consider the following list of conditions that may or may not be satisfied by B.

Cl). There exists ~o E P(B) with l::~=o ~o = ß- and a weighted average b= l::bEB Ebb,
Eb 2: 0, l::bEB Eb = 1 such that:

a) Eb t= 0 only for bEB with (b, ~O) = 1.

b) On IO(~O) , coordinates of l::bEB Ebb are all equal, and take their minimal value.

c)bi t= 0 for all i E [0, r]
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C2) B satisfies Cl), and moreover,

min pos AEZr+1 {(b, A)} = min pos AEZr+1 {(b, A) - min(b, A)}
~o ~o bEB

where "min pOS" = "minimal positive value".

We will prove the following result.

2.2. THEOREM. a) We always "have

ß(B) ~ ß-(B)

b)H, in addition, B satisfies C2), then

ß(B) = ß-(B)

(2.2)

(2.3)

PROOF: a) Choose a vector eo = (e?) E R;t1 with L:i biei ::; 1 for all bEB. There

are > const.HEe? of vectors x = (Xi) E Z;1~;rim with Xi ::; Heä. On the other hand,

x b ::; HEbäe? ::; H for every bEB. This proves (2.2).

b) To get an upper bound for N(B, H) we take first an arbitrary weight vector (fb),

b E B,fb ~ 0, L:b fb = 1. We have then from (0.1):

Therefore, for b "L: fb b,

~ Ebb
B x LJb

hex )::; H =} d (b)::; Hgc bEB X
(2.4)

(2.5)

We want to undestand when the r.h.s. of (2.5) is bounded by O(Hß++E) for every f > 0,
that is, when the upper estimate of ß(B) that can be deduced from (2.5) coincides with
ß-(B). If we replace in the r.h.s. of (2.6) the gcd(xb) by 1 , we will only diminish our
upper estimate of ß. Hence we must first understand when this diminished upper bound
coincides with ß-. Obviously, we must have ßi f= °for all i (this is Cl c.).

Applying Proposition 1.2 to the case a = 0, b = b, we get:

(2.6)

ß . -b- 1+ := m~n i ;,
Let us now compare ß+ and ß-. Take a point eo E P(B) such that L:~=o e? = ß-. Define
the subset Bo C B by:
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Define 10 = 10(~) as in 2.1. We have

(2.7)

and the equality in (2.7) is achieved precisely when

{ilbitakes its minimal value} :) 10 = {il~? =1= O}.

This is Cl b).

On the other hand,

L (ELb, ~o) = L EL + L EB(b, ~o) ~ 1,
bEB bEBo bflBo

(2.8)

and since L:b Eb = 1, the equality in (2.8) is achieved precisely when Eb = 0 for b rt B o.
(This is Cl a.). Taken together, (2.7) and (2.8) show that ß+1ß- ~ 1 which of course was
to be expected.

The net result so far is that Cl is necessary and sufficient for ß- = ß+.
Put now

b
ß~ = limsup log card{x E Z;~~priml gc:(xb ) ~ H}.

Obviously, ß+ ~ ß+, and we want to prove that C2 implies ß+ = ß+(= ß-).
In the semigroup of products of fractional powers of primes in R>o consider the equation

b .
x r+l

gcd(xb) = n, x E Z>O,prim.

Let c(n) be the number of its solutions. Notice first that c(mn) = c(n)c(m), if (m, n) = 1.
To prove this, it suffices to show that if ordp(xi) = 0, then p AXi for all i. Otherwise,
putting ~i = ordp(xi) and comparing p-orders, we obtain:

(b,~) = "bi~i = min(" bi~d = min«(b,~)) > 0
~ bEB ~ bEB

I I

with ~ =1= O. But

(iJ,~) = " Eb(b,~) ~ (" Eb) min(b, ~),L....t L....t bEB
bEB bEB

and the equality is achieved precisely when (b,~) does not depend on b. This happens only
if (b - b',~) = 0 for all b, b' E B, which implies that ~ is proportional to (1, ... , 1) in view of
the condition iii) in the statement of Problem A (Introduction). But since gcd(Xi) = 1, at
least one of the coordinates of ~ vanishes so that ~ = 0 , leading to a contradiction.
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Let now n = pr, r E Q~o. Then c(pr) depends only on r, and equals

c(pr) = card {A E z;t l I3i, Ai = 0; (b, A) - min(b, A) = r}
- bEB

(The condition 3i, Ai = 0 follows from x E Z;~i~)'
We want to estimate

(2.9)

