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0. Introduction.

This paper is a direct continuation of [B5] which we shall refer to as Part 1. In Part
I we started to develop a p—adic analogue of our differential algebraic theory in [B1-B4]j
and we have studied “6—formal functions” on curves of genus g > 2, and of genus ¢ = 0.
The present paper is devoted to the study of §—formal functions on curves of genus g = 1,
and more generally on abelian varieties. Our main purpose is to construct an analogue, in
our p—adic theory, of the “Manin maps of abelian varieties over fields with a derivation”
[Man], [Ch], [B1}, [BV], [Hr]. Recall that in the “classical case” of fields with a derivation
the Manin maps are “differential algebraic” homomorphisms from the group of points of
the abelian varieties into the additive group of the field; they have the property that the
intersection of their kernels is “small”. We shall find a similar picture here for abelian
varieties with good reduction defined over p—adic fields. As in Part 1 we shall restrict our
attention to the absolutely unramified case. This is only for simplicity of the exposition
for most of the theory has a ramified version, as we shall explain in a forthcoming paper.

Let’s briefly recall the basic objects considered in Part 1. Let £ be an absolutely
unramified complete discrete valuation ring with fraction field K of charactersitic 0 and
algebraically closed residue field & of characteristic p > 0. In addition to Part I we shall
assume throughout the present paper that p # 2. Consider the unique lifting ¢ : R — R
of the Frobenius of k. Define the map é : R — R by the formula éz = (¢(z) — z”)/p and
for any z € R write z',z", ...,z in place of §z,8%z,...,6"z. Moraly z’,z", ... play the
role of “derivatives” of z (and will be called the p—derivatives of z).

Let X/S be a scheme of finite type. An R—valued function ¢ : X(R) — R will is
called a é—formal function of order < n on X(R) if any point in X has an affine open
neighbourhood U C X where ¢ can be written as

@(P) = ®(uw(P),u(P),w(P)",...,u(P)™), P e U(R)

where u = (uy,...,un) is an N—uple of regular functions on U (so u(P) € RN) and @ is
an element in the p—adic completion of the ring of polynomials with coefficients in £ in
N(n + 1) indeterminates. Denote by O"(X) the ring of é—formal functions of order < n
on X(R). A function in O*(X)\O"*~'(X) will be called of order n (rather than < n).



In what follows, if A/ R is a commutative group scheme of finite type , by a § —character
of A(R) we understand a é—formal function 3 : A(R) - R = G.(R) (of some order
n € N) which is also an (additive) group homomorphism. Consider the intersection

AYR) =) Ker ¢ C A(R)
v

where ¢ runs through the set of all §—characters of A(R). Then of course A*(R) contains
the intersection

P A(R) = mp"A(R) C A(R)

If for example A = GY , is a linear torus then it is easy to see that actually ANR) =
PP A(R); cf. Remark 4 below. Our main result will say that A*(R) is still close to
P A(R) in case A/R is an abelian scheme. To state our result recall that A(R) has a
natural structure of proalgebraic group over k in the sense of Serre [S2] given by the
theory of Greenberg transform; cf., say, [Ray]. (Alternatively and equivalently, in the
notations of Part I, section 2, this proalgebraic structure is defined by the surjective maps
ot A(R) ~ AP (k) = AJ(k) where AS, A are the reduction modulo p of the p—jet spaces
of A). Now as we shall easily check A' R) is a proalgebraic subgroup of A(R) (actually
this holds for any intersection of kernels of §—characters of A(R)). In particular we may
consider the identity component A R)° of A! R) in the sense of proalgebraic groups
[S2] (defined, in our notations of Part I, as the inverse limit of the identity components of
m.(A¥(R))). On the other hand it is well known [Ray] p.10 and easy to check that p™ A(R)
is a connected proalgebraic subgroup of A(R) (actually all groups m,(p*° A(R)) are abelian
varieties isogenous to Ag := A ® k). So we have trivially that p® A(R) C A*(R)°.

Here is our main result, which is an analogue of the Manin-Chai “Theorem of the
kernel” {Man], [Ch]:

Theorem A. Let A/R be an abelian scheme. Then we have A*(R)° = p™A(R).

So Theorem A says that there are enough §—characters in order for the intersection
of their kernels to have the minimum possible identity component. Now we address the
question of how many é—characters one needs to achieve this and what is their minimum
order. We succeed to answer this question in the “extreme” cases: the “most degener-
ate” and the “generic case” respectively; cf. assertions 1) and 2) in the Theorem below
respectively:

Theorem B. Assume A/R is an abelian scheme of relative dimension g. Then the
following hold:

1) One can find R—linearly independent first order §—characters ¥y, ..., 4, of A(I?) if
and only If there exists a ¢—endomorphism of the completion A/ R lifting the Frobenius

of the closed fibre Ap/k. In this case we have (M=, Ker ¢;)° = p™ A(R).
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2) Assume A(R) has no first order §—characters. Then there exist §—characters
Y1y, ¥y of A(R) of order 2 such that (N, Ker ;)° = p® A(R).

In the case of ordinary reduction, we can be more precise about when we find ourselves
in one of the situations 1) or 2) in Theorem B:

Theorem C. Assume the closed fibre Ag/k of the abelian scheme A/ R is ordinary and
let ¢i;(A) € 1+ pR, 1 < 1,57 < g be its Serre-Tate parameters [Ka]. Then the following
hold:

1) There exist g linearly independent first order d—characters of A(R) if and only if
qi;(A) =1 for all 1,5 (i.e. A/R is the canonical lifting of Aq/k).

2) Assume det((¢i;(A) — 1)/p) € R*. Then there exist no first order §—characters of
A(R).

Finally let us discuss the “power series extensions” of our d—characters. Start with
the remark that if X/R is smooth then any é—formal function ¢ : X(K) — R may be
canonically extended to a map @, : X(R[[t]]) = R[[t]]. (Cf. (1.2) below; essetially what
one does is to define ¢, using the same local formula ®(u,’,...,u™) which defines ¢,
where we extend ¢ : R — R to ¢: R|[t]] & R|[[t]] by letting ¢(¢) =t?). f X = A/Risin
addition a commutative group scheme then for any §—character ¢ : A(R) —» R the map
P, « A(R[[t]]) = R[[t]] is a group homomorphism into the additive group R][[t]]. For A/R

as above we define

A(R[[1]) =) Ker % C A(R[[]])
¥
where 1 runs through the set of all §—characters of A(R). Also we set

A(B[[t]Dp: := Ker(A(R[[t]]) = ACR[[]]/ptR[[2]])

(We have a non canounical bijection A(R[[t]])p: = (pt R[[t]])° where g is the relative dimen-
sion of A/R.) Then we have the following:

Theorem D. Let A/R be an abelian scheme. Then AY(R[[t]]) N A(R[[t]])pe = 0. Further-

more, if Yy,...,, are as in 1) or 2) in Theorem B then the induced homomorphism

(D165 e Pge) + A(R[[L]])pe = (LR[[E]])

is injective.

