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Spherical algebraic knots increase with dimension

c. Kearton J. Steenbrink

Abstract: The set of knots which occur as the link of an

isolated critical point of a complex hypersur

face increases with the dimension.
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Let f (zO ' z l' ... , zn) be a polynomial in n + 1 complex

variables having an isolated eritical point at the origin, as

considered in ~Mi]. We make the additional assumption that

l:2n-1 = s2n+1 n f- 1 (0) is a topologieal sphere for sufficiently
E:

2n+1small E: > 0 , where S denotes the (2n + 1) - sphere of
E:

radius E eentered at the origin of ~n+1 . (As will beeome clear

in the proof, this is equivalent to the condition that every eigen-

value of the loeal monodromy has order divisible by at least two

(n - 1)-is
o

F

knot. As Milnor shows in [Mi], the complement

s2n+1 is fibred over the circle, and the fibre

different primes.) Then we have a (2n - 1) - knot

k = (S2n+1 , z:2n-1) , which we refer to as a spherieal algebraic

K of l:2n-1 in

o
connected. Of course, the submanifold F = z: U F is a Seifert

surface of k . As explained in [D], an excellent introduction to

this material, the Seifert surface gives rise to a linking pairing

H (F) x H (F) ~ zn n

which by a ehoiee of basis of the free abelian group H (F)
n

yields

a unimodular integer matrix V, known as a Seifert matrix of k .

Naturally, V is only determined up to unimodular eongruence,

corresponding to a change of basis. By a result of Levine [L], the

converse is also truej that i~, the eongruence class of V deter-

mines the knot k Note that we are relying here on the fact that

V is unimodular, a property that corresponds to k being fibred.

The assumption that I is a sphere is also easily expressed in

terms of V: i t corresponds to V + ( - 1) nV f being unimodular ,
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since V+ (- 1)nV' represents the intersection pairing on

H (F)
n

(For n = 2 , we get only that L is a homology spherea)

Let A
n

denote the set of unimodular congruence classes of

Seifert matrices V which arise in this waYa Thus A
n

is in

one-one correspondence with the set of spherical algebraic

(2n - 1) - knots a By a well-known resul t (see [KN]), the polynomial

2 2
f(zO,z1' a a a ,Z ) + Z 1 + Z 2 also has an isolated critical pointn n+ n+

at the origin and gives rise to a spherical algebraic knot having

the same Seifert matrix as k a Thus we have an inclusion

A c A 2 a It was shown in [K] that this inclusion is strict for
n - n+

n = 1 and n = 2 ; the purpose of the present paper is to prove

the following resulta

Theorema The inclusion A c A 4n n+ is strict for all n •

Note "that in the present paper we are using Levine's classi-

fication of simple knots in terms of Seifert matrices, instead of

the classification in terms of homology modules and duality pairings

used in [K].

As Durfee remarks in [D], the monodromy h is represented by

the matrix (- 1)n+1 v-1 V1 ; knot theorists are accustomed to the

-1equivalent formulation of fIn (F) as a "Z [t , t ] - module presented

nby the matrix tV + ( - 1) V I • Dur argument relies on the monodrorny

theorem, that for some integer d > 0 ,

on Malgrange's polynomial

(hd _ id) n+1 = 0. , and
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2n+2
+ z

n

In [M], it is shown that the monodromy a of f satisfies
n

(ad - id) n-1 * 0 for every d > 0 • In fact, Malgrange shows that

a has a Jordan block of size n x n corresponding to the eigen-

value - 1 .

Now let d > O~ be an integer such that (a
d - id) n = 0

and choose a prime p not dividing d . Set

9 has monodromy a ~ ß , by the

The monodrorny of the polynornial z~ is known "(see [RN],

2 p-1decornposi tion diag (1'; , 1'; , ... , Z;; )
P P P

root of unity. ~eno.ting this mono-

page 389) • It has Jordan block

where 1';p is a primitive thp

dromy by ß , the polynornial

Thom-Sebastiani Theorem [RN]. Thus the monodromy of 9 has an

n x n Jordan block corresponding to the eigenvalue - l:p .

Unfortunately we cannot stop here, for by results of Varchenko

[v] the monodromy of f has 1 as an eigenvalue (compare [A'e;
n

page 246] for the case n = 3). So· let q be a prime not dividing

pd , and set

If Y denotes the rnonodromy of the polynomial z~+1 ' then
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the monodromy of lP is a @ ß @ Y and has an n x n Jordan block

corresponding to the eigenvalue

a @ ß @ Y are all of the form

of unity and 1 ~ a < p, 1 ~

- ~p~q . The other eigenvalues· cf

ssa~b ,where s is a d th rootp q

b < q . Thus all the irreducible

factors öf ~(t) , the characteristic polynomial of a ~ ß ~ Y' ,

are m th cyclotomic polynomials where pq divides m. There-

fore ~(1) = ±1 , and so the link E of the critical point of

lP at the or igin of a: n +2 is a hornology (2n + 1) - sphere [Mi,

page 68]. And assuming n ~ 2 L is in fact a (2n + 1) - sphere.

Thus we have produced aspher ical algebraic (2n + 1) - knot

k n +1 ' and hence an element of An + 1 which has an n x n Jordan

block in its monodromy. This element cannot therefore belong to

A 3 •n-

We end with two problems related to the proof above.

(1)n Does .there exist a polynomial f(zO' ... ,zn) with an

isolated singularity at the origin such that the local mono-

dromy has only eigenvalues different from 1 and has a

Jordan block of size (n + 1) x (n + 1) ?

(2) Does there exist such a polynornial where the order of each
n

eigenvalue cf the monodromy"is divisible by at least two

different prirnes and such that the rnonodromy has a Jordan

block of size at least n x n ?
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Note that a positive (negative) answer to the first question

would enable us to prove that the inclusion A c An-1 n+1

(A 1 c A '3) is strict, and that a positive (negative)n+ n+

to the second question would imply that the inclusion

answer

A 2 c A (A c A 2) is strict. Note also that for n = 1 ,n- n n n+

Question 1 has been settled in the negative by L~ [Le]. (See also

[Ale 2].) Finally, if (1) has a positive answer then so does
n

(2) l' by adding a suitable power ofn+
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