(2.10)

by calculating the convergence abscisse of D(s) = L:n c(n)Jns. From the multiplicativity
of c(n) it follows that

D(s) = II " c(pr)
LJ prs

p rEQ~o

From (2.9) it is clear that c(pr) counts the number of lattice points in a compact domain
linearly depending on r. Hence c(pr) is bounded by a polynomial in r. Therefore, the
convergence abscisse of (2.10) is determined by the first positive value of r such that
c(pr) =1= 0, and equals to the inverse of this value. On the other hand,

because min bi is clearly achieved on a vector A of the form (0...010...0)
In this way, we obtain the condition C2.

§3 Toric varieties

3.1. Finite heights. Recall that if L is an invertible sheaf on a projective variety V
defined over an algebraic number field k , and hL is a Weil height, then a representation
of L in the form O(D), D a divisor, allows one to construct a decomposition hL(x) =
hD,oc>(x)hD,/(x). For example, if L is very ample, (so, ... sn) is a basis of r(L), and So = 0
is an equation of D, we can put

hD,J(X) = II maxi(lsi/Solv)
vJinite

(3.1)

The following result is aversion of an idea due to V.V.Batyrev, and a slight generalisation
of Lemma 1.2 in [MaTschi]. Denote by p the rank of the group of units of k.

3.2. PROPOSITION. Let Do, Dn C V be a family ofpairwise distinct effective divisors;
U = V\ Ui=o D i ; L = O(Do + + Dn ). Assume that for some m > 0, there exists a family
of sections so, ... SN E r(Lm) whose zeroes are supported by Do U ... U Dn, such that the
map a : U ---+ pN, a(x) = (so(x): ... SN(X)) is well defined and has finite Ebers. Then,
for H ---+ 00, among the points x E U(k) with hL(x) :::; H, there can exist no more than
O((1ogH)n p ) points having the same family offinite heights (hDo'/(x), ..hDn,/(x)).

SKETCH OF PROOF: Denote by Ei the divisor Si = O. Representing a(x) by "almost
relatively prime" integer homogeneous coordinates in k , (so(x), ...sn(x)) E AN+1 , (A is
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the ring of integers in k), we see that hEi,f(x) coincides with NkfQ(Si(X)) up to a finite
valued factor. For fixed hDj ,f(x), ... ,j = 0, ... ,n, the finite heights hEilf are also fixed.
The norms of the coordinates Si (X) being known, the remaining freedom of choice of Si(X)
reduces to coordinate-wise multiplication by units. Looking now at hDilOO(X) and using
the Dirichlet theorem, one achieves the desired condusion.

3.3. THEOREM. With the assumptions ofthe Prop. 3. 2, one has for (bo, ... ,bn ) E z;t1
:

where
a- 1 = min(bi), t = card{ilbi = b} - 1.

In particular
ßu(L) ~ 1.

PROOF: We may and will assume that hDilf(X) takes integer values on U. For M =
O(boDo + ... + bnDn), we have

n

hM(x) ~ crr h~i,f(x)
i=O

for some c > 0. Putting into one dass all points with hM(x) ~ Hand a fixed system of
finite heights (hDi,/(X)) we see that there are O(Hu(1ogH)t) such classes (apply Prop.1.2
with r = n, a = 0, b = (bo, ... ,bn)). It remains to apply Prop. 3.2.

3.4. Application to toric varieties. Let X be a complete split toric variety, X o the
big orbit, {Di} the set of all irreducible divisors at infinity, i E ~(l). Then -I<x = 2:i Di .

If -Kx is very ample, or at least verifies the conditions of Prop. 3.2, we have

Nxo( -I<; H) = O(H(log H)(p+l)n),

ßxo( -K) ~ 1.

Furthermore,
a(boDo + ... bnDn) ~ min(bi)-l,

where a(M), in notation of [BaMa], is defined by

3.5. Open questions. a) Generalize §2 to arbitrary number fields k.
b) In toric interpretation, elucidate the algebro-geometrie meaning of conditions Cl, C2

of §2. Is there an optimal choice of coordinates in N leading to the maximal value of
ß-(B)? .

Can one prove the [BaMa]-type equality ßxo(L) = a(L) for toric varieties with non
necessarily ampIe - K ?

Acknowledgement. I would like to thank the Max-Planck-Institut für Mathematik in
Bonn, where this note was written, for financial support and excellent working conditions.
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