Remarks. 1) The d—characters appearing in the Theorems above are not analytic
functions; so they are very different from, say, the “Bourbaki logarithm” and the p—adic
abelian integrals of Coleman [Co).



2) The g—uple of order one maps ¥,,...,7, in assertion 1) of Theorem B should
be viewed as an analogue, in our theory, of Kolchin’s logarithmic derivative [K1]. The
situation in assertion 1) of Theorem A should be viewed as the “most degenerate case”;
cf. assertion 1) in Theorem C. On the other hand, the corresponding g—uple of order two
maps in assertion 2) of Theorem B should be viewed as a p—adic analogue of the “Manin
map” [Man] [B1]. This situation should be viewed as the “generic one”; cf. assertion 2)
in Theorem C.

3) In the case of elliptic curves (g = 1) assertions 1) and 2) in Theorem B provide
a complete picture of the story: either there exists a §—character ¥ of order one (which
happens if and only the Frobenius of Ag/k lifts to A) or, if not, there exists a d—character
¥ of order two. In both cases (ker ¥)° = p@ A(R).

4) By the way, it is instructive to note that the whole theory above has an analogue
in the case of linear tori, which is already quite interesting, although easy to check. Here
the whole story takes place at the level of order one §—characters (which is not surprising
since linear tori should be viewed as analogues of canonically lifted abelian schemes).

Indeed for A = G,, the map ¥ : G,,(R) = R* — G,.(R) = R:

2

P(z) = %L’og(qﬁ(:c)/a:p) =z'x7F — g(m'm_p)z + %—(w'w_p)3 - ..
is a d—character of order one. Its kernel is precisely the image of the Teichmuller character
6 : k* — R* and the latter is known to be equal to N(R*)P". So in this case we see that
AY(R) = p=A(R). Note also that the induced homomorphism w, : (R[[t]])* = R[[t]] is the
so called p—adic logarithin [FV] p.169 (taken actually with a minus sign); this map and
its inverse defined on tR[[t]} (called in [FV] the Artine-Hasse-Shafarevich map) play an
interesting role in “explicit local class field theory”; in some of these class field theoretic
applications, these functions are usefully combined with the ‘usual” logarithmic derivative
(RIEN) = R[], f = f71(df /dt).

All this suggests a number of intriguing questions in the case of abelian schemes A/R.
What is the structure of the group A*(R)/A* R)° in this case 7 Is this group always
finite 7 What is the image of the injective map (¥4, ..., ¥} : A(R[[t]])pe = (LRI[t]])® in
Theorem D ? The inverse of this map (defined on the image) would be an analogue of
the Artine-Hasse-Shafarevich map. These maps should also have a class field theoretic
relevance. Even more intriguing is the question of “putting together” the §—characters
¥ o A(R[[t]]) = R[[t]) constructed in the present paper and the “classical Manin maps”
A(R[[t]]) — R[[t]] as defined, say, in [B1] using the “usual” derivation d/d!.

Finally the above considerations suggest that much of the Cassidy-Kolchin theory of
differential algebraic groups [C1,C2], [K2] and much of our theory in [B4] has a p—adic
analogue.

5) Assertion 1) in Theorem C is just a reformulation of part of assertion 1) in Theorem
B, because it is well known that, under the assumption Ao/k is ordinary, the condition
that the Frobenius of Ay/k lifts to a ¢—endomorphism of A/R is equivalent to A/R
being the canonical lifting; cf. [Me]. As for assertion 2) in Theorem C note that the
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condition det((qi;(A) — 1)/p) € R* is satisfied for a generic choice of the Serre-Tate
parameters and is actually a condition which can be checked modulo p?. By the way, this
condition is equivalent to det(8¢i;(A)) € R™ because det(8¢i;(A)) is congruent modulo p

to (det((qi;(A) = 1)/p))".

The paper is organized as follows. The first section will contain some complements to
the material of Part [. Section 2 is devoted to the description of the interaction between
p—jets and formal groups. In Section 3 we complete the proof of Theorems A and B.
Section 4 is devoted to the proof of Theorem C.

Acknowledgement. The author would like to thank the Max Planck Institut fur
Mathematik in Bonn for support and hospitality during 1994/95. He is also endebted to
I.B.Fesenko and F.Voloch for useful conversations.

1. Complements to Part 1.

(1.1) 1t is convenient to introduce the following ad hoc terminology. By a p—formal
scheme we shall understand a noetherian formal scheme X/R such that pOyx is an ideal
of definition for X. The fibre product of two objects X and Y over a third Z in the
category of p—formal schemes will be denoted by X xzY. By a p—formal group scheme
we shall understand a group object in the category of p—formal schemes. So a p—formal
scheme is not a formal group. By the way, the upper * will always denote the p—adic
completion; so for instance if G/ R is a group scheme then G/R will denote the associated
p—formal group scheme (i.e. the p—adic completion) and not the associated formal group
(i-e. the m—adic completion, where m is the ideal of the closed point of the zero section).
This distinction is important because we shall encounter, in what follows, both p—formal
group schemes and formal groups.

Let B be a ring and = a finite family of indeterminates. Then we shall identify the
completion B{z]" with the subring of E[[a:]] whose elements are the restricted power series
(recall that restricted means “whose coefficients tend p—adically to 0”). Note also that
R[z]” ®r K identifies with the ring of restricted power series in K[[z]].

Finally, as a general notational convention, the letter F' will always denote the absolute
Frobenius of a scheme over F, whereas the letter ¢ will be systematically used to denote

endomorphisms of schemes X /R which lift the absolute Frobenius F' of the closed fibre
Xo.

(1.2) Let us quickly review the main construction in Part [. Recall that a p—derivation
of a ring homomorphism f: A — Bis a map of sets 6 : A = B such that the induced map
(f,8): A= Bx B=Wy(B), xw (f(z),8(z)) is a ring homomorphism. Here W,(—) is
the “ring of Witt vectors of length 2” over a given ring. (E.g. the map 6 : R — R from
the Introduction is a p—derivation of the identity.)



For any finitely generated R—algebra B we defined in Part | a sequence of algebras
o 1 n
R=B7LB=B5LpB - . B LB 5.

together with p—derivations § : B"™! = B™ (n > 1) of f® where f"0d = §o f*~!, satislying
the following universality property (UP): for any ring homomeorphism ¢ : B*! — C
and any p—derivation @ : B*"! — C such that do f*! = god : B*? = (, there
exists a unique ring homomorphism u : B® — C such that ¢ = vo f* and 9 = nwo 4.
The p—derivations & extend to p—derivations still denoted by § : (B™™')" — (B")" of
f (B*') = (B")" which have the following universality property (JP"): for any
ring homomorphism ¢ : (B*')" — C into a p—adically complete ring C and for any
p—derivation 9 : (B™')" = C such that do f*~! = go§ : (B""?)" = C, there exists a
unique ring homomorphism u : (B"*)" — C such that g = v o f* and 9 = w0 4.

Using this universality property one sees that for any element s € B the natural
homomorphisms ((B"),)" = ((B,)")" are isomorphisms. This allows one to globalize the
construction: for any scheme of finite type X/R we have a projective system

o Xt Xl S5 X' X=X

of p—formal schemes with p—derivations & of Ox,__, into the direct image of Oy, satisfy-
ing the obvious analogue universality property (UP"). The p—formal scheme X" is called
the p—jet space of X order n. It follows from Part I, (2.12), that one has natural homo-
morphisms O{X™) — O*(X), which is actually an isomorphism, in case X/R is smooth.
So in particular, for X/R smooth, and I/ € X an affine open subset, the ring O*(U) @ K
is an affinoid algebra in the sense of [FvP]. Also note that if X/R is smooth, for any
» € 0*(X) we have an induced map ¢, : X(R[[t]]) = R][[t]]. Indeed consider the unique
p—derivation § : R[[t]] = R[[t]] extending § : R = R such that §¢ = 0. By the above f is
given by a morphism of p—formal schemes f : X* — (A'Y". By the universality property
(UP") any morphism Spec R{[t]] = X lifts to a morphism Spf R[[t]] = X which by
composition with f gives a morphism Spf R[[t]] = (A')" hence an element of R[[t]]. This
provides us with the desired map ¢, : X(R[[t]]) = R[[t]].
We will need the following

Lemma (1.3). Let u: A — B be an etale ring homomorphism and v : B — C a ring
homomorphism into a p—adically complete ring C. Then any p—derivation of v o u lifts
uniquely to a p—derivation of v.

Proof. We may assume p"C = 0 for some n. Set f =vou, let § be a p—derivation of f,
and consider the commutative diagram

A S
(f,8)4

B
v
Wy (C) B C
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where p; is the first projection. Since « is etale and (Ker p)*~! = 0, there exists a unique
ring homomorphism o : B — W(C) such that py 06 = v and o ou = (f,§) which means
exactly that é extends uniquely to a p—derivation of v.

Proposition (1.4). Let u: R[z] = B be an etale morphism, where  is a finite family
of indeterminates. Let z',z", ...,z be n families of new indeterminates indexed by the
same set as x. Then the natural homomorphism

Blz' ", ..., :c(")]" - (B")
(sending =) into u(x)®) is an isomorphism
Corollary (1.5) (Local product property). Let X/R be a smooth scheme of finite
type of relative dimension g. Then each point in X has an affine open neighbourhood U
such that the p—jet spaces of U have the following product decomposition (as p—formal

schemes):
UTI 2 Ux(Agﬂ)“
Moreover the projections U™t! — U™ correspond, under the above isomorphisms, to the
P ’ ?

projections (AYTD)" = (A9") X (A9)" = (A",

Corollary (1.6). Let X/R be a smooth scheme of finite type such that the closed fibre
Xo/k is connected. Then the rings O™(X) are integral domains for all n > 0.

(1.7) Proof of (1.4). Consider the unique p—derivations of the inclusions
R|z] 4 R|z,z'] LN Rlz,z',z"] — ...

sending z into x', 2’ into z” a.s.o. By the existence statement in Lemma (1.3) these
p—derivations lift to p—derivations

B 4 Bl B[+ S Bla', =", ...
The latter p—~derivations induce p—derivations
B Bl«']" 4 Blz', z"]" 5

By the uniqueness statement in Lemma (1.3) each p—derivation in this sequence pro-
longs the preceeding one. To conclude it is enough to check that the last sequence of
p—derivations satisfy the universality property of the sequence

B4 (BY S (B S



cf. (UP") in (1.2); but this is a trivial exercise using the unicity in Lemma (1.3).

2. p—jets of group schemes and formal groups.

(2.1) Let f = f(«1,2) € R[[z1, 2]} be a (not necessarily commutative) formal group
law in g variables (so x,,z, are g—uples of variables). Then for each integer n > 1 the
g—uple of power series p~" f¢" (p"x;, p"z4) is actually a g—uple of restricted power series
(so it belongs to (R[z1, z2]")?) hence it defines a structure of p—formal group scheme on
the p—adic completion of the affine space of dimension g; we denote this p—formal group
scheme by ((A9)",p™" f#"(p"x1, p"2,)). Here of course f¢" is the g—uple of series f with
coefficients acted by ¢".

Proposition (2.2). Let G/R be a smooth group scheme of finite type of relative dimen-
sion g. Let f € R[[x1,;]]Y be the formal group law associated to G/R. Then the kernel
of G = G"~! is isomorphic as a p—formal group scheme to ((A9)",p™" f*" (p"z1, p"22)).

In defining f above one starts of course with a regular system of parameters x of
the local ring Og. of G at the generic point of the zero section (we may assume z is
contained in the local ring Oggo of G at the closed point 0 of the zero section). Fixing
such a g—uple z provides inclusions R[z] C Ogo C R[[z]] where R[[z]] identifies with the
completion of Qg in the m—adic topology, and then f is defined as the image of & under
the comultiplication R[[z]] = R[[z1,z2]].

Proof. In notations above, the compatibility of § with the “counits” e : Ogn o — R shows
that the p—derivatives z’, 2", ..., z{"} belong to the maximal ideal of the local ring Ogn .
of G" at the generic point of the zero section, and hence to the maximal ideal of Ogn .
So we get inclusions Rz, z’,...,2™} C Ognp C R[[z,z', ..., 2]}, where R[[z,2,...,z(")]]
identifies with the m—adic completion of Ogn ¢ (due to the Local product property (1.5)).
The Proposition will be proved if we can construct, for any p—adically complete ring C a
group isomorphism

Hom(Spf C,Ker(G" = G™™')) ~ Hom(Spf C,((A®),p~™f*" (p"z1, p"x2))

which behaves functorially in C. Here of course Hom stands for “morphisms in the
category of p—formal schemes”. We have a functorial bijection of sets

Hom(Spf C,(A?)") ~ (7

defined by associating to each morphism Spf C — (A?) = Spf R[t]" ,t = {t1,..., Ly} the
images of t,..., 1, via the corresponding map R[t]" = C. Also, we may define a map

Hom(Spf C,Ker(G™ = G™")) = (7
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as follows. By the universality property (U P} in (1.2), morphisms
Spf C = Ker(G™ = G™™1)

are in bijection with p—derivations 0 : Ogn-1 9 — C of the homomorphism e : Ogn-1 4 —
R — C (where e(z) = e(z') = ... = e(z™Y) = 0) with the property that & restricted
to Ogn-2 is equal to the composition Ogn-2 9 N Ogn-19 — C. Then we attach to each
morphism Spf C — Ker(G™ = G™') the g—uple §z("~1 € C9. We claim that the map
d v 9z is bijective. It is certainly injective because @ is uniquely determined by
its values at z,2’,...,2("Y (due to Lemma (1.3)). To check it is surjective pick up any

g—uple ¢ € C9 and consider the p—derivation 8, : R[z,z’,...,z*""] = C defined by the
formula

d.h = (6h)(0,...,0,¢) = (R%(0, ..., 0, pc) — (R(0, ...,0,0))")/p, h € Rlz,’, ...,q:("_l)]

where & : R[z,2,...,z"""V] = R[z,z',...,2(] is the unique p—derivation sending = into
z', 2’ into z”, a.s.0. Note that d and 9, agree on R[z,z’,...,z("V]. But now the for-
mula defining J. makes sense for any power series h rather than any polynomial (be-
cause C is p—adically complete) so d. can be prolonged to a p—derivation (still denoted
by) 0. : R[[z,',...,z» Y]] = C of the homomorphism R[[z,’,...,a"" Y]] — C, = —
0,...,z("=1 = 0. Restricting 9, back to Ogna-1 o we get a p—derivation (still denoted by)
. 1 Ognrg = C of e, which must be equal to @ in view of the unicity statement in
Lemma (1.3).
Composing the bijections constructed above we get a bijection
Hom(Spf C,Ker(G" — G"_l)) ~ C? ~ Hom(Spf C,(A%)")
Let us check that this is a group homomorphism. Start with two elements in

Hom(Spf C, Ker(G™ = G™™'))

As noted above they correspond to two p—derivations &y, 9, : Ogn-1 4 — C. The product,
under the group law, of the two elements we have choosen corresponds to the p—derivation:

) ) 3,
dl . 82 : OG"—I'U L} OGn-l iGn_l,(O,O) (l—ag) C

where p i1s the comultiplication and (d;, d;) i1s the unique p—derivation inducing ¢, and
J; when restricted to the two factors. Set ¢; = ™V € C9 and ¢ = Gpx®") € Cv.
Now ¢, - 0, is the restriction of the following p—derivation:

R[[z,a, ...,z M R[[z}, 2}, ...,:.:2"‘”, T2y Thy ey xg"-l)]]
where M(z) = f, ..., M(z*1) = f("=V We get
(01 - 3) (=N = (8., 0,) (D) = N0, ...,0,¢1,0,...,0, ¢2) = p~" f*" (p"cy, p" )

which closes the proof of the Proposition.

(8,8¢;)

C

In the commutative case one can be more specific due to the following Lemma (this
is the only place where we use our assumption that p # 2) :



Lemma (2.3). In notations of (2.1) assume f is commutative. Then we have an isomor-
phism of p—formal group schemes

((Ag)“,p_"fd’" (p ey, pta2)) ~ (GI) = ((A?), 7y + =2)

Proof. Of course we may assume n = 1. [t is enough to prove that the power series
(with coefficients in K') defining the logarithm log;, and the exponential expy, of the
formal group law f\(z),x2) = p~! f®(pz,, pzs) have actually coefficients in R and are
restricted. By [Haz] p.31, Remark (5.4.8) together with Remark (11.1.6) at p. 64, for
each n > 1 there exist g—uples bno(z), ..., bun(z) € R[[2]})9, bno(z) = z+(terms of degree
> 2), bni(0) = 0, such that

[Pn]f"(w) = p"buo(w) + Pn—lbul(wp) + ...+ an,n—l(mpn-l) + bml(mpn)

where [p"];s is the “multiplication by p® with respect to the formal group f?. On the
other hand by [Haz] p. 64, formula (11.1.7), we have

logyp, (2) = impaeop™ " [p"] 4 (2)

Now .
P () = pm e (pa) = 30 pm b ()
1=0
Let o = (a@1,...,0,) € N be a multiindex with || := &y + ... + «p > 2. Then the

coefficient I, ,; of = in ;;‘(‘+')bn;(])p;:c7’i) has valuation vp(lan:) = |af — i — 1. Now if
lani # 0 we must have |a > p* hence we get i < logpla| and |a| —7 —1 > 1 (here we
used the fact that p > 3). Consequently we have

Vp(lam,i) 2> M(a) := maz{l, |a| — logy|a| — 1}

and hence if we denote by [, the coefficient of z® in logy, (x) we will still have v,(l,) >
M({a). Since M(a) is > 1 and goes to oo as |a| = oo we may write logy, (z) = « — ph(x)
where h € (R[z]")? is restricted. In particular logy, (z) € (R[z]")? is also restricted. To get
e(z) := expy, (z) we have to solve the equation e(x)—ph(e(z)) = z. As usual one finds e(x)
as a limit e{z) = lim, 4e.(z) where ¢,(z) := z and e 11(z) := z + ph{e.(x)); note that
eq(z) converge p—adically and are restricted, with R—coefficients (being compositions of
restricted series with B—coefficients) so e(z) exists and is restricted, with R—coeflicients,
which closes the proof of the Lemma.

Remark. In the case of characteristic p = 2, logy, (z) is still with R—coefficients
and restricted, but expy () may fail to be restricted. For instance in case ¢ = 1 and
[ =z +z2 + 122, logy, (x) is congruent to x — x modulo 2 while expy, () is congruent
toz + 22+ z* + z® + ... modulo 2.

To state the next Corollary it is convenient to make the following definition. Let
By, B,, B be p—formal group schemes. We say that B is a regular (respectively locally
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regular) extension of By by B, if there exists a homomorphism B — B, admitting a
section in the category of p—formal schemes (respectively admitting such sections locally
in the Zariski topology) such that B; ~ Ker(B — B,;) as p—formal group schemes.

Putting together (2.2), (2.3) and the Local product property (1.5) we get:

Corollary (2.4). Let G/R be a smooth commutative group scheme of finite type of
relative dimension g. Set B, = Ker(G® — G®). Then B, is obtained as n succesive
regular extensions of p—formal group schemes of the form (G?)"; moreover G™ is a locally
regular extension of G° by B,,.

To state the next lemma let us make a definition. Let B be a p—formal group scheme
whose undelying p—formal scheme is isomorphic to the p—adic completion of an affine
space of dimension N. By a system of coordinates in O(B) we will understand an N—uple
of elements z = (21, ..., 2n), zi € O(B) such that O(B) = R|[z]".

Lemma (2.5). Let B be a p—formal group scheme obtained by N successive regular
extensions of p—formal group schemes of the form (G,)". Then there exists a homo-
morphism x : B = (GY)" and a system of coordinates z in O(B) such that if { is the
canonical system of coordinates in O((GNY") then det(9x*é/0z) € R\{0}.

Proof. We proceed by induction on N. If N = | there is nothing to prove. Assume B is a
regular extension of (G,)" by B; where B, is obtained by N successive regular extensions
of groups (G,)". By the induction hypothesis there exists a homomorphism x, : By —
(GY)" and a system of coordinates z = (zy,...,zn) in O(B;) such that det(dxi€/dz) €
R\{0}. If s : (G,)" = B is a section of the projection then we may identify as usual B
with (G,) % B, with group law defined (at the level of points with values in p—adically
complete R—algebras) by

(ur,v1) + (uz,v2) = (wy + ug, i + v2 + fi{wr, ug))

where f) : (Ga)“i(Gu)“ = By, fiur,ue) := s(uy + ug) — s(uy) — s(ug). Consider the
composition

f=x10 i1 (Ga) %(Ga)” = (G)

The components f, of f are symmetric cocycles so f, € Rluy,uy]". Then each homogenous
component f,p,, of degree m of f, will be a symmetric cocycle. By a fundamental lemma
of Lazard [Laz|, Lemma 3, p.257 , we must have fo, = 74, C,, where Cy, is either C,, :=
(w1 4 1)™ — uj* — u if m is not a power of p or Cp = Cpn 1= ((ug +ug)?" =4 —u} )/p
if m = p™. So we must have r,,, = oo as m — co. So replacing f, by the coboundary of
some restricted power series with E—coeflicients we may write

f= Z raCon (1), uz)

11



where the sum is finite, f is viewed as a g x 1 matrix and », are ¢ X 1 matrices with
entries in K. Define

X: B = (G, XB, = (G,) x(GNy
by the formula

x(u,v) = (u, Z’f‘nup“ — px1(v))
n

Let zy = & be the canonical system of coordinates on (G,)" and consider the system
of coordinates zy,z,...,z2y on O(B). Then the condition on the Jacobian of x follows
trivially from the condition on the Jacobian of ;.

3. Construction of §—characters.

(3.1) Let’s prove Theorem A. Set B, := Ker(A™ — A®) and let U; be a Zariski open
covering of A over which A” — A® admits sections. By the usual yoga of extensions
of groups which locally admit a section [S1] A™ is obtained by gluing p—formal schemes
U = (U;)" % B, via maps (Uy;) x B, = (U;;)" % B, given at the level of points by

(u,v) = (u,v + yij(u))

where v;; : (Ui;)" = B, form a cocycle with respect to addition in B,,. By Lemma (2.5)
we may find a homomorphism x : B, — (G2?)" and a system of coordinates z on O(B,)
such that if £ is the canonical system of coordinates on (G29)" then det(dx*€/0z) € K~.
Then the maps

x o yij i (Uy)” = (GRF)
define an ng—uple of classes [y 0 v;;] € H'(A,O)™ ~ H'(A, O;)™. Since the latter is

a free R—module of rank ¢ there exists a (n — 1)g x ng matrix m with entries in R such
that m{x o vi;} = 0. So we may write

m(xovi;) = @ — a;j
where «; are (n — 1)g x 1 matrices with entries in C; := O((U;)"). Now consider the maps
Wi Ul = (U;) X B, = (GI"Y9y

defined by the formula
U (w,v) =m - x(v) + a;(u)

Clearly ¥; glue together to give a map ¥ : A® — (G{*~19)", We claim this map is a
homomorphism. Indeed its components ¥« : A" — (G,)" are “affine” on the fibres of
A" = A (e, ¥o(u+v) = ¥(u) + ¥*(v) for u € A" and v € B,); this plus the fact
that H“(A, O ;) = R formally imply that ¥ are group homomorphisms. Then the maps
¥, correspond to elements (still denoted by)

U, :=m-x*€+a; € Cifz
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Then the matrix

(0/0z5) = m - (9X"€/02)

must contain a (n — 1)g X (n — 1)g minor belonging to K*. We get that
dim((OMUMY/ () @ K) = &im(Ci[€] @ K/(¥)) <dim Ci+ng— (n—1)g = 2¢

To establish the last inequality use the fact that the rings C;® K and C;[£]"® K are affinoid
algebras and one may simply use the description of the Krull dimension of affinoid algebras
in terms of the finite module of Kahler differentials, and hence in terms of Jacobian
matrices {FvP].

Consider the p—formal group scheme G" := Ker(¥ : A® = (G{*19)"); so G" is
covered by p—formal schemes Spf O(U")/(¥)% where the upper ¢l stands for “closure of
an ideal in the p—adic topology”. Consider the p—formal scheme G} obtained by gluing
the p—formal schemes Spf O(U!)/((¥) : p™); clearly G} is then flat over R. Since the
p—adic completion of the tensor product of two flat R—algebras is still flat over R, it
follows that there is an induced structure of p—formal group scheme on g}‘. Hence Q}‘ @k
has an induced structure of k—group scheme of finite type. Set

H, = ((GF @ k)N Ker(A§ = Ag))red

Then H, is a unipotent algebraic subgroup of Af; let H} be its connected component.
Furthermore set
H .= Im(H,, = H,), m>0

Ho*b = [m(HS — H2), m >0

Then of course, for any point P € AYR) N Ker(A(R) — Ao(k)), P : Spec R — A, the
induced point Spec k = AP — A} factors through a morphism Spec & — H2*b.

Now it is a consequence of general facts of commutative algebras that the rings
OWUM)/((¥)* : p) are catenary (they are quotients of regular rings; use [Mat] pp. 137
and 157). Also, since

R = OW)/(9)* : p™)

is flat, it has “going down” [Mat] p. 68. Due to catenarity and going down we have (by
[Mat] p. 117):

dim (OUM)/((W) : p=N @ K > dim (O(UM)/ (W) : p=)) @ k

Since the left hand side of the above inequality is < 2g we get that dim H, < 2g. (Actually
one can immediately show that dvm H, < g; but the only important thing here is that
dim H, is bounded by a constant which is independent of n.)
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Claim 1. H2*'* =0 for all n.

Indeed assume that for some 1 the group H2**(k) contains infinitely many elements

- tab . .

Tal,Tng,-... Since the maps HL 1 (k) — HEeb(k) are surjective for all m we may lift

Tnl, Tna, ... to elements z;,2q,... € v lim HS*'*(k) C AP(k) ~ A(R). Since Hg#*

is unipotent connected of dimension < 2¢ we must have 0 = p¥z, = p¥a, = ... so we
p > 29 prry = Ppriie

end up with infinitely many points of order p?® in A(R), a contradiction. Our Claim 1 is
proved.

Claim 2. AYR) is a proalgebraic subgroup of A(R).

Recall that the proalgebraic structure is defined by the maps 7, : A(R) ~ AP(k) —
Ap(k). Let S € O®(A) = O(A™) denote the set of §—characters of A(R). Then by Part
I section 2, AYR) is the subset of A(R) 2 A3 (k) defined by the image in O g of the ideal
(5,5",5", .. C Osw where the upper ¢l means “p—adic closure of an ideal”. Clearly the
ideal (S, ¢S, ¢%S,...) defines a p—formal subgroup scheme of A* hence, exactly as above,
the same holds for (S, ¢S, $S,...)% : p°. But the latter ideal clearly equals (5, 57, S, ...)%.
So the image of this ideal in O g will define a k—subgroup scheme of Ag°, which proves
Claim 2. Note the above argument holds for S any set of §—characters.

Claim 3. p™A(R) is a connected proalgebraic subgroup of A(R).

This is well known {Ray] p.10 and easy to check. Indeed one immediately checks that
T (pP A(R)) = p*A}(k) =maximal abelian subvariety of Aj(k) and and p®A(R) is the
inverse limit of the m,(p® A(R))’s.

Now Claim 1 implies that H2** is finite for all n. Hence by Claim 2 =, (A*(R)) is an
algebraic subgroup of A%(k) mapping onto Ag(k) with finite kernel. Hence m,(p™ A(R)) =
m.(AY R))°. Taking inverse limits (and using Claims 2 and 3) we get p® A(R) = A*(R)°

and Theorem A is proved.

(3.2) Let us pass to the proof of Theorem B. We shall redo what we did in (2.5) and
(3.1) in the special case n = 2, taking into account the special features of this case.

Denote by B the p—formal group scheme Ker(A? — A%). If s : (G9)" — B is any
section of the second projection, then consider the section §: (GJ)" — B defined as

e

(z) = 8(x1, ..y zg) = s(x1, ..., 0) + ... + 8(0, ..., Ty)

This latter section defines a symmetric cocycle f : (GI)'%x(G9)" — (Gf)" f(a', %) =
§(z' + x?) - 3(x') — 3(x?) which, of course, will have components of the form f, (', z?%) =
far(z},2®) + ...+ Jog(y, ©2) where fr,ﬁ' (GL) %(Ga)” = (G,)" are symmetric cocycles,
hence are given by series fop € Rlup, v3]". Reasoning as in (2.5) we may assume

[ =2 1Cpn(a',2%)
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where the sum above is finite, f is the g x 1 matrix with entries f,, r,, are g X g matrices
with entries in R, and Cpn(z',z?) is the g x 1 matrix with entries Cpn(zp, z3).

As in (3.1) A? is obtained by gluing products (U;)'xB = Spf Ci[z,y]" where U; is a
Zariski open covering of A, C; = O(U;)", =,y are g—uples of indeterminates (sometimes
viewed as g x 1 matrices) giving “the coordinates” on (GY)" = ker(A! = A?) and (G¢)" =
ker(A* — A') respectively, and the gluing isomorphisms o;; : Cij[z,y]” = Cilz,y],
(Ci; = O(Ui5), Uiy = Ui N U;) are given by formulae

0‘,-3-(:1:) =+ @5
aii(y) = y+ bi; + D raCpn(w, ais)

where a5, b;; are g x 1 matrices with entries in Cj; such that (a,;, b;;) form a cocycle with
respect to addition in B; in other words:

(aij,bi;) = (air + arjy bix + bs + > raCpn(ik, axj))

n

Now Cpn( ik, akj) = (al;

a7

n .
— aly — aj;)/p so, upon letting
- P b .
Gj = Erna,-j pbi; € Cy;
n

we see that ¢;; defines a g—uple of cocycles in O .

Let us prove assertion 2) in Theorem B. We claim that the g—uple of classes [a;;] €
HI(A,OA)g generates a rank g submodule of HI(A,OA). Indeed if we had a relation
of the form hla;;] = 0 where h # 0 is a 1 x g matrix with entries in B we would have
ha;; = b; — b; for some b; € C7. Then the expressions hz — b; would glue together to give
a non zero d—character of order one, which proves our claim.

By the claim we may write ma;; + p¥ci; = a; — a; where m i1s a g X g matrix with
entries in R. Set

lI’i = PV(Z Tu“"pn - Py) +mz—a; € (C;[:IZ, y]ﬂ)g

As in (3.1) 0;;(%;) = ¥; so the U;’s glue together to give a g—uple ¥ € O(A?)¢ of
homomorphisms.

By the Local product property, if { are etale coordinates on U; then we must have
compatible isomorphisms C;[z]” =~ Ci[t']" and Ci[z,y]” ~ Ci[t',t]". This immediately
implies that for n > 0 we have

QUMY = Cit', 1", ..., 1" ~ Cilz, y, ¥, oy
In the rings above we may write
U= —py+go(x), ¥ =—p""y +ai(z,y), V' = —p"y" + galz,y,y), -
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Note that
(let(3\P(r)/ay(,))05r,s,Sn e K"

We get
dim (Cilz,y, v/, ...,y(")]"/(\l’, U, .., ¥ @p K) < dim (Ci[z] @r K) = 29
and the proof of assertion 2) can be concluded exactly as in (3.1).

(3.3) Let’s check assertion 1) in Theorem B. Assume there exist ¢ linearly independent
homomorphisms A! = (G,)". They give rise to g—uples ¥; € (Ci[z]")?. Since ¥; must
be “affine” on the fibres of A' = A° they must be of the form ¥; = wuw + v; where
u;,v; are g X g (respectively g x 1) matrices with entries in C;. The gluing condition
u;x + v; = oy(uwic + v;) = wiz + uia;; + v; shows that the u;’s glue together to give an
matrix v with entries in R, with det © # 0. We also get ua;; = v; — v; which imples
that the g—uple of classes [a;;] is zero in Hl(/;l, O;)?. This means that the projection
A! — A" has a section. This section defines, by the universality property (U P") a lifting
of § : R — R to a p—derivation of the identity of A° = A, and hLence a ¢—lifting of
the Frobenius, as desired in assertion 1). Conversely, if such a lifting exists, the reversed
argument leads to g linearly independent §—characters of order one. The assertion about
profiniteness can be proved in a way similar to the argument for assertion 2).

(3.4) Let us prove Theorem D. We will only check its first assertion; the second one
may be proved similarly. We use notations from (3.1). Assume we have a point P €
AYR[[L]) 0 A(RI[t]]) e, P : Spec R[[t]] = A, consider its lifting VP : Spf R[[t]] - A
and the point obtained by reduction modulo p, (VP)o : Spec k{[t]] = A. Since P €
AYR[[INN Ker(A(R[[t])) = Ao(k[[t]])) the morphism (V P), factors through a morphism

Spec k[[t] = inv lim HZ'®

Since by (3.1) H:"® are finite over k for all n the morphism (VP), factors through a
morphism Q : Spec k — AZ. Then we may write Q = (VQ)o for a unique Q : Spec R —
A. Let .

P Spec R[[t]] » Spec RS 4
be the composition. Then (V(P — P))y = 0 € AP(K[[t]]). By Lemma (3.5) below the
map A(R[[t]) = AL (K[[t]]), S = (VS)o is injective. We get P = P, hence P € A(R).
Since P also belongs to Ker(A(R[[t])) = A(R[[t]}/tR[[t)]) = A(R)) it follows that P =0

and we are done.

We are left to prove the following:
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Lemma (3.5). The map R[[t]] = K[|, f — (n.f, 78 f, mS%f,...) is injective. (Here
m » R|[t]] = E[[t]] is the reduction modulo p map.)

Proof. Let fi, f2 € R|[[t]] be distinct. Write f; = f2 + p*f with . f # 0. We get

FfH=6f+ " mod (p)

so md™ fy # md™ f, and we are done.

4. Serre-Tate parameters and d—characters.
The aim of this section is to prove Theorem C in the Introduction.

(4.1} We start by defining a certain cohomology class which already appeared in the
literature in various incarnations. We do it for abelian schemes but everything makes
sense for any smooth projective scheme. So let A/ be an abelian scheme with closed
fibre Ag/k. Define its internal Kodaira-Spencer class p™(A/R) € H' (Ao, F*Tayi) as
follows. Cover A with affine open subsets Uy, lift m0d : R — k (where 7 : R — k is the
canonical surjection) to a p—derivation §; : O(U;) = O(Uy) of the canonical surjection,
and consider the differences d; — &;; they define a class [6; — &) € H'( Ay, F*Ta,/x) which
we call p™(A/R). (Actually it is enough to do this construction modulo p?.) We shall
sometimes make the identification

Hl(Ao, F.TAo/k) ~ H()nlk(HO(Ao, F-Q}%/k), HI(A(), OAO))

and view p™(A/R) as map HO(Ao, F*Qy 1) = H' (Ao, Oy,)

Lemma (4.2). The class of the extension
0+ Gi, = Aj > A =0

in the group

Ext'(Ao, GY ) ~ Homy(H"( Ao, F*Q}Ao/k)’ H'(Ao,04,)) ~ H' (Ao, F*Ta, i)
equals p™(A/R).
Proof. Let vy,...,u, be a basis of H°(Ap, T4,;i) coming from an R—basis V},...,V, of
H°(A,Tasr). We view v; as derivations of O,,. Then composing these with the absolute
Frobenius F' of Ay we get a basis Fuy, ..., Fu, of H%(Ay, F*Ty, /). Using notations above,
we may write d; — & = 3, aujn v, where a5, € O(Usp). Then of course p""(A/R) is rep-

resented by the map (Fv,)° = [oja] € H' (Ao, O4,), where {(Fv,)°} C H(Ao, F*Q, 1)
is the dual basis of {Fv,}. Now glue the schemes Spec O(Ujp)[z], where = is a g—uple
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of indeterminates, by x, = x, + @;;.. The resulting scheme is the extension E of A} by
G{ . corresponding to p™*(A/R). Consider now the p—derivations 6; : O(U;) — O(Ujo)|z]
defined by 6;a := &;a + ¥, F(V,a mod p)z,. There p—derivations glue together to give a
p—derivation 8 : O4 — Og. It is easy to check that E together with this p—derivation
satisfies the universality property of A} (just interpret correctly the Local product prop-

erty).

(4.3) Assume from now on that Ag/k is ordinary. Let A/ M be the universal formal
deformation of Ay/k. By Serre-Tate M has a structure of toroidal formal group so we may
write M = Spf R|[[t]] where t = (¢;;) are indeterminates: the expressions ¢;; = | + t;; are
the “universal” Serre-Tate parameters. Then A/R defines a classifying map R[[t]] = R.
The images of ;; respectively ¢;; in R will be denoted by t,;(A), ¢:;;(A); cf. [Ka].

One may define two Kodaira-Spencer maps (which we may call external Kodaira-
Spencer maps)

Pt k5 o H' (Ao, T )

and

pezi,Frob . k.’)2 — Hl(Ao, FtTAo/k)

as follows. For any matrix r = (r;;) € k9 let 8, : k[[t]] = k[[t]] be the k—derivation
of the identity of k[{t]] defined by the formula 8, := 3 ;; r;;(8/0t;;). Consider an affine
open covering A; of A and lift 9, to derivations of the identity d.; : O(A4ip) = O(A;p).
Recall that the index 0 stands for “taking the closed fibre” (equivalently “tensorizing
with £”). Then consider the differences g, ; — 0, ; and reduce them modulo ¢ to get a class
p==(r) € H'Y (Ao, Tao). Similarly to define p®"Fr° start with any matrix r as above,
consider the k—derivation of Frobenius ¥;;ri;F o (8/8t;;), lift it to derivations of the
Frobenius O(A; ) = O(Aip) and consider the class in H'( Ay, F*T'4,/x) represented by
the differences of these liftings. We have then a commutative diagram

B 2D HY(Ae, Tags)
Fl | F*

A’ 2 ext, Frob
-7

P——) HI(A(), F'TAO,’L-)

It is also useful to note that p*!(r) viewed as a map H®(Ao, Q) /) = H'(Ao, O4,) can
be represented (in suitable basis) as the matrix r itself. Indeed, by “Katz’ formula” [ a],
there exists a basts wy, ...,wy, M1,...,7; of H := Hpp(A/M) compatible with the Hodge
filtration such that the Gauss-Manin connection

V:H =Y R[[t]dt;® H

satisfies Vr; = 0 and
Vo = Xg: dt;; @1
T 1+ t;; W

i=1
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So p®*(r) corresponds to the matrix with entries

(lt,'j
1+ ti;

lt=0 >=ryj

<D o rw(0/0t.,),

Lemma (4.4). p"™(A/R) = F"p=!((m(5t(A)))"/7)

Remark. The above is an analogue of "Katz’ formula” [Ka] which says something
similar for “usual” derivations (rather than p—derivations).

Proof. Recall that 7 : B — k is the canonical projection. Let us give names to some of
the maps which we are going to consider. Call m; : R[[t]] — K[[t]] the “reduction modulo
p” map, call fo: R[[t]] = k the R—algebra map which sends ¢t — 0 and call fyq : k[[t}]] = £
be the k—algebra map sending t — 0. Also call fs : R[[t]] = R the classifying map of
A/R;1e. fa(t) = (Li;(A)). Of course we have o fu4 = fo.

By {Ka] pp.170-171 there is a commutative diagram of schemes

A 5 4
il 1
M L5 M
! l

Spf B 5 Spf R

where M % M has the property that ¢*t;; = t¥;. So we get p—derivations of the identity
on R[[t]] and on the structure sheafl O4, both to be denoted in what follows by 4. Of
course 8t;; = 0. Consider the map

O:R[[t]] ok, d=mo0bo0fa— food

Since both modo f4 and fy04d are p—derivations of fo it follows that dis an R—derivation
of Flofo:R[[t]] » k — k. So 0 has necessarly the form

ah

) = T, (v (520)) " ne

where 7; € k. Consider the map @ : R[[t]] = k[[t]] defined by
I n
d(h) = Z‘I',‘J’ (m (_3_:)) , h € R[[t]]
7 5

It is an R—derivation of Fom, : R[[t]] = k[[t]] = k[[t]]. Of course we have § = fyo 0 9.
Note that B
Ty = 8t,’j = at,'j =7mo0do fA(t,'J') - fg o (5t,'j = Tr(&iij(A))
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Now let A; be an affine covering of A and lilt & to R—derivations &; : O4 — Oy, of
Fomi: O = Ou,y, where m; : Oy, = Oy, are the reduction modulo p homomorphisms.
Finally consider the maps

D; = ‘.‘T,‘DJ“}‘a{ . O_A,- - O.A.',o

They are p—derivations of m; whose restriction to R is of course rod : R =+ R — k. Let
us examine the differences

DJ' -D;= 8,- -0 OA‘-J- - OA.',‘,o
(A;; := A;N A;). These differences vanish on p so they induce a cocycle

8,-—8,-:(9,4 —}'OA

v,0 13,0

which represents
pEF ) = (51 A)) = F7p((r(51(A)?)

Now we claim that each D; maps Ker(fa) into Ker(fo) = tk[[t]]. Indeed the restric-
tion of D; to R][[t]] equals m, 0 § + J and we have

fowo(mod+0d)= foobd+d=m0do f4

This shows that each D; induces a p—derivation é; : O4 — O 4.~ of the canonical surjec-

tion O4 — Oy, (where A; C Ais the pull back of A; via f4). The induced cocyle

(5_,' - (5,‘ : OA.',',o — OA

3,0
represents p'™(A/R) and the Lemma is proved.

(4.5) Let us conclude the proof of Theorem C. Only assertion 2) of it requires a proof.
So assume we are in the hypothesis of Theorem C and use freely the notations from sec-
tion 3 and from the discussion in the present section. As remarked in the Introduction,
our hypothesis det((q;;(A) —1)/p) € R* is equivalent to the fact that det(m(dt;;(A))) # 0.
By (4.3) the class p™=*((m(8t(A)))"/7), viewed as a map H®(Ao, R} /) — H'(Ao, O4,),
is represented (in suitable bases) by the matrix ((m(dt;;(A)))!/?) itself; so by our hy-
pothesis, this map is invertible. By Lemma (4.4) the class p™'(A/R), viewed as a map
HO(Ao, F*Q)y /1) — H'(Ao, Og,), must be invertible. By Lemma (4.2) the class of the
extension

0 Gl — Ay = Ag— 0

correspouds to an invertible map H%(Ao, F*Q) /) — H'(Ao,O4,). This shows that
the g—uple of classes [a;;] € H'(A,O4)? appearing in (3.2) generate H'( Ay, O4,). By
Nakayama this g—uple must generate H'(A, O4)9 itself. Assume there is a §—character
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of order one on A(R) and look for a contradiction. This d—character produces non zero
elements ¥; € C;[z]" of the form ¥; = w;z + v; where u; are 1 X g matrices with entries in
C; and v; € C;. The gluing condition for ¥; forces w; to glue together to give an v € RY.
If © = (0,...,0) then the v;’s glue together to give a v € R, which of course must be 0,
a contradiction. If u # (0,...,0) then, since the gluing condition for the U;’s also gives
ua;; = v; — vy, we get ufa;;] = 0, contradicting the linear independence of the g—uple [a;;].
Theorem B is proved.
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